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Abstract 

Due to advances in computer technology, large image collections have been 

digitised and archived in computers. Image management systems are therefore 

developed to retrieve relevant images. Because of the limitations of text-based image 

retrieval systems, Content-Based Image Retrieval (CBIR) systems have been 

developed. A CBIR system usually extracts global or local contents of colour, shape 

and texture from an image to form a feature vector that is used to index the image. 

Plethora methods have been developed to extract these features, however, there is 

very little in the literature to study the closeness of each method to human perception. 

This research aims to develop a human perception oriented content-based 

image retrieval system for the Museum of Domestic Design & Architecture (MoDA) 

wallpaper images. Since texture has been widely regarded as the main feature for 

these images and applied in CBIR systems, psychophysical experiments were 

conducted to study the way human perceive texture and to evaluate five popular 

computational models for texture representations: Grey Level Co-occurrence Matrices 

( G L C M ) , Multi-Resolution Simultaneous Auto-Regressive ( M R S A R ) model, Fourier 

Transform (FT), Wavelet Transform (WT) and Gabor Transform (GT). By analyzing 

experimental results, it was found that people consider directionality and regularity to 

be more important in terms of texture than coarseness. Unexpectedly, none of the five 

models appeared to represent human perception of texture very well. It was therefore 

concluded that classification is needed before retrieval in order to improve retrieval 

performance and a new classification algorithm based on directionality and regularity 

for wallpaper images was developed. The experimental result showed that the 

evaluation algorithm worked effectively and the evaluation experiments confirmed 

the necessity of the classification step in the development of CBIR system for M o D A 

collections. 
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Chapter 1. Introduction 

1. Introduction 

In the past decade, due to the development of advanced technology in 

computer hardware and digital caméras, large collections of various images have been 

digitised and archived in computer. Thèse databases have applications in numerous 

fields, including criminal identification, géographie information Systems, trademark 

retrieval, médical image archiving and art image indexing. Effective image indexing 

and retrieval methods are very important for the success of image database 

development. 

Currently, there are two main image retrieval techniques: text-based and 

content-based image retrieval. 

Traditionally, images are indexed using textual descriptions annotated by 

domain experts [1]. The limitation with this system is the subjectivity of textual 

descriptions. In reality, textual description cannot include an enumeration of ali the 

objects and their visual characteristics, especially their spatial relationship. 

Content-Based Image Retrieval (CB1R) [2-4] was hence developed in the early 

1990s to overcome the drawbacks encountered by text-based Systems. CB1R Systems 

index images using the visual contents that an image is carrying, such as colour, 

texture, shape and location. A CBIR system can automatically extract thèse visual 

features from an image and define the relative search/matching fonctions to perform 

retrieval. 

However, most current CBIR Systems only extract low-level visual features, 

which arc mathematica! représentations of colour, shape, and texture, whilst users 

tend to use high-leve! concepts to retrieve images. Human perception of image 

similarity is subjective and task-dependent. Some progress has been made towards 

closing the gap between high level concepts and low level features, for example, 

relevance feedback is incorporated into CBIR system in order to establish the link 

between high-level concepts and low-level features, however there is little literature 
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Chapter 1. introduction 

considering human visual perception in content-based image retrieval (how a user 

interprets an image and performs retrieval). 

The aim of this research was two fold: to investigate human perception in 

conducting image retrieval and to evaluate the existing five texture models in 

performing CBIR by comparison with human perception, an area has not previously 

been well researched. The wallpapers from Museum of Domestic and Architecture 

(MoDA) have been applied in this study, leading to the development of CBIR Systems 

for M o D A images that are currently indexed using textual descriptions. Since texture 

is the dominant feature represented in thèse images, it was the focus of this research. 

Five texture models widely applied in extracting texture features in CBIR were 

assessed in comparison with human perception. 

The structure for this thesis is organised as follows. A literature review is 

given in Chapter 2 describing the background and basic techniques in Content-Based 

Image Retrieval (CBIR). Chapter 3 describes some methods applied in this research. 

Chapter 4 détails the expérimental methodology employed. The expérimental results 

and analyses are presented in Chapter 5, Based on expérimental results, the developed 

CBIR system for M o D A images is described in Chapters 6 and 7. Finalty, the overall 

conclusions and recommendations for future work will be presented in Chapters 8. 

The final two sections are the Références and Appendices. 

10 



Chapter 2. Literature Review 

2. Literature Review 

Due to the rapid development of digital cameras and computer technology, 

large numbers of images are collected and stored in computers. Systematic 

management of thèse image data is therefore very important for future applications in 

order to retrieve images effectively and efficiently. Two approaches are most 

commonly used, one is text-based image retrieval and the other is content-based 

image retrieval. 

2.1 Text-Based Image Retrieval 

Text-based image retrieval can be traced back to the I980s[l]. Traditionally, 

images are indexed by text descriptions, such as keywords, filenames, etc. Thèse 

Systems first annotate an image with text written by domain experts and then perform 

image retrieval using a textual description. Though the text-based image retrieval can 

get image semantic information directly and higher retrieval précision, four major 

difficultés are inhérent in this method of image retrieval. 

• Heavy labour and time consumption 

The process of detecting, describing and inputting significant data requires a 

vast amount of labour and time, especially, when the size of image collections is very 

large. 

• Visual information scarcity 

Text-based descriptions cannot sufflciently capture the visual content, for 

example, a description of the semantic content of an image does not include an 

enumeration of ail objecls and their characteristics, which may be of interest to the 

user. 

• Subjectivity 

Différent people may have différent opinions on the same image. For example, 

the textual descriptions of visual attributes such as colour, shape and texture vary 
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Chapter 2. Literature Review 

greatly among people. Perception subjectivity and annotation imprécision may cause 

mismatches in later retrieval processes. 

• Langitage problem 

Language mismatch can occur when the user and the domain expert use the 

différent vocabularies and phrases. In other words, i f a user does not specify the right 

keywords representing his/her desired images, mismatches will occur. 

On the other hand, a casual user who has no knowledge of the exact image he 

is looking or, may just search for the images by sketching or describing the colour of 

the object, for example, blue sky, green grasses, etc. Possibly, the user provides a sub­

image and wants to know the images that include it or are similar to it. Text-based 

Systems are unlikely to find solutions to thèse queries. 

2.2 Content-Based Image Retrieval (CBIR) 

In the past twenty years, Content-Based Image Retrieval (CBIR) has been 

developed to overcome the above difflculties [2-4]. That is, images are indexed by 

their own visual contents, such as colour, texture and shape. As shown in Figure 2.1, a 

typical CBIR system can automatically extract visual features from images and store 

them in a visual feature database in advance. When a user submits a query, pre-

defined visual features from the query image are extracted, and then the distance 

between the feature vector of the query image and the visual feature database is 

calculated. Finally, a set of images are retrieved and ranked based on the degree of 

similarity calculated by the feature distance. It is clear that feature extraction and 

similarity measurements are the two most important parts in content-based image 

retrieval. Récent CBIR Systems have incorporated users' relevance feedback to 

modify the retrieval process in order to generate more meaningful retrieval results 

both perceptually and semantically. 

Compared with the difflculties of text-based image retrieval described in 

Section 2.1, CBTR system has the following advantages. 

12 



Chapter 2, Literature Review 

• Less time and labour intensity 

Most of the visual contents of an image, such as colour, texture and shape, can 

be extracted and stored by a computer automatically. Visual feature extraction will be 

described in Section 2.3.1. 

• Objective retrieval results 

The retrieval result is presented by the value of the search/matching functions. 

Objective retrieval results can be obtained when a suitable similarity measurement is 

defined. Similarity measurements will be reviewed in Section 2.3.2. 

These advantages mean that CBIR systems are applied to many different areas 

of science and industry, including bio-informatics, crime prevention, geographic 

information systems and intellectual property. The disadvantages of CBIR are the 

semantic gap between the low level vision features and high level concepts therefore 

results in poor retrieval performance of many CBIR systems. How to bridge semantic 

gap is a big issue to challenge most researchers. 

Figure 2.1 Basic framework of a CBFR system 
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The following figures 2.2 to 2.4 show three samples of image retrieval based 

on colour, texture and shape respectively. 

î) Colour-based retrieval in natural photographs 

Query Image 

Mil H M 
Figure 2.2 Example of colour query 

2) Texture-based retrieval in satellite images databases 

Figure 2.3 Texture query in satellite image databases 
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3) Shape-based retrieval in trademark image databases 

Figure 2.4 Shape query in trademark image databases 

2.3 Methods in Content-Based Image Retrieval 

Visual feature extraction, similarity measurements and relevance feedback are 

the most important components in content-based image retrieval, as shown in Figure 

2.1. They directly affect the effectiveness of the retrieval. The following sections will 

review some methods applied in visual feature extraction, similarity measurements 

and relevance feedback. 

2.3.1 Visual Feature Extraction 

Visual feature extraction is the basis of content-based image retrieval and is to 

extract the mathematica! représentations of the visual contents, which usually include 

colour, texture and shape, To extract these visual features, many methods of image 

processing have been utilized as explained below, 

2.3.LI Colour 

Colour is one of the most important visual features in image retrieval, not only 

from the point of the view of the early stages of the human visual system, but also 
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from the subconscious reception of the outside-world images by the brain [5j. The 

typical colour feature extraction consists of three steps. 

i ) Colour space définition 

2) Colour space quantization 

3) Colour feature représentations 

I) Colour space définition 

Normally, colour information in digital images is represented by three values 

Red, Green, and Blue (RGB). RGB colour space is suitable for colour reproduction on 

computers but not for human perception because: 

• Non-intuition, i.e., it is hard to visualise a colour based on the values of 

R, G, B components, i.e., (23,45 60) 

• Non-uniformity, i.e., the différences in two R G B values do not equate 

to equal différences in colour perception. It is impossible to evaluate 

the perceived différences between colours based on the distance in 

R G B space. 

Therefore, the first stage is to convert R G B colour space into other colour 

spaces since most images are represented using RGB when digitised. With respect to 

subjective colour perception, other colour spaces like HSI, H S V , HSL, CIE_Lab, 

CIE_Luv and Munsell are more appropriate [6]. In general, they represent colour with 

three variants based on human perception. Comparing to the R G B colour space, they 

have: 

• Intuition, i.e., user could define the colour easily by indicating the hue 

(H), saturation (S) and intensity (/, or V, or L) values independently. 

Hue is the attribute of a colour by which we distinguish red from 

green, blue from yellow, etc. Saturation is related to colour purity and 

intensity is corresponding to the brightness of the colour. 
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• Uniformity, i.e., the équation allows the Euclidian distance between 

two points in the uniform colour space to predict more accurately the 

observed différence in colour. This makes colour space quantization 

and colour similarity measurements easier and more accurate. 

According to the advantages discussed above, colour spaces based on human 

perception, i.e, HSE. HSV, CLELab, etc. are widely applied to represent colour in most 

CBIR Systems [7-12]. 

2) Colour space quantization 

There are up to 2563 colours when a standard digital camera is used. Colour 

quantization is used to reduce the size of colour space by partitioning the original 

colour space into many cells. Colour quantization algorithms have two basic 

approaches as follows. 

• Prc-clustering 

• Post-clustering 

In the pre-clustering approach, the colour space is divided into a set of 

rectangular cells. Each colour is determined by its arithmetic mean or another 

représentation for each cell. Uniform and non-uniform quantization, which divides 

colour space into cube cells and rectangular cells respectively, can be grouped as pre-

clustering approaches. 

In post-clustering approach, small numbers of Cluster centres are selected 

randomly and each colour is placed in a Cluster corresponding to which they are 

closest. The typical clustering algorithms, such as K-means clustering algorithm [13] 

and Self-Organising Feature Map (SOFM) [14], can be grouped as post-clustering 

approaches. By training samples, the quantized colours that are sometimes called 

codebook or lookup table can represent a colour image better. 
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3) Coloiir feature représentations 

The colour histogram [15] is one of the most used colour représentations of an 

image. The colour histogram counts the percentages of each colour in an image and 

this is normally applied to represent the global or local colour distribution [16]. 

Global colour distribution, which is called Global Colour Histogram (GCH), 

describes the colour distribution of the whole image, ignoring the spatial distribution 

of the colour. 

Local colour distribution, which is called Local Colour Histogram (LCH), 

describes the colour distribution in the individuai cells or régions of an image. Lt is 

divided into two basic methods, which are partition-based représentations and 

regional représentations. 

Partition-based représentations describe the colour distribution of each cell of 

image individually. It décomposes images into a set of fixed cells, such as the 

quadtree-based colour layout approach [17]. There is no need to explicitly represent 

spatial properties of the partition cells such as area, shape and spatial location. 

Regional représentations describe the colour distribution of each image région 

individually, such as NeTra [18], Blobworld [8] etc. This exploits the visual contents 

of the image for segmentation and is necessary to represent at least its colour 

distribution, size and spatial location. The spatial location of a région can be 

represented by means of the spatial coordinates of its centre. The shape région can be 

represented using, for example, a minimum bounding rectangle. 

In addition to the colour histogram, several other colour distribution 

représentations have been applied in image retrieval, including colour moments and 

colour correlograms. 

The colour moments [19] are proposed to overcome the quantization effects in 

the colour histogram. Based on probability theory, colour distribution can be 

characterised by its moments. The first moment (mean), the second moment 

(variance) and the third moment (skewness) of each of the three-colour Channels are 

extracted as the colour feature représentations. 
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The colour correlograms [20] combine the colour distribution with spatial 

layout. This expresses how the spatial corrélation of pairs of colour changes with 

distance. Normally, a correlogram for an image is a table indexed by colour pairs, also 

called colour co-occurrence matrices, where the d-\h entry for position (ij) spécifies 

the probability of finding a pixel of colour j at a distance d from a pixel of colour / in 

this image. 

In comparison with ali the colour représentations, the colour histogram is 

widely applied in most CBIR Systems [7-12, 18] with the following advantages. 

• Robustness, i.e., invariant to translation, scale, and rotation of image 

• Computational simplicity 

• Low Storage requirements 

2.3. i.2 Texture 

Texture is an important eue in visual features for analysis of many types of 

images, such as satellite images and textile images. The "définition" of texture is 

formulated by différent researchers. For example, 

"Texture is related to two visual componente: Tone and Structure. Tone refers 

to the intensity of pixels while structure concerns the spatial relationship between 

pixels. An image texture is described by the number and types ofits (tonal) primitives 

and the spatial Organization or layout ofits (tonal) primitives. " [21] 

"The texture relates mostly to a specific, spatially répétitive (micro) structure 

of surfaces formed by repeating a particular élément or several éléments in différent 

relative spatial positions. Generally, the répétition involves local variations of scale, 

orientation, or other geometrie and optical features of the éléments. " [22] 

"We may regard texture as what consti tu tes a macroscopic région. Its 

structure is simply attributed to the répétitive patterns in which éléments or primitives 

are arrangea according to a placement rule. " [23] 
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So far, no one has succeeded in producing a commonly accepted définition of 

texture. However, most researchers agrée that an image of visual texture is spatially 

homogeneous, and typically contains repeated structures, sometime local variation 

exists in the répétition. 

Image texture is measured as a fonction of the spatial variation in pixel 

intensities. The quantirying global properties referred to visual features are defined, 

such as coarseness, regularity, roughness, granulation etc [23, 24]. 

In gênerai, three main approaches are used to extract texture features, namely 

the spatial approach, frequency analysis approach and spatial frequency analysis 

approach. 

/) Spatial approaches, such as Random Field Model, Co-occurrence Matrices and 

Tamara représentations 

In random field models, an image is assumed to be a homogeneous 2-D 

random field. By 2-D décomposition, the image is expressed as the sum of three 

orthogonal components corresponding to periodicity, directionality and randomness 

[25]. 

Co-occurrence matrices, similar to the colour correlograms described in 

Section 2.3.1.1, are used to represent the grey level spatial dependence of texture. 

Some meaningful statistics from the matrices, such as moment, entropy, contrast, etc., 

are extracted as the texture représentations [26-28]. 

Tamura représentations [23] are developed based on psychological studies in 

human visual perception of texture. This is a kind of computational représentations of 

six texture features: coarseness, contrast, directionality, lineiikeness, regularity and 

roughness. 

2) Frequency analysis approach, such as Fourier Transform 

Fourier transform is applied to transform the image from spatial domain to 

frequency domain. Normally, the spectrum energy of texture is represented as the 

texture feature représentations [29, 30]. 
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3) Spatial frequency analysis approach, such as Wavelet Transform and Gabor 

Transform 

Wavelel transform and Gabor transform bave the ability to capture the 

présence of dominant information at différent scales and orientations for the image. 

The Statistical features (mean and standard déviation) or energy features are extracted 

from each orientation in each scale as the texture représentations respectively [31-35]. 

2.3.1.3 Shape 

Shape is another important clue for object représentations. Generaîly, shape 

feature extraction consists of the following two steps. 

1) Shape detection 

2) Shape feature représentations 

I) Shape detection 

Shape detection is the first step to describe the shape of an object. Edge point 

is defined as the sharp variation point of the intensity. Based on this définition, edge 

detection algorithms have two catégories. There are traditional methods, such as Edge 

Operators, and multi-scale edge detection, such as Wavelet Transform Modulus 

Maxima ( W T M M ) . 

Traditional methods, such as the Sobel method, Prewitt melhod, Zero-cross 

method, Canny method etc.[36], use edge Operator approximation to déviation to find 

the shape of object. Furthermore, the Canny method [37] defined edge point as local 

maxima of the gradient of image and this method performs better. A i l of thèse 

methods detect the edge of object just in one scale. 

Based on multi-scale analysis of the human visual system and the theory of 

modulus maxima applied in the Canny method, Wavelet Transform Modulus Maxima 

( W T M M ) is applied to detect the edge of an object in différent scales successfully 

[38]. Thus, shape feature représentations in différent scales can be extracted after 

shape detection and the shape matching can be done at différent scales. 
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2) Shape feature représentations 

In image retrieval, shape feature représentations are required to be invariant to 

translation, rotation and scaling which is also called the rigid transform of object. 

Mainly. the shape représentations, which are invariant to rigid transform, can be 

divided into three catégories. There are Fourier Descriptors, Moment Invariants and 

Geometrie features représentations. 

Fourier Descriptors use the Fourier transformed edge as the shape feature 

représentations [39]. The first few Fourier descriptors can be used to capture the gross 

essence of a boundary. Thus, thèse coefficients carry shape information can be used 

as the basic shape feature for distinguishing between distinct boundary shapes. 

Moment Invariants use region-based moments as the shape feature. From the 

second-order moments and third-order moments, Hu créâtes the simple 7 invariant 

moments [40], which are used for scale, position, and rotation invariant pattern 

identification [41]. Zernike moments [42] are a set of complex orthogonal moments 

and invariant to rotation, which has been successfully used in pattern récognition and 

image analysis [43, 44], 

Shape features can be described by some simple geometrie représentations 

[45], for example, circularity and rectangularity are mainly applied to represent the 

object with typical geometrie shape. Hole Area Ratio (HAR) is effective in 

discriminating between symbols that have big holes and symbols that have small 

noies. Eccentricity is a measure of the elongation of the shape. 

Besides the rigid transform that is rotation, translation and scaling transform, 

the object has the déformation transform. It is said that: "there are no two leaves of 

the same shape", an object shape will have intrinsic within-class variations. The 

following section will introduce some models of object déformation. 

Object shape can vary. For example, it can incorporate smoothness or 

elasticity constraints like the shape of balloon and celi, or the shape can be specified 

using a hand-drawn form. In the 1970s, the concept of deformable templates was 

introduced and applied to pattern récognition and computer vision. Based on 
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application, the research about deformable templates can be divided into two classes. 

These are free-form deformable modeis and parametric deformabie models, 

Free-form deformable models can represent any arbitrary shape as long as 

some régularisation constraint (continuity, smoothness, etc.) is satisfied. In this 

approach, an energy-minimising contour called an active contour or a "Snake" [46] is 

controlied by combining it with internai contours energy that enforces smoothness, 

external constraint force, and image force which attracts the contour to the desired 

features. It is commonly applied to segment the organs in medicai images [47]. 

Parametric deformable models can encode a specific characteristic shape and 

its déformation. It is commonly used when some prior information about the object 

shape is available. There are two ways to parameterise the object shape class and its 

déformation. This leads to two types of deform templates: analytical deformable 

templates and prototype-based deformable templates. 

In analytical deformable templates, the shape can be expressed by a parametric 

formula, such as a set of analytical curves (e.g. ellipse), and its déformation can be 

defined by changing the value of its parameters. This is applied to the déformation of 

the specific geometrica! shape object. For exampie, Yuille et al. [48] defincs the eye 

and mouth models using circles and parabolic curves, Dubuisson et al. [49] uses a 

polygonal template to parameterise a vehicle. 

In prototype-based deformable templates, the deformable templates are 

derived from a set of déformation parameters on a prototype. A prototype that 

describes the 'most likely * or 'average' shape of a class of objects, can be obtained by 

a sketch or an example of an object class. Therefore, this is used in image retrieval 

queried by a shape sketch/example [50, 51] and object tracking in video [52]. 

