	
	
	

An Improved Block Matching Algorithm for Motion Estimation in Video Sequences and Application in Robotics
Kamanasish Bhattacharjeea, Sushil Kumarb, Hari Mohan Pandeyc*, Millie Pantd, David Windridgec, Ankit Chaudharye
a Department of Computer Science & Engineering, Amity University, Noida, Uttar Pradesh, India
bSchool of Computing Science and Engineering, Galgotias University, Greater Noida, India
*c Department of Computer Science, School of Technology, Middlesex University, London, UK
dDepartment of Applied Science and Engineering, IIT Roorkee, India
e Data Science Division, Department of Computer Science, Northwest Missouri State University, USA
	ARTICLE INFO
	ABSTRACT

	Article history:
Received
Received in revised form
Accepted
Available online
	Block Matching is one of the most efficient techniques for motion estimation for video sequences. Metaheuristic algorithms have been used effectively for motion estimation. In this paper, we propose two hybrid algorithms: Artificial Bee Colony with Differential Evolution and Harmony Search with Differential Evolution based motion estimation algorithms. Extensive experiments are conducted using four standard video sequences. The video sequences utilized for experimentation have all essential features such as different formats, resolutions and number of frames which are generally required in input video sequences. We compare the performance of the proposed algorithms with other algorithms considering various parameters such as Structural Similarity, Peak Signal to Noise Ratio, Average Number of Search Points etc. The comparative results demonstrate that the proposed algorithms outperformed other algorithms.

	Keywords:
Block Matching
Differential Evolution
Harmony Search
Robotics
Motion Estimation
Video Compression
	

4

12

[bookmark: InstructionText]Introduction
BM is important for motion estimation in video compression where frames of a video sequence are divided into macro blocks. For each block in the current frame, the best matching block is identified in the search space of the previous frame to minimize the MAD or MSE or SAD between blocks. The key challenge is the evaluation of SAD/MAD/MSE as it is highly time consuming. Hence, BM for motion estimation is considered as an optimization problem and it has an objective to search the best matching block for a target block. There exist various approaches that were introduced to speed up BM through a fixed subset of the search area at the cost of deficient accuracy. Some of the approaches are: 3SS [2], SESTSS [4], NTSS [3], 4SS [5], DS [6], ARPS [7]. These approaches were found effective, but they failed to establish a trade-off between accuracy and speed.
Lin et al. [8] proposed a BM algorithm using GA. It was an extension of 3SS. The experimental results demonstrated that LGA performed better than ES or FSA, 3SS and M3SS. So et al. [9] proposed 4GS by combining GA and 4SS. It requires less number of search points than the LGA, but more number of search points than 4SS. It takes approximately 14% of search points compared to FSA. Li et al. [10] suggested a BM algorithm based on an improved GA, where an objective search and random search derived from genetic mutation are utilized to search the global optimum and a threshold selection operator is applied to speed up the estimation. Li et al. [10] utilized GA to reduce the high computational complexity.
A fair amount of research has been conducted on BM algorithm utilizing PSO. Du et al. [11] proposed a BM algorithm which was based on PSO and it operates faster than the GA. Ren et al. [12] presented a PSO-ZMP algorithm. It consists of ZMP, predictive image coding and PSO matching routine. Though it produces positive results in terms of computational complexity as compared to the DS and ARPS, at the same time it generated negative trends in terms of quality. Yuan et al [13] utilized an improved PSO for BM through a centre-biased particle initialization and neighbor based velocity initialization. Bakwad et al. [15] implemented a BM algorithm on a SPMPPSO, it was computationally faster. SPSO for BM was proposed by Zhang et al. [14]. It combines the high accurate local search ability of SPSO with the powerful global search ability of the PSO. It demonstrated the ability to avoid the local minima sticking problem. Cai et al. [16] proposed a fast and accurate BM algorithm was based on PSO using time variant acceleration coefficients. The time variant acceleration coefficient helps in exploration in the early stage and converges to a good solution. Jalloul et al. [17] suggested a BM algorithm using an improved parallel PSO. The improved parallel PSO incorporates synchronization that helps the neighboring macro-blocks of frame to exchange information about the motion vectors. This process allows exploiting the spatial correlation between adjacent blocks and it speed up the convergence. Liu et al. [18] formulated a technique for BM through a PSO, was based on a Good-Point set theory to reduce the deviation of the two random numbers selected in velocity updating formula. Good-point set theory helps in the selection of the better points than the random selection, which accelerates the convergence. Britto et al. [19] applied a combination of a PSO and AMEA to reduce the computational complexity and search points. A cooperative motion estimation algorithm based on multi-warm PSO was proposed by Jalloul et al. [20]. In this method, information exchange about the motion vectors was found effective in exploiting spatial correlation, refining the motion search and, therefore, leads to a faster convergence and demonstrated improvement in the resulting motion vectors. Cuevas et al. [21] implemented ABC, DE and HS respectively along with a fitness estimation strategy for BM. These approaches substantially reduce the number of search points while preserving good search capabilities of the meta-heuristic methods. These algorithms maintain a good balance between coding efficiency and computational complexity.
From the above discussion, we noticed that nature-inspired algorithms have demonstrated a good trade-off between accuracy and speed. Researchers have utilized GA, PSO, ABC, DE and HS for motion estimation – a key feature used in vision and robotic application. Empirical studies were also conducted that showed the ability of hybridization of these meta-heuristic algorithms. In this paper, we implement two hybrid algorithms: HS-DE and ABC-DE for BM. We have customized both algorithms (HS-DE and ABC-DE) to suit the problem and implemented them to improve the BM algorithm. Hybrid version of ABC-DE and HS-DE gives good results when it compared with other algorithms. Both the algorithms are novel as they have not been implemented for BM. We take four standard video sequences for simulation. The performance comparison of our proposed two hybrid algorithms: ABC-DE and HS-DE is done considering the parameters: SSIM, PSNR, Average number of Search Points which directly corresponds to computational complexity, Computational Gain of HS-DE and ABC-DE over other algorithms.
The rest of the paper is organized as follows: Section 2 discusses three meta-heuristic algorithms are implemented for motion estimation and BM. Section 3 presents two hybrid algorithms: ABC-DE and HS-DE are proposed for video sequences motion estimation. The experimental setup, results and discussion are given in Section 4. A brief discussion on motion estimation in robotics is given in Section 5. Section 6 concludes the paper and gives suggestions for future work.
Previous approaches for BM
In this section, we present three different meta-heuristic algorithms utilized for BM.
2.1 BM uses Differential Evolution
DE algorithm for BM was proposed to reduce search location. DE algorithm tries to improve the solution vector iteratively and optimize the problem by initializing a large population and then through mutation, crossover and selection operations. The steps applied to optimize the problem through DE algorithm are given below:
Step-1: Population generation

2 dimensional blocks to), each of size 16x16 pixels, are generated using a fixed pattern from the search space of blocks.
Step-2: Mutation

DE/best/1 strategy is used, where the block with minimum SAD value Bbest is mutated by adding the scaled difference of two randomly selected blocks and from the current population. The two random blocks are chosen in such way that their indices should not be equal to each other and to the iteration number.
	

