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Abstract 

This research investigates the application of CT pulmonary images to the detection and characterisation of TB at 

five levels of severity, in order to monitor the efficacy of treatment. To contend with smaller datasets (i.e. in 

hundreds) and the characteristics of CT TB images in which abnormalities occupy only limited regions, a 3D 

block-based residual deep learning network (ResNet) coupled with injection of depth information (depth-Resnet) 

at each layer was implemented. Progress in evaluation has been accomplished in two ways.  One is to assess the 

proposed depth-Resnet in prediction of severity scores and another is to analyse the probability of high severity 

of TB. For the former, delivered results are of 92.70  5.97% and 67.151.69% for proposed depth-Resnet and 

ResNet-50 respectively. For the latter, two additional measures are put forward, which are calculated using (1) 

the overall severity (1 to 5) probability, and (2) separate probabilities of both high severity (scores of 1 to 3) and 

low severity (scores of 4 and 5) respectively, when scores of 1 to 5 are mapped into initial probabilities of (0.9, 

0.7, 0.5, 0.3, 0.2) respectively.  As a result, these measures achieve the averaged accuracies of 75.88% and 85.29% 

for both methods respectively.  

Keywords: Deep learning, residual deep learning network, classification, 3D block-based image classification, 

Tuberculosis (TB), severity score of TB.  
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1. Introduction 

While deep learning (DL) led networks have achieved cutting edge performance in many fields, they rely on the 

availability of large amounts of data as training sets. In many fields, this prerequisite is difficult to meet, especially 

in medically related research. One way to respond to this challenge is data augmentation, to process data at various 

levels and to concatenate information acquired at multiple scales (through multiple convolutions) at each layer. 

These networks (for example, Inception-ResNet [1]), are able to maintain the computational cost constant while 

accelerating the training process considerably.  This is achieved through the introduction of batch normalisation 

(BN) (ranging values within [0,1]), a reduction/projection layer (by introducing a 11 convolution filter) and by 

modelling a residual unit instead of stacking layers on top of each other.  This paper investigates the feasibility of 

applying the inception-Resnet architecture to analysing the level of severity of tuberculosis (TB) from 3D pulmonary 

CT images. This is one of the challenges facing TB diagnosis where hand-crafted methods, e.g. texture-based 

approaches, lack generality. 

Tuberculosis (TB) constitutes one of the top 10 causes of death worldwide, but can be cured using appropriate 

treatment with a course of antibiotics if diagnosed in a timely fashion. Conventional diagnostic procedures involve 

growing a microbiological culture; a process that is expensive in terms of cost and time. For this reason, high 

resolution computer tomography (CT) of pulmonary (lung) images has been used to aid clinicians in expediting 

diagnosis and for monitoring prognosis when administering antibiotic drugs. The infectious disease TB is caused 

by exposure to Mycobacterium Tuberculosis (M. TB) through the inhalation of tiny droplets from the coughs or 

sneezes of an infected person and remains one of the top 10 causes of death worldwide. In 2015, 10.4 million 

people fell ill with TB, of whom 1.8 million died of the disease [2]; 0.4 million of these were HIV patients. While 

most TB cases occur in developing countries, this disease, prevalent in the Victorian era, has still not been 

eradicated in developed countries. On the contrary, the rate of the disease has recently risen in some areas of 

western countries; for example, in London UK, for various reasons, including drug abuse and homelessness. 

 

Although TB remains a serious contagious condition, it can be cured if promptly treated with suitable antibiotics. 

For varying degrees of TB severity, different amounts and combinations of antibiotics will need to be 

administered to treat the disease. To clinically detect the level of TB severity, the most definitive method is to 

grow a microbiological culture; an expensive procedure, that can take several months. Therefore, there is an 

urgent clinical need for additional methods that can determine TB severity quickly, accurately and economically. 

One approach is to apply non-invasive high resolution Computer Tomography (CT) imaging to assist clinicians 

in analyzing, diagnosing and delivering optimal treatment for TB patients. 

 

This paper focuses on the application of state of the art deep learning techniques to the analysis of CT pulmonary 



images and is organised as follows. Section 2 reviews both the diagnostic procedures for detecting the level of 

severity of TB and existing deep learning techniques. In Section 3, the datasets and proposed methodology to 

score the severity of TB are described. In Section 4, the implementation details are specified, together with 

experimental results. Section 5 summarises the research conducted, discusses its limitations and indicates future 

directions. 

 

2. Background 

 

2.1 Tuberculosis diagnosis based on CT lung images 

Mycobacterium tuberculosis (M. TB) was discovered 130 years ago and is an aerobic, non-motile, non-spore-

forming rod bacterium that is highly resistant to drying, acid, and alcohol. This bacterium transmits from person 

to person via droplet nuclei containing the airborne organism, mainly by coughing. A person with active but 

untreated TB is estimated to go on to infect an average of 10 to 15 other people per year, depending on the number 

of droplets expelled by the carrier, the duration of exposure, and the virulence of the M. TB [3]. 

 

Clinically, the definitive diagnosis of active tuberculosis is the detection of the presence of the M.TB bacterium, 

the causative microorganism of TB, which can be achieved through growing a microbiological culture from tissue 

taken from the patient [4]. In practice, however, the culture growth of M. TB usually takes 2 or more weeks. 

Hence to expedite diagnosis of active TB, an array of combined approaches are employed, including a tuberculin 

skin test (TST), blood test, amplification of M. TB nucleic acids and/or pathological examinations from biological 

specimens. While these methods assist diagnosis to a large degree, they are not specific in determining severity. 

 

Since pulmonary TB presents characteristic patterns in the lung, radiological imaging is an invaluable tool to 

assist diagnosis, including chest X-rays and CT. Conventional chest X-rays remain the most commonly employed 

method for screening, diagnosis and the follow up of treatment responses in patients with pulmonary TB. 

However, high-resolution CT of the chest appears to be more sensitive than X-rays in identifying early 

parenchymal lesions, detecting mediastinal lymph node enlargements and determining disease activity in TB [5-

7].  