!n ali the models above, the deformable template can alter itself to match the 

object to a given image. Deformable template matching can be formulated using a 

Bayesian framework. Within the Bayesian framework an objective function, 

sometimes called the energy function, is defined. This energy function is related to the 

degree of template déformation and also the degree of matching between the 
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deformable template and the object in a given image. A deformable template is 

matched with a given object in an image when the energy function is minimised. 

2.3.2 Similarity Measuremenîs 

Generally, a distance function is used to compare the visual features of two 

images. The distance function affects directly the time spent processing a query and 

the quality of the retrieval. The better the distance function simulâtes the similarity of 

human perception using the visual fearures, the more effective the CB1R system is at 

retrieving images relevant to the user's needs. The computational complexity of the 

distance is an important factor for speed when processing a visual query. 

One typical distance function is vector distance function, such as a member of 

the Lp family of distance. Lp distance is defined as the following. 

well-known members of the Lp family, such as Lj (City-Block) distance, ¿ 2 

(Euclidean) distance, (Chebyshev) distance, are widely used to compare the visual 

features of two images. In the method of vector distance, visual features are first 

modelcd in the vector space, and then the géométrie distances are used to compare the 

visual similarity. The advantage of this method is its simplicity of computation. 

However, the simple géométrie distance may not effectively measure the real 

différence of human perception. 

When considering human perception, various other similarity measures are 

proposed, for example, histogram quadratic distance [7] which defines a colour cross-

correlation matrix, weighted distance which defines the weighting factors based on 

human perception, and histogram intersection distance [ 15] which reduces the 

contribution of unrelated colour by Computing the intersection of each colour 

histogram. 

(2.1) 

where, a = {< ,---ak}anà b = {bi,b2,---bk } are two £-dimensional vectors. Some 

24 



Chapter 2. Literature Review 

In summary, C B I R technologies strive to create mathematical représentations 

of images derived by a set ofrules of the human visual system and to design similarity 

measurements based on human perception. 

2.3.3 Relevance Feedback 

Relevance feedback (RF) is a supervised learning technique used to improve 

the effectiveness of C B I R Systems. The main idea is to use positive and negative 

examples from users to improve system performance. For a given query. the C B I R 

system first retrieves a list of ranked images according to a predefmed similarity 

measurement of visual features. Then. a user sélects a set of positive (relevant) and/or 

negative (irrelevant) examples from the retrieved images. The system wi l l refîne the 

retrieval results based on the feedback and présent a new list of images to the user. 

Image retrieval based on relevance feedback is répétitive and gradually advancing 

processes, the interaction between the system and the user enables the retrieval to 

approach the user s expectation. and finally answers the request. 

The aim of relevance feedback is to study from the interaction between 

retrieval system and user, to discover and capture the user's actual demand, and to 

modify the retrieval process. thus obtaining a retrieval resuit which tallies as precise 

as possible with the user's actual request. The key issue in relevance feedback is how 

to effectively utilize the information provided from user's feedback to increase the 

retrieval accuracy. A variety of relevance feedback techniques have been proposed in 

the last decade. The main algorithms include feature re-weighting. Bayesian target 

search. Support Vector Machines ( S V M ) learning and décision trees. 

Rui et al. [53] proposed relevance feedback based on the interaction of 

retrieval approach. Based on a user's feedback, the user's subjective perception was 

captured by dynamically updating weights for visual features. i.e. colour. texture etc. 

The expérimental results carried on more than 70000 Corel images show that the 

proposed approach can capture the user's information needs more precisely. This 

approach of relevance feedback has first been implemented in a Multimedia Analysis 

and Retrieval System ( M A R S ) [9]. 
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Ishikawa et al. [54] applied the computational method of global optimization 

to relevance feedback. They formulized a minimizatiori problem on the parameter 

estimaling process. The user can give several examples, and optionally. their 
;goodness ; scores. Based on the user5s information, the system can 'guess' which 

visual features are important, which corrélations are important, and with what weight. 

Expérimental results on real and synthetic databases show this method can estimate 

the 'hidden* distance function in the users mind quickly and accurately. The 

MindReader retrie val system was designed based on this approach. 

Cox et al. [55] applied a Bayesian approach to C B I R with relevance feedback. 

The Bayesian rule was applied to predict the user's actions for refining its answers to 

converge to a desired target image. This was done via a probability distribution over 

possible image targets, rather than refining a query. A Bayesian image retrieval 

system, PicHunter was designed by using Bayes :s rule to predict the target image the 

user wants based on his/her actions. Expérimental results show the system performs 

quite well for a wide spectrum of users tested on a wide variety of target images. 

Hong et al. [56] proposed to incorporate Support Vector Machines ( S V M ) into 

C B I R with relevant feedback. This approach utilized both positive and negative 

feedback for image retrieval. S V M was applied to classify the positive and negative 

images. The S V M learning results were used to update the préférence weights for the 

relevant images. This not only released the users from providing an accurate 

préférence weight for each positive relevant image but also utilized the negative 

information. Expérimental results on Corel images show that the proposed approach 

offers ïmprovements over the previous approach that uses positive examples only 

(Rui et al.). 

MacArthur et al. [57] applied learned décision trees as a relevance feedback 

retrieval system. For each retrieval itération, a Décision Tree (DT) was learned to 

uncover a common thread between ail images marked as relevant. This tree was then 

used as a model for inferring which of the unseen images the user was most likely to 

desire.The technique of relevance feedback décision tree was applied in a pre-existing 

C B I R system for High Resolution Computed Tomography (HRCT) images of the 

human lung. Expérimental results show this approach achieves better retrieval as 
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measured in off-line experiments and as judged by a radiologist who is a lung 

specialist. 

From the past research, relevance feedback has been shown as an effective 

scheme to improve the retrieval performance of CBIR and has already been 

incorporated as a key part when designing a CBIR System. 

2.4 Some Samples of CBIR System 

Several CBIR Systems, both commercial and research, have been proposed, 

such as QBIC [7], NeTra [18], Blobworld [8], MARS [9], Viper [10], Photobook [25], 

VisuaiSEEK [11], CIRES [12], etc, the comprehensive reviews are in [58] and 

webpage \ Most of them support one or more of the following options. 

• Query by Example (QBE), i.e., the user spécifies a target query image, 

which can be a normal image, a low resolution scan of an image, or a 

user sketch using painting tools with graphical interface. 

• Query by Features (QBF), i.e., users specify queries by the description 

of the visual features directly, for example, "retrieve ail images that 

contains 25% red pixels". This query is usually specified by the use of 

specialized graphical interface tools. 

• Query by Keywords, i.e., content-based queries are often combined 

with text and keywords at the same time to get powerful retrieval 

methods for image databases. 

Here, we select a few représentative Systems and highlight their distinctive 

characteristics. 

QBld™1 (Query By Image Content) developed by IBM is the first 

commercial CBIR System. Its System framework and techniques had a great effect on 

later image retrieval Systems. The QBIC System allows queries on large image 

databases, based on colour, texture, shape, example images/sketch, and keywords. lt 
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is applied in the U . S. Patent and Trademark Office (USPTO) and the State Hermitage 

Museum in Russia. The online demo2 is shown in Figure 2.5. 
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Figure 2.5 QBIC on-line demo 

NeTra is a prototype image retrieval system that was developed in the 

Alexandria Digital Library (ADL) project. NeTra uses colour, texture, shape and 

spatial location information in the segmented régions to search and retrieve similar 

régions from an image database. That is, the query image is split into régions and the 

user can choose which région is utilised, queries can be performed based on colour, 

location, shape or texture of the chosen régions. It is suitable for retrieving images 

that contain multiple complex objects. The online demo' is shown in Figure 2.6. 

Figure 2.6 NeTra on-line demo 

2. hnp> www.qbic almaden.ibm c o m 

3. http> vision.ece.ucsb edu'demoshtml 
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Blobworld was developed by University of California. Similar to NeTra, /t can 

segment each image into separate "Blohs" that roughly correspond to objects or parts 

of objects automatically. It allows query image based on the objects and adjusts the 

visual feature wcights, one example of weight définition shown as below. The online 

demo4 is shown in Figure 2.7. 

9i* k m 

Figure 2.7 Blobworld on-line demo 

MARS (Multimedia Analysis and Retrieval System) was developed by the 

Computer Science Department, University of Illinois at Urbana-Champaign. M A R S 

supports queries on a combination of low lcvel features (colour, texture shape) and 

textual descriptions. The M A R S team formally proposes a relevance feedback 

architecture in image retrieval [9, 53]. In M A R S , the user sélects relevant images 

from previous retrieval results and provides a préférence weight for each relevant 

image. The weights for the low-level features, i.e., colour and texture, etc., are 

dynamically updated based on the useris feedback. Based on this feedback, the high 

level concepts implied by the query weights are automatically refined. The online 

demo" is shown in Figure 2.8. 

4. http:'/elib.cs.berkeley.edaphotos''blobworld 

5. http^/www.ifp.uiuc.edu/~qitian/MARS.html 
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Figure 2.8 MARS on-line demo 

Table. 2.1 is a summarv of techniques in some CBIR Systems [8-12, 18, 25, 
55]. 
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Table 2.1 Summary of techniques in some CBIR Systems 
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2.5 MoDA and its Collections 

Art design collections from M o D A (Museum of Domestic Design & 

Architecture) are used for our system. M o D A is part of Middlesex University. It is 

widely regarded as one of the world's most comprehensive collections of nineteenth 

and twentieth Century decorative arts for the home. Its collections are recognised to be 

of outstanding national académie importance and are a unique resource for scholar 

and design professional. M o D A has an outstanding collection of wallpapers and 

textiles dating from the 1870s to the 1960s, it comprises around 40,000 designs (for 

wallpapers, textiles, carpets and other domestic furnishings), 5,000 wallpaper samples 

and 5,000 textile samples. Some samples are shown in Figure 2.9. Most of them have 

been digitised and indexed using keywords denoted by the art design experts at 

M o D A . 

Figure 2.9 Some samples from MoDA 

Parts of M o D A collections are available on M o D A ' s online catalogue6, which 

can be searched based on keywords. 

, . C 7 . . . . . . . . , • . c-

Figure 2.10 On-line search engine based on text in MoDA 
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However, some clients prefer to retrieve images by visual content, for 

example, querying similar colourful images, or with similar texture patterns. 

Therefore, it is necessary to develop a CB1R system for M o D A collections. 

2.6 Current Research Work on Wallpaper Images 

Current researches on CBIR for wallpaper images are divided into two groups. 

One focuses on texture. The visual features of wallpaper, which are directionality, 

regularity and symmetry, are extracted and perform retrieval based on similarity 

measurements. The other concentrâtes on symmetry. According to the theory of 

symmetry groups, the symmetry features are extracted for repeated pattern retrieval. 

2.6.1 Texture-Based Wallpaper Retrieval 

Wallpaper images typically nave visual texture features according to the 

définition of texture described in Section 2.3.1.2. This normally présents spatially 

homogeneous areas, contains repeated patterns, or shows geometrie structure, as seen 

in Figure 2.9. It refers to visual texture properties like coarseness, regularity and 

directionality. 

Some research work on texture-based image retrieval for fabric images, such 

as for textile images, which have similar visual texture features to wallpaper images, 

i.e. directionality, regularity and symmetry. 

Lau et al. [59] proposed a CBIR system called 'Montage', which supports 

CBIR based on the colour histogram, sketch, texture and shape for fashion, textile and 

clothing images. It uses the co-occurrence matrices as the texture feature 

représentations. The performance for query based on texture shows better results than 

query based on colour and on sketch for fabric images. 

Balmelli et al. [60] first attempted to define the perceptual features for fabric 

images in the wavelet domain. Three perceptual features: directionality, regularity and 

symmetry, are extracted from edge and corrélation characteristics of the wavelet 
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subbands in horizontal and vertical direction respectively. The texture feature vector 

is expressed as follows. 

where DX,DV,RX,R^SX,S, represent the features of direetionality, regularity and 

symmetry in horizontal and vertical direction respectively. Bashar et al. [61] further 

improved thèse three feature représentations and applied the texture feature \cctor to 

perform retrieval by similarity measurements for textile (e.g. curtain) images. The 

expérimental results showed that directionality features provide the better retrieval 

results than regularity and symmetry features. 

2.6.2 Symmetry Groups Based Wallpaper Retrieval 

Wallpaper groups also called two-dimensional crystallographic groups were 

discovered and studied in the late 19th Century. Fedorov, Schoenflies, and Barlow 

classify 2D repeated patterns into 17 wallpaper groups [62]. In a 2D repeated pattern, 

repeated unit is repeated along two linearly independent vectors, producing 

simultaneously a covering (no gaps) and a packing (no overlaps) of the original image 

[63]. The two vectors are called translation vectors and these build up lattice structure, 

seen in Figure 2.11 (c). The 17 wallpaper groups describe patterns extended by two 

linear independent translational generators. According to the theory of wallpaper 

groups, there are exactly seventeen différent plane symmetry groups, which are 

characterized by four distinct kinds of planar symmetry, named translation symmetry, 

rotation symmetry, reflection symmetry and glidc retlection symmetry. The following 

figure shows an example of repeated pattern synthesis. The synthetic image includes 

rotation and translation symmetries. 
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WS ^ 2 -

(a) (b) (c) 

Figure 2.11 Repeated pattern synthèses 

According to the symmetry of the wallpaper groups, beautiful patterns can be 

created by repeating geometrie and artistic patterns. Artlandia 7 is an award-winning 

software for creating repeated patterns and plug-ins for Adobe Illustrator and 

Photoshop. In Artlandia, the repeated unit is created first, and then the user can select 

one of 17 wallpaper groups showing icons in the upper side of Figure 2.12 (a). 

According to this symmetry of wallpaper groups, repeated patterns can be created 

automatically. One demo of repeated patterns created by Artlandia is shown in Figure 

2.12 (b) 
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(a) Art landia (b) A demo 

Figure 2.12 Artlandia: graphie design software and one demo 

17 wallpaper groups have been studied and applied in texture analysis for 

décades. A computational model for wallpaper groups" classification of a given 2D 

repeated patterns has been developed by Yanxi L iu et al. [64-66]. The computational 

model composes of two parts. One is to Find a lattice structure from peaks obtained by 
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autocorrelation. The other is to classify the symmetry group of the repeated patterns 

by computationally verifying the existence of rotation and reflection symmetry. 

Applications of such a computational model include pattern indexing, texture 

synthesis, image compression, and gait analysis. 

Jingrui He et al. [67] first applied the theory of wallpaper groups to content-

based image retrieval . The symmetry features are defined and extracted by using 

translation vectors for repeated pattern retrieval. By comparing the symmetry features 

between query image and the images from the database, the images with similar 

symmetry groups to the query will be retrieved. In comparison to retrieval results with 

wavelet features in 487 repeated patterns, the symmetry features have a better 

performance. Their average precision in the top ten is 0.1840 whilst for wavelet is 

0.1777. 

2.7 The Importance of Human Visual Perception in CBIR for 

Wallpaper Images 

Most current CBIR systems only extract low-level visual features, which are 

mathematical representations of colour, shape, and texture, whilst users tend to use 

high-level concepts to retrieve images. The semantic gap between human and CBIR 

systems therefore results in poor retrieval performance of many CBIR systems. The 

semantic gap is a big hurdle limiting development of CBIR systems. The ultimate user 

of an image retrieval system is human, therefore, studying human perception can help 

to understand the way a user interprets an image and improve performance of CBIR. 

In order to establish the link between high-level concepts and low-level 

features, two research approaches have been developed. One is to incorporate 

relevance feedback to create the interaction between a system and a user [53-57], as 

described in Section 2.3.3, Another approach focuses on the study of human 

perception from psychophysical experiments. 

Psychophysics founded by Gustav Theodor Fechner in 1860 is a sub-discipline 

of psychology dealing with the relationship between physical stimuli and their 
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subjective correlates [68]. These physical stimuli can be physically measured by 

human perception, such as vision, hearing, smell, taste, touch etc, for instance, colour 

varying in luminance, hearing varying in frequency. Therefore, the relationship 

between observed stimuli and subjective response can be generated by psychophysical 

experiments. Psychophysical experiments have been widely applied to studies of 

human senses of perception: hearing, smell, and vision [69-72]. 

One of the oldest and most successful models in cognitive psychology is 

Tversky's contrast model of similarity. Tversky [73] provided a general mathematical 

framework for the perception of similarity. He proposed perceived similarity to be a 

linear combination or contrast of functions of the common and distinctive features of 

objects. Data were collected from participants who performed an image description 

and a similarity judgment task. Structural equation modeling, correlation, and 

regression analyses confirmed the relationships between perceived features and 

similarity of objects. The results assist retrieval systems more closely match human 

similarity judgments. 

Biederman [74] proposed a theory of object recognition by components 

(geons), which are a limited set of basic geometrical shapes. Biederman and his 

colleagues performed a series of psychophysical experiments to provide support for 

the role of geons in object representation. The geons were detected on the basis of 

certain "non accidental" properties of contours in the image, such as colinearity, 

curvilinearity, symmetry, parallelism and cotermination, and indicated that geons is 

the fundamental local features of objects. 

Psychophysical studies on visual texture perception have been carried out for 

many years. 

Some studies focus on early vision and texture perception [75]. By using 

textures constructed by repeated placement of micro-patterns or texture elements, 

early vision of lower-level mechanisms can be studied to discriminate oriented lines. 

Other studies concentrate on relating computational texture representations to 

human perception. For example, Tamura [23, 76] has defined six texture feature 
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representations through psychophysical studies in human visual perception. 

Amadasun [77] has defined five properties of texture in terms of spatial changes in 

intensity according to human visual perception. 

For image retrieval, human perception of image similarity is subjective, 

semantic, and task-dependent. Vision perception varies not only between people, but 

also in the domain of images. For example, people pay more attention to texture 

features on satellite images, shape features on trademark images, and colour features 

on the natural scene images. Psychophysical experiments are the main way to find out 

the common sense among the population. It is therefore important to know how 

people perceive specified images and how they perform visual content-based 

retrieval. However, little work has been done on the study of visual perception in 

texture-based image retrieval. 

In this research, the retrieval objects are the wallpaper images obtained from 

M o D A collections, which present specified perceptual texture features, named 

directionality, regularity and coarseness. The aim of this research was to investigate 

human perception in conducting image retrieval for wallpaper images by 

psychophysical experiments, leading to development of a human perception oriented 

content- based image retrieval system for wallpaper images. 
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This chapter give some basic methods applied to this research, which includes 

the methods for texture feature representations and for data analysis 

In the section on texture feature representations, five computational methods 

and their texture feature representations were introduced reprehensively. These five 

models were Grey Level Co-occurrence Matrices ( G L C M ) , Multi-Resolution 

Simultaneous Auto-Regressive (MRSAR) model, Fourier Transform (FT), Wavelet 

Transform (WT), and Gabor Transform (GT). 

In the data analysis, two methods, which are psychophysical scaling and rank 

correlation, were applied to analyze the psychophysical experimental data. 

Psychophysical scaling was applied to scale perceptual events based on the data of 

rankings obtained from psychophysical experiments. This was used to build the 

relationship between physical stimuli and their subjective responses. Rank correlation 

was used to study the relationships between different rankings on the same set of 

items. 

Finally, the Radon transform is introduced and applied to describe the 

directionality features for wallpaper images in this research. 

The following sections will detail the methods applied in this research. 

3.1 Computational Texture Features 

In computer vision, computational texture features are to employ appropriate 

mathematical representations to simulate human texture perception in order to 

facilitate computerised texture processing, such as for image retrieval, classification, 

segmentation, etc. For texture analysis, three approaches are used to extract texture 

features, which are spatial analysis, such as Grey Level Co-occurrence Matrices 

( G L C M ) , Multi-Resolution Simultaneous Auto-Regressive (MRSAR) model; 
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frequency analysis, including Fourier Transform (FT); and spatial frequency analysis 

that includes Wavelet Transform (WT), Gabor Transform (GT). The following 

sections will detail the above mentioned five computational texture methods and the 

corresponding texture feature représentations. 

3.1.1 Grey Level Co-occurrence Matrices (GLCM) 

Grey Level Co-occurrence Matrices ( G L C M ) is one of the earliest methods 

applied lo texture feature analysis. This method was proposed by Haralick [26] in 

1973 and has been used to represent the grey level spatial dependence of texture. 

G L C M are two dimensionai matrices of joint probability of ail pairwise 

combinations of grey levels (i, j) in a size of M*N image l{p,q) separated by a 

distance d in the direction 6. Mathematically, a co-occurrence matrix Cdô(i,j)\s 

defined in Eq.(3.l). 

if l(p,q)=i and l(p + Ax,q + Ay) = j 

otherwise 

(3.1) 

At = d xsin(ö) 

Ay = c/ x cos(ó') 

A normalised co-occurrence matrix Pd 3(i,j) is obtained by Eq.(3.2) 

n i. .\ Cdd{i,j) 
PJA^J)^- (3-2) 

i.j=\ 

where L is the total number of grey level of an image. 

