
A typed natural deduction calculus to reason about
secure trust

Giuseppe Primiero
Department of Computer Science

Middlesex University, UK
Email: G.Primiero@mdx.ac.uk

Franco Raimondi
Department of Computer Science

Middlesex University, UK
Email: F.Raimondi@mdx.ac.uk

Abstract—System integrity can be put at risk by unintentional
transitivity of resource access. We present a natural deduction
calculus for an access control model with an explicit trust
function on resources. Its inference relation is designed to limit
unintentionally transitive access from untrusted parties. We also
offer results for ordered cut and normalization related to security
and hint at a prototype implementation.

I. INTRODUCTION

An important threat to system integrity and security through
access control is represented by promiscuous or unintention-
ally transitive trust (see [9], [8]): “Bob trusts Carol. Alice
trusts Bob, but she has no way of knowing that he trusts
Carol. Then Alice has no control on the risks to which
she is exposed when trusting Bob.” In this scenario, access
privileges of third parties might need restriction. One way to
limit such inconvenient system behaviour is to require that
resource access depends from explicit trust among all subjects:
“Bob trusts resources from Carol, and similarly Alice from
Bob. Alice can access and use Carol’s resources if she trust
them explicitly”. This policy requires explicit trust declaration
of Carol from Alice and implementation of this localisation
principle motivates our contribution (see [10]).

Such explicit trust treatment has not yet been explored
in the context of well-known access control models. In the
Bell-LaPadula Model (BLPM, [3]), a subject can read only
resources whose access group is dominated by the subject’s
access group (“no read up”) and can write only resources
whose access group dominates the subject’s access group
(“no write down”); a trusted subject is allowed to violate
the writing constraint above, if it is not against security by
design. Trust is simply intended as a property of agents, while
security is a property of the system defined independently of
the former. In the Role Based Access Control security model
(RBAC, [11]), security is enhanced by taking into account role
relations that subjects have in a system. Subjects on lower
integrity levels are not permitted to write resources on higher
integrity levels (“no write up” rule); and subjects on higher
integrity levels cannot be corrupted by accessing resources on
lower integrity levels (“no read down”). Trustworthiness of
resources corresponds to prevention of unauthorized change.
Trust-aware RBAC models have been recently explored, in
which trustworthiness is either defined by temporal-spatial
constraints (e.g. [4], [7]), level-constraints ([6]) or by explicitly

requiring role related assessments based on the behavior
history of the user, see e.g. [15] for a subjective logic model.
A constrained transitive trust model for the latter logic is
also offered in [13]. In authentication logic, starting with [1],
beliefs are explicitly used: its says modality for principals can
be interpreted to include a trust relation, as fully explored in
[12], with application to distributed setting, [2]. Transitivity
of trust is also analysed in the context of cryptographic
applications, see e.g. [14]. We offer a calculus SecureND for
secure transitive trust on access resources in the unexplored
setting of typed natural deduction. An advantage of this ap-
proach is that it displays a substructural-like inference relation
restricting transitivity by limiting Weakening. Moreover, all
meta-properties of the system have a direct translation into
security aspects. Our system includes the following access
modes on resources: r-attribute (an agent performs some
reading), w-attribute (an agent performs some writing)
and t-attribute (an agent trusts some resource issued by
some agent). Trust is therefore treated as a function ranging
over resources and not as a relation between subjects:

Definition 1 (Trust). Assume that A’s protocol grants access
to B’s resource φ. Trust characterizes access to φ iff when
reading φ, A is able to make φ part of its own protocol. If A
trusts φ from B, then A is able to write φ.

This implies a shift from the reading ‘Admin trusts Bob to
do so and so on resource φ’, to ‘Under Admin’s protocol,
access to resource φ from Bob is trustable’. This informal
notion is matched formally in the trust rule of the calculus,
with the following meaning: if under A’s protocol a resource
φ from B can be read, and φ can validly extend A’s protocol,
then resource φ from B is trusted under A’s protocol. Valid
protocol extension is interpreted by resource typability. The re-
sulting policy for access attributes is a basic “read-down/write-
down”: reading privileges transfer monotonically downwards
a domination relation between subjects; writing privileges are
dependent on the possibility of making messages part of the
agent’s accessible resources; security is expressed in the form
of reading-writing constraints under trust relations; a “write-
up” policy is implementable by defining trust on an upward
domination relation.