 

Clinically, diagnosis of TB is based on the observation of a number of factors that contribute to the so-called  

‘index of suspicion’ [6]. If TB is detected in a timely manner and fully treated, people with the disease can quickly 

become noninfectious and eventually cured. Therefore, early diagnosis and treatment are crucial for both 

maintaining patients’ health and reducing the proliferation of TB to the public. Figure 1 demonstrates five levels 

of TB severity, scored from 1 to 5, with 1 referring to the most severe and 5 the least severe manifestation of the 



disease. For each 3D CT volume, only the middle 16 slices are presented, in which arrows point to the infected 

regions. As can be seen from Figure 1, many of the slices from different severity categories present similar 

patterns, making the classification of severity a challenging task. 

 
Severity 1 

 
Severity 2 

 
Severity 3 

 
Severity 4 



 
Severity 5 

Figure 1. Five levels of severity of TB disease scored 1 (top) to 5 (bottom) presented using CT lung images where arrows point to the 

infected regions. Only the 16 middle slices from each 3D volume are shown. 

 

2.2.  Deep learning in medical applications  

 

Deep learning neural networks refer to a class of computing machines that can learn a hierarchy of features by 

establishing high-level features from low-level ones and was pioneered by Fukushima [8] based on biologically- 

inspired human vision systems. One of these models is the convolutional neural network (CNN) developed by 

LeCun et al. [9]. Consisting of a set of machine learning algorithms, CNN is comprised of several (deep) layers 

of processing involving learnable operators (both linear and non-linear), and hence has the ability to learn a 

hierarchy of information by building high-level information from low-level ones, thereby automating the process 

of construction of discriminative information [10]. In addition, recent advances in computer hardware technology 

(e.g. the Graphics Processing Unit (GPU)) have propagated the implementation of CNNs in representing images.  

  

Conventionally, training a DL model requires large datasets and substantial training time. For example, the pre-

trained CNN classifier, Alexnet [11], is built on 7 layers, simulating 659K neurons with 60 million (M) parameters 

and 630M connections, and trained on a subset (1.2M with 1K categories) of ImageNet [12]  with 15M 2D images 

of 22K categories, taking up 16 days on a CPU and 1.6 days on a GPU. 

 

DL-oriented approaches are widely applied to large quantities (often millions) of images; they have recently been 

applied to medical images in a range of domains and achieved state of the art results. In particular, CNN- based 

approaches have won a number of competitions, including the Kaggle competition on detection of diabetic 

retinopathy [13] and segmentation of brain tumours from MRI images [14]. 

 

 In the medical domain, not only are the number of datasets limited (usually in hundreds), but also images are in 

multiple dimensions, ranging from 2D to 5D (e.g. a moving heart at a specific location). Hence additional 

measures have to be taken into account in order apply DL techniques. For example, to classify 3D 

echocardiography video images, Gao et al [15] designed a fused CNN architecture to incorporate both 



unsupervised CNN and hand crafted features to leverage the shortage of datasets. In addition, to capitalize on the 

information that a medical image proffers, they integrated two networks that were implemented for 2D and 3D 

respectively, for classification of CT brain images [16].  With regard to TB data, where only small regions of each 

slice and only a few slices in a volume present infected disease, one way to increase the amount of datasets is to 

divide each slice into smaller segments or patches as implemented in [17, 18] applying a patch-based deep 

learning technique to analysis of TB images for classification of TB types and analysis of multiple drug resistance.  

 

Theoretically, a CNN can be conveyed as a process of minimising a cost function between ground truths and 

predictions. To this end, with a set of training data (𝑥(𝑖), 𝑦(𝑖)), where image 𝑥(𝑖) is in three-dimension (inclusive 

of RGB channel as the 3rd dimension. Note: DL is a general approach and treats any input image as colour data 

with dimensions of (𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛, 𝑅𝐺𝐵)  =  (𝑀, 𝑁, 3)  whereby (𝑀, 𝑁, 1)  is red, (𝑀, 𝑁, 2)  is green and 

(𝑀, 𝑁, 3) is blue. For a grey image, 2D representation using (𝑀, 𝑁) should be sufficient) and 𝑦(𝑖) the indicator 

vector of affiliated class of 𝑥(𝑖), i.e. the ground truth, a CNN network is used to solve the equation expressed in 

Eq. (1). In doing so, the feature maps of an image, namely, 𝑤1, … , 𝑤𝐿, will be learnt, a process known as deep 

learning. 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑤1,…,𝑤𝐿

1

𝑛
∑ ℒ(𝑓(𝑥𝑖; 𝑤1, … , 𝑤𝐿), 𝑦𝑖)

𝑛

𝑖=1

 
(1) 

where ℒ refers to a suitable loss function (e.g. the hinge or log loss) and 𝑓 the selected classifier. 

 

As a result, a CNN architecture can be constructed by stacking multiple layers of convolution and subsampling 

in an alternating fashion. While a CNN network can be enhanced into going deeper by piling a large number of 

layers, sometimes the increased depth appears to have little contribution to the accuracy of a trained model. This 

is due to the well-known vanishing gradient obstacle , i.e. as the gradient is back-propagated to earlier layers, 

repeated multiplication may make the gradient infinitely small. Consequently, as the network becomes deeper, its 

performance gets saturated or even starts degrading rapidly. Although several remedy strategies have been 

reported to tackle the vanishing gradient barrier (for instance, adding an auxiliary loss [19] in a middle layer as 

an extra supervision), none seem to really address the problem thoroughly. 

 

Recently, deep residual networks (ResNet) [20, 21] introduce the notion of ‘identity shortcut connection’ that 

bypasses one or more layers as illustrated in Figure 2, which demonstrates a residual block where ReLU refers to 

a rectified linear unit to ensure the data are greater than zero (>0) and batch normalisation is used to convert all 

the matrix elements to values between [0,1] in order to speed up the calculation. A key advantage of residual units 

is that their skip connections allow direct signal propagation from the first to the last layer of the network, 



especially during backpropagation.  This is due to the fact that gradients are propagated directly from the loss 

layer to any previous layer while skipping intermediate weight layers that have potential to trigger vanishing or 

deterioration of the gradient signal.  

 

 

 

Figure 2. A typical residual block in a residual learning network Resnet [20] and its optimised version.  