	(1)

Where and respectively represent mutation probability and mutant vector.
Step-3: Crossover

Uniform crossover between parent block () and mutant block () is applied to generate a utility block () with as the Crossover probability. If the value of rand (0, 1) is less than then attribute value is chosen from mutant block, otherwise from parent block.
	

	(2)

Step-4: Selection
SAD value is calculated through objective function for each parent block-utility block pair. If a utility block is superior to corresponding parent block, then it replaces the parent in the population otherwise parent remains same. Through this operation population is generated for the next generation.
	

	(3)

2.2 BM uses Artificial Bee Colony
Cuevas et al. [21] proposed the ABC algorithm for BM to reduce search place in BM. Figure 1 presents the block diagram is divided into four steps (each step is discussed in detail) for ABC algorithm used for BM.
[image:]
Figure 1. Block diagram for ABC algorithm used for BM.
Step-1: Initial food source generation

Generate 2 dimensional blocks (to), each of size 16x16 pixels, using a fixed pattern from the search space of blocks. The fitness function value for each block is calculated using equation (4).
	

	(4)

Where, represents an objective function.
Step-2: New food source generation.

Each bee generates new food source (block) in the neighborhood of each block using equation (5).
	

	(5)

Where, is a random number in range of and, and are indexed parameters with a constraint. The fitness function value is calculated, which is then compared with the fitness function value of the corresponding initial block.
Step-3: Selection of food sources by onlooker bees
The probability of a food source (block) is calculated using equation (6).
	

	(6)

Onlooker bees utilize probability to select the food sources. A new candidate food source (block) is generated and if it is found better than the old one, it replaces the old food source (block).
Step-4: Determine scout bees
After step-3, if no improvement in the fitness function value is seen, then in such situation onlooker bee becomes scout bee. These scout bees generate new food source (block) and repeat the steps 1-3.

2.3 BM uses Harmony Search
HS algorithm was utilized for BM. The HS algorithm was applied to reduce the number of search locations. Figure 2 depicts a block diagram of HS used for BM.
[image:]
Figure 2. Block diagram for HS algorithm used for BM.
Below, we discuss the steps shown in Figure 2 for HS algorithm used for BM.
Step-1: Initialization of the problem and the parameters
The problem is to minimize the SAD value. The main algorithm parameters to be initialized are: HMS, HMCR [0 ≤ HMCR ≤ 1], PAR [0 ≤ PAR ≤ 1], BW and NI.
Step-2: Initialization of Harmony Memory

Equation (7) is used to initialized HM considering the HMS blocks Bi (i ϵ 1 to HMS) with 2 dimensions are generated using a fixed pattern from the search space of blocks.
	

	(7)

Step-3: Initialization of Harmony Memory

Improvisation of HM is done by generating a New Harmony vector or block as shown in equation (8).
	

	(8)

Every component generated through equation (8) is pitch-adjusted using equation (9).
	

	(9)

PAR assigns the frequency of the adjustment and BW controls the local search around the selected elements of HM. Pitch adjustment generates new potential harmonies by modifying the original variable positions, which is similar to the mutation operation in EAs. Hence, each dimension of the vector is either perturbed by a random number between 0 and BW or left unchanged.
Step-4: Updating Harmony Memory

The decision of updating the HM is depends upon the criteria: “whether the new block replaces the worst block”. Equation (10) is used to update the HM.
	

	(10)

Proposed approaches
In this section, we discuss two hybrid algorithms are implemented for BM.
[image:]
[bookmark: _GoBack]Figure 3. Block diagram for ABC-DE algorithm used for BM.
3.1 Hybrid ABC-DE based BM algorithm
Hybridization of DE-ABC was proposed previously [22]. We propose a customized version of hybrid ABC-DE algorithm to fit in the goal: “to minimize the number of SAD evaluations with an acceptable solution for BM”. In our approach, the food source generation operations of ABC (bee phase and onlooker bee phase) is replaced by mutation and crossover operation of the DE algorithm as shown in Figure 3. Algorithm-1 presents the customized version of hybrid ABC-DE based BM algorithm.
Algorithm-1: Hybrid ABC-DE based BM Algorithm
1. Initialize the parameters F_employed = 0.25, F_onlooker = 0.25, CP = 0.5 for DE and limit = 10 for ABC. Dimension D = 2. Search Parameter W = 8 or 16. Block Size is 16x16 pixels.
2. Initialize the population of NP=5 individuals with D dimensions using the fixed pattern from the search space of (2*W+1) X (2*W+1) blocks. Initialize counter for each individual Ci=0 (i ϵ 1 to NP).
3. Calculate the SAD between current block and each block of NP (Bi where i ϵ 1 to NP).
4. Calculate the fitness value for each individual of NP.
5. While the terminating criteria is not satisfied do
6. New population of NP blocks is generated using mutation and crossover.
7. For i = 1 to NP
8. Select three blocks Bp, Bq and Br from population where p ≠ q ≠ r ≠ i
9.

10. For j = 1 to D
11. If rand(0,1) ≤ CP or j = jrand Then
12. Trial vector Uj,i = Vj,i
13. Else
14. Trial vector Uj,i = Bj,i
15. End if
16. End for
17. End for
18. Applying Fitness Approximation method to calculate SAD value of each newly generated food source (Vi) followed by calculating fitness value.
19. If fitness(Ui) > fitness(Bi) Then
20. Bi = Ui
21. Else
22. Ci=Ci+1
23. End if
24. Calculate probability of each selected food source.
25. For i = 1 to NP
26.