Figure 3.1 (b) and (d) demonstrate the co-occurrence matrices of original 

images (a) and (c) graphically when d=3. 0 = 0' (horizontal direction) respectively. 

P~\ q=\ \y 

where 
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(a) (b) (c) (d) 

Original image Co-occurrence matrix Original image Co-occurrence matrix 

of image(a) of image (c) 

Figure 3.1 Graphical illustration of co-occurrence matrices 

Haralick proposed fourteen texture features from the co-occurrence matrices. 

Four of Haralick's features, which are energy, entropy, contrast and homogeneity, are 

widely applied to texture représentations [27, 78-80]. Energy measures the occurrence 

of repeated pairs within an image; Entropy measures the randomness of grey-level 

distribution, Contrast measures the différence in the grey intensity within an image; 

Homogeneity measures the smoothness of an image. Thèse are formulated in Eqs. 

(3.3) to (3.6). 

L L 

Energy: Z Z P ^ ( ' J ) (3-3) 

Entropy: ~ZZ ^ J ' h ^ À U ) (3-4) 
/=! j=l 

I. L 

Contrast: L Z ( w ) 2 ^ . , ( U ) (3-5) 

L L 
Homoeeneity: y y ^ M ( 3 6 ) 

In our experiment, four texture features are computed with four distances of 1, 

3, 5, and 7 pixels and with four directions of 0°, 45°, 90° and 135° respectively. We 

chose four distances to represent four scales, and four directions can be easiiy 

calculated from the co-occurrence matrices, So the feature vector includes 4 

(measures) * 4 (distances) * 4 (directions) = 64 components, yielding the dimension 

of the texture feature vector being 64. 
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3.1.2 Multi-Resolution Simuttaneous Auto-Regressive (MRSAR) 

Model 

Multi-Resolution Simultaneous Auto-Regressive ( M R S A R ) models texture as 

a stationary random field and use a dense représentation with a fixed neighbourhood 

shape and size. M R S A R model was introduced by Mao and Jain [81] in 1992 and was 

derived from Simultaneous Auto-Regressive (SAR) model, which is also popular in 

texture analysis. 

The SAR model is a linear regressive model. In the SAR model, the intensity 

p(ij) at image position (i,j) is modelled as a linear function of the neighbouring pixels 

with an additive noise terni e(i,j), formiliated as follows. 

PÌhj)= Ct(p{ì-dj)+p{i + dj))+C2(p(i,j-d)+p{iJ + d)) 
+ Cì{p{i-d,j-d)+ p{i + d,j + d))+CA (p(i + d,j-d)+ p{ì~dj + d)) 

+ s(ij) 

(3-7) 

whereC , ,C 2 C} and C 4 as SAR model parameters are a set of weights associated 

with neighbouring pixels along vertical, horizontal and two diagonal directions 

respectively, and d détermines the resolution of the pixel neighbourhood. Figure 3.2 

shows neighbourhood of pixel X when d equals 2, 3, 4 respectively. 

V9 V9 V 9 
V7 V 7 V7 

V5 V5 V5 

V9 V7 V5 X V5 V7 V 9 

V5 V5 V5 
V7 V7 V7 

V9 V 9 V 9 

Figure 3.2 Pixel X neighbourhood V5 (d=2), V7 (d=3), V9 (d=4) 
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The SAR model parameters | C , . , / = 1,2,3,4 j and Least Square Error (LSE) at 

each pixel (ij) are estimated using the method of least square fitting with an 

estimation window centred at (ij). This estimation process is repeated tbr each pixel 

within an image. Finally, the mean coefficient vector jc,.,r = 1,2,3,4j and the mean 

LSE for ail pixels of the image are applied to describe texture features. For instance, a 

higher value of mean L S E represents a flner texture or less coarseness; and a higher 

coefficient C , of p(i,j-d)+p(i,j + d) indicates that the texture is horizontally 

oriented. 

The Multi-Resolution SAR (MRSAR) model is applied to describe multi-

resolution texture features by defining multiple neighbourhoods with a size of d. In 

the M R S A R model, 5 features with a mean coefficient vector of < C,,i = 1,2,3,4^ and 

mean LSE at each resolution are computed respectively. In our experiment, 3 

resolutions, meaning d being 2, 3, 4 respectively, produced a 15(=5*3) dimensional 

texture feature vector. 

3.1.3 Fourier Transform (FT) 

The Fourier Transform (FT) is applied to convert an image from spatial 

domain to the frequency domain. The Fourier analysis provides a mathematical 

framework for the analysis of images based on the frequency spectrum. Frequency 

refers to how often an event occurs within a period of time. Texture is often regarded 

as being related to periodic image patterns or random image patterns. The images with 

différent texture patterns will show différent features in the frequency domain. As 

demonstrated in Figure 3.3, for the image (a) with directional features, its Fourier 

spectrum (b) shows bright lines perpendicular to the straight lines of the image (a); for 

the image (c) with random texture features, its Fourier spectrum (d) shows bright spot 

in the zéro frequency. 
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(a) (b) (c) (d) 

Original image Fourier transform of Original image Fourier transform of 

Image (a) image (c) 

Figure 3.3 Fourier transform of images 

The Discrète Fourier Transform (DFT) F(uyv) of an image /( .v,y)with the 

size of M*N is defined as 

I a / - i ,v-i f t ^ ux vy 

u = 0,1 M~\, v = 0 , l , . . . , / V - l 

(3.8) 

where u and u are the discrete spatial frequencies. 

A set of statistical measures based on the frequency spectrum, including 

maximum magnitude, average magnitude, energy of magnitude and variance of 

magnitude, are extracted as texture descriptors, shown in Eqs, (3.9) to (3.12) [82]. 

Maximum Magnitude: maxjjf (w,v| : ( « , v ) * (0,0)] (3.9) 

Z \F(U, vì 
— 1 (3.10) 
M * N 

Energy of Magnitude: Z l ^ " * ^ 2 ( 3 - 1 1 ) 
I'.V 

^<ÌF(u,vì-.4M)2 

Variance of Magnitude: Z " — (312) 
Tt M * /V 

where vDl ' s l n e a m pti tude of the frequency spectrum and M*N is the number of 

frequency components. 
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The Wavelet Transform (WT) is applied to transform an image into a 

représentation in both spatial and frequency domain, which is also called spatial 

frequency analysis or multi-resolution analysis. The Wavelet transform is similar to 

the multi-scale vvay by which the human visual system processes an image [83]. It is 

indicated by psycho-visual studies that an image is decomposed into différent 

frequencies by the human visual system. High frequency of an image is related to the 

détails of the image (e.g. edges) whilst the low frequency corresponds to the blurred 

image. The Wavelet transform has the ability to capture the présence of dominant 

information of images in différent scales and orientations, and in recent years, is 

widely applied in texture représentations, edge detection and image compression [31-

33,35,38,84], 

The Continuous Wavelet Transform (CWT) of a one dimensionai signal f(x) 

is expressed as follows 

^ M = J / ( * K r ( * V M (3-13) 

where * denotes complex conjugation. iy(x) is a basic Wavelet, the so-called mother 

Wavelet. The variables of s and r express scale and translation. 

A set of Wavelets y/Sdì(x)can be obtained by dilation and translation of the 

mother Wavelet tp(x) , in Eq. (3.14) 

(3.14) 

The Discrete Wavelet Transform (DWT) are obtained whens = 2" , r e Z . 

A fast algorithm of the wavelet transform was proposed by Mallat in 1989 

[85]. The 2D Wavelet décomposition of an image involves recursive filtering using 
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both high-pass (//) and low-pass (L) filters along horizontal and vertical directions, 

this is followed by a 2 to 1 sub-sampling of each output image, and is expressed in 

Eq. (3.15). This will generate four Wavelet coefficient images at each scale, 

i.e., LL„ , LH n , HLn and HH n subbands respectively. LLn is referred to lovv 

resolution of image whilst Lli,l,HLii and HH„ is to détail the image in vertical, 

horizontal and diagonal directions respectively. The process is then repeated in the 

lovvest frequency subband (LLn ). Figure 3.4 depicts the process of a 2-scale Wavelet 

transform and Figure 3.5 shows the Wavelet transform of an image in three scales. 

LH. = 

HL_ = 

LL,,=[Lx*[Ly*LLn_\2^ 

(3.15) 

HH.. = 

where * dénotes convolution operator, 12,1,, and 1 2 , l x is subsampling along 

vertical and horizontal directions respectively, and n is the scale level. 

IX, L H , 

HL, HH, 

^ 

L L , L H ; 
L H , 

^ 
H L 3 H H : 

L H , 

HL, H H , 

Image 1-scale Wavelet transform 2-scale Wavelet transform 

Figure 3,4 Process nf 2-scalc Wavelet transform of image 

(a) Original image (b) 3-scale wavelet transform of image 

Figure 3,5 3-scale Wavelet transform of an image 
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Finally, the statistical measures (mean JU and standard déviation a) of the 

Wavelet coefficients in each subband at each scale are computed as follows. 

°„ = \\\w^y\-vjfdxdy (3.16) 

In Our experiment, the Haar wavelet was selected from the wavelet family in 

Matlab [86]. The Haar wavelet is a simplest orthogonal wavelet, compactly supported 

and Symmetrie characiers and widely applied in multi-resokition featiire extraction 

[87-89]. The Haar wavelet is defined in Eq and its associated high-pass (H) and low-

pass (L) fïlters is shown in Eq. (3.17) and (3.18). 

U e [0,0.5] 

0 ,x« [0 , l ] 

- U e [ 0 . 5 , l ] 

(3.17) 

\ 1. 

L V T V â J 

H = 

(3.18) 

We chose s=3. So there were 20 features, 3 (scales) *3 (subbands in each scale) *2 

(measures) +2 (measures in the lowest resolution) =20, derived from a 3-scale 

Wavelet transform. The dimension of the texture feature vector is 20. 

3.1.5 Gabor Transform (GT) 

The Gabor Transform (GT) was proposed by Gabor in 1946 [90]. It générâtes 

a set of Gabor fïlters that can be considered as orientation and scale tuneable edge and 

line (bar) detectors. Using thèse scale and orientation fïlters, we can decompose an 

image into différent scales and orientations, which are again similar to the multi-scale 
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way that the human visuai System processes an image [83]. Recently, the Gabor filters 

are wideiy applied in the texture analysis [32, 91-94]. 

The two dimensionai Gabor function %( x ' ̂ , and its Fourier transform ^ ( M * y ) , 

are given in the following équations. 

f 1 N 

exp 
f 2 ?\ 

J 

C ( h , v ) = exp j -
\u-W)2 v2 

(3-19) 

(3.20) 

where cr, = \/2x<rx and av = \f2na^ . 

A set of self-similar Gabor fìlters can be generated by appropriate dilation and 

rotation ofg(xty). 

ê,n>l(^y) = o-"'g(x\y) a > { m i n = i n l e g e r (3.21) 

where 

x = a m(xcos& + ys\n&) a n ç j y =a m(-xiinQ + ycos&) ( 3 22) 

le 

r u v 

a = 

1 
S-l 

Here, K is the total number of orientations, and a is the scale factor that related to 

the lower centre frequency Ul and upper centre frequency Uh of the région of interest 

and S is the total number of scale. Therefore, i f K, U, , Uh and S are defìned, 

K*S Gabor fìlters can be generated by Eq. (3.21). Figure 3.6 visualizes a set of 

Gabor filters with 4 scales and 6 orientations in each scale. They can be applied to 
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detect the texture features of an image in 4 scales and 6 orientations at each scale 

respectively. 

Scale 1 

Scale 2 

Scale 3 

Scale 4 

0 = 0 <w-180° 0=150 0 = 120 0 = 90 0 = 60 0 = 30 

Figure 3.6 Visualization of 24 Cabor Filters with 4 scales and 6 orienlations in the 
frequency domain 

Given an image f(xty), its Gabor transform is defined to be the convolution 

with the Gabor filters in Eq.(3.23) 

m € (l, S), n e (l, K), m,n = integer 

(3.23) 

The above function can be described as the following function. 

m g (\,S),n E (\,K\m,n = integer 

(3.24) 

where F(x,y) and Gmn(x,y) are the Fourier transform of f[x,y) and gmn{x,y) 

respectively, the sign F ' Stands for inverse Fourier transform. Figure 3.7 

demonstrates the Gabor transform of an image with one Gabor fllter (s=3 

and 0 = 120°) by using Eq. (3.24). 
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SÉ â Fourier 
Transform 

3.1.1 Texi 
ure image 

Filteret! image 

o 
Figure 3.7 Gabor transform of an image with one Gabor filter (s=3 and Q = 120 ) 

After the Gabor transform of an image, the magnitudes of mean /u and 

standard déviation G of the Gabor transform coefficients Wmn are extracted as the 

texture feature représentations, which are 

vm^\\\Klx>y\-vJdxdy 
(3.25) 

The texture feature vector of an image can be expressed as 

m e (\,S),n e (\,K\m,n = integer 

(3.26) 

In our experiment, 5=4 and K=6 were chose, so the feature vector included 4 

(scales) *6(orientations) *2 (measures) =48 components. Thus, the dimension of 

Gabor texture feature vector was 48. 
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3.2 Methods for the Data Analysis 

In this section, two methods of data analysis that were used in this PhD study 

are explained. They are psychophysical scaling and rank correlation, which are used 

to analyze the psychophysical experimental data. Psychophysical scaling is used to 

build the relationship between visual texture features and their subjective response. 

Rank correlation is used to evaluate computational methods by finding relationships 

between two rankings conducted by subjects and computational methods. 

3.2.1 Psychophysical Scaling — Choice Score Method 

Psychophysics is a sub-discipline of psychology dealing with the relationship 

between physical stimuli and their subjective correlates. These physical stimuli can be 

physically measured by human perception, such as vision, hearing, smell, taste, touch 

etc, for instance, colour varying in luminance, hearing varying in frequency. 

Therefore, the relationship between observed stimuli and subjective responses can be 

generated by psychophysical experiments. Psychophysics is commonly used to 

produce scales of human perception of various aspects of physical stimuli. 

Psychophysical scaling is used to assign numbers to perceptual events based 

on ranking order data from psychophysical experiments [95]. The following will 

describe the psychophysical scaling methods obtained from rankings. 

3.2.1.1 Obtaining Rankings 

In our psychophysical experiment, a total of ;V subjects were asked to rank 

order M stimuli with respect to some perceptual attributes. For example: 10 subjects 

were asked to rank 10 images in order of coarseness (from fineness to coarseness). 

The rankings were then put into Table 3.1. The entry 7~rtmof Table 3.1 expresses the 

ranking of the m l h image by the « t h subject. 
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Table 3.1 Rankings 

Subjects 
Ranks Assignée! 

Subjects 
i 2 M-l M 

Subject ] 

Subject 2 

.. T ... 
ntn 

Subject .'V-/ 

Subject A' 

The data of raw rank orders are in an ordinal scale, which arranges objects in 

order of magnitude, but does not reveal the différences of magnitude between two 

objects. A n interval scale describing how much différence there is between them was 

therefore needed. 

3.2.1.2 Obtaimng Interval Scaie — Choice Score Method 

The choice score method described by Engen [96] is one of the methods used 

to obtain interval-scale values from rankings. This converts rankings to choice 

frequencies first, then normalizes top values, and finally converts the p values into z 

scores. The z scores represent the interval scale values for the Stimuli, which have 

equal intervais as a psychological scale on the assumption that the rankings are 

normally distributed. The following section détails the above procédures. 

Step 1. Calculate the mean rank ( Mr ) assigned to each stimulus, 

Step 2. Calculate a mean choice score {Mc) for each stimulus by subtracting 

the mean rank from the number of Stimuli (m). 

Mc=m-Mr (3.27) 

Step 3. Normalise the mean choice scores (Mc) into p values by dividing 

them by {m - I). 
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m -1 

Step 4. Convert the p values into z scores, which is given in a table in 

Appendix 1. 

In this research, the choice score method was applied to obtain psychophysical 

scaling based on the rankings obtained from psychophysical experiments. 

Psychophysical scaling was used to build the relationship between visual texture 

features and their subjective responses. 

3.2.2 Rank Correlation — Spearman's Rank Correlation Coefficient 

In statistics, rank correlation is the study of relationships between different 

rankings on the same set of items [97]. It deals with measuring correspondence 

between two rankings, and assessing the significance of this correspondence. 

Spearman's rank correlation coefficient [98], named after Charles Spearman, is 

one rank correlation method. It can be used to summarise the strength and direction 

(negative or positive) of a relationship between two variables. The Spearman rank 

correlation coefficient rs is defined as 

' , = 1 y < 3- 2 9) 
n -n 

where dt is the difference between the ranks assigned to the /th object in two 

measurements and n is the number of the pairs. This coefficient ^ wi 11 always be 

between 1.0 and -1.0. The value 1.0 (i.e. the two rankings are the same) means a 

perfect positive correlation whilst -1.0 (i.e., one ranking is the reverse of the other) 

means a perfect negative correlation. The value 0 means no correlation. The 

increasing positive or negative values imply increasing positive or negative 

agreement between two rankings. 
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To check whether an answer could be the resuit of a chance, the signilìcance 

of the relationship was tested as tbllows. 

1 ) Calculate the degrees of freedom. This is the number of pairs n minus 2 (n-

2). 

2) Plot resuit of rank corrélation with n-2 on the graph in Figure 3.8, with the 

x axis representing the degrees of freedom and y axis being Spearman's 

rank corrélation coefficient. 

0.73 
Z 

The. sigruficance of lUe Spaarinan's rane, corrélation coefficient» and degreet o» freedom 

1.0 
0.9 
0 8 

degras* of 'reedom 
Inumber of p»ir« of .tems ir» « m o t e minus 2) 

e 
o 
•o 
e > 

! o 

lifcellhood of Ihe 
corrélation occurnrig 
by cliant» 

l l ^ f 
I 

T h a i iyprX I icvs 

mu»t b« rr - " - i if 
aignificarca lavai* 
ara graatar tMjn 
6%. A l a 6% 
rajection lavel, Uw 
corrélation iaonly 
MM relia bla. 

Figure 3.8 Significance of Spearman's rank corrélation coefficient 

In Figure 3.8, the three red lines from top to bottom show the critical values of 

Spearman's rank corrélation coefficient changed with the degrees of freedom in 0.1%, 

1% and 5% significance levels respectively. The significance levels correspond to the 

probability of the relationship you have found being a chance. If the rank corrélation 

coefficient is smaller than the critical value in the same degree of freedom in 

significance level 5%, the probability of the relationship being a chance is more than 

5%, and then it is a possible resuit of chance. If the rank corrélation coefficient is 

bigger than the critical value in the same degree of freedom in significance level 5%, 

but smaller than that in significance level 1%, the probability 

of the relationship being a chance is between 1% and 5% and the resuit is significant 

at the 5% level. For example, in Figure 3.8, when n=10, the degree of freedom is n-

2=8, the critical value 0.73 gives a significance level of slightly less than 5%. If the 
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rank corrélation coefficient with the degree of freedom 8 is smaller than 0.73, that 

means the probability of the relationship being a chance is more than 5%, and then it 

is a possible resuit of chance. 

In our research, Spearman's rank corrélation coefficient was mainly applied as 

an assessment method. By measuring the rank corrélation coefficient between two 

rankings carried out by subjects and computational methods, we can evaluate the 

computational methods. We can also obtain relationships between visual similarity 

and visual properties (such as regularity, directionality, coarseness etc) by measuring 

rank corrélation coefficient between two rankings conducted by subjects on the 

experiments of visual similarity and visual properties respectively. 

3.3 Radon Transform 

The Radon transform [36] is the projection of the intensity values of an image 

along specified directions. In gênerai, the Radon transform of f(x,y) is the line 

integral of / parallel to the y axis, as expressed in Eq. (3.30). 

R0(x')= j * f(x cosO - y s\nß,x smö - y cosO}jy (3.30) 

where 

X r cos 6 sin ¿91 V 

y _ - s in# COS# y_ 
(3.31) 

According to Eqs. (3.30) and (3.31), Figure 3.9 illustrâtes the geometry of the Radon 

transformation. 
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Figure 3.9 Geometry of the Radon transformation 

In the field of image processing, the Radon transform is generally applied to 

detect srraight lines. Figure 3.10 shows an original wallpaper image, its edge image 

and Radon transformation of the edge image. The Radon transform is shown in Figure 

3.10 (c), where the horizontal axis expresses the projection angle 0 range from 0 to 

179 degrees. The vertical axis expresses the corresponding coordinate along x axis. 

Therefore, the locations of strong peaks in the Radon transform can represent the 

location of straight lines and direction of these lines in the images. For example, in 

Figure 3.10 (c), the strong peaks shown as bright points correspond to 6 « 9 0 ' and 

x »-170, -140, -40, -10, 90, 120, 220 respectively, 0*16* and x =-180, -120, 60, 

0,60,120,180 respectively. The line perpendicular to the angle 9 « 16° and located at 

corresponding x is shown in red on the original image in Figure 3.11. The seven 

horizontal lines can be detected when 0 * 90' and x * -170, -140, -40, -10, 90, 120, 

220 respectively. 