If ℋ(𝑥) refers to an underlying mapping to be fitted by a few stacked layers (not necessarily the entire net) with 

𝑥 denoting the inputs to the first of these layers, then the network that approximates complicated functions can 

equivalently approximate the residual functions ℋ(𝑥) − 𝑥 , assuming both inputs and outputs are of the same 

dimensions. Therefore these layers can be applied to approximate a residual function in Eq. (2). 

ℱ(𝑥) ≔ ℋ(𝑥) − 𝑥   (2) 

which leads to Eq. (3). 

ℋ(𝑥) ≔  ℱ(𝑥) + 𝑥    (3) 

As shown in Figure 2, a building block to every few stacked layers is defined in Eq. (4) where the operation 

ℱ + 𝑥 is performed by a shortcut connection and element-wise addition.  



𝑦𝑙 = ℱ(𝑥𝑙 , {𝑊𝑖}) + 𝑥𝑙    (4) 

where 𝑥𝑙  and 𝑦𝑙  are the input and output vectors at layer 𝑙  and the dimensions of 𝑥𝑙 and ℱ  must be equal. 

Otherwise, a linear project 𝑊𝑠 can be performed by the shortcut connection to match these two dimensions as 

formulated in Eq. (5). 

𝑦𝑙 = ℱ(𝑥𝑙 , {𝑊𝑖}) + 𝑊𝑠(𝑥𝑙)    (5) 

While the training mainly focuses on deep residual learning, stacking layers should not degrade the network 

performance. This is because those layers do not do anything in relation to vanishing gradients apart from simply 

stacking identity mappings upon the current network, hence resulting in similar architecture performance. This 

indicates that a deeper model should not produce a training error higher than its shallower counterpart.  

2.3 Inception deep convolutional architecture 

While a ResNet can perform in a deeper manner, an inception network can go wider by inserting extra components 

at each layer. The inception deep convolutional architecture was introduced in [19] firstly as Inception-v1. Later 

the inception architecture was refined in various ways in order to accelerate the training time and reduce the 

computation cost, firstly by the introduction of batch normalization [22] (Inception-v2) to normalise all values 

within the range of (0,1), then by the addition of factorization [23] (Inception-v3) to transform a large convolution 

(e.g. 5 × 5) into two smaller ones (e.g. 3×3 and 3×3).  

 

A typical residual-inception network follows a split-transform-merge paradigm. Each inception block begins with 

a filter reduction layer (1×1×1), then performs convolution layer (e.g. 3×3×1), and finally completes with a filter-

expansion convolution layer (1×1×1) without activation, the layer that is used for scaling up the dimensionality 

of the filter banks (or maps) before the addition to match the depth of the input. This is needed to compensate for 

the dimensionality reduction induced by the inception block. 

In this work, an enhanced inception-Resnet, i.e. depth-Resnet is applied for analysis of the level of severity of 

tuberculosis from CT lung images. 

3. Methodology 

 

3.1 Depth-Resnet 

 

Inspired by the temporal residual network [24, 25] and inception-Resnet architecture, the network is built on the 

ResNet-50 model and is illustrated in Figure 3, where the left-hand graph is the original model and the right-hand 

graph the enhanced architecture depth-Resnet, applied in this study. The information along the third direction (𝑧) 



for 3D TB datasets is embedded with 3 layers in each block as further depicted in Figure 4. As illustrated in Figure 

3(a), the architecture of ResNet incorporates 50 layers whereas the model, ResNet-50, is trained on ImageNet 

data with 1000 classes. A typical block comprises of 3 convolutional operations, consisting of 1×1 dimensionality 

reduction, 3×3 spatial aggregation and 1×1 dimensionality restoration of filtering operations, in addition to 

normalisation and ReLU layers when addressing two-dimensional images. In this study, depth-Resnet is built on 

the pre-trained ResNet-50 model by replacing the last classification (prediction) layer, which is followed by the 

enhanced convolutional layers of conv2_x to conv5_x as elaborated in Figure 3(b) to incorporate depth 

information. 

 

(a) Original ResNet-50 model   (b) Depth-ResNet 

Figure 3. The original ResNet-50 model (a) and the Inception-ResNet-50 (b) architecture applied in this paper, where ×N at each conv 

level refers to the block (e.g. conv5_x) repeats N (e.g. 3) times consecutively.  

 

To take advantage of ResNet-50 using 3x3 filters to perform spatial convolution, the depth convolution also adopts 3 pixels, 

i.e. 1x1x3 between the current, front and back frames. Since some 3D blocks only contain 10 frames, the chosen block size 

is 8 frames. Therefore the interval (stride) between the current frame and the front (or the back) is set to be between 1 and 

7, to be selected randomly. In the end, to minimise the classification errors, a global pooling layer followed by a 5-way fully 

connected layer, optimised using a Softmax approach is conducted. 



In Figure 3(a), for each residual unit, the input feature map 𝑥𝑙 ∈ ℝ𝐻×𝑊×𝐷×𝐶 , where 𝐻, 𝑊, 𝐷  are the spatial 

dimensions along the height, width, and depth directions for a 2D dataset and 𝐶 the feature dimension. Such maps 

can be thought of as stacking 2D spatial maps of 𝐶 dimensional features along the depth (𝑧) dimension. At layer 

𝑙 with input 𝑥𝑙, a residual block is defined as Eq. (6). 

𝑥𝑙+1 = 𝑓(𝑥𝑙 + ℱ(𝑥𝑙; 𝒲𝑙))    (6) 

where 𝑓 ≡ 𝑅𝑒𝐿𝑈, 𝒲𝑙 = {𝑊𝑙,𝑘|1 ≤ 𝑘 ≤ 𝒦}, and 𝒦 = 3, with ℱ denoting the residual function representing the 

convolutional operations by convolutional filter weights 𝒲𝑙.   

 

Each of the 𝒦 layers in the 𝑙𝑡ℎ residual unit performs the filtering operation as formulated in Eq. (7). 

𝑥𝑙,𝑘+1 = 𝑊𝑙,𝑘𝑥𝑙,𝑘     (7) 

where 𝑊𝑙,𝑘|1 ≤ 𝑘 ≤ 𝒦  are the convolutional filter kernels arranged as a matrix. For simplicity, batch 

normalisation layers as shown in Figure 2 are omitted in Figure 3. Hence, the residual unit is expressed in Eq. (8). 