II. THE CALCULUS SecureND

SecureND is a typed natural deduction calculus designed
for secure operations on resources issued by subjects with
different privileges. Reading and writing access privileges are
extended with a bridging trust access mode. Its use requires
a form of Weakening (see Proposition 1) and it satisfies
Transitivity (blocking it when not allowed).

Definition 2 (Syntax). The syntax of SecureND is defined by
the following alphabet:

S := {A,B, . . . }
BFS := aS | φS1 → φS2 | φS1 ∧ φS2 | φS1 ∨ φS2
mode := Read(BFS) |Write(BFS) | Trust(BFS)
RESS := BFS | mode
ΓS := {φS1 , . . . , φSn};

with S a set of subjects, BFS boolean formulae inductively
defined by connectives, mode for access functions over for-
mulae, RESS including both contents and access modes, and
ΓS the protocol for S under which access is operated.

Definition 3. A SecureND-sequent ΓA ` RESB says that
under the protocol for subject A, some resource for subject B
is valid or accessed.

By protocol construction in Definition 2, it holds that
ΓA; · ` wf iff ΓA 6= ∅ and ∀ψS ∈ ΓA, S = A, that is to say
the protocol is not empty and every formula contained in it is
valid for the subject typing the protocol. Protocol extension is
explained as follows: (Γ, φ) corresponds to subject’s protocol
extension ΓA, φA; the extension by distinct contexts (Γ;φ),
with φ ∈ ∆ corresponds to protocols addition by different sub-
jects ΓA;φB . Validity of context extension requires therefore
subjects’ privileges classification. A partial order relation ≤
over S × S models the dominance relation between subjects.
Intuitively, S ≤ S′ means that subject S has higher security
privileges than subject S′. Valid privilege transfers for access
control are summarized as follows:
• ΓS ` Read(φS) and Write(φS) hold;
• ΓS ` Read(φS

′≥S) holds;
• ΓS `Write(φS

′≥S) holds under trust;
• ¬∀(S′, S),ΓS ` Trust(φS′

).
While the ordering of the domination relation is transitive
(if S < S′ and S′ < S′′, then S < S′′), if S reads from
S′ and S′ writes content from S′′, then S reads from S′′

iff S′ trusts content from S′′. In particular, it will be not
the case that if S < S′ < S′′ and S reads from S′, and
S′ writes content from S′′, then S reads from S′′. Reading
and writing is thus trivial within the same protocol. When a
subject reads content from another subjects, we do not extend
such privileges directly to writing. The rules system SecureND

is introduced in Figure 1 and assumes that A ≤ B holds,
and I ∈ {A,B}; i ∈ {1, 2}. Atom says that any atomic
content is accessible from a well-formed protocol higher in
the dominance relation. ∧ constructs and destructs contents
accessible from different protocols. ∨ constructs and destructs
contents accessible from combined protocols. → establishes

the validity of the Deduction Theorem for contents downward
accessible, elimination implements Modus Ponens. By read ,
given a well-formed protocol ΓA, content φB is readable
(“read-down”). By trust , assuming a read-down and that the
content is made part of the subject’s protocol, means that the
content can be trusted. By write a content φB readable and
trustable under ΓA, can be written (“write-down” under trust).

III. SECURITY BY NORMALIZATION

The operation of context extension by differently typed
resources needs to preserve well-formedness on protocol con-
struction:

Proposition 1 (Well-formed Import). If ΓA ` Read(φB) and
{ΓA, φB} ∈ RESA, then ΓA;φB ` wf .

Security threats might occur if A does not have the right
privileges over contents from B. We show how secure access
requires trusted import operations, by proving them equivalent
to access performed under a unique protocol. Such good
behaviour corresponds in a natural deduction calculus to prove
a form of cut-elimination theorem: we first interpret the import
as cut-rules in a upward and downward form (see Figure 1);
then we show that any step in an access operation in SecureND

containing such a rule can be eliminated without loss of
information. For the upward version this requires explicit trust.
We shall refer to a redex for a derivation before the cut
is eliminated; a contractum for the derivation after the cut
is eliminated; and descendent for the sub-derivation in the
contractum deriving after the eliminated cut. Validity of ↓ Cut
depends on implementing import in the form of a “write-
down” rule: if ΓA ` Write(ΓB) and {ΓA; ΓB} ∈ RESA,
then ΓA; ΓB ` wf .