(a) Original image (b) Edge image (c) Radon transform of edge image 

Figure 3.10 Edge image and its Radon transform 
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Figure 3.11 Straight line detection (in red) using Radon transform ( 6 » 16 and A' a 
-180, -120, 60, 0, 60, 120, 180 respectively) 

The Radon transform not only expresses the directionality features, but also 

describes the spatial property of directionality. This overcomes the dravvbacks of 

directionality représentations using the Fourier power spectrum and the direction 

histogram. Therefore, the Radon transform can represent directionality features more 

effectively. In this research, we applied the Radon transform to extract the 

directionality features from wallpaper images. 
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4. Psychophysical Experiments 

The ideal representation of computational texture should be consistent with the 

response of human visual perception. This is in the consideration that the ultimate 

user of an image retrieval system is a human being. Therefore, the study of human 

perception in terms of texture features and similarity measurements are crucial. To do 

this, psychophysical experiments are employed. 

Two psychophysical experiments were conducted in this PhD study to 

investigate a human's response on perceiving texture features and performing 

similarity measurements respectively. In the first experiment, subjects were asked to 

rank sample wallpaper images based on each of the three texture features, i.e., 

coarseness, regularity and directionality respectively. Psychophysical scaling, which 

measures the subjects' response to a physical stimulus in a psychophysical 

experiment, was then obtained from rankings using the choice score method as 

discussed in Chapter 3. Finally, the relationship between visual texture features and 

their subjective response was established according to the psychophysical scaling. In 

the second experiment, sample wallpaper images were ranked based on the order of 

visual similarity to the query images by subjects. These ranking results can reflect 

human visual similarity measurements. 

Through the two psychophysical experiments, we aimed to evaluate 

computational texture representations by comparing with human vision perception in 

texture representations and similarity measurements respectively, We investigated the 

suitable texture representations for wallpaper images to improve retrieval accuracy, 

which is in line with human visual perception. The following sections wil l describe 

the procedure of two experiments in detail. 

4.1 Experiment One: Texture Feature Perception 

The purpose of this experiment was to obtain the rankings based on texture 

features by subjects. These data were then used to establish relationships between 
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visual texture features and the subjects' response. The experimental method will be 

explained in detail as follows, sample selection, subject selection, subject training and 

obtaining rankings. 

4.1.1 Experimental Preparation 

Before the experiment, test samples and subjects were selected. Sample 

images needed to represent visual features of wallpapers well. The selection of 

subjects had to include all possible factors that could affect the results. 

4.1. I. I Sample Selection 

Ten wallpaper images were selected from the database of M o D A images and 

utilised as experimental samples, as shown in Figure.4.1. For the purpose of texture 

analysis, all of the sample images were converted to grey-level images and cut to the 

same size of 512*512, removing the margin of images and preparing the texture 

patterns of wallpaper for comparison. 
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Figure 4.1 Experimental samples 

The criterion of selection was that sample images should represent visual 

texture features of wallpapers, including coarseness, regularity and directionality. We 

first selected one hundred images from M o D A collections randomly and grouped 

them based on coarseness, regularity and directionality. Three regular images, shown 

in Figure.4.1 (4) (5) (6), three directional images (1) (7) (10), and four random texture 

images (2) (3) (8) (9) were selected from the corresponding group. 
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4.1.1.2 Subject Selection 

Thirteen volunteer observers were employed to take part in the experiments, 

seven women and six men with ages ranging from 25 to 50 years. Subjects were from 

different countries. Six were staff and three were PhD students from the School of 

Computing Science in Middlesex University. Four staff were from the M o D A 

Museum. Among these observers, three were working in image processing, whilst 

four of them had some knowledge of wallpaper images. 

4.1.2 Experimental Procedure 

The experimental procedure started with subject training, that is the basic 

concept of texture and texture features was explained to subjects. This helped subjects 

to understand the visual features of texture and the rankings based on texture features 

effectively. After training, subjects were asked to rank sample images based on each 

of the texture features: coarseness, regularity and directionality. These rankings were 

then applied to create psychophysical scaling and to build relationship between visual 

texture features and their subjective response. Details are given below. 

4.1.2.1 Subject Training 

Before commencing Ihe experiments, a brief explanation of the basic concepts 

of texture and texture features were given to observers as shown below. 

Texture concerns the intensity of pixels and the spatial relationship between 

pixels. It refers to global visual properties like coarseness, regularity and 

directionality [23]. 

• Coarseness — Coarseness versus Fineness 

Coarseness has a direct relationship to scale and repetition rates. When two 

patterns differ only in scale, the magnified one is coarser. For patterns with different 

structures, the bigger its element size and/or the less its elements are repeated, the 

coarser it is. 
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• Regularity — Regularity versus Irregularity 

Regularity is a fundamental structural property of texture. It is a simple 

attribute to the repetitive patterns in which elements or primitives are arranged 

according to a placement rule. 

• Directionality — Directionality versus Non-directionality 

Directionality is a global property. The orientation of the texture does not 

matter, i.e., two patterns that differ only in orientation should have the same degree of 

directionality. 

Some samples of texture images from the Brodatz database 9 (standard texture 

database) shown in Figure 4.2 assisted the subjects to understand the perceptual 

attributes of texture. Some examples in a ranking based on texture features of 

coarseness (from fineness to coarseness) in Figure 4.3, regularity (from regularity to 

irregularity) in Figure 4.4 and directionality (from directionality to non-directionality) 

in Figure 4.5 were given respectively. When observers fully understood the concepts 

of texture perceptual attributes, the experiment started. 

Figure 4.2 Texture images from Brodatz database 

9. http://www.uxu,is.no/~tranden/brodatzhtml 61 
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Fineness — Coarseness 

Figure 4.3 Examples for ranking from fineness to coarseness 

Regularity— Irregularity 

Figure 4.4 Example for ranking from regularity to irregularity 

Directionality — Non-directionality 

Figure 4.5 Example for ranking from directionality to non-directionality 

4.1.2.2 Obtaining Rankings 

After the subject training, ten sample images shown in Figure 4.1 were 

displayed on the L C D (Liquid Crystal Display) of a 12 inch laptop with layout 

showing in 2 rows by 5 columns. Each observer was asked to rank the images 

physically by moving them around in the order of coarseness (from fineness to 

coarseness), regularity (from regularity to irregularity), directionality (from 

directionality to non-directionality) respectively. The observers' rankings are shown 
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in Table 3.1 in Section 3.2.1.1. This was used to obtain interval scale using choice 

score method introduced in Section 3,2.1.2. The experimental results are shown in 

Section 5.1. 

4.2 Experiment Two: Human Visual Similarity 

In this experiment, ten sample images shown in Figure 4.1 were ranked based 

on visual similarity to each of ten query images by subjects respectively. These 

ranking results were used to evaluate computational texture methods in visual 

similarity measurements and to develop a suitable similarity measurement, which is 

consistent with human visual perception. 

Sixteen volunteer observers performed this experiment, eight women and eight 

men with ages ranging from 25 to 50 years and with different culture backgrounds. 

Half of the subjects worked in the field of image processing. Each observer was asked 

to rank the ten sample images based on visual similarity to a query image in terms of 

texture features. 

Each observer's similarity measurements are shown in Table 3.1 of Section 

3.2.1.1. This was used to obtain the final rankings using the choice score method 

introduced in Section 3.2,1,2. The experimental results are shown in Section 5.2. 

4.3 Summary 

This chapter described two psychophysical experiments. One is to rank sample 

wallpaper images based on texture features (coarseness, regularity and directionality) 

respectively by subjects. Another is to rank sample wallpaper images based on visual 

similarity to a query image from very similar to dissimilar. 

Through the two psychophysical experiments, we obtained the results of 

human visual perception and visual similarity measurements for wallpaper images 

based on texture features. These results were used to evaluate the computational 

texture methods by comparing results between computational methods and human 
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perception in texture representations and similarity measurements. By analyzing the 

relationship between human visual perception on perceiving similarity and texture 

features for wallpaper images, we can find out which visual feature plays a more 

important role in the measurements of visual similarity for wallpaper images, leading 

to the development of new methods for wallpaper image retrieval. The next chapter 

will present the results of two psychophysical experiments and the evaluation of five 

computational methods based on the psychophysical experimental results. 
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5. Experimental Results and Data Analysis 

In this chapter, the results of the two psychophysical experiments based on 

texture features are shown. By comparing the results between the psychophysical 

experiments and the computational texture methods, we evaluated five popular 

computational methods in texture representations and similarity measurements. 

Finally, an analysis of the relationships between human visual similarity and visual 

texture features were given in order to find out which visual texture feature played an 

important role for retrieving wallpaper images. 

5.1 Results of Experiment One 

In experiment one, we aimed to establish a relationship between visual texture 

features (coarseness, regularity and directionality) and the subjective response, which 

can be applied to evaluate the existing computational texture representations. First, 

ten sample images were ranked by thirteen subjects based on each of three texture 

features. Then, psychophysical scaling was obtained from these rankings using the 

choice score method described in Section 3.2.1.2. Finally, relationships between 

visual texture features and their subjective response were built according to 

psychophysical scaling. The following will give results of psychophysical experiment 

one, which included rankings and psychophysical scaling based on coarseness, 

regularity and directionality respectively. 

5.1.1 Rankings 

Ten sample images were ranked based on texture features by thirteen subjects. 

The ranking results from fineness to coarseness, regularity to irregularity, 

directionality to non-directionality from each subject were obtained respectively. In 

order to analyze effectively, the ranking for each subject based on coarseness, 

regularity and directionality are put in Table 3.1 described in Section 3.2.1.1 

separately. Finally, the rankings based on coarseness, regularity and directionality are 

listed in Tables A2.1, A2.2 and A2.3 respectively, as seen in Appendix 2. In Tables 
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A2.1, A2.2 and A2.3, the entry Tnmof table expresses the ranking of the m1 image by 

the n^ subject, where the subscription n, m of Tnm represents the number of row and 

column respectively. 

In order to represent the visual perception based on averaged data, the raw 

data were pre-processed to remove some inconsistent data. 

5.1.2 Raw Data Analysis and Pre-Processing 

In order to achieve a set of consistent averaged data, removing inconsistent 

data was carried out. First, the coefficient matrix of rank corrélation between subjects' 

ranking was calculated. Then, via analyzing the coefficient matrix, some rankings 

were removed. Three steps for raw data analysis and pre-processing are detailed as 

fol lows. 

ì) Calcitiate the coefficient matrix of the rank corrélation between subjects ' rankings 

Based on the rankings shown in Appendix 2, the coefficient matrix of rank 

corrélation between subjects' rankings for each texture feature were calculated 

respectively by using Eq. (3.29) in Section 3.2.2, here n=lO. The coefficient matrix of 

rank corrélation for each texture features are shown in Tables A 3 . l , A3.2 and A3.3 

respectively, as seen in Appendix 3. In Tables A 3 . l , A3.2 and A3.3, the entry 7"nmof 

table expresses the coefficient of rank corrélation between m[h subject and /? ,h subject, 

where the subscription n, m of Tnm represents the number of row and column 

respectively. 

2) Analyze significance ofrank corrélation between subjects ' rankings 

To remove the inconsistent rankings with the average results, the significance 

ofrank corrélation between subjects' rankings were tested. In Figure 3.8, when n=lO, 

the degree of freedom is /7-2=8, the criticai value of rank corrélation 0.73 gives a 

significance level of slightly less than 5%. Therefore, the criticai value of rank 

corrélation 0.73 was used as a threshold to remove some inconsistent rankings. 
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3) Remove inconsistent rankings 

By analyzing the coefficient matrix of rank correlation, the rankings that were 

smaller than 0.73 (rs < 0.73) were removed. Finally, the rankings that were more than 

0.73 ( rs >=0.13) were kept. The removed rankings were highlighted in red in 

Appendix 3. The final rankings based on coarseness, regularity and directionality are 

shown in Tables A4.1(a), A4.2(a) and A4.3(a) respectively, and their corresponding 

coefficient matrix of rank correlation are shown in Tables A4.1(b), A4.2(b) and 

A4.3(b), given in Appendix 4. 

After pre-processing, the raw data of rankings in Tables A4.1 (a), A4.2 (a) and 

A4.3 (a) were applied to obtain psychophysical scaling based on coarseness, 

regularity and directionality respectively by using choice score method introduced in 

Section 3.2.1.2. 

5.7.3 Psychophysical Scaling 

Based on the rankings after processing, psychophysical scaling was obtained 

by using choice score method introduced in Section 3.2.1.2. The ranked images based 

on psychophysical scaling of coarseness, regularity and directionality are shown in 

Figures 5.1, 5.2 and 5.3 respectively. In Figures 5.1 to 5.3, the sample images are 

displayed in order from fineness to coarseness, from regularity to irregularity and 

from directionality to non-directionality separately. The value of psychophysical 

scaling is shown below each image. The number above each image is the ID number 

of this image in the ten sample images, as shown in Figure 3.1. 
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Psychophysical Scaling Based on Coarseness 
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Figure 5.1 Image ranking based on psychophysical scaling of coarseness (from fineness 
to coarseness) 

Psychophysical Scaling Based on Regularity 
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Figure 5.2 Image ranking based on psychophysical scaling of regularity (from regularity 

to irregularity) 

Psychophysical Scaling Based on Directionality 
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Figure 5.3 Image ranking based on psychophysical scaling of directionality (from 
directionality to non-directionality) 
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5.2 Results of Experiment Two 

In experiment two, we aimed to get the results of human perception on 

perceiving similarity of wallpaper images. These data were utilised to evaluate the 

existing computational texture methods in measuring visual similarity. The procedure 

was as follows. First, sample images were ranked based on the degree of similarity to 

a query image estimated by sixteen subjects respectively. Then, psychophysical 

scaling was calculated from these rankings using choice score method described in 

Section 3.2.1.2. According to the psychophysical scaling, the Final rankings were 

obtained. 

5.2.1 Rankings 

The retrieval results of ten query images by sixteen subjects are shown in 

Table 3.1 in Section 3.2.1.1. Finally, the rankings for ten queries are listed in Tables 

A5. l -A5.10 separately, as seen in Appendix 5. The entry 7*Bm of table in Appendix 5 

again expresses the ranking of the m t h image by the nlh subject, where the subscription 

n, m of Tnm represents the number of row and column respectively. 

Similar to Section 5.1.2, the raw data of rank orders were pre-processed by 

removing some rankings which were not consistent with major subjects' rankings. 

5.2.2 Raw Data Analysis and Pre-Processing 

Similar to Section 5.1.2, three steps were applied to pre-process raw data. 

i) Calculate the coefficient matrix of the rank correlation between subjects' rankings 

Based on the rankings given in Appendix 5, a coefficient matrix of rank 

correlation between subjects' rankings for each query was calculated respectively by 

using Eq. (3.29) in Section 3.2.2, here n=9. The coefficient matrix of rank correlation 

for ten queries is shown in Tables A6.1 to A6.10 respectively, given in Appendix 6. In 

Tables A6.1 to A6.10, again the entry 7^ of the tables expresses the coefficient of 
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rank correlation between m l subject and n subject, where the subscription n, m of 

Tim represents the number of row and column respectively. 

2) Analyze significance of rank correlation between subjects ' rankings 

To remove the inconsistent rankings with the average results, the significance 

of rank correlation between subjects' rankings was tested. In Figure 3.8, where «=9. 

the degree of freedom is /?-2=7.The value of 0.75 of rank correlation gives a 

significance level of slightly less than 5%. Therefore, 0.75 was used as a threshold to 

remove inconsistent rankings. 

3) Remove inconsistent rankings 

By analyzing the coefficient matrix of rank correlation, the rankings that were 

smaller than 0.75 (/; < 0.75) were removed. The removed rankings are highlighted in 

red in Appendix 6 that were removed. The final rankings for ten queries are shown in 

Tables A7.1(a) to A7.10(a) respectively, and their corresponding coefficient matrix of 

rank correlation are shown in Tables A7.1(b) to A7.10(b) respectively, given in 

Appendix 7. 

In Appendix 7, after removal of inconsistent rankings, we can see that query 4 

in Table A7.4 contains the data only from four subjects out of sixteen subjects, whilst 

query 6 in Table A7.6 contains the data from only three subjects. Similarly, query 7 in 

Table A7.7 contains the data from three subjects. The number of subjects with similar 

rankings is not over 50%, which suggests that most subjects have different opinions of 

perceiving similarity for these three queries. It was difficult to obtain common 

rankings from these three queries. Therefore, these three queries were not considered 

in the following sections of the evaluation of computational texture methods and the 

studies of human visual perception, which will be discussed in Section 5.3 and 

Section 5.4 respectively. 

After pre-processing, the rankings for the rest seven queries in Tables A7.1 (a) 

to A7.3 (a), A7.5 (a) and A7.8 (a) to A7.I0 (a) were used to obtain final rankings for 

seven queries by calculating psychophysical scaling. 
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5.2.3 Psychophysical Scaling 

Based on rankings shown in Tables A7.1(a) to A7.3(a), A7.5(a) and A7.8(a) to 

A7.10(a), psychophysical scaling were obtained by using the choice score method. 

The ranked images for seven queries are shown in Figures A8.1 to AS.7 respectively, 

given in Appendix 8. In Figures A8.1 to A8.7, images are displayed in the order from 

most similar to least similar to each query image. The value of psychophysical scaling 

is shown below each image. 

Through two psychophysical experiments, we obtained results of human 

visual perception and visual similarity measurements in terms of texture features for 

wallpaper images. In the following sections, the existing computational methods are 

evaluated by comparing the results between computational methods and the visual 

data obtained from these two experiments. 

5.3 Comparison between Computational Texture Methods and 

Human Visual Perception 

In this section, five computational texture methods introduced in Section 3.1 

are evaluated by comparing the results obtained from each of the two psychophysical 

experiments respectively. First, the comparison was carried out in terms of texture 

feature representations. Then, the comparison was conducted in terms of similarity 

measurements. The approach of rank correlation introduced in Section 3.2.2 was used 

to indicate the goodness of fit between the data calculated from computational texture 

methods and perceived by subjects. 

5.3.1 Comparison between Computational Texture Representations 

and Visual Texture Features 

In this section, we aim to examine the suitability of five computational texture 

representations introduced in Section 3.1: Grey Level Co-occurrence Matrices 

( G L C M ) , Multi-Resolution Simultaneous Auto-Regressive ( M R S A R ) model, Fourier 

Transform (FT) , Wavelet Transform (WT) and Gabor Transform (GT). 
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For the approach of G L C M , texaire features were computed with four 

distances of 1, 3, 5, and 7 pixels and with four directions of 

0 ° , 4 5 0 , 9 0 0 J 3 5 0 respectively. So the feature vector included 4 (energy, entropy, 

contras! and homogeneity) * 4 (distances) * 4 (directions) = 64 componente- detailed 

in Section 3.1.1.Whîlst for M R S A R , 3 resolutions (d=2, 3, 4 respectively) were 

applied, leading to the feature vector with 5(4 regressive parameter and least square 

error)*3(scales) =15 éléments, seen in Section 3.1.2. The texture features calculated 

from the approach of FT contain a vector with 4 éléments, which were Maximum 

Magnitude, Average Magnitude, Energy of Magnitude and Variance of Magnitude, 

detailed in Section 3.1.3. As for the method of WT method in Section 3.1.4, the 

dimension of the feature vector îs 20, that was obtained by 3 (scales) *3 (subbands in 

each scale) *2 (mean and standard déviation) +2 (mean and standard déviation in 

lowest resolution). The texture features from GT approach took 48 éléments in the 

feature vector, which was calculated by 4 (sca!es)*6 (orientations) * 2 (mean and 

standard déviation), seen in Section 3.1.5. 

Texture features of ten sample images were calculated by flve computational 

methods respectively. Based on the value of each texture feature, ten sample images 

were ranked in decreasing order. The ranking results for each of three texture features, 

i.e,, coarseness, regularity, and directionality, for each computational method are 

shown in Tables A9.1 toA9.5 from column 2 to column 10, listed in Appendix 9. In 

Tables A9.1 to A9.5, the first row is the ranking based on texture features by subjects 

and the other rows are the ranks based on each texture feature calculated by five 

computational methods respectively. The data in the last column in each table 

represents the coefficient of rank corrélation (JFj) between each feature calculated by 

each method and the data perceived by subjects. We applied the absolute value of the 

rank corrélation, which was in the considération that both positive and negative rank 

corrélation can reflect the relationship between two variables as seen in Section 3.2.2 

in the same way. 

Table 5.1 shows the average of rank corrélation for each table given in 

Appendix 9. In Table 5.1, the entry Tnm of the table expresses the average rank 

corrélation between rankings of the w t h visual texture feature by subjects and ranking 
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of each texture feature calculated by nl computational method, where the subscription 

n, m of Tnm represents the number of row and column respectively. These averages of 

rank corrélation were applied to evalúate whether the computational texture 

représentations were consistent with the visual feature perception or not. Data analysis 

and discussion will be detailed in Section 5.3.3. 