ℱ = 𝑓 (𝑊𝑙,3𝑓 (𝑊𝑙,2𝑓(𝑊𝑙,1𝑥𝑙)))   (8) 

 

On the other hand, in Figure 3(b) of depth-Resnet, built on the inception concept, the depth convolution block 

operates on the dimensionality reduced input, 𝑥𝑙,𝑧 with a bank of 3D filters, 𝑊𝑙,𝑧. Biases 𝑏 ∈ ℝ𝐶  are also applied 

with initial values of 0 as formulated in Eq. (9). 

𝑥𝑙,𝑧 = 𝑊𝑙,𝑧𝑥𝑙,1 + 𝑏     (9) 

As a result, Eq. (8) in Figure 3(a) becomes Eq. (10) in Figure 3(b). 

ℱ = 𝑓 (𝑊𝑙,3 (𝑆𝑧𝑓(𝑥𝑙,𝑧) + 𝑓(𝑊𝑙,2𝑓(𝑊𝑙,1𝑥𝑙,1)))   (10) 

where 𝑆𝑙 is affine scaling along depth direction with a bias between 0 and 0.01. This scaling is adaptive to facilitate 

generalisation performance and will be learnt during the training of the network. Figure 4 elaborates the depth 

receptive field of a single neuron. In Figure 4, the convolution at each convolution layer along the depth (𝑧) 

direction (𝑥𝑙,𝑧) takes place between 3 neighbouring slices or feature maps, i.e. front, current, and back, with 

randomly chosen stride (between 1 and 7 in this study). This feature is then added to the block with a scaling 

factor as a component of the residual unit. The pooling involves two stages. The avg-pool occurs for 2D spatial 



global average pooling whereas max-pool is conducted along z direction performing global max pooling upon 

those feature maps. 

 

Figure 4. A block in the depth-Resnet that is applied in the paper. The outputs of conv5_X are max-pooled in time and fed to the 

fully connected (fc) layer of the proposed depth-Resnet as shown in Figure 3(b) to classify 5 categories. 

 

On the other hand, to integrate block scores into a volumetric label for each dataset, a support vector machine 

(SVM) [27] is applied. To train a SVM classifier, linear optimisation is applied to minimise formula Eq. (11). 

 

𝐿𝑤 = [
1

𝑛
∑ 𝑚𝑎𝑥 (0,1 − 𝑦𝑖(𝑤 ∙ 𝑥𝑖 − 𝑏))𝑛

𝑖=1 ] + 𝜆‖𝑤‖2    (11) 

where 𝑥𝑖and 𝑦𝑖 refer to input and ground truth respectively, with 𝑤 the weight  and incept 𝑏 to be trained. 

 

SVMs are a set of supervised learning models that analyse and classify data applying associated learning 

algorithms. There are linear and non-linear SVMs. While in a linear SVM, such as the one employed in this study, 

any hyperplane can be written as the set of points 𝑥 satisfying Eq. (12). 

𝑤 ∙ 𝑥 − 𝑏 = 0         (12) 

 



3.2 Datasets 

Data from the competition organised by ImageCLEF2018 on Tuberculosis severity scoring task (task#3) [28, 29] 

was used, including chest CT scans of TB from 170 patients with the corresponding severity scores (1 to 5) and 

the severity levels designated as "high" and "low", which contains 90 low severity (with scores 4 and 5) and 80 

high severity (with scores 1, 2 and 3) as listed in Table 1. Each volume of the dataset has a 2D spatial dimension 

of 512512 pixels per slice and varying number of slices (between 50 and 400) along depth (𝑧) direction.  

Table 1. The number of datasets and blocks applied for both training and testing with corresponding severity scores. 

 High Severity Low Severity Total 

Severity 1 2 3 4 5  

Train/evaluation 10 10 30 40 10 100 

Train Blocks 978 1108 2976 3869 967 9898 

Test 5 7 18 33 7 70 

Test Blocks 496 801 1777 3265 676 7015 

Total 15 17 48 73 17 170 

 1,474 1,909 4,753 7,134 1,643 16,913 

 

3.3 Image data pre-processing 

Before the training of severity models, volumes of images firstly undergo the segmentation process to remove 

surrounding artefacts. Since the masks that are supplied with the images from ImageCLEF sometimes over 

remove lung boundaries, dilation of masks are performed first. The balance is struck for this collection by dilating 

using 30 pixels to ensure that not too much of the unintended boundaries are included. Figure 5 illustrates this 

dilation process, where the top row presents the segmentation result (c) applying the original mask (b) for slice 

(a) and the bottom row depicts the segmented slice (e) with dilated mask (d). Figure 5(f) shows the final segment 

after removing the background from segment (e). The arrow in (a) points to the abnormal region of interest, which 

is missing in segment (c). 

    
(a) Original sliice of a volumetric 

image 

(b) Corresponding mask (c) Segmented image 



 

 

 

 

 

 

 

 

 

 

(d) Dilated mask with 30 pixel of 

disk 

(e) Dilated segmented frame (f) Final segmented frame after 

removing background of (e). 

Figure 5. The process of segmentation with dilated masks. Top row: the segmented slice (c) with the original mask (b). Bottom row: 

dilated mask (d) from (b) applied to the original slice (a) producing (e) and finally (f) after removing background of (e). 

 

Then, upon the segmented volume of 460 ×  340 ×  𝑧, 24 blocks of size of 128 ×  128 ×  𝑧 are created with 

an overlap of ~64 pixels as illustrated in Figure 6. 

 

 

(a) 



 

(b) 

 

(c) 

 

(d) 

Figure 6. Illustration of segmented 3D volume (a); its montage with equally spaced selected frames (b); and two of its blocks 

presented using montage style with equally spaced selected frames (c) and (d). 

 

Since some corner blocks comprise large amount of background information, i.e. pixel value is 0, these frames, 

in particular at front and back of a volume along the 𝑧 direction, are removed when the background occupies more 

than one third of the total space. Hence the depth (𝑧) of each block varies between 11 and 250 for all datasets 

after segmentation. As a result, many 3D volume datasets have less than 24 blocks after pre-processing. Each 

block has been resized to 256256𝑧 from 128128𝑧 to save training time. 