Theorem 1 (↓Cut-Elimination Theorem). Any SecureND ac-
cess operation with an import by an occurrence c of the
↓ Cut rule can be transformed into another operation with
the same final access without c using only (downward) well-
formed import.

Proof. By induction on the derivation D which is the redex of
the cut-elimination. Assuming c is the only ↓ Cut rule and it
is the last inference rule of the redex, the derivation D′ which
is the contractum of the cut-elimination contains a descendent
of the cut obtained by a downward import according to the
domination relation; because the formula obtained by the cut
is, by hypothesis, derivable from the weaker protocol, it will
also be derivable from the weaker and the stronger protocol
together. When c is not the last inference rule of the redex, then
the descendent of the cut will admit all downwards imports
preserving the one occurring in the cut; those imports will
occur also in the contractum of the cut rule and can be traced
back up to the one formulation of the downward import that
occurs in the cut rule.

Validity of ↑ Cut1 requires import as a “write-up” rule on
individual resources: if ΓB ` Write(φA) and {ΓB ;φA} ∈
RESB , then ΓB ;φA ` wf . Validity of ↑ Cut2 requires



ΓA; · ` wf
Atom, for any b ∈ ΓB

ΓA; ΓB ` b
ΓA ` φA

1 ΓB ` φB
2 ∧-I

ΓA; ΓB ` φA
1 ∧ φB

2

ΓA; ΓB ` φA
1 ∧ φB

2 ∧-E
ΓA; ΓB ` φI

i

ΓA; ΓB ` φI
i ∨-I

ΓA; ΓB ` φA
1 ∨ φB

2

ΓA; ΓB ` φA
1 ∨ φB

2 φI
i ` ψI

∨-E
ΓA; ΓB ` ψI

ΓA;φB
1 ` φB

2 →-I
ΓA ` φB

1 → φB
2

ΓA ` φB
1 → φB

2 ΓA ` φB
1 →-E

ΓA;φB
1 ` φB

2

ΓA; · ` wf
read

ΓA ` Read(φB)

ΓA ` Read(φB) ΓA;φB ` wf
trust

ΓA ` Trust(φB)

ΓA ` Read(φB) ΓA ` Trust(φB)
write

ΓA `Write(φB)

ΓA ` φB ΓB , φB ` ψB

↓ Cut
ΓA; ΓB ` ψB

ΓA ` φA ΓB ;φA ` ψB

↑ Cut1
ΓA; ΓB ` ψB

ΓB ` φB ΓA;φB ` ψA

↑ Cut2
ΓB ; ΓA ` ψA

Fig. 1. The system SecureND

import as a “write-up” rule on full protocols: if ΓB `
Write(ΓA) and {ΓB ; ΓA} ∈ RESB , then ΓB ; ΓA ` wf . In
general, under a “no write-up” policy, neither of the upward
cuts will be considered valid for A ≤ B. “Write-up” rights
are permissible if and only explicit trust on typed resources is
given.

Theorem 2 (↑Cut-Elimination Theorem). Any SecureND ac-
cess operation with an import by an occurrence c of the
↑ Cut1/2 rule can be transformed into another operation
with the same final access without c using only (upward) well-
formed import iff appropriate trust-access is granted for the
involved subjects.

Proof. By induction on either the premise of the derivation D
which represents the redex of the cut elimination (for ↑ Cut1)
or on the conclusion of the derivation D′ which represents the
contractum of the cut elimination (for ↑ Cut2). Assuming this
is the only cut and the last rule of the redex or contractum
derivation. For both cases: the condition expressed by the
second premise of the relevant import is the result of applying
a trust rule, provided that in the first case the cut formula
typed for A is required to extend the protocol for B and in the
second case the protocol for B is required to be extended by
the protocol for A. Hence, for both extensions a requirement
that either the formula or the protocol are trusted by the subject
lower in the domination relation holds; this condition being
satisfied, the reduction of the cut elimination can be performed.

Normalization for SecureND derivations reduces to a secu-
rity constraint depending on trusted relations only:

Theorem 3 (Normalized secure derivations). All access op-
erations of SecureND with read-writing access attributes
are secure iff they implement trust attributes when involving
subjects in an upward dominating relation.

Proof. Normalization for a redex containing a Read access

attribute is obtained in the form of a detour elimination through
a Write access attribute:

ΓA; · ` wf
read

ΓA ` Read(φB) ΓA ` Trust(φB)
write

ΓA `Write(φB)

 

ΓA; · ` wf
Write

ΓA `Write(φB)

The normalization holds directly for all φB ∈ ΓB when A <
B, i.e. under a read-down policy; trust is essential for upward
domination relations B < A, i.e. to implement a write-up
policy.