Table 5.1 The average rank corrélation between texture features calculated by 
computational methods and visual texture features perceivcd by subjects 

GLCM MRS AR FT WT GT 

Coarseness 0.37 0.38 0.41 0.40 0.42 
Regularity 0.34 0.62 0.34 0.40 0.39 

Directionality 0.33 0.68 0.36 0.42 0.41 

In this section, we evaluated the five computational texture methods in terms 

of texture feature représentations. However, when people judge whether two images 

are similar, they may not consider each texture feature or their combinations. The 

following section will study the similarity measurements between computational 

texture methods and subjects. 

5.3.2Comparison Similarity Measurements between Computational 

Texture Methods and Subjects 

In this section, the comparison of similarity measurements obtained by 

computational methods and subjects were carried out. By using the sample query and 

sample images, five computational methods, i.e. Grey Level Co-occurrence Matrices 

( G L C M ) , Multi-Resolution Simultaneous Auto-Regressive ( M R S A R ) model, Fourier 

Transfonn (FT), Wavelet Transform (WT) and Gabor Transform (GT), again were 

applied to calcúlate similarity distances. The ranking of the corresponding 

computational method for seven queries are given in Tables A 10.1 to A 10.7 

respectively, as shown in Appendix 10. In the Tables A 10.1 to A l 0 . 7 , the first row is 

the ranking perceived by subjects, whilst the rest of the table is the retrieval 

performance calculated by five computational methods. The numbcrs from columns 2 

to 10 in Tables A10.1 to AIO.7 are the ID numbers of sample images ranking in the 
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order fîrom the most similar to the least similar to the query images. The last column is 

the coefficients of rank corrélation between computation methods and subjects. 

Table 5.2 shows the rank corrélation between five computational methods and 

the human perception for seven query images. The average the rank corrélation rs is 

shown in last row of table. 

Table 5.2 Coefficients of rank corrélation between computational methods and subjects 
for seven queries 

GLCM MRS AR FT WT GT 

Query 1 -0.13 0.25 0.05 0.22 0.32 
Query 2 0.53 0.6 -0.18 0.35 0.42 
Query 3 0.45 0.15 0.48 0.18 0.3 
Query 5 -0.7 0.58 0.42 -0.7 -0.7 
Query 8 0.45 0.25 0.55 0.18 0.32 
Query 9 0.08 0.18 0.4 0.17 0.22 

Query 10 0.35 0.53 0.7 0.48 0.33 

0.15 0.36 0.35 0.13 0.17 

The average the rank corrélation was applied to evaluate whether the five 

computational methods were consistent with human perception on the visual 

measurements of similarity, which is detailed in the following section. 

5.3.3 Data Analysis and Discussion 

By comparison between computational texture représentations and perceived 

texture features (Experiment one), as shown in Table 5.1, it can be seen that the 

average rank corrélation between ranking results based on each feature of 

computational methods and ranking results by the subjects based on visual texture 

features is very low. A l l rank corrélations are less than the significance threshold of 

0.73. The value of rank corrélation of 0.73 gives a signifìcance level at 5% when the 

number of comparing pairs n is equal to 10 and the degree of freedom is 8 (=10-2), as 

explained in detail in Section 3.2.2. This suggested that none of the fìve 

computational texture methods can represent the texture features in terms of 

coarseness, regularity and directionality individually very well. For each feature 

calculated by the five computational methods, as seen in Appendix 9, the rank 

corrélation with coarseness, regularity and directionality are smaller than the 
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significance threshold of 0.73, implying that most feature éléments calculated by the 

five computational texture methods are not in close corrélation with perceived texture 

features (coarseness, regularity and directionality). According to thèse results, we can 

conclude that the five computational texture methods are not consistent with human 

perception of texture features for wallpaper images in terms of coarseness, regularity 

and directionality. 

As for similarity measurements that are the combination of ali the features in 

each computational method, consistency with human visual similarity is another 

interesting issue. 

By comparison of similarity measured by computational texture methods and 

subjects (Experiment two), as seen in Table 5.2, again, the average rank corrélation 

for seven query images was very low, for example, 0.15, 0,36, 0.35, 0.13 and 0.17 

being the corrélations with GLCM, MRS AR, FT, WT and GT respectively. Even 

maximum rank corrélation 0.7 obtained by FT for image query 10 was not over the 

significance threshold of 0.75, that is the significance level at 5% when the number of 

comparing pairs n is equal to 9 and the degree of freedoms is 7 (=9-2). Judging from 

the results, we can assume that the five computational texture methods do not 

simulate human vision very well in terms of performing similarity measurements on 

wallpaper images, which is in line with our fìnding that the retrieval results obtained 

by five computational texture methods are not ideal. This is supported by the 

following example, which gives the top 5 retrieval results for query image 9 by the 

subjects and five computational methods respectively. The number below each 

computational method is the rank corrélation between the subjects and the 

corresponding computational method. 

Through the analysis, we can conclude that the five computational texture 

methods are not consistent with human perception in terms of texture features and 

visual similarity measurements for wallpaper images. Therefore, the study of the 

relationship between visual similarity and visual texture features is important to 

develop suitable retrieval methods for wallpaper images. 
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Query 9 

Figure 5.4 Comparing retrieval results between subjects and five computational methods 
for query 9 

5.4 Relationships between Visual Similarity Measurements 

and Visual Texture Features 

In this section, we explore how human perceive similarity based on texture 

features. Based on the results obtained from our psychophysical experiments one and 

two, the relationships between visual similarity and texture features can be 

established. By analyzing this relationship, we found which texture features 

(coarseness, regularity, and directionality) play a more important role in performing 
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similarity measurements for wallpaper images, leading to development of new 

methods to improve retrieval accuracy. 

5.4.7 Rank Correlation between Visual Similarity Measurements 

and Visual Texture Features 

Based on the results of experiment one, we obtained rankings based on texture 

features of coarseness, regularity and directionality respectively by subjects. Whilst 

from the results of experiment two, we had rankings for seven queries respectively 

observed by subjects. In both experiments, we adopted the same sample images. 

According to the results obtained by subjects, we tried to establish the 

relationship between visual similarity measurements and visual texture features. First, 

in order to obtain the rankings for each query image based on coarseness, regularity 

and directionality individually, we calculated the psychophysical distance between 

each sample image and the query image based on these three visual features 

respectively. Then, by calculating the rank correlation between rankings for each 

query image based on the psychophysical distance of visual texture features and the 

corresponding ranking for each query based on visual perception, we established the 

relationship between visual similarity measurements and the visual texture features. 

The ranking results for seven query images are given in Tables A 11.1 to A11.7, as 

seen in Appendix 11. In Tables A11.1 to A11.7, the first row is the rankings based on 

perceived similarity measurements for query images and the other rows are the 

corresponding ranking for query image based on coarseness, regularity and 

directionality respectively. The numbers from columns 2 to 10 in Tables A l l . I to 

A l 1.7 are the ID numbers of ranking images in the order from most similar to least 

similar to each query image. The last column contains the coefficients of rank 

correlation between visual similarity measurements and the corresponding visual 

texture features. 

Finally, the rank correlation between perceived visual similarity and the visual 

texture features for seven queries are listed in Table 5.3. The average rank correlation 

rs for seven queries is shown in the last column in the table. 
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Table 5.3 Coefficients of rank corrélation between perceived sïmilarity measurements 
and visual texture featurcs for seven querïes 

Query 1 Query 2 Query 3 Query 5 Query 8 Query 9 Query 10 
f's 

Coarseness 0.77 0.53 0.87 0.60 0.60 0.37 0.73 0.64 
Regularity 0.93 0.73 0.75 0.93 0.77 0.32 0.80 0.75 

Directionality 0.92 0.82 0.83 0.73 0.78 0.77 0.82 0.8t 

The average rank correlation was applied to analyze the relationship between 

perceived Visual similarity and the Visual texture features. The data analysis and 

discussion will be detailed in Section 5.4.2. 

5.4.2 Data Analysis and Discussion 

In Table 5.3, the average rank correlation between visual similarity 

measurements and coarseness is 0.64, and regularity is 0,75, and directionality is 0,81. 

Coefficients of rank correlation between visual similarity measurements and 

regularity and directionality are over the significance threshold of 0.75 as described in 

Section 3.2.2. But the rank correlation between visual similarity measurements and 

coarseness is below the threshold of 0.75. Judging from the results, we can say that 

the texture features of regularity and directionality play a more important rôle in 

perceived visual similarity measurements for wallpaper images. We can also see this 

result from the following two examples shown in Figures 5.5 and 5.6, which show the 

top 5 retrieval results for query 5 and query 8 respectively. The number below each 

texture feature is the rank correlation between rankings of subjects and rankings based 

on corresponding texture features. In both figures, the ranking results based on 

regularity and directionality is closer to ranking results based on human visual 

similarity. lt suggests that the texture features of regularity and directionality are very 

important in image retrieval for thèse two queries. 
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Query 5 

Subjects 

Coarseness 

(r,=0.60) 
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Directionality 
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Figure 5.5 Comparison between ranking results based on human visual similarity and 
ranking results based on visual texture feature for query 5 

Query 8 

Subjects 

Coarseness 

(r =0.60) 

Regitlarity 

(rr=0.77) 

Directionality 

(r,=0.78) 
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Figure 5.6 Comparison between ranking results based on hunian visual similarity and 
ranking results based on visual texture feature for query 8 
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Through the analysis above, we found that texture features of regularity and 

directionality play an important role in performing visual similarity measurements for 

wallpaper images. This provided us with the clue for the development of new methods 

to improve retrieval accuracy for wallpaper images. Therefore, we considered the 

texture features of regularity and directionality first in wallpaper image retrieval. The 

new methods for wallpaper image retrieval will be described in Chapter 6. 

5.5 Summary 

This chapter presented the results of two psychophysical experiments. 

Comparison of results across five computational methods and human perception for 

wallpaper images, we concluded that five computational texture methods are not fully 

consistent with human perception in terms of texture features and visual similarity. By 

analyzing the relationship between visual similarity measurements and visual texture 

features, we found that texture features of regularity and directionality a play more 

important role in performing visual similarity measurements for wallpaper images 

than the feature of coarseness. 

Therefore, the texture features of regularity and directionality are the main 

features in performing wallpaper image retrieval. So far, five computational texture 

methods cannot represent texture features of regularity and directionality individually 

very well. New methods for wallpaper image retrieval have to be developed, which 

will form two stages. First, we will classify images based on regularity and 

directionality respectively. Then, we will perform image retrieval in corresponding 

classified group of the image database, which will be the content of Chapter 6. 
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6. Image Retrieval for Wallpaper Images 

This chapter describes the approach applied in this research to content-based 

image retrieval for wallpaper images, and consists of two main parts, which are 

classification and image retrieval. First, the query image was classified based on 

regularity and directionality. After classification, image retrieval was performed in the 

corresponding classes of the image database. A n overview of the framework for 

image retrieval is shown below in Figure 6. ]. 

Classification based on Retrieved 
directionality and regularity Image Retrieval Images 

Figure 6.1 An overview of framework for wallpaper image retrieval 

Classification based on regularity and directionality is described in Section 

6.1. After classification, image retrieval is introduced in Section 6.2. Finally, a 

content-based image retrieval system for wallpaper images will be presented in 

Section 6.3. 

6.11mage Classification 

According to the analysis of experimental results in Section 5.4, the features of 

regularity and directionality played a more important role in performing visual 

similarity for wallpaper images. Psychophysical experiments carried out in this study 

also show that five existing computational models can not represent perceptual texture 

features of wallpaper images very well, nor can they perform image retrieval 

accurately for wallpaper images, as discussed in Section 5.3. \n order to retrieve 

wallpaper images efficiently and effectively, wallpaper images were hence first 

classified based on directionality and regularity before the retrieval. A schematic 

diagram shown in Figure 6.2 illustrates the classification tree based on directionality 

and regularity employed in this study. 
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Wallpaper images 

Class I: 
Directional images 

Classification based un regularity 

Class 2: Class 3: 
Regulär images Random texture images 

Figure 6.2 Classification tree based on regularity and directionality 

After classification, wallpaper images were classified into three groups, which 

were Class 1: directional images; Class 2: regulär images; and Class 3: random 

texture images. The following section will describe the method of classification based 

on directionality and regularity respectively in detail. 

6.1.1 Classification Based on Directionality 

Directionality is a global property over an image, suggesting the orientation of 

the texture does not matter, i.e., two patterns that are différent only in orientations 

should have the same degree of directionality. Some wallpaper images bave strong 

patterns of geometrie structure, for example, images (l) and (2) in Figure 6.3. 

Therefore, directionality is a very important visual feature embedded in wallpaper 

images, which is in line with the fmdings obtained in Section 5.4. 

In the field of image processing, the feature of directionality is generally 

extracted using the Fourier power spectrum, or is obtained by using a direction 

histogram. Normally, directional images show obvious beams in the Fourier power 

spectrum or outstanding peaks in the direction histogram, as demonstrated in image 

(I) in Figure 6.3. However, some wallpaper images with the feature of directionality 

do not follow this rule. For example, in Figure 6.3, wallpaper image (2) has the 

feature of directionality similar to that of image ( l ) . But, according to its Fourier 
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power spectrum and direction histogram, they show features closer to non-directional 

image (3) than the directional image ( 1 ). 

Image 
Fourier power 

spectrum 

Direction 

histogram 
Radon transform 

Figure 6.3 Wallpapcr images and their Fourier power spectrum, direction histogram 
and Radon transform 

The reason is that the features of directionality extracted from the Fourier 

power spectrum and the direction histogram arc statistic ones, which can not rcpresent 

the characters of direction in the spatial domain visually. Since directionality is 

defined as a global propcrty over the given région, we need to consider the spatial 

distribution of directional lines to rcpresent directionality. Furthermore, the property 

of directionality shown in wallpapcr images are sometimes made of flowers or leaves, 

some degrees of art effect, such as in image (2) in Figure 6.3. Thèse visible 

directional lines are difficult to capture in both approaches of Fourier power spectrum 

and direction histogram. 

The Radon transform (in Section 3.3) can overcome thèse drawbacks by using 

the Fourier power spectrum and the direction histogram, and can well describe 

directional lines in a spatial domain. In Figure 6.3, it shows the obvious différent 
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features between the directional image (2) and non-directional (3) in the Radon 

transform. In this research, \ve applied the Radon transform to describe the features of 

directionality for wallpaper images. 

Directionality représentations were extracted by the Radon transform of edge 

images. Thresholding were applied to classify images into classes of directionality or 

non-directionality. Figure 6.4 briefly describes classification based on directionality. 

Input texture images 

Per tomi Radon transform 

i r 

Compute directionality représentations 

• 

—— ' Directionality 
— r e p r e s e n t a t i o n s > T h r e s h o l d ^ 

Directional images Non-directional images 

Figure 6.4 Classification based on directionality 

The following sections will introduce the directionality représentations 

extracted from the Radon transform, and classification based on directionality using 

thresholding. 

6.1.1.1 Directionality Représentations 

Since directionality is a global property over a given région, images with 

strong visual sense of directionality has many specific directional lines scattering over 

the région of the images. In order to represent this property effectively, we needed to 

analyze the Radon transform of images in horizontal and vertical direction 

respectively. We can obtain the angle of the main direction from the horizontal axis 

and the spatial distribution of directional lines from the vertical axis. Four main Steps 
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were adopted, including obtaining the Radon transform of edge images; projecting the 

Radon transform in the horizontal axis to decide the main direction of the image by 

finding the peaks in the projection; projecting the Radon transform of the main 

direction in vertical axis to obtain the spatial distribution of main directional lines; 

and representing directionality by the combination of the features shown in both 

horizontal and vertical axes in the Radon transform. The detailed procedure is 

described as follows. 

• Obtain the Ration transform of an edge image 

1. Obtain binary edge image by using the Canny lilter [37], as shown in Figure 

6.5 (b) 

2. Perform the Radon transform of the edge image, as demonstrated in Figure 6.5 

3. Threshold the Radon transform. We obtained the possible points that express 

the straight lines in an image, shown in Figure 6.6 (d). In this research, we set 

the threshold=10%*size (image), suggesting there is a likely straight line when 

the total number of edge pixels along a specified direction is over the 

threshold. 

• Obtain the main direction of an image and the directionality feature 

DER^j, 

1. Project the Radon transform into the vertical direction, we obtained the curve 

of projection g(x), as shown in Figure 6.6 (e) 

2. Obtain the main direction 0 of images by Computing the local maxima point 

ing(*). Here, directional lines in image are perpendicular to the projecting 

axis. Therefore, 6 is 

(c) 

0 = « 2 2 

£ e>n-
2 2 

(6.1) 
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vvhere 0 is an angle of a projecting axis, and its value are given in horizontal 

axis of Radon transform. 

3. Obtain the DERvillw e by normalizing the value of peak in corresponding main 

direction 6 

DER^ 0 = (6.2) 

whcre P0 expresses the value of peak in corresponding main direction The 

value of DERyolue e is betvveen 0 and 1. The bigger the value of DERvalue $ t 

the more likely there is a straight line in the direction 0 . As given in Figure 

6.6 (e), the value of DERyalue e and the corresponding 0 are seen below the 

curve ofg(x). 

• Obtain the spatial distribution ofthe main directional Unes OER^^ 0 

1. Project Radon transform into the horizontal direction in each main direction 

respectively. We obtained the curve f0{x) in corresponding orientation, as 

shown in Figure 6.6 (f). 

2. Compute the x~ (Chi-square distribution) statistics for the curve f0(x) in 

différent orientations respectively, %~ statistics were applied to describe the 

quality of the match betvveen the distribution of the région and a uni forni 

distribution [99], and is defined as 

i 1 
Xe = X " / ( A 

M m 

where p, = ^/§{x)/J^fe{x) (6.3) 
x e regioni 

The curve f0(x) was evenly divided into m régions in the horizontal 

direction, pi is the percentage of value of f0(x) in région / over the vvhole 
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région. The probability function — expresses the uniform distribution over 
m 

the zones. The smaller the value o f ^ : , the closer to uniform distribution the 

curve distribution is. When / ^ m i n " =0 , the curve shows uniform distribution. 

When the value of f0(x) is put together in one région, x~ n a s a maximum 

value Zmax = m ~ 1 ' which is obtained by setting one p,=\ and the 

other pi = 0 . Finally, the spatial distribution of specified directional lines 

DER posino» s is defined by normalizing xi between 0 and 1 using Eq. (6.4). 

OERposition 0=\ (6.4) 
X max Xu 

Value of DERp^mn, „ is between 0 and 1, i.e., the bigger the value of 

DERpos„,on_e ' s ' t n e c ' o s e r t 0 uniform distribution the directional line 

distribution is. In Figure 6.6 (f), the value of DERpusiljon u is shown below the 

corresponding figure. 

Finally, directionality représentations in a specified direction 0 expressed 

as DER0 multiplied two features obtained in horizontal direction analysis 

DERvalue_0and vertical direction analysis DERposilion e in the Radon transform together 

as shown in Eq. (6.5) 

DER0 = DERvohlc ß • DERpmilhìll 0 (6.5) 

Generally, an image with strong directionality patterns should have many 

specified directional lines scattered over the régions of the image. Therefore, they 

should have a bigger value in DERvalue 0 , DERpoiltlOH 0 and DER0 as well. 

Considering classification based on directionality, vve used the maximum value of 

DERt)as the directionality représentations and defined as follows. 

DER = Max(DER0 ) (6.6) 
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(d) Radon transform 
after thresholdina (e) Projection (d) in vertical direction 

9 = 0 . DERyalu>. 0 = 0.8032 

0, =\00,DERvalue m = 0.2859 

62 = 0\DERyalue ,=0.2290 

0}=5O\DERyalue 0 =0.1100 

(f) Projection of Radon transform in 
horizontal direction 

6 = 0 . D E R ^ ^ 0.9959 

0X =\20-,DERyalue n o =0.5177 

6?, =50 . DERyalue 5 0 = 0.3630 

67, =100 '.DERpo(lllon_i00 = 0.9575 

6?2 = 0 \ n =0.9757 position 0 

>2 = 50', D E R ^ n =0.5575 

6?, =120 ,.DERptMUmi_m= 0.7788 
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0, = 50 .DER^ 5 0 = 0.9095 

0, =130 .DERvo!uc ,30 = 0.0989 

0, =40 .DERvalu, „ 0 =0.1181 

0, =130 .DER^ ,30 = 0.6397 

6 ? , = 4 0 \ / ^ _ n 4 0 = 0.6875 

0, =130 .DER^ ,30=0.2132 

^ t t O ' . D f K ^ ,30 =0.2782 

6?2 = 40 .DERnihH. 4 0 = 0.2233 

0 2 =40 .DERposmon_AQ= 0.2396 

0, = 1 3 0 ' , D E R ^ ,30 =0.1391 

Ô2 =40 .DERviihu. 4 Ü =0.1056 

ex=\W.DERposlllim ,30 =0.4685 

0, =40 .DER posi lion 40 = 0.4571 

Figure 6.6 Directionality représentations in Radon transform 
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Table 6.1 gives the directionality features DER of images ((1)—(6)) shown in 

Figure 6.5 (a). 