 

4. Results 

The training system is implemented using Matlab software built on the MatConvNet [26] toolbox, by following 

standard ConvNet training procedures [10, 11]. The system starts with the application of the ResNet-50 model as 

demonstrated in Figure 3(a) to compensate for the shortage of datasets. Then, by replacing the last prediction 

layer, every first and third residual unit are transformed at each convolution stage (conv2.x to conv5.x in Figure 

3) with the proposed 3D residual units of Eq. (10) (Figure 3(b)). The depth filters are of dimension 



𝑊′ × 𝐻′ × 𝐷′ × 𝐶 × 𝐶 = 1 × 1 × 3 × 𝐶 × 𝐶 and are initialised to randomly selected values. The 8-slice sub-

blocks are applied in this work as an input and global max pooling along depth 𝑧 direction as formulated in Eq. 

(13) and illustrated in Figure 3(b) is conducted immediately after the 2D spatial global average pooling layer.  

𝑥(𝑖, 𝑗, 𝑐) = max
1≤𝑘′≤𝐷′

𝑥(𝑖, 𝑗, 𝑘′, 𝑐)   (13) 

The input size is of dimension 256256𝑧 (224 with 32 pixels as borders), with 𝑧 varying between 11 and 250 

slices in this collection. During the training, a batch of 16 sub-blocks (128 slices in total), each containing 8 slices, 

was chosen from five levels of severity classes. The stride for the 8 slices in each block was randomly selected 

between 1 and 7.  

At testing time, each dataset undertakes the same pre-processing procedure (Section 3.3) to generate 

128128depth blocks as elaborated in Figure 6.  Then the trained depth-Resnet model (Figure 3(b)) takes each 

block as a whole, selects 8 slices at equal depth space and propagates these slices through the trained model to 

produce a single prediction for this block with severity scores labeled between 1 and 5. The scoring strategy 

adopts a faster fully convolutional testing strategy [30, 31], which is applied to the original slices and their 

horizontal flips and averages the predictions from all 2D spatial locations. Subsequently, the inference can be 

performed in a single forward pass for the whole block. The training takes place on a Dell Precision T7600 

computer with a 64-bit Ubuntu operating system and one GPU with 64 GB memory. It takes 4 days to train 100 

datasets and 2 days to test 70 volumes. 

 

Since each volume of the 3D dataset contains around 24 blocks with individual severity scores, the overall score 

for each patient’s dataset has to be integrated from the individual block scores. In principle, the five levels of 

severity can be treated as 2 classes labeled as ‘high’ (with scores 1, 2 and 3) and ‘low’ (with scores 4 and 5). 

Hence, three measures can then be formulated to convey the inter-relationships between blocks scored 1 to 3, 4 

to 5 and 1 to 5 respectively and are calculated in Eqs. (14), (15) and (16) respectively where levels of severity of 

1 to 5 are assigned linearly to probabilities of 0.9, 0.7, 0.5, 0.3, and 0.1 respectively. 

  

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦ℎ𝑖𝑔ℎ =
0.9×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘1+0.7×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘2+0.5×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘3

𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘1+𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘2+𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘3 
      (14) 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑙𝑜𝑤 =
0.3×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘4+0.1×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘5

𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘4+𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘5
         (15) 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑙𝑙 =
0.9×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘1+0.7×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘2+0.5×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘3+0.3×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘4+0.1×𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘5

𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘1+𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘2+𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘3 +𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘4+𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘5
     (16) 

 

Hence the probability of a whole volume dataset can then be decided by these measures, which is in turn utilized 

to score the severity. For example, in this study, if a dataset has 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦ℎ𝑖𝑔ℎ  > 0.7 and 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑙𝑜𝑤 <



0.20 and 𝑁𝑢𝑚𝑏𝑙𝑜𝑐𝑘1 > 0, then this dataset is classified as severity 1. In Table 2, two calculations are applied. 

One is based on the overall probability (Level-1) as formulated in Eq. (16), which is simple and straightforward. 

The Level 1 calculation was applied by the authors of this paper to the imageCLEF Tuberculosis 2018 competition 

[29], with a result that ranked 14th (out of 36 submissions) in terms of accuracy (AUC=0.6534), obtained using 

a different set of test data (n=109) with unknown severity levels.  

 

A drawback of Level-1 is that the calculation treats all severity blocks equally, whereas higher severity volumes 

usually contain low severity blocks. Therefore, blocks with low severity scores 4 and 5 contribute more to the 

equation when it comes to the overall classification. In additional to probability range distribution, a number of 

other measures are also factored in, to address special cases. For example, if a dataset has 5 blocks scored 1 and 

another 5 scored 5, the final score based on Eqs. (14) and (15) is 3. However, there is not any individual block 

with a score of 3 for this volume (Level-2 measure predicts score 1). In this study, the Level-2 calculation is 

applied, utilizing both probabilityhigh and probabilitylow, which delivers much improved performance. Again, the 

integration of two levels of probability is conducted based on a SVM. In Table 2, the results are the average from 

three runs (each run of training takes about 4 days) with standard deviations. During each run, the number of 

training sets (n=100) as listed in Table 1 is randomly selected manually and the remaining data (n=70) kept for 

the final test. The averaged accuracy from the Level-2 calculation is 85.29%, a nearly 10% increase from Level-

1 with 75.88% accuracy. Significantly, the Level-2 calculation appears to capture high severities with scores 1 

and 2 much better than Level-1 with 86% and 70% for Level-2 and 80% and 60% for Level-1 respectively. 

 

Table 2.  The accuracy performance from both Level-1 and Level-2 calculations.  

Severity 1 2 3 4 5 Average 

Level-1  0.80 ± 0.00 0.60 ± 0.05 0.75 ± 0.00 0.88 ± 0.02 0.82 ± 0.12 75.88 ± 3.80% 

Level-2  0.86 ± 0.08 0.70 ± 0.01 0.77 ± 0.02 0.90 ± 0.00 0.84 ± 0.04 85.29 ± 3.00% 

 

Table 3 illustrates the sensitivity and specificity values for both measures. Statistically, sensitivity measures the 

proportion of actual positives that are correctly identified as such, whereas specificity measures the proportion of 

actual negatives that are correctly identified as such. Hence high sensitivity and high specificity implies greater 

credibility of the classification results. The results in Table 3 are based on the concatenation of three run results; 

for example, the test sample size for Severity 1 was five  in each individual run and is now 15 (= 3 × 5) for 3 runs. 