27. r = rand(0,1)
28. If (r < Probi)
29. Follow step 6 for this food source using F_onlooker
30. If Ci > limit
31. Block is abandoned and a new block is randomly selected.
32. End if
33. End for
34. End while
35. Select the block with highest fitness value for Motion Vector calculation
3.1.1 Advantage of the hybrid approach (ABC-DE)
The proposed algorithm is more powerful as it utilizes the search space exploration ability of DE algorithm, which is combined with the solution’s exploitation ability of the ABC algorithm. Exploration and exploitation is the key to the success of any search and optimization algorithm. The ABC algorithm performs the exploration in two steps:
a) When new food sources are generated in the neighborhood of the initial population and
b) When a new food source is generated in the neighborhood of the food source with the highest probability.
In both these cases, the proposed ABC-DE algorithm uses mutation and crossover operation of the DE algorithm. Mutation and crossover operation have shown tendency to explore the new search space more effectively. Then applying the operators of ABC algorithm will exploit the population. Hence, the proposed ABC-DE has ability to explore and exploit the search space adequately. It also addresses the issue (exploitation) of the DE algorithm.
[image:]
Figure 4. Block diagram for HS-DE algorithm used for BM.
3.2 Hybrid HS-DE based BM algorithm
Hybridization of DE-HS was proposed in [23]. Chakraborty et al. [23] used mutation operator of DE algorithm to perturb the target vector instead of pith adjustment. We propose a hybrid version of HS-DE algorithm, where the crossover operator of DE algorithm is utilized (as shown in Figure 4) to increase the diversity of the perturbed vector. Algorithm-2 presents the working of the hybrid HS-DE based BM algorithm.
Algorithm-2: Hybrid HS-DE based BM Algorithm
1. Set the parameters. HMS = 5, HMCR = 0.7, PAR = 0.3, BW = 8 for HS and F = 0.25, CP = 0.8 for DE. Dimension D = 2. Search Parameter W = 8 or 16. Block Size is 16x16 pixels.
2. Initialize the population of HMS blocks with D dimensions using the fixed pattern from the search space of (2*W+1) X (2*W+1) blocks.
3. Calculate the SAD values between current block and each block of Harmony Memory (Bi where i ϵ 1 to HMS)
4. While the terminating criteria is not satisfied do
5.
Determine the block with worst SAD value, i.e. the highest SAD value
6.
Improvise new block
7. For j = 1 to D
8. If (rand(0,1) < HMCR)
9.
 where i = 1, 2, …, HMS
10. Else
11.

 where r rand(-1, 1)
12. If (Bnew(j) < l(j))
13. Bnew(j) = l(j)
14. End if
15. if (Bnew(j) > u(j))
16. Bnew(j) = u(j)
17. End if
18. End if
19. End for
20. Select two blocks from population Bp and Bq where p≠q
21.

22. For j = 1to D
23. If rand(0,1) ≤ CP or j = jrand Then
24. Trial block Uj = Vj
25. Else
26. Trial block Uj = Bj
27. End if
28. End for
29. Applying Fitness Approximation method calculates SAD value of Bnew
30. Bworst=Bnew if SAD(Bnew) < SAD(Bworst)
31. End while
32. Select the block with minimum SAD value for Motion Vector calculation
3.2.1 Advantage of the hybrid approach (HS-DE)
The HS algorithm suffers with premature or false convergence. In the proposed hybrid HS-DE algorithm for BM pitch adjustment of HS algorithm is performed through crossover and mutation operations of the DE algorithm. It alleviates premature convergence of the HS algorithm. In turn, it solves the drawback of DE algorithm. The DE algorithm updates the current individuals based on only the differences among certain randomly selected individual, whilst HS algorithm uses the combination of all the individuals which increases the diversity of individuals.
Simulation model
Extensive experiments have been conducted on MATLAB 8.5 on an Intel Core i3 2.5 GHz PC with 4GB of memory and 64-bit Windows 10 Operating System. Luminance component of video sequences (more noticeable to human eyes) as luminance of videos or images have been used during simulation.
Table I.
Test Video Sequences
	Sequence
	Format
	Resolution
	Number of Frames

	Container
	QCIF
	176x144
	300

	Carphone
	QCIF
	176x144
	382

	Akiyo
	CIF
	352x288
	300

	Foreman
	CIF
	352x288
	300

Four standard video sequences are considered for the simulation as shown in Table I and one of the frames of each video sequence is depicted in Figure 5. These video sequences have different formats, resolutions and number of frames with sufficient complexity involved to conduct the experiments. Previously, Cuevas et al. [21] compared the performance of the ABC, DE and HS based BM approach with other algorithms such as ES [1], 3SS [2], NTSS [3], SESTSS [4], 4SS [5], BBGD [24], DS [6], NE [25], ND [26], LWG [8], 4GS [9] and PSO-BM [13]. The comparative results demonstrated the superiority of the meta-heuristic algorithms based BM algorithms over the others. But, these algorithms have not considered ARPS, which gives better results in case of non-metaheuristic algorithms.
 In this research, our objective is to present an improved BM algorithm for motion estimation in video sequence and compare the performance of the proposed algorithms with ARPS, ABC, DE and HS based BM algorithms. We have considered ES, 3SS, SESTSS, NTSS, 4SS, DS, ARPS, ABC-BM, DE-BM and HS-BM for comparison. We have determined SSIM, PSNR, Average Number of Search Points (directly corresponding to the computational complexity), Computation Gain and Quality of Loss for each algorithm. The term quality of loss is similar to the PSNR degradation ratio. Quality Loss corresponds to the percentage by which the PSNR has been reduced with respect to a specific algorithm while PSNR degradation ratio corresponds to the percentage by which the PSNR has been reduced with respect to Exhaustive Search. Hence the PSNR degradation ratio is not presented in the paper as it would be redundant.
Computational Gain: By what percentage the computation has been reduced with respect to a specific algorithm.
SPHSDE = Average Search Points for HSDE
SP = Average Search Points for any other Algorithm
	
Computational Gain (HS-DE)
	(1)

SPABCDE = Average Search Points for ABCDE
SP = Average Search Points for any other Algorithm
	
Computational Gain (ABC-DE)
	(2)

Quality Loss: By what percentage, the PSNR has been reduced with respect to a specific algorithm.
PSNRHSDE = Average PSNR for HSDE
PSNR = Average PSNR for any other Algorithm
	
Quality Loss (HS-DE)
	(3)

PSNRABCDE = Average PSNR for ABCDE
PSNR = Average PSNR for any other Algorithm
	
Quality Loss (ABC-DE)
	(4)

Table II, III, IV, and V presents the comparative results of various BM algorithms considering the test video sequences as given in Table I for Container, Carphone, Akiyo and Foreman sequences respectively.
Figure 6, 8, 10 and 12 depicts frame wise PSNR comparison chart, whereas Figure 7, 9, 11 and 13 show comparative charts for frame wise search points with respect to different BM algorithms for test video sequences (Table I). These results revealed that the proposed hybrid algorithms (ABC-DE and HS-DE) showed significantly better performance in terms of computational complexity is concerned. The best value of the average number of search points is marked bold in Table II, III, IV, and V. We have noticed that HS-DE revealed the best value of computational complexity for Container and Foreman video sequences whilst ABC-DE has shown the best response for Carphone and Akiyo sequences. We also noticed that computational gain of the proposed ABC-DE and HSE-DE is significantly high as compared to other algorithms.
2