Table 6.1 Directionality features of images 

Image (1) (2) (3) (4) (5) (6) 

DER 0.7999 0.2737 0.4032 0.0812 0.0593 0.0652 

Table 6.1 shows that images ((1) to (3) in Figure 6.5 (a)) with characteristics 

of directionality have bigger values of DER than images ((4) to (6) with less 

directionality. Therefore, a threshold for DER were applied to classify images into 

the class of directionality or non-directionality. 

6.1.1.2 Classification Based on Directionality 

Twenty directional images and twenty non-directional images were chosen by 

subjects from M o D A database. Their DER were depicted in Figure 6.7. The 

horizontal axis represents the sample image numbers and the vertical axis 

represents DER (<r) expresses directional samples and ( O ) represents non-directional 

samplcs. 

1 • OracUonalty 
1 1 1 1 ' 

Non directionalrty 
0.8 - « 

0 7 

0 6 -

0 1 -

0 1 1 L 1 1 

0 2 4 6 8 10 12 14 16 18 20 
Samotes 

Kigure 6.7 Directionality features of 40 training sample images 

U 3-
1 
8 0 4 

0 3 
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From the Figure 6.7. it can be seen that the majority of the DER values of 

directional images (* ) are bigger than 0.18. However, the majority of the DER 

values of non-directional images ( ) are smaller than 0.18. Therefore, a DER value 

0.18 was used as a threshold to distinguish directional images from non-directional 

images. 

In summary, directional and non-directional images were classified by a 

threshold of DER = 0.\S , i.e., i f £)£/?> 0.18 the image was labelled with 

directionality, otherwise non-directionality. The classification results based on 

directionality are shown in Section 7.1.1. 

6.1.2 Classification Based on Regularity 

Regularity is a fundamental structural property of texture. It is simply 

attributed to the structure of répétitive or periodic patterns. The more regulär the 

periodicity, the stronger the structure is. Generally, wallpaper images have strong 

texture structure, such as periodic patterns. Therefore, regularity is a very important 

visual feature for describing wallpaper images. This finding was also proved in 

Section 5.4. 

In image processing, the periodic or répétitive patterns were captured by 

computing the corrélation between the intensity values in rows or columns of an 

image. The curve of the Corrélation Coefficient with periodic patterns shows periodic 

peak, whilst the curve of the Corrélation Coefficient for an irregulär image tends to be 

fiat. Regularity représentations were therefore extracted from the corrélation 

coefficient. Thresholding was applied again to classify images into regularity and 

irregularity. Figure 6.8 briefly describes the procedure of classification based on 

regularity. 

In following sections, we will introduce the regularity représentations 

extracted from corrélation coefficients, and classification based on regularity using 

thresholding. 
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Input texture images 

i 
Perforili corrélation and compute 

corrélation coefficient 
C(d) 

Regular images Irregular images 

Figure 6.8 Classification based on regularity 

6.1.2.1 Regularity Représentations 

Corrélation is widely used in linding repeated patterns of images in the field of 

image processing [60, 61, 64]. 

The normalized corrélation c(i, j) between the rows (or columns) of an image 

is formulated as 

where d{ and dt are the intensity values vvithin the rows (or columns) / and j 

respectively. £"(•) is the expected value and <r(«) is the standard déviation. 

In order to analyze easily, C(d) was introduced to describe the corrélation 

between the rows (columns) in a distance d. 
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N-d 

N-d V ' 

^ = 1.2,3 A ' - l (6.8) 

where -V is the number of rovvs (columns). Therefore, we analyzed regularity in one 

dimension of C(d) instead of two dimensions ofc(i,j). 

Figure 6.9 visualizes the corrélation coefficient matrix c(i,j) and C(d) of 

images in horizontal (column) and vertical (row) direction respectively. According to 

Eq. (6.8), C(d) was obtained by projecting corrélation coefficient matrix £•(/', j) in the 

direction with 45 J . 

Original 
image 

Honzontal(column) direction 

Corrélation 
coefficient 

matrix c(f, j) 

C(d) 
(Project of c(i,j) 

in 0 = 45e ) 

Vertical(row) direction 

Corrélation 
coefficient 

matrix C m , / ) 

C(d) 
(Project of c(i, j) 

in 0 = 45' ) 

Figure 6.9 Visualizing the corrélation coefficient matrix c{i, j), ((d) of images in 

horizontal and vertical direction 
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From Figure 6.9, C(d)curves of images with repeated patterns (images (1) to 

(3)) show periodic peaks, while C(</)curves of images without repeated patterns 

(images (4) to (6)) tend to be flat. Therefore, the features of C(d) were used to 

represent the characters of regularity. 

In order to describe the periodic features of wallpaper images, two measures 

of REGVillUi. and REGpoiilion were derived from C(d ) . REGwlm was the contrast of 

C(d) and is applied to describe the amplitude of the curve whilst REG^,^ was used 

to describe the relative position of peaks that décide whether a curve showed periodic 

properties or not. These two measures expressed the characteristics of C(d), i.e., 

periodic peaks for regulär images or a tlat curve for irregulär images. 

REGVillM is the contrast of C(d) and defined as 

REGwlue = - L f > _ value{i) -±rfév_ value{j) (6.9) 

where p _value(i) and v _value(j) are magnitudes of peaks and Valleys in C(d), M 

is the number of peaks and A' is the number of Valleys. 

REGposmon >s defined as 

R E G ^ ^ X - ^ ^ (6.10) 
p _ position 

where //,, p i M k m is the average of distances among the peaks i nC(^ ) , ap puslllun is the 

standard déviation of distances among the peaks \nC(d). 

C(d) with periodic peaks fias bigger values of REGullue and REG[>0illlun , 

whereas C(d) with a flat curve has smaller values of REG,illlti, and REGpoullon . 
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Finally, the regularity représentation REG was defined as a multiplication of the two 

measures shown in Eq. (6.13). 

REG = \REÜn,^*REO^\ (6.111 

The following table gives the regularity features REG _ h and REG _ v of 

images ((1) to (6) given in Figure 6.9) in horizontal and vertical direction 

respectively. 

Table 6.2 Regularity features of images 

Image 
Horizontal(column) direction Vertical(row) direction 

Image 
R E G value-1' REGpa,,^ h REG _ h REG , v value -

REG v poulion REG _v 

(1) 0.8693 0.9883 0.8591 0.7320 0.9964 0.7293 

(2) 0.4151 0.8908 0.3698 0.7977 0.9943 0.7932 

(3) 1.0093 0.9965 1.0057 0.7609 0.9501 0.7229 

(4) 0.1840 0.8861 0.1630 0.1830 0.6239 0.1142 

(5) 0.2056 0.4424 0.0910 0.1822 0.3262 0.0594 

(6) 0.0943 0.7535 0.0710 0.0569 0.8452 0.0481 

Table 6.2 shows that regulär images ((1), (2) and (3) in Figure 6.9) with 

periodic peaks of C(d) have a bigger REG value ( REG h or REG v ) than 

irregulär images ((4), (5) and (6) in Figure 6.9) with fiat curve ofC(d). Therefore, 

thresholding for REG was applied to classify an image into either the regularity or 

irregularity class. 

6.1.2.2 Classification Based on Regularity 

Twenty regulär images and twenty irregulär images were chosen from the 

M o D A database. Twenty regulär images were selected with regularity features both in 

horizontal and vertical direction. Their values of REG _ h and REG _ v are shown in 

Figure 6.10. The horizontal axis represents the sample image numbers and the vertical 

axis represents REG value. (* ) expresses regularity samples and ( ) represents 

irregularity samples. 
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Figure 6.10 Regularity features of 40 training sample images 

From the Figure 6.10, it can be seen that the majority of the REG values of 

regular images (*) are bigger than 0.23. Whereas, the majority of the REG values of 

irregular images (o) are smaller than 0.23. Therefore, a REG value 0.23 was used as 

threshold to distinguish regular images from irregular ones. 

In summary, regular and irregular images were classified by a threshold of 

REG =0.23, i.e., i f REG _ h >0.23 or REG _ v >0.23, the image was labelled with 

regularity, otherwise irregularity. The classification results based on regularity are 

shown in Section 7.1.2. 

6.1.3 Classification Based on Directionality and Regularity 

After introducing classification based on directionality and regularity 

respectively, we combined these two methods to classify wallpaper images. 

According to the results of our psychophysical experiments in Table 5.3, the 

average of rank correlation between visual similarity measurements and regularity is 

0.75, and directionality is 0.81. Therefore, the directionality character plays a slightly 
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more important rôle in visual similarity measurements than regularity and this is taken 

into account first in the classification. 

Therefore, the wallpaper images were classified ìnto directional images or 

non-directional images first. Then, thèse non-directional images were further 

classified based on regularity into sub-class of either regulär or random texture 

images. Figure 6.11 describes the procedure of classification based on directionality 

and regularity. After classification, images were classified into three groups: Class 1 : 

directional images; Class 2: regulär images; and Class 3: random texture images. The 

classification results based on directionality and regularity will be shown in Section 

7.1.3. 

Wallpaper images 

Compute directionality 
représentations: DER 

Compute regularity représentations: 
REG h anàREG v 

Class 1: Class 2: Class 3: 
Directional images Regulär images Random texture Images 

Figure 6.11 Fluvv of classification based on directionality and regularity 

6.2 Image Retrieval 

After classification, the image retrieval was performed in each specifìed class 

by calculating similarity measurements between feature vectors of a query image and 

the images in that class. 
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Query image was classified based on regularity and directionality. Then, 

similar texture images were retrieved in the same classified group as the query image 

by using five computational methods. The follovving retrieval results were performed 

in other class groups. The path for the category index is described as follows. 

If query=directionality, then index path= directional images —• regnlar images 

—> random texture images. 

If query=regularity, then index path= regular images —• directional images 

—> random texture images. 

If query=random, then index path= random texture images —*• regular images 

—•directional images 

The above index path was set based on the relationship between three différent 

classes. 

According to the rankings based on coarseness, regularity and directionality, 

obtained in Section 5.1, we calculated the coefficients of the rank corrélation between 

three texture features. We put rankings based on coarseness, regularity and 

directionality shown in Figures 5.1, 5.2 and 5.3 in Table 6.3 and coefficients of rank 

corrélation between texture features were calculated and shown in Table 6.4. 

Table 6.3 Rankings based on coarseness, regularity, and directionality 

Texture Feature Rankings 
Coarseness J 8 9 2 6 5 10 4 1 7 
Regularitv 10 1 5 6 7 4 9 2 -, j 8 

Directionality 1 10 5 6 7 4 9 3 2 8 

Table 6.4 Coefficients of the rank corrélation between texture features 

Coarseness Regularity Directionality 

Coarseness 1 0.72 0.71 
Regularity 0.72 l Û.9S 

Directionality 0.71 0.98 1 

Judging from the rank corrélation rs between différent texture features, we can 

see the coefficients of rank corrélation between regularity and directionality is 0.98. It 

is higher than that between regularity and coarseness and between directionality and 

coarseness. Tins suggests there is a stronger corrélation between directionality and 

regularity. This can help us to set the index path between three différent classes. This 
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is why the class of regularity and directionality in the indexing path are followed by 

each other. 

The retrieval results by using five computational methods will be shown in 

Section 7.2, whereas the comparison between retrieval results before and after 

classification is discussed in Section 7.2. 

6.3 A Content-Based Image Retrieval System for Wallpaper 

Images 

In this research, a preliminary content-based image retrieval system for 

wallpaper images was developed with the diagram shown in Figure 6.12. 

This system includes two main parts, which are image database processing and 

image retrieval. Image database processing inside the dashed lines contains two 

procédures. One is to classify the image database into three classes: directional, 

regulär and random images. The other is to extract the texture features of images by 

using each of five computational methods respectively. Finally it yields the three sub-

databases of texture features, which is the texture feature database of class 1, texture 

feature database of class 2 and texture feature database of class 3. These three sub-

databases of texture features were obtained and stored in the archives in advance. 

When a user submits a query, the query image was classified based on 

directionality and regularity first. At the same time, the texture feature vectors of the 

query image were extracted using one computational texture method selected by the 

user. According to the classification resuit, the system set the category index detailed 

in Section 6.2. This category index determined the ranking of three classes in the 

retrieval results. Then image retrieval was performed by calculating the similarity 

measurements between the feature vectors of the query image and the corresponding 

texture features in the three sub-databases. Finally, a set of images were retrieved and 

ranked based on the degree of similarity calculated by the similarity measurements. 

By recalling the image database, the retrieved images were displayed on screen. 
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A graphical user interface to display the retrieval results and classification 

results for wallpaper images is shown in Figure 7.16. 

6.4 Summary 

In this chapter, the methodology of content-based image retrieval for 

wallpaper images was developed. First, a query image was classified based on 

regularity and directionality. After classification, image retrieval was performed in the 

corresponding classes of the image database. 

Classification based on directionality and regularity was introduced 

respectively. Directionality features of images were extracted from the Radon 

transform of edge images. Regularity features were extracted from the correlation of 

images. After training images, thresholds for directionality and regularity features 

were obtained and applied to classify images into directionality and non-

directionality, regularity and irregularity respectively. Finally, according to the 

psychophysical results, the classification tree based on directionality and regularity 

was built. After classification, images were classified into three classes, which are 

directional, regular and random textures. 

After classification, image retrieval was performed in each specified class by 

using one of five computational methods. According to the psychophysical results, the 

category index for image retrieval was built. 

Finally, a prototype of a content-based image retrieval system for wallpaper 

images was developed and diagrammed in Figure 6.12. 

Chapter 7 will give the results of classification and the results of image 

retrieval after classification. A graphical user interface of a retrieval system is 

presented as well. 

101 



Chapter 6. Image Retrieval for Wallpaper Images 

Image Database Processing 

Figure 6.12 Diagram for content-bascd image retrieval system for wallpaper images 
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7. Results of Classification and Retrieval 

In this chapter, we present the results for classification based on directionality 

and regularity representatively, and classification results based on both directionality 

and regularity. Then, image retrieval results after classification by five computational 

texture methods are shown. A comparison between retrieval results before and after 

classification is carried out to test the effectiveness of classification. A graphical user 

interface for image retrieval is presented. 

7.1 Results for Classification 

In this section, we present the results of the classification. Two image sets are 

applied. One is ten sample images shown in Figure 4.1, which ranking results based 

on directionality and regularity has been obtained by psychophysical experiments, 

seen in Section 5.1.3. The other includes one hundred testing images from M o D A 

image database, seen in Appendix 13. 

The performance of classification is estimated using False Positive (Type I 

errors), False Negative (Type II errors), True Positive and True Negative values [100-

102]. In Table 7.1, classification of a positive data as negative is considered as False 

Positive and classification of negative data as positive is considered False Negative. 

True Positive and True Negative are the cases where the positive is classified as 

positive and negative classified as negative respectively. 

Table 7.1 True Positive, False Positive, False Negative and False Positive 

Positive Negative 
Positive True Positive False Positive 
Negative False Negative True Negative 

The False Positive Rate, False Negative Rate, Sensitivity, Specificity and 

Accuracy were applied to evaluate the classification results in this research. 

Sensitivity and Specificity are the proportions of positive data classified as positive, 

negative data classified as negative respectively. Accuracy is the global representation 

of classifier performance. They are defined as the following relation. 
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False Positive Rate = False Positive / (False Positive + True Negative) (7.1 ) 

False Negative Rate = False Negative / (True Positive + False Negative) (7.2) 

Sensitivity = True Positive / (True Positive + False Negative) (7.3) 

Specìfìcity = True Negative / (False Positive + True Negative) (7.4) 

Accuracy = (True Positive + True Negative) / (True Positive + False Positive 

+ False Negative + True Negative) (7.5) 

In the following sections, vve show the results based on directionality and 

regularity respectively first. Then, the final classification results combining regularity 

and directionality are presented. 

7.1.1 Classification Based on Directionality 

Directionality features of images were presented by using the Radon transform 

of edge images. DER was obtained by analyzing the Radon transform of edge images 

in horizontal and vertical direction. A threshold of DER was set to classify images 

into directionality and non-directionality. According to the preliminary study on 

training images in Section 6.1.1.2, wallpaper images were classified into directionality 

and non-directionality by a threshold of DER - 0.I8. For test images, i f the value of 

D £ 7 ? > 0 . 1 8 , the image was labelled as having the property of directionality, 

otherwise, non-directionality. 

7. /. /. / Results 

The following gives the results of classification based on directionality from 

two sets of image data, which are ten sample images and one hundred images from 

M o D A collection respectively. 

I) Classificai ion results based on directionality for ten sample images 

Figure 7.1 shows the ranking results for ten sample images from directionality 

to non-directionality by subjects, obtained in Section 5.1.3. Figure 7.2 shows 

classification results based on directionality for the ten sample images. The classified 
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directional images are shown in Figure 7.2(a) and the classified non-directional 

images shown in Figure 7.2(b). DER values of each image are shown below the 

image. 
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Figure 7.1 Ranking from directionality to non-directionality by subjects 
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Figure 7.2 ClassiFication based on directionality for ten sample images 
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Compared to the ranking results by subjects, the top two images were 

classified into the class of directionality by the classification method, and the last four 

images were classified into the class of non-directionality, which was consistent with 

the subjects' ranking results 

2) Classification results based on directionality for one hundred test images 

One hundred wallpaper images shown in Appendix 13 were used to test the 

classification method based on directionality. These images include 33 directional 

images and 67 non-directional images as categorized by subjects. The False Positive, 

False Negative, True Positive and True Negative values for 100 test images are shown 

as in Table 7.2. False Positive and False Negative are the errors where the directional 

image is classified as non-directionality and non-direction image classified as 

directionality respectively. True Positive and True Negative are the cases where the 

directional image is classified as directionality and non-direction image classified as 

non-directionality respectively. 

Table 7.2 Classification results based on directionality for 100 test images 

Directionaliw Non-directionality 
Directionality True Positive =28 False Positive =5 

Non-directionality False Negative =5 True Negative =62 

The False Positive Rate, False Negative Rate, Sensitivity, Specificity and 

Accuracy were calculated using Eqs (7.1) to (7.5). 

False Positive Rate = 5 / (5+62) =7.5% 

False Negative Rate = 5 / (5+28) = 15.2% 

Sensitivity = 28 / (5+28) =84.8% 

Specificity = 62 / (5+62) = 92.5% 

Accuracy = (28+62) / (28+5+5+62) = 90% 

The classification results show 7.5% error for classifying directional images as 

non-directionality and 15.2% for classifying non-directional images as directionality, 

84.8% accurate classification for directionality and 92.5% accurate classification for 

non-directionality. The global classification accuracy is 90%. 
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Figure 7.3 shows some examples of correctly classified directional textures 

and non-directional textures. The misclassified textures are shown in Figure 7.4. 

DER values of each images are shown below the figure. 
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Figure 7.3 Some correctly classified directional textures and non-directional textures and 
their directionality représentations 
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(a) Misclassified non-directional textures 

(b) Misclassified directional textures 

Figure 7.4 Misclassified textures and their directionalîty représentations 

7.1.1.2 Analysis 

Figure 7.4(a) shows misclassified non-directional textures. For images (2), (3), 

(4) , and (5) in Figure 7.4(a) have repeated géométrie structures like rectangle and 

diamond. Their directional lines were captured by the Radon transform. According to 

the human visual perception, thèse images are more like regular images than 

directional images due to content in the géométrie structures. Therefore, thèse images 

were classified as non-directional images by subjects instead of directional images. 

For image (1), the vertical plant branches were captured by the Radon transform. Due 

to the visual interruption such as leaves and the random distribution of directional 

éléments, thèse images were classified as random images instead by subjects. 

Figure 7.4(b) shows misclassified directional textures. For images (3), (4) and 

(5) in Figure 7.4(b), they were classified into directional images by subjects due to the 

existing obvious bi-directional line segments crossing with each other. Therefore, 

thèse directionality features were not captured by the Radon transform easily. For 

images (1) and (2), there are only two directional lines in each direction, not covering 

whole image région. Therefore, the value of spatial distribution of directional lines 
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DER posino* s i s small. It leads to a smdWDER . The description of DER^^ _g and 

DER is in Section 6.1.1.1. 

Although there are some misclassifications, \ve still have 90% accuracy for 

classification based on directionality in the 100 testing images. Some examples of 

correcily classified images are shown in Figure 7.3. For the 10 sample images, the 

classified images mostly match the ranking based on directionality by subjects, as 

seen in Figure 7.2. 

From the analysis above we can see that this classification method classified 

images into directionality and non-directionality effectively. it is more suitable for 

those directional images that have many directional unes scattered over the whole 

image région. 

7.1.2 Classification Based on Regularity 

Regularily features of images were presented by calculating the corrélation 

coefficients of the images. As described in Section 6.1.2, regularity représentation 

REG was extracted from corrélation coefficients of an image. A threshold of REG 

was set to classify images into regularity and irregularity. According to a preliminary 

study on training images in Section 6.1.2.2, regulär and irregulär images were 

classified by a threshold of REG =0.23. For test images, if REG _ h >0.23 or 

REG _v>0.23, the image was labelled as regularity, otherwise, irregularity. 