Again, Level-2 performs better than Level-1 with higher average sensitivity (84.16%) and higher specificity 

(95.35%) whereas Level-1 delivers 77.17% and 93.35% respectively. Overall both calculations present higher 

specificity, suggesting the conversions between severity level and probability as well as Eqs. (14) to (16) are 

sufficient to separate in-between severities.  

Table 3. Comparison of sensitivity and specificity of both Level-1 and Level-2 calculations. 



Severity 1 2 3 4 5 Average (%) 

Level-1 

Sensitivity 0.8000 0.6470 0.7173 0.7534 0.9411 77.17% 

Specificity 0.9869 0.9337 0.8688 0.9052 0.9735 93.35% 

 

Level-2 

Sensitivity 0.9333 0.7058 0.7826 0.9041 0.8823 84.16% 

Specificity 0.9803 0.9668 0.9754 0.9157 0.9602 95.96% 

 

While this probability calculation appears to be a better indicator of the final classification results for each dataset, 

it does not apply to the trained model that relies purely on 2D spatial slices, e.g. ResNet-50. This is because, for 

depth-Resnet, during the training, each block has already embodied the depth information and focuses on the 

most discriminating patterns. On the other hand, for a 2D slice-based model, e.g. ResNet-50, all those less severe 

slices that scored 4 and 5 for each high severity block will be included and calculated individually.  This will 

contribute to the final calculation of probability considerably. Hence, to compare the performance of the Resnet-

50 model and depth-Resnet as developed in this study, a calculation of volume scores that are based only on block 

scores was created (Level-0), which applies a SVM classifier.  Table 4 gives the classification results with both 

the depth-Resnet model enhanced in this study and the resnet-50 model trained on 2D spatial slices only. In 

addition. 

 

Table 4.  Comparison of scoring results applying both depth-Resnet model and ResNet-50 based on block scores. 

Severity 1 2 3 4 5 Average 

Depth-ResNet 

(Level-0)  
0.93  0.11 0.66  0.08 0.85  0.03 0.92  0.03 0.85  0.24 92.70  0.97% 

ResNet-50  0.60  0.20 0.33  0.21 0.75  0.08 0.67  0.01 0.66  0.08 67.151.69% 

 

 

The learning information for both Depth-ResNet and ResNet-50 models is exemplified in Figure 7, where the 

learning rate is set to 10-2 ; that is, decreased by an order of magnitude after the validation error saturates. The 

batch size is 128 slices or 16 blocks (with 8 slices each), randomly selected from all five categories. 

  



(a) depth-ResNet (b) ResNet-50 

Figure 7. Learning information on depth-ResNet  (a) applied in this study and Resnet-50  (a) . 

 

It appears that at epoch 3 in Figure 7, the convergence takes place for both models, whereas the errors remain 

similar for the following epochs. 

In general, the injection of depth information into the training network produces much better performance than 

the training purely based on 2D spatial slices, with an average classification accuracy of 92.70% in comparison 

with 67.15% for depth-Resnet and ResNet-50 modes respectively.  Although severity 1 has the least number of 

datasets with 15 (10 of which were training sets and 5 testing sets), this class has been identified well with 93% 

accuracy for the Level-0 measure, the best among the 5 categories. This could be explained by the fact that this 

class has very distinctive patterns; significantly different from the others as demonstrated in Figure 1, displaying 

the most serious TB conditions spreading to nearly every slice of a volume. With regard to the level of severity, 

class 2 (Severity 2) appears to be the most challenging one to predict, not only because it has a small number of 

samples (17 in total), but also because its patterns bear similarities to either Severity 1 or Severity 3. This trend 

also occurs for the Level-1 and Level-2 calculations in Table 2, with the least accuracy of 60% and 70% realised 

respectively.  Although class 5 (Severity 5) also shares smaller sample size (n=17), the abnormalities presented 

in the images as manifested in Figure 1 appear to be the least (i.e. the closest to normal), a characteristic that is 

much more distinguishable than in some of the other classes, which in part contributes to higher classification 

accuracy for both Level-1 (82%) and Level-2 (84%). 

 

5. Discussion 

This research utilises state of the art ResNet deep learning techniques to classify severity scores of tuberculosis 

(TB) disease from 3D CT images and has demonstrated an overall accuracy of 85.29% when taking into account 

severity probability and 92.70% for classification of severity scores. Due to the shortage of training datasets (170 

in total), segmenting a whole volume into sub-blocks appears to be a better way forward not only to enlarge the 

datasets for training but also to allow the model to concentrate on those discriminative patterns between classes, 

since many diseased regions only occur in small blocks. However, while each block has been well trained for 

classification, the calculation of an overall score for a volume needs to be addressed. This study maps each score 

with equally spaced numbers working as the probability of high severity within the range of 0 and 1, i.e. 0.9, 0.7, 

0.5, 0.3, 0.1 for scores of 1 to 5 respectively to calculate three measures, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦ℎ𝑖𝑔ℎ, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑙𝑜𝑤 and 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑙𝑙 representing high, low and overall probability of a dataset with multiple sub-block scores. As a 

result, three approaches are developed. Level-1 predicts an overall probability based on 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑙𝑙 whereas 



Level-2 delivers predictions according to 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦ℎ𝑖𝑔ℎ and 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑙𝑜𝑤. Based on the number of scored 

blocks only, Level-0 determines the overall score. In all these integrations, SVM based classifiers are applied. 

While the block scores remain the same, the averaged predictions for volumetric datasets of five classes are 

92.70%, 75.88% and 85.29% respectively for the approaches of Level-0, Level-1 and Level-2. Although Level-0 

appears to perform the best, it does not have associations with high severity probabilities. To this end, Level-2 

tends to perform better. 