	[image:]
	[image:]

	(a)
	(b)

	[image:]
	[image:]

	(c)
	(d)

Figure 5. Test video sequence. (a) Container, (b) Carphone, (c) Akiyo and (d) Foreman

Table II.
 Comparison of various algorithms for Container sequence
	BM Algorithm
	Avg. SSIM
	Avg. PSNR
	Avg. Search Points
	Computational Gain (HS-DE) %
	Quality Loss (HS-DE) %
	Computational Gain (ABC-DE) %
	Quality Loss (ABC-DE) %

	ES
	0.9926
	44.1108
	236.6364
	97.9522
	0.3414
	98.0300
	0.3634

	3SS
	0.9925
	44.0624
	21.4876
	77.4483
	0.2319
	78.3051
	0.2539

	SESTSS
	0.9925
	44.0584
	16.198
	70.0839
	0.2228
	71.2205
	0.2449

	NTSS
	0.9925
	44.0624
	14.7209
	67.0821
	0.2319
	68.3327
	0.2539

	4SS
	0.9925
	44.0448
	14.6852
	67.0021
	0.1920
	68.2557
	0.2141

	DS
	0.9925
	44.0439
	11.4667
	57.7402
	0.1900
	59.3457
	0.2120

	ARPS
	0.9925
	44.0198
	4.9085
	1.2773
	0.1353
	5.0280
	0.1574

	DE
	0.9924
	43.9806
	9.2312
	47.5062
	0.0463
	49.5006
	0.0684

	HS
	0.9924
	43.9797
	5.3911
	10.1148
	0.0443
	13.5297
	0.0663

	HSDE
	0.9924
	43.9602
	4.8458
	-
	-
	3.7991
	0.0220

	ABC
	0.9924
	43.9781
	7.4532
	34.9836
	0.0407
	37.4537
	0.0627

	ABCDE
	0.9924
	43.9505
	4.6617
	-3.9492
	-0.0220
	-
	-

Table III.
Comparison of various algorithms for Carphone sequence
	BM Algorithm
	Avg. SSIM
	Avg. PSNR
	Avg. Search Points
	Computational Gain (HS-DE) %
	Quality Loss (HS-DE) %
	Computational Gain (ABC-DE) %
	Quality Loss (ABC-DE) %

	ES
	0.9372
	32.7196
	236.6364
	97.9192
	2.7231
	97.7705
	2.7368

	3SS
	0.9339
	32.4837
	21.6199
	77.2256
	2.0167
	75.5979
	2.0305

	SESTSS
	0.9299
	32.2893
	15.8705
	68.9751
	1.4267
	66.7578
	1.4407

	NTSS
	0.9347
	32.5627
	16.9685
	70.9827
	2.2544
	68.9088
	2.2682

	4SS
	0.9336
	32.4554
	15.6924
	68.6230
	1.9312
	66.3805
	1.9451

	DS
	0.9342
	32.5153
	13.1586
	62.5811
	2.1119
	59.9068
	2.1257

	ARPS
	0.9331
	32.4357
	7.0025
	29.6851
	1.8717
	24.6597
	1.8855

	DE
	0.9035
	30.7807
	9.0372
	45.5163
	-3.4044
	41.6224
	-3.3897

	HS
	0.9036
	30.7822
	5.3785
	8.4540
	-3.3993
	1.9113
	-3.3847

	HSDE
	0.9218
	31.8286
	4.9238
	-
	-
	-7.1469
	0.0141

	ABC
	0.9034
	30.774
	7.2376
	31.9691
	-3.4269
	27.1070
	-3.4122

	ABCDE
	0.9218
	31.8241
	5.2757
	6.6702
	-0.0141
	-
	-

Table IV.
 Comparison of various algorithms for Akiyo sequence
	BM Algorithm
	Avg. SSIM
	Avg. PSNR
	Avg. Search Points
	Computational Gain (HS-DE) %
	Quality Loss (HS-DE) %
	Computational Gain (ABC-DE) %
	Quality Loss (ABC-DE) %

	ES
	0.9931
	44.1053
	262.1717
	98.0532
	0.6366
	98.1242
	0.6289

	3SS
	0.993
	43.9835
	23.2121
	78.0127
	0.3614
	78.8136
	0.3537

	SESTSS
	0.9928
	43.8795
	17.0745
	70.1092
	0.1253
	71.1979
	0.1175

	NTSS
	0.9931
	44.0984
	15.9253
	67.9522
	0.6211
	69.1195
	0.6134

	4SS
	0.993
	44.0211
	15.8453
	67.7904
	0.4466
	68.9636
	0.4388

	DS
	0.9931
	44.0903
	12.2746
	58.4206
	0.6028
	59.9351
	0.5951

	ARPS
	0.9931
	44.0725
	5.0498
	-1.0673
	0.5627
	2.6139
	0.5549

	DE
	0.9894
	42.0536
	9.0158
	43.3916
	-4.2110
	45.4535
	-4.2191

	HS
	0.9894
	42.0541
	5.4606
	6.5359
	-4.2098
	9.9402
	-4.2179

	HSDE
	0.9927
	43.8245
	5.1037
	-
	-
	3.6424
	-0.0077

	ABC
	0.9984
	42.05
	8.0112
	36.2929
	-4.2199
	38.6134
	-4.2280

	ABCDE
	0.9927
	43.8279
	4.9178
	-3.7801
	0.0077
	-
	-

Table V.
Comparison of various algorithms for Foreman sequence
	BM Algorithm
	Avg. SSIM
	Avg. PSNR
	Avg. Search
Points
	Computational Gain (HS-DE) %
	Quality Loss (HS-DE) %
	Computational Gain (ABC-DE) %
	Quality Loss (ABC-DE) %