IV. STRUCTURAL RESULTS FOR INTEGRITY

Theorem 4 (Weakening). Accessibility is preserved when
protocols are extended by trusted resources:

1) If ΓA ` φA and ΓA ` Read(φB),∀φ ∈ ΓB , then
ΓA; ΓB ` φA.

2) If ΓB ` φB and ΓB ` Trust(φA),∀φ ∈ ΓA, then
ΓA; ΓB ` φB .

Proof. By structural induction on the derivation tree of the
second premise: for A < B, in 1. the import ΓA; ΓB ∈ RESA

is satisfied by simple read attributes on B; in 2. the import
ΓA; ΓB ∈ RESB requires trust attributes.

Theorem 5 (Contraction). Accessibility within the same proto-
col or for A < B is preserved when protocols present multiple
occurrences of the same trusted resources:

1) If ΓA, φA, φA ` ψA, then ΓA, φA ` ψA.
2) If ΓA, φA;φB ` ψA, then ΓA, φA ` ψA.

Proof. For 1., by the properties of SecureND. For 2., by struc-
tural induction on the derivation tree by using the domination
relation and the resulting read-write attributes by using trust



between A,B to allow the import in A and then reduction to
point 1..

Theorem 6 (Exchange). Accessibility within the same protocol
or for A < B is preserved when access to resources is
inverted:

1) If ΓA, φA, ψA ` ρA, then ΓA, ψA, φA ` ρA.
2) If ΓA, φA;ψB ` ρA, and ΓA ` Trust(ψB), then

ΓA;ψB ;φA ` ρA.

Proof. For 1., by the properties of SecureND. For 2., by struc-
tural induction on the derivation tree by using the domination
relation and the resulting read-write accesses by using trust
between A,B to allow the import in A and then reduction to
point 1..

V. AN EXAMPLE FOR NON-PROMISCUOUS TRUST

We now show SecureND at work in the example from
Section I. Alice can access and read from Bob; because Bob’s
contents are trusted, Alice can write them.

ΓA ` Read(φB) ΓA ` Trust(φB)
write

ΓA `Write(φB)

Bob can access and read from Carol; because Carol’s
contents are trusted, Bob can write them.

φB ` Read(ψC) φB ` Trust(ψC)
write

φB `Write(ψC)

Joining the two access operations, one derives that under
Alice’s protocol, contents from Bob allow writing Carol’s
contents.

ΓA `Write(φB) φB `Write(ψC)
→-I

ΓA; · ` φB →Write(ψC)

The trust function is needed to allow the import ΓA, φB

and writing of ψC under B’s protocol {φB , ψC}. Nonetheless,
no transfer of privileges is yet made from B to A as far as
content from C is concerned. This means that there is no
derived SecureND sequent telling us that Alice is exposed to
contents from Carol. Acceptability of ψ within A’s protocol
is expressed as an additional requirement under the import
{ΓA;φB ;φC} ∈ RESA. As a result of explicit trust, under
A’s protocol ψC is written and read. This means that Alice
will need to have explicit information about whom is Bob
trusting.

ΓA; · ` φB →Write(ψC) ΓA; · ` φB → Trust(ψC)
→-E

ΓA;φB `Write(ψC)

VI. CONCLUSIONS AND APPLICATIONS

SecureND offers a read-down only policy access, extended
to a secure write-up under explicit trust attributes. This ex-
tension is allowed by an import principle with localized,
subject’s typed resources. In terms of security, this means a
more strict and explicit control on subjects involved in access
operations, guaranteeing access validity only when trust is
explicitly expressed. An advantage of the rule-based structure

of SecureND is the implementation for the theorem prover
Coq, [5]. We have designed a library to check validity of
a protocol that mimics the relation between trusted repos-
itories in a software installation process. The full code is
freely available at http://www.rmnd.net/MT/SecureND.v. The
interpretation of SecureND in this context allows the control
over new packages installation such that the minimal amount
of transitively trusted dependencies from new repositories
needs to be satisfied. Future developments will focus on the
extension to the negative fragment of the language, to mimic
behaviour in the presence of untrustworthy resources and,
accordingly for the implementation, to identify all compatible
installation profiles in view of package uninstall.
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