In this research, simple linear mapping was employed. When the inverse severity score is also evaluated, i.e. using 

[
1

1
,

1

2
,

1

3
,

1

4
,

1

5
] to replace [0.9, 0.7, 0.5, 0.3, 0.1], the averaged accuracy for Level-2 is 66.17% (47% for Level-1) 

with better performance realised for low severity TB (scored 4 and 5). Since Eqs. (14) to (16) are not independent 

of block scores, combining all measures (e.g. block scores, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦ℎ𝑖𝑔ℎ , 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑙𝑜𝑤, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎𝑙𝑙) 

provides similar results with an averaged accuracy of 91.17% for classification of severity scores. Therefore, 

incorporation of medical knowledge is necessary to map severity scores (1 to 5) with high severity probability, 

which in the future will be allied with more sophisticated or non-linear mapping formulae through deep learning 

techniques.   

5.1 Addressing overfitting issues 

Understandably, training depth-Resnet is even more prone to overfitting than training spatial ResNet. This was 

addressed by employing depth frame jittering. In each training iteration, 8 frames are sampled from each of the 

training volumes in a batch by randomly sampling the starting frame, and then randomly sampling the depth stride 

(between 1 and 7). Whilst during testing, a batch of samples, each comprising 8 equally spaced frames from a 

volume was selected, which were then propagated through the net to yield a single prediction for each volume. 

Instead of cropping the image corners, centre and their horizontal flips, a faster fully convolutional testing strategy 

as discussed in [30, 31] was applied to the original images and their horizontal flips, and the predictions from all 

locations were averaged. Thus inference can be performed in a single forward pass for the whole volume. 

 

5.2 Comparison with the state of the art on scoring TB severity 

Clinically, the assessment of the TB severity score is determined based on a number of clinical information 

sources, as addressed in [32], whereby, in addition to images, both clinical and laboratory data are applied, 

including drug resistance, presence of TB symptoms, etc.. As a result, in [32], the best prediction result is realised 

using combined datasets with r=0.619 and RMSE=0.791 (Root Mean Square Error). It is envisaged that both 

enlargement of datasets and inclusion of clinical and laboratory data could lead to more accurate severity scoring. 

During the imageCLEF 2018 Competition on Tuberculosis Tasks [33], a number of approaches were developed, 

using only CT images, including both hand-crafted and unsupervised machine learning methods. Given the small 

sample size of training datasets, hand-engineered models usually work better. With regard to RMSE, in this 



competition, the best result (RMSE=0.7840, AUC=0.7025) was delivered applying a lesion-based TB descriptor 

and a random forest (RF) classifier, by incorporating age and gender information [34]. In terms of accuracy, the 

best result was achieved using traditional texture-based graph models [35] with AUC being 0.7708 

(RMSE=0.8934). To this end, the team employed conventional approaches for the extraction of quantitative image 

descriptors, such as statistical moments, fractal dimension, gray-level co-occurrence matrices and their derivative 

features. Similarly, a texture-based 3D model was applied by another group [36], employing a range of statistical 

measures (mean, skewness, kurtosis, homogeneity, energy, entropy, fractal dimension). With regard to AUC, 

their result achieved 21th position (AUC=0.6239). However, with regard to RMSE (=0.8883), the group ranked 

in 3rd position. Another traditional hand-crafted method, the feature-based approach [37], appeared to also 

perform well for scoring the severity of TB, through the employment of image binarization and extraction of 

features (calcifications, lung wateriness, cavities, infection ratio, HU histograms and lung shapes), with 

AUC=0.6862 (8th position) and RMSE=1.1046 (25th position). In the competition, this paper appeared to be the 

only one applying an unsupervised approach to scoring severity. While a number of deep learning techniques, e.g. 

ensemble 3D CNN, transfer learning, have been developed, they are employed mainly for TB classifications.  As 

such, Level-1 of the unsupervised approach was submitted [38] by the authors and achieved AUC=0.6534 (14th 

position) and RMSE=1.0921 (ranked 24) among 36 submissions.  

 

5.3 Major contribution of the paper 

 

This paper presents the use of an enhanced depth-Resnet deep learning network to address severity scoring for 

TB. In essence, depth-Resnet architecture remains a 2D network but incorporating 3rd dimensional information 

as illustrated in Figure 3(b). In this way, full advantage can be taken of the 2D Resnet network. As discussed in 

Section 5.1, random sampling takes place along the depth direction, to avoid overfitting. Although three-

dimensional CNN have been employed in studying TB data in a number of research realms, such as in detection 

of lung nodules [39, 40], for the scoring of TB severity that is conducted in this paper, 3D CNN appears to suffer 

severe overfitting, which was the reason that depth-Resnet was proposed. In comparison with Resnet-50, at each 

layer, the 2D feature maps in the proposed depth-Resnet architecture contain not only spatial information as 

calculated in Resnet-50, but also depth information along the z-direction as calculated in Eq. (10), which 

constitutes a major contribution of the paper. 

 

5.4 Comparison with other public TB datasets 

 

The results presented in this paper are based on the dataset published in the ImageCLEF competition [41, 42] on 

TB tasks. As discussed in the above section, the classification of TB severity scores cannot be made based on CT 

images alone. Other complementary information (clinical and laboratory data) should be also taken into account. 



However, if more accurate information can be revealed from imaging datasets, then more accurate diagnosis can 

be delivered. Hence, in the future, comparison with other datasets available in the public domain will be conducted, 

including Kaggle [13], TB annotation [43], JSRT [44], and ANODE09 [45]. Most of these datasets are utilised for 

detection of TB nodules [46] and should further improve the accurate detection of abnormal patterns, which will 

manifestly benefit severity scoring, leading to revealing underlying connections. 

 

5.5 Comparison with a 3D CNN network 

 

Although CT pulmonary images are in three-dimension (3D), the abnormal features to be studied at many cases 

are in 2D form. For instance, Figure 10 demonstrates an example of Severity 2 TB depicting middle frames (n=56) 

where red circles indicate abnormality. Not only a very small number of frames (7/121) contain diseased patterns 

along depth direction, but also those abnormal patterns occupy small spaces in a 2D frame (~1%). Hence many 

sub-volumes created from this dataset (with a sampling size of 128×12830 voxels to be detailed below) contain 

only a few slices with abnormal features whereas most of the sub-volumes present normal patterns, making the 

abnormal feature volumes even smaller. Therefore, it is expected that a conventional 3D CNN network will not 

perform as well as a 2D CNN network. Since the developed depth-Resnet in this paper in essence is of a 2-

dimensional network, it is worth well to compare with a conventional 3D CNN architecture for future 

enhancement.  