	ES
	0.9201
	32.6896
	262.1717
	98.0242
	10.1821
	97.9049
	10.4017

	3SS
	0.8976
	32.009
	23.3295
	77.7967
	8.2723
	76.4564
	8.4966

	SESTSS
	0.8866
	31.5079
	15.9777
	67.5804
	6.8135
	65.6233
	7.0414

	NTSS
	0.9019
	32.2292
	21.2373
	75.6094
	8.8990
	74.1370
	9.1218

	4SS
	0.8989
	32.053
	18.8784
	72.5617
	8.3982
	70.9053
	8.6222

	DS
	0.9028
	32.2209
	17.6867
	70.7130
	8.8756
	68.9450
	9.0984

	ARPS
	0.9086
	32.3647
	8.9747
	42.2833
	9.2804
	38.7990
	9.5023

	DE
	0.8034
	28.1001
	8.6891
	40.3862
	-4.4875
	36.7874
	-4.2320

	HS
	0.8034
	28.094
	5.454
	5.0256
	-4.5102
	-0.7077
	-4.2546

	HSDE
	0.8367
	29.3611
	5.1799
	-
	-
	-6.0367
	0.2445

	ABC
	0.8024
	28.0362
	7.67
	32.4654
	-4.7256
	28.3885
	-4.4695

	ABCDE
	0.8356
	29.2893
	5.4926
	5.6931
	-0.2451
	-
	-

Table. VI
Quality comparison of different initialization patterns of Carphone sequence
	BM Algorithms
	Avg. SSIM
	Avg. PSNR

	
	Without Centre-biased pattern
	With Centre-biased pattern
	Without Centre-biased pattern
	With Centre-biased pattern

	DE
	0.9035
	0.9216
	30.7807
	31.8147

	HS
	0.9036
	0.9216
	30.7822
	31.8077

	ABC
	0.9034
	0.9215
	30.774
	31.8073

Table VII
Quality comparison of different initialization patterns of Akiyo sequence
	BM Algorithms
	Avg. SSIM
	Avg. PSNR

	
	Without Centre-biased pattern
	With Centre-biased pattern
	Without Centre-biased pattern
	With Centre-biased pattern

	DE
	0.9894
	0.9927
	42.0536
	43.8220

	HS
	0.9894
	0.9927
	42.0541
	43.8220

	ABC
	0.9984
	0.9927
	42.05
	43.8220

Table VIII
Comparison between different numbers of iterations for Carphone sequence
	BM Algorithms
	Number of iterations

	
	1
	2
	3
	4

	
	Avg. PSNR
	Avg. Search Points
	Avg. PSNR
	Avg. Search Points
	Avg. PSNR
	Avg. Search Points
	Avg. PSNR
	Avg. Search Points

	HS-DE
	31.8286
	4.9238
	31.8452
	5.2614
	31.8637
	5.6
	31.8746
	5.9438

	ABC-DE
	31.8241
	5.2757
	31.8316
	5.9421
	31.8444
	6.5809
	31.8526
	7.1832

Table IX
Comparison between different population sizes for Carphone sequence
	BM Algorithms
	Population Size

	
	5
	9

	
	Avg. PSNR
	Avg. Search Points
	Avg. PSNR
	Avg. Search Points

	HS-DE
	31.8286
	4.9238
	32.1419
	7.6869

	ABC-DE
	31.8241
	5.2757
	32.1538
	8.3483

In addition, ABC-DE and HSE-DE algorithms have shown very low quality loss. From the results presented in Table II, III, IV and V, we can see that the algorithms: ABC-BM, DE-BM and HS-BM have shown higher loss in quality. It has happened due to the initialization patterns that are used by these algorithms (ABC-BM, DE-BM and HS-BM). The quality of ABC-BM, DE-BM and HS-BM algorithms can be enhanced by changing the initialization patters to center-biased as presented in Table VI and VII respectively for Caphone and Akiyo video sequences.
Previous scientific researches on BM algorithms utilizing nature inspired algorithms [21] have chosen average number of search points as one of the measure of computational complexity. In this paper, we have also used average number of search points as a measure of computational complexity. In addition, we noticed that the metaheuristic algorithms have shown better results in terms of computational complexity on distributed systems and parallelization of operations of metaheuristics algorithms can be achieved easily. Hence, comparing them with the classical BM algorithms on a non-distributed environment will not be an effective thought.
The computational time might be higher in case of the proposed algorithms with respect to some classical BM algorithms, but the main aim of this research is to present hybridization of the metaheuristic algorithms for motion estimation in video sequences. The results showed that the proposed hybrid algorithms have outperformed other algorithms. The experimental results revealed that the computational time of HSDE has outperformed both HS and DE, whilst ABCDE has outperformed both ABC and DE.
The main advantage of utilizing metaheuristic algorithms for BM is it has tendency to maintain a good balance between quality and computational complexity. Extensive experiments have been conducted over five blocks and based on the results following observations have been made: “ any increase in both number of block in the population and number of generation increases the computational complexity, but decreases the quality of loss”. Table VIII presents the results after increasing the number of iterations/generations for carphone video sequence. On the other hand, Table IX shows the results of different population sizes for foreman video sequence.

	[image:]
	[image:]

	Figure 6. Frame wise PSNR performance for Container sequence.
	Figure 7. Frame wise Search Points for Container sequence.

	[image:]
	[image:]

	Figure 8.. Frame wise PSNR performance for Carphone sequence
	Figure 9. Frame wise Search Points for Carphone sequence

	[image:]
	[image:]

	Figure 10. Frame wise PSNR performance for Akiyo sequence
	Figure 11. Frame wise Search Points for Akiyo sequence

	[image:]
	[image:]

	Figure 12. Frame wise PSNR performance of Foreman sequence
	Figure 13. Frame wise Search Points for Foreman sequence

Table X.
Computational Time (Sec.) of various BM algorithms for different video sequences.
	BM Algorithm
	Video Sequences