7.1.2.1 Results 

The following will give two classification results based on regularity, which 

again are for ten sample images and one hundred images from the M o D A collection. 

/ ) Classification results based on regularity for ten sample images 

Figure 7.5 shows the ranking results by subjects for ten sample images from 

regularity to irregularity, obtained in Section 5.1. Figure 7.6 shows classification 
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results based on regularity for the ten sample images, The classified regular images 

are shown in Figure 7.6(a) and in Figure 7.6(b) for irregular images. The values of 

REG _h and REG _ v for each image are given under the image. 
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Figure 7.5 Ranking from regularity to irregularity by subjects 
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REG _ v :0.0223 
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(a) class 1 : Regularity 

(b) Class 2: Irregularity 

Figure 7.6 Classification based on regularity for ten samples images 

In comparison with the ranking results done by the subjects, the top four 

images were classified into the class of regularity, and the last four images were 

classified into the class of irregularity, which was very consistent with human 
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perception. The image ranked in the 5 l position was classified as irregulär, because 

we could not find periodic features by corrélation, though it looks regulär. 

2) Classification results based on regularity for one hundred test images 

One hundred wallpaper images shown in Appendix 13 were used as test 

samples, which include 59 regulär and 41 irregulär images. The False Positive, False 

Negative, True Positive and True Negative values for 100 test images are shown as in 

Table 7.3. False Positive and False Negative are the errors where the regulär image is 

classified as irregularity and irregulär image classified as regularity respectively. True 

Positive and True Negative are the cases where the regulär image is classified as 

regularity and irregulär image classified as irregularity respectively. 

Table 7.3 Classification results based on regularity for 100 test images 

Regularity Irregularity 
Regularity True Positive =53 False Positive =6 
Irregularity False Negative =6 True Negative =35 

The False Positive Rate, False Negative Rate, Sensitivity, Specificity and 

Accuracy were calculated using Eqs (7.1) to (7.5). 

False Positive Rate = 6 / (6+35) =14.6% 

False Negative Rate = 6 / (6+53) = 10.2% 

Sensitivity = 53 / (6+53) =89.8% 

Specificity = 35 / (6+35) = 85.4% 

Accuracy = (53+35) / (53+6+6+35) = 88% 

The classification results show 14.6% error for classifying regulär images as 

irregularity and 10.2% for classifying irregulär images as regularity, 89.8% accurate 

classification for regularity and 85.4% accurate classification for irregularity. The 

global classification accuracy is 88%. 
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Figure 7.7 shows some examples of correctly classified regularity and 

irregularity. The misclassified textures are shown in Figure 7.8. The values of REG _h 

and REG _ v of each image are shown under each image. 
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Figure 7.7 Some correctly classified regular textures and irregular textures and 

their REG values in horizontal and vertical direction rcspectively 
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Figure 7.8 Misclassified textures and thcir REG values in horizontal and vertical 
direction 

7.1.2.2 Anatysis 

Figure 7.8(a) shows misclassified irregular textures. These classification errors 

are mainly caused by one reason. For ail of images in Figure 7.8(a), they really have 

repeated patterns and their regularity features can be obviously presented by 

corrélation coefficients. But due to the boundary between repeated patterns is not 

clear, thèse repeated pattems are not easy to be detected by the subjects. Therefore, 

thèse images are normally classified into irregular images by subjects. 
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Figure 7.8(b) shows misclassified regular textures. Thèse classification errors 

could be caused by the following reason: for ail images in Figure 7.8(b) have repeated 

patterns according to human visual perception, but when you see them in détail, you 

could fmd différences in repeated patterns. Therefore thèse regular features to human 

perception could not be captured by corrélation. This might be why they were 

misclassified into irregularity. 

Although there are a few misclassifications, there stili is 88% accuracy for 

classification based on regularity in the 100 testing images. For 10 sample images, the 

classified images mostly match the ranking results perceived by subjects, as seen in 

Figure 7.6. 

From the analysis above, we can see that this classification method can 

classify images into regularity and irregularity effectively. It is considered more 

suitable for those regular images with repeated patterns being absolutely repeated in 

horizontal or vertical direction and repeated patterns having an obvious boundary as 

well as having at least two repeated cycles. 

7.1.3 Classification Based on Directionality and Regularity 

Wallpaper images were classified based on directionality first. The images 

were classified into directional images and non-directional images. Then, we 

classified non-directional images based on regularity. Finally, non-directional images 

were classified into regular images and random texture images. Figure 5.14 gives the 

flow of classification based on directionality and regularity. 

7.1.3.1 Results 

The following sections will give two classification results based on both 

directionality and regularity, working on sample images with numbers of ten and one 

hundred respectively. 
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I) Classification results based on directionality and regularity for ten sample 
images 

Figure 7.9 shows the classification results based on directionality and 

regularity for the ten sample images. The classified directional images are shown in 

Figure 7.9(a), the classified regular images shown in Figure 7.9(b) and the random 

texture images shown in Figure 7.9(c). 

(a) Class 1: Directional images 

(b) Class 2: Regular images 

(c) Class 3: Random texture images 

Figure 7.9 Classification based on directionality and regularity for ten sample images 

2) Classification results based on directionality and regularity for one hundred test 
images 

One hundred wallpaper images shown in Appendix 13 were used to test the 

classification method based on directionality and regularity. We considered 

directionality ftrst. The images were classified into directional images and non-

directional images. Then, we considered regularity in non-directional images. Finally, 

non-directional images were classified regular images and random texture images. 
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Therefore, 100 images include 33 directional images and the rest images include 26 

regulär images and 41 random texture images. The False Positive, False Negative, 

True Positive and True Negative values for each class were obtained against ail other 

classes, detailed in Section 7.1. The False Positive Rate, False Negative Rate, 

Sensitivity, Specifìcity and Accuracy for three classes were calculated using Eqs (7.1) 

to (7.5) respectively, as shown in Table 7.4. 

Table 7.4 Classification results based on directionality and regularity for 100 images 

Classes 
False 

Positive Rate 
False 

Negative Rate 
Sensitivity Specifìcity Accuracy 

Directionality 7.5% 15.2% 84.8% 92.5% 90% 
Regularity 8.1% 23.1% 76.9% 91.9% 88% 

Random 11.9% 17.1% 82.9% 88.1% 86% 

The following figure gives some samples of misclassification. 

(a) MisclassiFted non-directional textures into directional textures 

(b) Misclassified directional textures into non-directional textures 

1 » 
(2) (3) (4) 

mârn 
ri &r&#ïK,'J&it± bas 

(5) 

J **ij=i 

(c) Misclassified random textures into regulär textures 

(à) Misclassified regulär textures into random textures 

Figure 7.10 Misclassified textures 
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7.1.3.2 Analysis 

In Figure 7.10(b), the directional textures misclassified into non-directional 

textures were classified to regularity. In Figure 7.8(b), misclassified images (1), (4), 

(5) and (6) were classified into directional textures first. Therefore, the regular 

textures misclassified into random texture have only two images left, shown in Figure 

7.10(d). As seen in Figure 7.10, there were six images (4 in directionality group and 2 

in random group) that were misclassified into directionality or random from the 

regular textures, and seven images (1 in directionality group and 6 in regularity group) 

misclassified into directionality or regularity from the random textures. The reason for 

misclassification was expfained in Section 7.1.1.2 and 7.1.2.2. Therefore, there are 

90% accuracy for the class of directionality, 88% for the class of regularity, and 86% 

for the class of random textures. 

After classification, the image retrieval was performed in specifìed class by 

calculating similarity between feature vectors of a query image and the images in the 

specifìed class. The retrieval results will be presented in Section 7.2. 

7.2 Results for Image Retrieval after Classification 

In this section, we présent the retrieval results after classification by using five 

computational methods. Two sets of test samples were applied to evaluate the 

retrieval results by using five computational texture methods after classification. One 

test set consists of seven queries in ten sample images. The ranking results in terms of 

similarity to the query image perceived by subjects were obtained in Section 5.2.3. 

The other test set contains nine queries in a set of 100 images from the M o D A image 

collections. For each query, similar images ranked by subjects were obtained, given in 

Appendix 15. These ranking results were applied to evaluate the retrieval results 

performed by each of the five computational texture methods respectively, In order to 

test the effectiveness of image retrieval after classification, the comparison between 

retrieval results before and after classification is presented as follows. 
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7.2.1 Results 

Two retrieval results are given in this section for the data sets of seven queries 

in ten sample images and of nine queries in one hundred images. 

}) Retrieval results for seven queries in ten sample images 

The ranking results of the corresponding computational method for seven 

queries are given in Appendix 12, Tables A 12.1 to A 12.7 respectively. In Tables 

A12.1-A12.7, the first row is the ranking done by the subjects and is obtained in 

Section 5.2.3. The other rows are retrieval results after classification calculated by 

five computational methods respectively. The numbers from columns 2 to 10 in 

Tables A 12.1-A 12.7 are the label of ranking images in the order from most similar to 

less similar to query images. The last column is the coefficients of rank corrélation 

between computation methods and subjects. 

Finally, the rank corrélation between five computational methods and subjects 

for seven queries are listed in Table 7.5. The average of the rank corrélation for seven 

queries were calculated and shown in the last row of the table. These average values 

of rank corrélation r., were employed to evaluate the retrieval results by five 

computational methods after classification. 

Table 7.5 Coefficients of rank corrélation between subjects and computational methods 
for image retrieval after classification 

CLCM MRS AR FT WT GT 
Query 1 0.78 0.72 0.78 0.72 0.72 
Query 2 0.95 0.85 0.93 0.90 0.90 
Query 3 0.98 0.95 0.95 0.98 0.95 
Query 5 0.73 0.82 0.82 0.72 0.73 
Query 8 1.00 0.93 0.98 0.98 0.97 
Querv 9 0.98 0.93 0.95 0.98 0.97 

Query 10 0.83 0.88 1.00 0.83 0.88 

Average rs 0.S9 0.87 0.91 0.87 0.87 

In order to evaluate the performance of image retrieval after classification 

effectively, the comparison between retrieval results before classification and after 

classification are presented in Table 7,6. In Table 7.6, the second column is the 

average of rank corrélation r, of retrieval results before classification, which is 
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obtained in Section 5.3.2. The average of rank corrélation r,of retrieval results after 

classification are given in the third column. The improvement by comparing r, after 

classification with rs before classification are calculated and given in the last column. 

The average values for five computational texture methods are shown in last row. 

Table 7.6 Comparison of retrieval results before and after classification by using five 
computational texture methods 

Computational 
texture methods 

rs before 
classification 

rs after 
classification 

lmproved 

CLCM 0.15 0.89 0.74 
MRS AR 0.36 0.87 0.51 

FT 0.35 0.91 0.56 
\VT 0.13 0.87 0.74 
GT 0.17 0.87 0.70 

Average 0.23 0.88 0.65 

2) Retrieval results for fhe dataset with nine queries in one hundred images 

In order to evaluate CBIR efficiently, the second test was carried out using 

nine queries in one hundred sample images as presented in Appendix 13. The nine 

queries images were selected from M o D A collections, which include three directional 

images as shown in Figure 7.11 (images (3),(4) and (9)), three regularity images as 

shown in Figure 7.11 (images (1),(6) and (8)), and three random texture images as 

shown in Figure 7.11 (images (2), (5) and (7)). 

3 y e Y & $ Q f 

Figure 7.11 Nine query images selected from MoDA collections 

Thirteen volunteer observers were asked to get top nine ranking from one 

hundred testing images based on visual similarity to each query image. The rankings 
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are listed in Appendix 14. In Tables A14.1-A14.9, the entry Tnmof table expresses the 

ID number of images in 100 image database ranked in the w t h position by the ntb 

subject, where the subscription n, m of Tnm represents the number of row and column 

respectiveiy. 

Due to the ranking results obtained top ten ranking results frorn one hundred 

images, while the choice score method as described in Section 3.2.1 is only suitable to 

analyze ranking results for ail sample images, i.e. obtaining ten ranking images from 

ten samples, therefore the choice score method is not suitable for obtaining final 

retrieval results in this experiment. A statistics method of accumulated histogram vvas 

applied to obtain the final ranking results by subjects, which is to comprehensively 

consider the frequency of each image /' ranking in top M by N subjects and the ranking 

position for each image, The formula is expressed as follows. 

AHi=fjHistr (7.6) 

where Histr is the frequency of each image ranking in top r by /V subjects. In this 

experiment, M was set to 10 suggesting to get top 10 ranking results and N represents 

13 subjects. The final top ten ranking results for each query were obtained in the 

deceased order of ^//.values, as showed in Appendix 15. In Tables A15.1-A15.9, 

images are displayed in order of visual similarity from most similar to least similar to 

each query image. The number above the image is the ID number of the image in the 

100 image dataset, and the corresponding accumulated histogram is showed below 

each image. 

Thèse retrieval results for nine queries in one hundred wallpaper images by 

subjects were used to evalúate retrieval results in CBIR system for wallpaper images. 

Traditional évaluation methods for image retrieval, which are precision-recall 

and mean average précision [103], were applied to evalúate the retrieval results after 

classification by five computational methods. The following contents give the 
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définition of précision, recali and mean average précision, and the corresponding 

results for nine queries done by five computational methods respectively. 

With respect to a given query, the images can be partitioned into four sets, in 

terms of relevant or not, retrieved or not, shown as in Table 7.7. 

Table 7.7 Four sets for retrieving images 

Relevant Irrelevant 
Retrieved A B 

Not Retrieved C D 

Précision is defined as a fraction of retrieved images that are relevant to the 

user's information needed, and formulated as 

Percision = (7-7) 
A<uB 

Recali is defined as a fraction of relevant images retrieved, and expressed as 

Reca// = ^ — (7.8) 
A\JC 

Precision-recall graphs are applied to show the retrieval performance at each 

point in the ranking, The horizontal axis expresses recali and vertical axis expresses 

the corresponding précision at standard recali points 10%, 20% 100%. 

Average Précision (AP) is applied to measure the effectiveness of a ranked list 

for a single query, and defined as 

1 , v ' 

Averaee Précision (AP) = — V P. (7.9) 

where Nr is the total number of relevant images in a dataset, fj is the précision when 

retrie ve the i I h relevant image. 

After all queries are done, the mean of ail average précisions (MAP) is 

calculated. Mean Average Précision (MAP) is the overall performance measured and 

defined as 
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I M 

Mean Average Précision (MAP) = — V APi (7.10) 

where M is the total number of the queries, and APf is the average précision for the 

i t h query. 

In this study, we obtained the ranking results of top ten for nine queries ranked 

by subjects, as shown in Appendix 15. The ranked images for each query were 

assumed to be relevant to the corresponding query in the sample size of 100 image 

database. Based on this information, the following contents wi l l give the results of 

precision-recall graphs, Average Précision (AP) and Mean Average Précision (MAP) 

for the retrieval results after classification and before classification together with the 

comparison results before and after classification. 

• Retrieval results after classification 

The precision-recall graphs for nine queries after classification are shown in 

Figures A16.1 (b) - A16.9 (b) of Appendix 16 respectively. The curve with (-*-) 

expresses precision-recall by using the method of GLCM, (-o-) for MRSAR, (-x-) for 

FT, (-•-) for WT, and (- o-) for GT. The Average Précision (AP) of each query were 

calculated by using Eq.(7.9) and shown in Figure 7.12. ïn Figure 7.12, the horizontal 

axis expresses the number of nine queries and vertical axis expresses their 

corresponding average précision. 
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Figure 7.12 Average précision for nine queries after classification 
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The average precision for nine queries are listed in Table 7.8, Mean Average 

Precisions (MAP) was calculated by using Eq.(7.10) and shown in the last row in 

Table 7.8. 

Table 7.8 Average precision and mean average precision for nine queries after 
Classification 

Average 
Precision (AP) GLCM MRSAR FT WT GT 

Query 1 0.13 0.18 0.22 0.14 0.15 
Query 2 0.39 0.38 0.46 0.45 0.38 
Query 3 0.33 0.69 0.68 0.61 0.56 
Query 4 0.18 0.16 0.30 0.37 0.35 
QueryS 0.38 0.69 0.52 0.54 0.62 
Query 6 0.21 0.41 0.38 0.31 0.30 
Query 7 0.55 0.41 0.25 0.30 0.52 
Query 8 0.40 0.39 0.26 0.45 0.30 
Query 9 0.26 0.36 0.20 0.23 0.30 

Mean Average 
Precision (MAP) 0.31 0.41 0.36 0.38 0.39 

• Retrieval results before Classification 

Similarly, the precision-recall graphs for nine queries before Classification are 

shown in Figures A 16.1 (a) - A l 6.9 (a) of Appendix 16 respectively. The Average 

Precision (AP) of each query were calculated by using Eq.(7.9) and shown in Figure 

7.13. After obtaining the average precision for nine queries, the Mean Average 

Precisions (MAP) was calculated by using Eq.(7.10) and shown in the last row in 

Table 7.9. 
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Figure 7.13 Average precision for nine queries before Classification 
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Table 7.9 Average précision and mean average précision for nine queries before 
classification 

Average 
Precision (AP) 

GLCM M RS AR FT WT GT 

Query 1 0.10 0.15 0.19 0.13 0.11 
Query 2 0.17 0.19 0.23 0.23 0.20 
Querv 3 0.10 0.46 0.55 0.37 0.39 
Querv 4 0.11 0.08 0.27 0.17 0.20 
Quer\; 5 0.23 0.49 0.26 0.34 0.41 
Query 6 0.11 0.22 0.26 0.13 0.12 
Query 7 0.49 0.33 0.11 0.17 0.32 
Query 8 0.27 0.15 0.12 0.23 0.20 
Query 9 0.17 0.19 0.11 0.13 0.12 

Mean Average 
Precision(MAP) 

0.19 0.25 0.23 0.21 0.23 

• Comparison retrieval results before and after classification 

In order to fiirther evaluate the effectiveness of image retrieval after 

Classification, the comparison betvveen retrieval results before and after classification 

is fulfilled in Table 7.10. In Table 7.10, the second column is the Mean Average 

Precision (MAP) of retrieval results before classification, whilst the Mean Average 

Precision (MAP) of retrieval results after classification are shown in the third column. 

The last column shows the improvement by comparing M A P after with before 

classification. The average values for five computational texture methods are shown 

in the last row. 

Table 7.10 Comparison retrieval results before and aficr classification by using five 
computational texture methods for nine queries in dataset of one hundred images 

Computational 
texture methods 

MAP before 
classification 

MAP after 
classification 

Improved 

GLCM 0.19 0.31 0.12 
MRS AR 0.25 0.41 0.16 

FT 0.23 0.36 0.13 
WT 0.21 0.38 0.17 
GT 0.23 0.39 0.16 

Average 0.22 0.37 0.15 

The following fìgures show two examples. One is comparison retrieval results 

before and after Classification by using GLCM for query 3, shown in Figure 7.14.The 

other is comparison retrieval results before and after Classification by WT for query 7, 

shown in Figure 7.15. Figures 7.14(a) and 7.15 (a) are the ranking results done by 

subjects, whilst Figures 7.14(b) and 7.15 (b) are the retrieval results before 
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Classification. Figures 7.14(c) and 7.15 (c) show the retrieval results after 

Classification. 

(b) Retrieval results before Classification by using GLCM 

RH» 
«•« i>- 5 

(c) Retrieval results before Classification by using GLCM 

Figure 7.14 Comparison retrieval results before and after Classification by G L C M for 
qucry 3 
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Query 7 

j p Wf 
mm mm Ü H 

(a) Ranking results by subjects 

~5~ 

(b) Retrieval results before classification using WT 

K l 
(c) Retrieval results after classification by using WT 

Figure 7.15 Comparison retrieval results before and after classification by WT for query 
7 

• Query tinte 

Table.7.11 shows the average query time for nine queries in one hundred 

images using five texture methods respectively. A l l methods run in Matlab 6.5 with 

C P U of Inter Pentium M 1.4GHz and 1GB R A M . The second column is the average 
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query time for five methods before classification, whilst the average query time after 

classification is shown in the third column. 

Table 7.11 Query time 

Computational 
texture methods 

Time for retrieval 
before classification 

(Seconds) 

Time for retrieval 
after classification 

(Seconds) 
GLCM 4.3 3.5 
MRS AR 22.1 21.4 

FT 2.S 2.1 
WT 2.3 1.8 
GT 26.8 26.0 

7.2.1 Analysis 

Based on the retrieval results shown above, the analysis and évaluation in 

terms of visual similarity by subjects form two parts. One is to evaluate the 

performance of image retrieval after and before classification; second is to investigate 

the goodness of five computational texture methods in performing image retrieval 

after classification. 

• Image retrieval after classification 

Considering the seven queries in the dataset of ten sample images, the average 

rank corrélation with subjects' ranking results for ail five methods is 0.88, as seen in 

Table 7.6, whilst the retrieved results before classification is only 0.23, demonstrating 

a big improvement when comparing with the retrieved results before classification. 