 



 
Figure 8. The abnormal pattern of an example with Severity 2 of TB with circles indicating abnormality. 

 

In this study, the 3D CNN architecture is similar to the 3D network employed in [16] as illustrated in Figure 9. 

The learning rate is set to be 0.01. This 3D CNN network comprises 6 convolutional layers and one fully 

connected layer with detailed parameters given in Figure 9. For example, the convolution layer 1 (Conv-1 in 

Figure 9) has a filter size of (8, 8, 4) with 96 kernels. The stride is (2, 2, 2) with 0 padding. This layer of Conv-1 

is then followed by a pooling layer with pooling size and stride being (2, 2, 1) and (2, 2, 2) respectively. 

 

Figure 9. The architecture of the applied conventional 3D CNN network. 

 



Each 3D volume/block was normalised to a dimension of 128×128×30 voxels generated from the blocks listed in 

Table 1, with a maximum of 10 slices overlapping in the depth direction. Table 5 details the number of volumes 

being trained and tested whereas Table 6 lists the classification results together with sensitivity and specificity 

information.  

 

Table 5. Detailed information for training a 3D CNN. 

 High Severity Low Severity Total 

Severity 1 2 3 4 5  

Train (subject) 7 7 21 28 7 70 

Train (volume) 400 293 715 1780 365 3553 

Validation (subject) 3 3 9 12 3 30 

Val (volume) 126 158 249 631 189 1353 

Test (subject) 5 7 18 33 7 70 

Test (volume) 314 356 406 1832 327 3235 

Total 15 17 48 73 17 170 

 840 807 1,370 4,243 881 8,141 

 

Table 6. The scoring results (Level-2) for the applied 3D CNN network together with their corresponding 

sensitivity and specificity. 
Severity 1 2 3 4 5 Average 

3D CNN 0.4  0.2 0.285  0.143 0.176  0.0 0.205  0.03 0.142   0.0 24.16  4.6% 

Sensitivity 0.4  0.2 0.285  0.143 0.176  0.0 0.212  0.0 0.142 0.0 24.16  4.6% 

Specificity 0.710  0.07 0.725  0.0 0.711  0.0 0.93  0.01 1.0  0.01 81.24  1.6% 

  

As it can been seen in Table 6, based on the level-2 calculation, the average accuracy for scoring five severity 

classes is 24%, which is much lower than applying depth-ResNet (85%). While the sensitivity is low (24%), the 

specificity appears to be high with an average of 81%, specifically for low severity of Severity 4 (93%) and 

Severity 5 (100%), indicating that the low-severity data are more likely to be rejected correctly. The standard 

deviation was calculated based on two runs.  

 

Figure 10 depicts the learning information and shows the network appears to not converge well, with training 

curve (dashed line around error 0.8) tending not to change. As a result, only level-2 calculations are given in 

Table 6 since for level-1 calculation, there are not clear boundary lines (thresholds) between 5 classes, i.e. every 

volume/block scores similar in the range of [0.368, 0.610]. 

 



 

Figure 10. The learning information for a 3D CNN network. 

 

While data sparsity (n=70 for training) contributes to this poor performance, another reason is the visual similarity 

of abnormal patterns across five classes. Different from the work that is carried out in [16] where concerned three 

classes sustain more distinguishable visual patterns (tumour, Alzheimer’s disease, normal), similar patterns of TB 

(e.g. military, infiltrative) can take place at any level of severities. Although this 3D CNN network in Figure 9 

can be further enhanced into going deeper (e.g. 50 layers), it suffers vanishing gradient problem as being addressed 

in Section 2.2 and illustrated in Figure 10. In [16], while the best accuracy result of 87% is achieved for 

classification of three classes, the architecture applied is the fuse of both 2D and 3D networks. The 3D network 

alone did not deliver better results than applying only 2D CNN as well in [16]. 

 

6. Conclusion 

This research investigates the feasibility of applying deep learning techniques to the analysis of the level of 

severity of tuberculosis disease from 3D CT images. To this end, the developed depth-Resnet deep learning model 

was trained based on segmented blocks from each data set. The final severity score for each volume was therefore 

built on the integration of segment scores. As such, three approaches were presented to assemble the integration. 

One was constructed based on the block scores using a SVM classifier (Level-0). Another approach was to convert 

block severity scores into a probability map to provide a range of probabilities for each severity score. From this, 

three measures were formulated, which are based on the high severity scores (1 to 3), low severity scores (4 and 

5) and all scores (1 to 5). As a result, two more classifiers were developed, applying either the measure of all 

scores (Level-1) or two separate measures (Level-2). It appears that Level-2 approach performs the best in terms 



of both severity scores and probability (85.29%). However, if only the severity score is considered, which is the 

information provided with the training datasets, Level-0 performs the best (92.70%). Due to the lengthy training 

(~4 days) and testing (~2 days) times, the results in this paper are based on three training runs. In the future, the 

popular method of one against all will be investigated to obtain more accurate predictions of the level of severity. 

In addition, better mappings from severity scores (1 to 5) to high severity probabilities (1 to 0) will be sought, to 

unearth the information that is hidden within the severity scores, through the training of hyperparameters directly 

from the datasets. While Resnet-50 was the chosen model as a baseline to be applied in this study, comparison 

with the other pre-trained deep learning networks (e.g. Inception-v4) and hand-crafted models (e.g. SIFT, LBP) 

will be investigated in the future. 

Due to the sparsity of the datasets and the characteristics of similar abnormal patterns of TB within the five 

severity levels, conventional 3D CNN architectures appear to work less effective, which however, can be 

improved by training segment volumes that only contain abnormal patterns. Hence another future work includes 

collaborations with clinicians to incorporate expert knowledge by training only those diseased regions associated 

with the severity of TB. 

Scoring TB severity constitutes one of the biggest challenges in medical decision-making. This work is anticipated 

to make a significant contribution to this field and promote the application of machine learning techniques within 

the medical domain. 
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