	
	Container Sequence
	Carphone Sequence
	Akiyo Sequence
	Foreman Sequence

	ES
	679.222
	812.322
	2581.164
	2662.610

	3SS
	63.830
	76.574
	233.668
	254.007

	SESTSS
	45.417
	57.118
	170.910
	172.607

	NTSS
	41.137
	58.530
	160.318
	217.748

	4SS
	41.335
	55.544
	158.224
	194.540

	DS
	35.384
	52.302
	135.960
	204.570

	ARPS
	18.162
	31.835
	67.499
	115.610

	DE
	78.495
	99.689
	309.724
	312.490

	HS
	52.358
	68.607
	235.522
	235.025

	HSDE
	51.509
	66.178
	235.478
	231.039

	ABC
	71.218
	91.635
	305.870
	312.423

	ABCDE
	66.305
	86.427
	287.981
	293.141

We have also utilized diamond pattern to analyze the effect of increased population size.
The computational time of various BM algorithms implemented on four video sequences are presented in Table X. This results show that the proposed hybrid algorithms (HS-DE and ABC-DE) consumes moderate computational time, but both the algorithms show better results on other factors (computational gain and quality of loss).
Motion estimation in robots
In this paper, we have presented two hybrid algorithms (ABC-DE and HS-DE) for motion estimation in video sequence. Motion estimation has vital applications in robotics. In this section, we are highlighting some of exiting work on motion estimation had been used in robotics.
Booij et al. [27] proposed an estimation method to determine the full likelihood in the space of all possible planar relative space. The standard Bayesian method was used to learn likelihood function from the existing data. The result of this approach was impressive as it was efficient to estimate the likelihood of new pose effectively. In addition, this approach was capable to create and estimate new poses. Though, this approach was successfully implemented for planer robot, but it was limited to pair of images only. Spacek and Burbridge [28] suggested two related methods (localization by trilateration and inter-frame motion estimation) for autonomous visual guidance of robots. These methods were based on co-axial omni-directional range, which returns guiding points detected in the images. It was also limited to images only. Gonzalez and Gutierrez [29] estimated the motion parameters of a mobile robot equipped with a radial laser rangefinder. This method was based on the spatial and temporal linearization of range function. The experiments were conducted on a computer simulation which later on downloaded to a real robot. Ferreira et al. [30] presented a comprehensive survey on real-time motion estimation techniques for underground robots. The above discussion indicates that motion estimation is important in the field of robotic applications. The approaches suggested in existing scientific literatures have their own strengths and weaknesses. In this paper, we have presented two hybrid algorithms using metaheuristic algorithm for motion estimation with believes that we will extend these algorithms purely for robotics in the near future.
Conclusion
In this paper, we presented and evaluated two hybrid algorithms: Artificial Bee Colony – Differential Evolution and Harmony Search – Differential Evolution for motion estimation in video sequences. Extensive experiments have been conducted on four standard video sequences to evaluate the performance of the proposed algorithms. We have compared the proposed algorithms with other nine algorithms: Three Step Search, Simple and Efficient Three Step Search, New Three Step Search, Four Step Search, Diamond Search, Adaptive Road Pattern Search, Differential Evolution, Harmony Search and Artificial Bee Colony. The computational results have revealed that the proposed hybrid algorithms can reduce computational complexity significantly and improve overall performance. We noticed that computational gain of proposed hybrid algorithms is significantly high with very low quality loss as compared to other algorithms. The results reported in Table X indicate that the computation time of the proposed hybrid algorithms is significantly better than Harmony Search, Differential Evolution and Artificial Bee Colony Algorithms. Further, we have found that the hybrid algorithms consume little high computational time as compared to other six algorithm (Three Step Search, Simple and Efficient Three Step Search, New Three Step Search, Four Step Search, Diamond Search, Adaptive Rood Pattern Search), but both hybrid algorithms show better results on other factors: computational gain and quality loss. So, the proposed algorithms improve the performance of Block Matching algorithm for motion estimation in video sequences.
A mobile robot must perceive the motions of an external object to perform a certain tasks successfully. The proposed algorithms have ability to perform both motion estimation and video compression successfully. We have shown the application of motion estimation in robots. Hence, to deal with motion estimation in mobile robot utilizing the proposed algorithms is an immediate future work.
References
1. J. Jain and A. Jain. "Displacement measurement and its application in interframe image coding." IEEE Transactions on communications 29.12 (1981), pp. 1799-1808.
2. T. Koga. “Motion compensated inter-frame coding for video conferencing.” Proc. Nat. Telecommunications Conf., New Orleans, LA, Nov. 1981. 1981.
3. R. Li BZeng and M.L.Liou. “A new three-step search algorithm for block motion estimation.” IEEE transactions on circuits and systems for video technology, 4(4), 1994, pp. 438-442.
4. J. Lu and M. L. Liou. “A simple and efficient search algorithm for block-matching motion estimation.” IEEE Transactions on Circuits and Systems for Video Technology, 7(2), 1997, pp. 429-433.
5. L. M. Po and W. C. Ma. “A novel four-step search algorithm for fast block motion estimation.” IEEE transactions on circuits and systems for video technology, 6(3), 1996, pp. 313-317.
6. S. Zhu and K.K. Ma. “A new diamond search algorithm for fast block matching motion estimation.” In Information, Communications and Signal Processing, 1997. ICICS, Proceedings of 1997 International Conference on (Vol. 1, pp. 292-296). IEEE.
7. Y. Nie and K.K. Ma. “Adaptive rood pattern search for fast block-matching motion estimation.” IEEE Transactions on image processing, 11(12), 2002, pp. 1442-1449.
8. C. I. Lin and J.L. Wu. “A lightweight genetic block-matching algorithm for video coding.” IEEE Transactions on Circuits and Systems for Video Technology, 8(4), 1998, pp. 386-392.
9. M. F. So and A. Wu. “Four-step genetic search for block motion estimation.” In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on Vol. 3, pp. 1393-1396.
10. S. Li, W. Xu, H. Wang and N. N. Zheng. “A novel fast motion estimation method based on genetic algorithm.” In Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on Vol. 1, pp. 66-69.
11. G. Y. Du, T. S. Huang, L. X. Song and B. J. Zhao. “A novel fast motion estimation method based on particle swarm optimization.” In Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on Vol. 8, pp. 5038-5042.
12. R. Ren, Y. Shi and B. Zheng. “A Fast Block Matching Algorithm for Video Motion Estimation Based on Particle Swarm Optimization and Motion Prejudgment”. arXiv preprint cs/0609131, 2006.
13. X. Yuan and X. Shen. “Block matching algorithm based on particle swarm optimization for motion estimation.” In Embedded Software and Systems, 2008. ICESS'08. International Conference on pp. 191-195.
14. P. Zhang, P. Wei, H. Yu and Z. Wang. “Simplex particle swarm optimization for block matching algorithm.” In Intelligent Signal Processing and Communication Systems (ISPACS), 2010 International Symposium on pp. 1-4.
15. K. M. Bakwad, S.S. Pattnaik, B. S. Sohi, S. Devi, S. V. Gollapudi, C. V. Sagar and P.K. Patra. “Fast motion estimation using small population-based modified parallel particle swarm optimisation.” International Journal of Parallel, Emergent and Distributed Systems, 26(6), 2011, pp. 457-476.
16. J. Cai and W. D. Pan. “On fast and accurate block-based motion estimation algorithms using particle swarm optimization.” Information Sciences, 197, 2012, pp. 53-64.
17. M. K. Jalloul and M. A. Al-Alaoui. “A novel parallel motion estimation algorithm based on particle swarm optimization.” In Signals, Circuits and Systems (ISSCS), 2013 International Symposium on pp. 1 - 4.
18. X. Liu, S. Xuan and F. Liu. “An advanced particle swarm optimization based on good-point set and application to motion estimation.” In International Conference on Intelligent Computing (pp. 494-502). Springer, Berlin, Heidelberg.
19. J. J. Britto and K. S. Chandran. “A predictive and pattern based PSO approach for motion estimation in video coding.” In Communications and Signal Processing (ICCSP), 2014 International Conference on pp. 1572-1576.
20. M.K. Jalloul and M.A. Al-Alaoui. “A novel Cooperative Motion Estimation Algorithm based on Particle Swarm Optimization and its multicore implementation.” Signal Processing: Image Communication, 39, 2015, pp. 121-140.
21. E. Cuevas, D. ZaldíVar, M. PéRez-Cisneros, H. Sossa and V. Osuna. “Block matching algorithm for motion estimation based on Artificial Bee Colony (ABC)”. Applied Soft Computing, 13(6), 2013, pp. 3047-3059.
22. C. Worasucheep. “A Hybrid Artificial Bee Colony with Differential Evolution.” International Journal of Machine Learning and Computing, 5(3), 2015, 179.
23. P. Chakraborty, G. Roy, S. Das, D. Jain and A. Abraham. “An improved harmony search algorithm with differential mutation operator.” Fundamenta Informaticae, 95(4), 2009, pp. 401-426.
24. L. K. Liu and E. Feig. “A block-based gradient descent search algorithm for block motion estimation in video coding”. IEEE Transactions on circuits and systems for Video Technology, 6(4), 1996, pp. 419-422.
25. A. Saha, J. Mukherjee and S. Sural. “A neighborhood elimination approach for block matching in motion estimation.” Signal Processing: Image Communication, 26(8), 2011, pp. 438-454.
26. A. Saha, J. Mukherjee and S. Sural. “New pixel-decimation patterns for block matching in motion estimation.” Signal Processing: Image Communication, 23(10), 2008, pp. 725-738.
27. O. Booij, B. Kröse and Z. "Efficient probabilistic planar robot motion estimation given pairs of images." (2010).
28. L. Spacek and C. Burbridge. "Instantaneous robot self-localization and motion estimation with omni directional vision." Robotics and Autonomous Systems 55.9 (2007): 667-674.
29. J. Gonzalez and R. Gutierrez. "Mobile robot motion estimation from a range scan sequence." Robotics and Automation, 1997. Proceedings. 1997 IEEE International Conference on. Vol. 2. IEEE, 1997.
30. F. Ferreira, G. Veruggio, M. Caccia and G. Bruzzone "A survey on real-time motion estimation techniques for underwater robots." Journal of Real-Time Image Processing 11.4 (2016): 693-711.

Kamanasish Bhattacharjee received his B.E (Hons.) degree in Electrical and Electronics Engineering from Birla Institute of Technology and Science, Pilani, India and M.Tech in Computer Science and Engineering from Amity University Uttar Pradesh, Noida, India. He is currently pursuing his Ph.D. from Indian Institute of Technology, Roorkee, India. His research interests include metaheuristic in solving complex engineering problems.

Sushil Kumar is major in computer science and engineering. He has completed B.Tech (CSE), M.Tech (CSE) and Ph.D. in CSE from IIT Roorkee. His area of research includes soft computing, metaheuristic algorithms to solve complex engineering problems. He is associated with many journals as reviewer and participated in International conferences.

Hari Mohan Pandey is major in computer science and engineering, completed his Ph.D. in Grammatical Inference using Evolutionary Algorithms and presently working on DREA4CAR project. He is working with Middlesex University, London U.K. He has authored over 40 research papers and associated with many International Journals as a reviewer, editorial board member and served as a leading guest editor.

Millie Pant is working as an associate professor in the Indian Institute of Technology Roorkee, India. Her areas of expertise include numerical optimization, evolutionary algorithms and their application to real life problems. She has over 100 publications in journals and conferences of national and international repute.

David Windridge is Associate Professor in Computer Science at Middlesex University and visiting Sr. Lecturer at the University of Surrey, U.K. His research interests centre on machine learning, cognitive systems and computer vision, with a former research interest in astronomy/astrophysics. He has authored more than 100 academic publications and played a leading role on a number of large-scale machine-learning projects.

Ankit Chaudhary is Assistant Professor at Department of Computer Science, Northwest Missouri State University, USA. He received his Ph.D. in Computer Engineering and his areas of research interest are computer vision, artificial intelligence and graph algorithms. He has authored 75 research papers and an Associate Editor of Computer & Electrical Engineering. Journal, Elsevier.
Abbreviations
	BM
	Block Matching

	MAD
	Mean Absolute Difference

	MSE
	Mean Squared Error

	SAD
	Sum of Absolute Differences

	3SS
	Three Step Search

	SESTSS
	Simple and Efficient Three Step Search

	NTSS
	New Three Step Search

	4SS
	Four Step Search

	DS
	Diamond Search

	ARPS
	Adaptive Rood Pattern Search

	GA
	Genetic Algorithm

	LGA
	Lightweight Genetic Algorithm

	ES
	Exhaustive Search

	FSA
	Full Search Algorithm

	M3SS
	Multicandidate Three Step Search

	4GS
	Four-step Genetic Search

	PSO
	Particle Swarm Optimization

	PSO-ZMP
	Particle Swarm Optimization- Zero Motion Prejudgment

	ZMP
	Zero Motion Prejudgment

	SPMPPSO
	Small Population Based Modified Parallel Particle Swarm Optimization

	SPSO
	Simplex Particle Swarm Optimization

	AMEA
	Adaptive Motion Estimation Algorithm

	MA
	Memetic Algorithm

	CSO
	Cat Swarm Optimization

	AFSA
	Artificial Fish Swarm Algorithm

	ABC
	Artificial Bee Colony

	DE
	Differential Evolution

	HS
	Harmony Search

	SSIM
	Structural Similarity

	PSNR
	Peak Signal to Noise Ratio

	NP
	Number of Population

	B
	Parent Block

	W
	Search Parameter

	Bbest
	Best Block

	V
	Mutation Vector

	F
	Mutation Probability

	U
	Utility block

	CP
	Crossover Probability

	r
	Random

	Prob
	Probability

	HMS
	Harmony Memory Size

	HMCR
	Harmony Memory Consideration Rate

	PAR
	Pitch Adjustment Rate

	BW
	Distance Bandwidth

	NI
	Number of Improvisations

	EA
	Evolutionary Algorithm

	Bnew
	New Block

	Bworst
	Worst Block

	F_employed
	Mutation Probability used in the Employed bee phase of hybrid ABCDE

	F_onlooker
	Mutation Probability used in the Onlooker bee phase of hybrid ABCDE

	D
	Dimension

	C
	Counter

	QCIF
	Quarter Common Intermediate Format

	CIF
	Common Intermediate Format

	BBGD
	Block Based Gradient Descent Search

	NE
	Neighborhood Elimination

	ND
	New Pixel-Decimation

	LWG
	Light Weight Genetic Search

image47.wmf
worst

B

oleObject44.bin

image48.wmf
new

B

oleObject45.bin

image49.wmf
)

(

)

(

j

B

j

B

i

new

=

oleObject46.bin

image50.wmf
(

)

1(*)

new

BjroundrW

=+

oleObject47.bin

image51.wmf
Î

oleObject48.bin

image1.wmf
NP

image52.wmf
*()

newpq

VBFBB

=+-

oleObject49.bin

image53.wmf
100

HSDE

SPSP

SP

-

æö

=-´

ç÷

èø

oleObject50.bin

image54.wmf
100

ABCDE

SPSP

SP

-

æö

=-´

ç÷

èø

oleObject51.bin

image55.wmf
100

HSDE

PSNRPSNR

PSNR

-

æö

=´

ç÷

èø

oleObject52.bin

image56.wmf
100

ABCDE

PSNRPSNR

PSNR

-

æö

=´

ç÷

èø

oleObject53.bin

oleObject1.bin

image57.jpeg

image58.jpeg

image59.jpeg

image60.jpeg

image61.jpeg
100

150

200

250

300

ES
———ass
SESTSS
NTSS
—ass

s
ARPS
DE

HS
HSDE
ABC
ABCDE

image62.jpeg
18

16

i

12

10

SESTSS
NTSS
——4s8
——p8’
ARPS
DE

HS
HSDE
~—— ABC
ABCDE

image63.jpeg
ES
———ass
SESTSS
NTSS
- ass

s
ARPS
DE

HS
HSDE
ABC
ABCDE

100

300

image64.jpeg
PR e

o umw'nm m

AL

300

image65.jpeg
&

&

8

3

100

150

200

250

300

ES
———ass
SESTSS
NTSS
- ass

s
ARPS
DE

HS
HSDE
ABC
ABCDE

image2.wmf
(1

i

Bi

Î

image66.jpeg
24

18

16

14

12

10

ass
SESTSS
NTSS
——4s8

s
ARPS
DE

HS
HSDE
~—— ABC
ABCDE

image67.jpeg

image68.jpeg

oleObject2.bin

image3.wmf
NP

oleObject3.bin

image4.wmf
(2*1)(2*1)

WW

+´+

oleObject4.bin

image5.wmf
1

n

B

oleObject5.bin

image6.wmf
2

n

B

oleObject6.bin

image7.wmf
12

*()

bestnn

VBFBB

=+-

oleObject7.bin

image8.wmf
F

oleObject8.bin

image9.wmf
V

oleObject9.bin

image10.wmf
i

B

oleObject10.bin

image11.wmf
V

oleObject11.bin

image12.wmf
U

oleObject12.bin

image13.wmf
CP

oleObject13.bin

image14.wmf
CP

oleObject14.bin

image15.wmf
{

rand

i

j

i

j

j

j

or

CP

rand

if

V

otherwise

B

U

=

£

=

)

1

,

0

(

,

,

oleObject15.bin

image16.wmf
{

),

(

)

(

i

i

i

i

B

f

U

f

if

U

otherwise

B

i

B

£

=

oleObject16.bin

image17.emf
Initial Food Source

Generation

New Food Source

Generation by

Employed Bees

Selection of Food

Sources by

Onlooker Bees

Determining Scout

Bees

image18.wmf
NP

oleObject17.bin

image19.wmf
i

B

oleObject18.bin

image20.wmf
1

i

Î

oleObject19.bin

image21.wmf
NP

oleObject20.bin

image22.wmf
(2*1)(2*1)

WW

+´+

oleObject21.bin

image23.wmf
{

0

)

(

))

(

1

/(

1

))

(

(

1

³

+

+

=

i

i

i

B

f

if

B

f

otherwise

B

f

abs

i

fitness

oleObject22.bin

image24.wmf
)

(

×

f

oleObject23.bin

image25.wmf
i

V

oleObject24.bin

image26.wmf
i

B

oleObject25.bin

image27.wmf
,,,,

*()

jijijijk

VBrBB

=+-

oleObject26.bin

image28.wmf
r

oleObject27.bin

image29.wmf
[1,1]

-

oleObject28.bin

image30.wmf
i

oleObject29.bin

image31.wmf
j

oleObject30.bin

image32.wmf
k

oleObject31.bin

image33.wmf
ik

¹

oleObject32.bin

image34.wmf
1

Pr

i

NP

i

i

fitness

ob

fitness

=

=

å

oleObject33.bin

image35.emf
Initialization of

Parameters

Initialization of

Harmony Memory

Updating Harmony

Memory

Memory

Consideration/

Random Re-

initialization

Pitch Adjustment

Improvising New Harmony

oleObject34.bin

image36.wmf
1

2

.

.

.

HMS

B

B

HM

B

éù

êú

êú

êú

=

êú

êú

êú

êú

êú

ëû

oleObject35.bin

image37.wmf
new

B

oleObject36.bin

image38.wmf
(

)

(

)

(

)

(

)

(

)

{

}

(

)

12

,,,0,1

iHMS

new

BjBjBjBjifrandHMCR

Bj

Randomlygeneratenewblockfromsearchspaceo

therwise

ì

Î<

ï

=

í

ï

î

K

oleObject37.bin

image39.wmf
(

)

(

)

(

)

(

)

(

)

0,10,1

new

new

new

BjrandBWifrandPAR

Bj

Bjotherwise

±×<

ì

ï

=

í

ï

î

oleObject38.bin

image40.wmf
new

B

oleObject39.bin

image41.wmf
worst

B

oleObject40.bin

image42.wmf
(

)

(

)

newnewworst

worst

worst

BiffBfB

B

Botherwise

ì<

=

í

î

oleObject41.bin

image43.emf
Initial Food Source Generation

Selection of Food Sources

by Onlooker Bees

Determining Scout Bees

Mutation + Crossover

New Food Source Generation by Employed Bees

Modified Part

image44.wmf
_*()

ipqr

VBFemployedBB

=+-

oleObject42.bin

image45.wmf
å

=

=

i

NP

i

i

i

fitness

fitness

ob

1

/

Pr

oleObject43.bin

image46.emf
Initialization of Parameters

Initialization of Harmony

Memory

Updating Harmony Memory

Memory Consideration/

Random Re-

initialization

Mutation + Crossover

Improvising New Harmony

Modified Part