For the image dataset with nine queries and one hundred samples, the average 

of Mean Average Précision (MAP) for ail five methods is 0.37, as shown in Table 

7.10. Since the retrieval results before classification is 0.22, 0.15 improvement was 

achieved. According to the visual évaluation, the retrieval results after classification 

have better match than before classification, as illustrateci for the two examples shown 

in Figure 7.14 and Figure 7.15. The reason could be that the retrieved images ranked 

in front belong to the same class as the query, therefore the visual match of images 

retrieved after classification are better than that before classification, even i f the 

average M A P for retrieval after classification only has 0.37. 
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According to the Table 7.11, the average query time after classification is 

quicker than before classification. Since similarity measurement was performed in the 

corresponding class group instead of whole image dataset. The methods of MRS AR 

and GTtake long time (over 20s) to extract the features of query image. 

• Evaluation of fwe computational texture methods 

According to average rs and M A P for all queries in Tables 7.5 and 7.8, it is 

difficult to conclude which computational method is better, due to the fact that the 

values for each method are similar. Based on the values of rs and A P for individuai 

query, it is also hard to decide which method is suitable for what type of query image. 

This is because that thèse five texture methods can not represent texture features 

(directionality, regularity and coarseness) for wallpaper images well, as proved in 

Section 5.3.1. Therefore, ail methods can not perform image retrieval ideally in the 

way human perception performs. 

We can conclude that retrieval for wallpaper images after classification has 

better performance than retrieval before classification. By using five texture methods, 

we couldn't get ideal retrieval results after classification though some improvement 

had been seen than before classification. Therefore, a new way to represent texture 

features for wallpaper images is required in the future. 

7.3 A GUI for Wallpaper Images 

The following interface was developed to perform Content-Based Image 

Retrieval (CBIR) for wallpaper images using M A T L A B [36]. 
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Figure 7.16 Interface of content-based image retrieval for wallpaper images 

The system is running according to the following steps. 

• Query Création 

A n image is selected to be a query from the list of images shown in the left 

area. This list is obtained from the M o D A collection. The query image is shown in the 

upper middle area. In the future, a query image can also be created by scanning or a 

sketch. 

• Classification results 

When the "Classification" button is pressed, the class of the query image is 

shown in right of "Classification Resuit*. A l l the images belonging to the same class 

as the query image are shown in the upper right area. When the button "'Prev 5" or 

"Next 5" is pressed. thèse images will be shown on the screen in a group of 5 images 

each time. When the "Output" button is clicked, the classification results will be saved 

into a file in terms of image names. 
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• Retrieval results 

When the computational texture method from 'Retrieval Method' in the 

bottom middle area is selected, the corresponding results is shown at the bottom right 

area retrieved using this method. Again, when the button "Prev 5" or ''Next 5"is 

clicked, the previous or next 5 similar images are shown. A l l the similar image 

numbers will be saved into a file once the "Output" button is clicked. 

Using the interface shown in Figure 7.16, users can get the image retrieval 

results calculated using each of five texture models and the classification results of a 

query image, whereby the images from the same class from a database are also shown 

on the screen for users to browse. 

7.4 Summary 

In this chapter, we presented the results of image classification and image 

retrieval. The results of psychophysical experiments obtained in Chapter 5 served as 

benchmarks for evaluation of each methodology. 

In order to evaluate the classification methods for directionality and regularity, 

we examined classification based on directionality and regularity respectively in a 

dataset with one hundred samples of wallpaper images, as seen in Table 7,2 and 7.3. 

The classification results combining both features are shown in Table 7.4. On the 

other hand, for the dataset with ten sample images, their rank results based on 

directionality and regularity perceived by subjects were obtained from psychophysical 

experiments. In principle, the classification results for this dataset match the ranking 

results ordered by subjects. 

For image retrieval, we presented the retrieval results by using five 

computational texture methods for the two datasets, i.e., seven queries with ten 

sample images and nine queries with one hundred images. According to the data 

analysis and visual effect, we concluded that image retrieval for wallpapers after 

classification performed better than before classification. As for the five texture 

methods, they did not retrieve images matching human perception, even after 
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classification, although an improvement was achieved with the classification. It was 

therefore concluded that a new texture représentation model for wallpaper images 

needs to be developed in the future in order to match the retrieval results similar to 

human perception. 
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8. Conclusions and Future Work 

This Chapter will draw together conclusions from my research. The 

contributions to knowledge are presented and the possible directions for future work 

are also discussed. 

8.1 Conclusions 

The aims of this research were two fold. One aim was to investigate human 

perception in conducting image retrieval, and another was to evaluate the performance 

of five existing texture models in performing Content-Based Image Retrieval (CBIR) 

in comparison with human perception. These five models have been widely applied in 

retrieving texture feature of images. M o D A wallpaper images were employed in the 

research, of which most of images can be categorised as having texture-like patterns. 

Therefore, texture structure is the main content to be studied in this research, leading 

to the development of a perception-driven CBIR system for M o D A collections. 

Two psychophysical experiments were designed and conducted. The first one 

was to study a human's response in perceiving each individual component of a texture 

feature, i.e., coarseness, regularity and directionality. The second experiment was to 

investigate the way in which a subject sees similarity of two images in terms of 

texture patterns. A statistic method for scoring was introduced to rank subjects' data 

when ranking images in terms of coarseness, regularity and directionality 

respectively, and when ordering images in terms of similarity to the query image. The 

results showed that visual components of regularity and directionality played a more 

important role in perceiving similar images than coarseness, with rank correlation 

being 0.75, 0.8I, and 0.64 respectively. Since 0.75 is the threshold of significance, 

regularity and directionality are the main texture features to be studied in the 

remaining work. 

Five computational models of texture representations were studied based on 

the two psychophysical experiments conducted above. They are Grey Level Co­

occurrence Matrix ( G L C M ) , Multi-Resolution Simultaneous Auto-Regressive 
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( M R S A R ) model, Fourier Transform (FT), Wavelet Transform (WT) and Gabor 

Transform (GT). Texture feature vectors are computed using these five models and 

are compared with subjects' data. It was found that none of these models was 

consistent with the subjects' data, with mean coefficients of rank correlation being 

0.15, 0.36, 0.35, 0.13 and 0.17 for G L C M , M R S A R , FT, WT, and GT respectively. It 

was therefore decided to introduce classification before applying any of these models 

in performing CBIR for M o D A images. 

According to the results of psychophysical experiments, users focued on 

directionality and regularity when perceiving a texture rather than coarseness. 

Classification was then carried out on directionality first (Class I). Then, the 

remaining non-directional data were further classified into groups of with regular 

(Class 2) and random texture patterns (Class 3). Image retrieval was conducted in the 

classified group where a query image falls into. In comparison with the subjects' data, 

the accuracy for classifying directionality, regularity, and random textures were 90%, 

88% and 86% respectively. After classification, the retrieval performance of the five 

models in terms of Mean Average Precision (MAP) were 0.31, 0.41, 0.36, 0.38 and 

0.39 for G L C M , M R S A R , FT, "WT, and GT respectively, whereas M A P are 0.19, 

0.25, 0.23, 0.21, and 0.23 respectively before the classification, implying some 

degrees of improvement. Although the improvement is not huge, every model's 

performance was improved. It is therefore concluded that classification is necessary 

when using any of these five models to take part in CBIR for the M o D A collection. In 

order to match human perception, new models are needed to represent texture 

features. 

8.2 Contributions 

This dissertation presents the approach of human perception oriented Content-

Based Image Retrieval (CBIR) for wallpaper images. This research contributes to 

knowledge in the following ways: 
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• To CBIR 

• Paving some way for future application of CBIR based on human 

visual perception. Via the psychophysical experiments, we can study 

human visual perception for images. The experimental results can be 

applied to evaluate the computational method of visual features and 

choice the better visual feature representations for image collection. 

Through analyzing the experimental results, we can learn which visual 

features perform the more important role in visual similarity to help us 

weight the visual features to match the human visual perception. 

• Evaluating the performances of five popular computational methods in 

texture representations and similarity measurements in relation to 

human perception for wallpaper images. Though the limited 

parameters were selected in each method, we provided the evaluation 

method based on human perception via comparing the rank correlation 

between computational methods and human perception. 

• Improving the retrieval performance for wallpaper images based on 

human visual perception, as seen in Table 7.10. 

• To classification 

• Applying Radon transform to represent the feature of directionality to 

classify images. Radon transform presents not only the statistical 

distribution but also spatial distribution of directional lines. This 

overcomes the drawbacks of traditional statistical descriptions of 

directionality and better represents the directionality for wallpaper 

images, as seen in Section 6.1.1. 

• Defining a regularity representation from correlation sequence to 

classify images based on regularity in Eq. (6.11). Through considering 

the magnitudes (in Eq. (6.9)) and positions (in Eq. (6.10)) of the peaks 

in correlation sequence, we can easy distinguish the regularity with 

periodic peaks and irregularity with flat curve. 
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• Designing classification trees based on human visual perception in 

Figure 6.11. The directionality character is first take into account for 

classification, since this plays a slightly more important role in visual 

similarity for wallpaper images than regularity, as proved in Table 5.3 

and Section 6.1.3. 

• To MoDA images 

• Providing a CBIR system to enhance their current text-based image 

retrieval system and classifying the image database based on 

directionality and regularity automatically. 

• Better understanding of relationship between visual texture features 

and visual similarity for wallpaper collections, that is the directionality 

and regularity play a more important role than coarseness in visual 

similarity. Comparing to regularity, the directionality is slight 

important, as proved in Table 5.3. 

8.3 Future Work 

in this study, all the findings obtained from psychophysical experiments were 

based on a limited dataset, i.e., ten and one-hundred sample images for testing visual 

feature perception and visual similarity, which is in the consideration that subjects 

might get tired if more images are included. In the future, tests should replicate this 

study with large sample sizes to confirm, verify or contradict the findings. When 

doing similarity experiments, for some queries, only a few subjects (25%) had similar 

views, whilst the majority of subjects ranked images in different ways. These queries 

were removed in order to make the experimental results reflect the common sense of 

human perception. Further experiments are needed using similar query images. A 

larger subject team is also needed to do those experiments. 

Although in general, none of those five models shows consistent retrieval 

results with that by subjects. Some models do perform better for some individual 

components of texture feature than the others. Future work should include 

135 



Chapter 8. Conclusions and Future Work 

combinations of some or ail of thèse to form a better représentation of texture 

consistent with human perception, 

In this dissertation the scope of the study is limited to texture feature analysis 

for wallpaper images. Colour is the other important feature to represent the wallpaper 

images. In the future, the original colour images should be utilised and a colour 

représentation should be formulated simulating human colour perception. Finally, 

based on human visual perception, a CBIR System combining colour and texture 

features should be developed. 

In this research, we focused on CBIR for wallpaper images. In the future, the 

method of CBIR based on human visual perception could be extended to the retrieval 

of other types of images. 
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Appendices 

Appendix 1: p-z Conversation Table 

In Table A l , the p values change from 0.01 to 0.995, the corresponding z 

values are show the below row. 

Table A1 : p-z conversation table 1 0 

p - z values 

P 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

z -2.33 -2.05 | -1.88 -1.75 -1.64 -1.55 -1.48 \AV[ -1.34 -1.28 ; 

p 0.) 1 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 o.o2 : 

z -1.23 -1.18 -1,13 -1.08 -1.04 -0.99 -0.95 -0.92 -0.88 -0.84 . 

p 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 | 

z -0.81 -0.77 -0.74 -0.71 -0.67 -0.64 -0.61 -0.58 -0.55 -0.52 | 

p 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 

z -0.5 -0.47 -0.44 -0.41 -0.39 -0.36 -0.33 -0.31 -0.28 -0.25 

,p 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 
1 
' z -0.23 -0.2 -0.18 -0.15 -0.13 -0.1 -0.08 -0.05 -0.03 0 

p 0.5 t 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 

( z 0.03 0.05 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25 

P 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 

1 7 0.28 0.31 0.33 0.36 0.39 0.41 0.44 0.47 0.5 0.52 
r 
p 

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 

z 0.55 0.58 0.61 0.64 0.67 0.71 0.74 0.77 0.81 0.84 

. p 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 

z 0.88 0.92 0.95 0.99 1.04 1.08 1.13 1.18 1.23 1.28 

P 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.995 

z 1.34 r 1,41 1.48 1.55 1.64 1.75 1.88 2.05 2.33 2.58 

10.hiip://www-tfhrc.uov/safetv/pubs/Q3065/09.htm 146 
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Appendix 2: Rankings Based on Texture Features 

Contents: 

Table A2.1: Rankings based on coarseness 
Table A2.2: Rankings based on rcgulariry 
Table A2.3: Rankings based on directionality 

In Tables A2.1, A2.2 and A2.3, the entry Tnmof table expresses the ranking of 

the m t h image by the nxh subject, where the subscription n, m of Tnm represents the 

number of row and column respectively. 

Table A2.1 Rankings based on coarseness 

Subjccts 
Ranks Assigned for Coarseness 

Subjccts 
1 2 3 4 5 6 7 8 9 10 

Subject 1 9 6 3 8 1 5 10 7 4 2 

Subject 2 9 5 2 1 10 8 6 7 4 3 

Subject 3 8 2 1 9 6 4 6 3 5 10 

Subject 4 9 4 1 8 6 7 10 2 j 5 

Subject 5 6 2 1 9 6 5 10 4 3 8 

Subject 6 10 6 3 2 8 1 9 4 5 7 

Subject 7 9 3 1 8 5 7 10 2 4 6 

Subject 8 1 8 2 7 3 9 6 10 5 4 

Subject 9 10 2 1 7 6 5 9 j 4 8 

Subject 10 10 4 1 6 7 5 9 2 3 S 

Subject 11 9 4 1 8 6 5 10 3 2 7 

Subject 12 10 4 1 8 7 } 9 2 6 

Subject 13 9 4 1 8 6 5 10 3 2 7 
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Table A2.2 Rankings based on regularity 

Subjects 
Ranks Assigned for Regularity 

Subjects 
1 2 3 4 5 6 7 8 9 10 

Subject 1 S 4 9 10 2 5 3 7 6 1 

Subject 2 2 10 7 9 1 4 8 5 6 3 

Subject 3 3 8 9 5 2 4 7 10 6 1 

Subject 4 I 9 7 5 3 4 10 8 6 2 

Subject 5 6 7 10 4 3 1 5 8 9 2 

Subject 6 2 7 9 5 3 4 6 10 8 1 

Subject 7 2 5 9 7 4 10 8 6 1 

Subject 8 1 7 8 6 3 5 4 10 9 2 

Subject 9 -* 9 7 5 2 6 4 10 8 1 

Subject 10 2 7 10 6 3 4 5 8 9 1 

Subject 1 f 1 10 8 5 4 3 6 9 7 2 

Subject 12 1 7 10 6 2 4 5 9 8 3 

Subject 13 3 7 5 10 1 4 9 8 6 2 

Table A2.3 Rankings based on directionality 

Subjects 
Ranks Assigned for Directionality 

Subjects 
1 2 T 

J 4 5 6 7 8 9 10 

Subject 1 1 10 6 8 3 4 5 9 7 2 

Subject 2 1 9 6 10 4 2 5 7 8 -, j 

Subject 3 2 6 9 8 5 4 3 10 7 l 

Subject 4 1 9 10 5 2 4 6 8 7 3 

Subject 5 2 9 7 6 3 4 5 10 8 1 

Subject 6 2 8 10 6 4 5 3 9 7 1 

Subject 7 2 7 9 6 4 3 5 10 8 1 

Subject 8 1 10 8 4 3 6 5 9 7 2 

Subject 9 1 9 7 5 4 6 3 10 8 2 

Subject 10 1 7 8 6 -* 
j 4 5 9 10 2 

Subject 11 1 8 7 5 3 4 6 9 10 2 

Subject 12 1 10 8 5 6 3 4 9 7 2 

Subject 13 1 9 10 7 3 4 6 8 5 2 
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Appendix 3: Coefficient Matrix of Rank Corrélation 

between Subjects' Rankings Based on Texture 

Features 

Contents: 
Table A3.1 Coefficient matrix of rank corrélation between subjects' rankings based on coarseness 
Table A3.2 Coefficient matrix of rank corrélation between subjects' rankings based on regularity 
Table A3.3 Coefficient matrix of rank corrélation between subjects' rankings based on 
directionality 

In Tables A3.1 to A3.3, the entry Tnmof table expresses the coefficient of rank 

corrélation between mth subject and nlh subject, where the subscription n, m of Tnm 

represents the number of row and column respectively. 

Table A3.1Coefficient matrix of rank corrélation between subjects' rankings based on coarseness 

rs 1 2 3 4 5 6 7 8 9 10 1L 12 13 
1 1.00 0.04 0.11 0.56 0.38 0.16 0.55 0.27 0.39 0.32 0.53 0.47 0.53 
2 0.04 1.00 -0.06 0.31 0.02 0.44 0.21 -0.03 0.26 0.36 0.22 0.31 0.22 
3 0.11 -0.06 1.00 0.63 0.81 0.36 0.71 -0.28 0.86 0.77 0.75 0.75 0.75 
4 0.56 0.31 0.63 1.00 0.81 0.41 0.98 -0.09 0.87 0.88 0.94 0.95 0.94 
5 0.38 0.02 0.81 0.81 1.00 0.32 0.85 -0.00 0.86 0.79 0.90 0.81 0.90 
6 0.16 0.44 0.36 0.41 0.32 1.00 0.38 -0.54 0.59 0.70 0.54 0.58 0.54 
7 0.55 0.21 0.71 0.98 0.85 0.38 1.00 -0.12 0.92 0.88 0.93 0.93 0.93 
8 0.27 -0.03 -0.28 -0.09 -0.00 -0.54 -0.12 1.00 -0.32 -0.36 -0.15 -0.28 -0.15 
9 0.39 0.26 0.86 0.87 0.86 0.59 0.92 -0.32 1.00 0.95 0.93 0.93 0.93 
10 0.32 0.36 0.77 0.88 0.79 0.70 0.88 -0.36 0.95 1.00 0.94 0.95 0.94 
11 0.53 0.22 0.75 0.94 0.90 0.54 0.93 -0.15 0.93 0.94 1.00 0.96 1.00 
12 0.47 0.31 0.75 0.95 0.81 0.58 0.93 -0.28 0.93 0.95 0.96 1.00 0.96 
13 0.53 0.22 0.75 0.94 0.90 0.54 0.93 -0.15 0.93 0.94 1.00 0.96 1.00 

Table A3.2 Coefficient matrix of rank corrélation between subjects' rankings based on regularity 

rs 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 1.00 0.32 0.44 0.05 0.50 0.43 0.41 0.42 0.43 0.53 0.19 0.44 0.45 
2 0.32 1.00 0.66 0.78 0.39 0.58 0.67 0.54 0.56 0.62 0.70 0.65 0.84 
3 0.44 0.66 1.00 0.85 0.76 0.95 0.83 0.83 0.87 0.87 0.89 0.88 0.68 
4 0.05 0.78 0.85 1.00 0.50 0.79 0.84 0.66 0.67 0.70 0.87 0.72 0.75 
5 0.50 0.39 0.76 0.50 1.00 0.79 0.55 0.67 0.66 0.82 0.70 0.75 0.35 
6 0.43 0.58 0.95 0.79 0.79 1.00 0.81 0.94 0.89 0.95 0.90 0.94 0.61 
7 0.41 0.67 0.83 0.84 0.55 0.81 1.00 0.65 0.55 0.76 0.68 0.75 0.78 
8 0.42 0.54 0.83 0.66 0.67 0.94 0.65 1.00 0.92 0.93 0.85 0.94 0.56 
9 0.43 0.56 0.87 0.67 0.66 0.89 0.55 0.92 1.00 0.84 0.84 0.83 0.56 
10 0.53 0.62 0.87 0.70 0.82 0.95 0.76 0.93 0.84 i.00 0.85 0.95 0.56 
11 0.19 0.70 0.89 0.87 0.70 0.90 0.68 0.85 0.84 0.85 1.00 0.87 0.59 
12 0.44 0.65 0.88 0.72 0.75 0.94 0.75 0.94 0.83 0.95 0.87 1.00 0.59 
13 0.45 0.84 0.68 0.75 0.35 0.61 0.78 0.56 0.56 0.56 0.59 0.59 1.00 

149 



Appendices 

Table A3.3 Coefficient matrix of rank corrélation between subjects' rankings based on 

directionality 

r, 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1.00 0.90 0.78 0.82 0.94 0.81 0.83 0.85 0.87 0.84 0.85 0.85 0.85 
2 0.90 1.00 0.72 0.68 0.78 0.66 0.73 0.61 0.66 0.77 0.75 0.75 0.75 
3 0.78 0.72 1.00 0.72 0.84 0.93 0.93 0.71 0.82 0.84 0.75 0.81 0.79 
4 0.82 0.68 0.72 1.00 0.87 0.87 0.87 0.92 0.81 0.87 0.87 0.83 0.94 
5 0.94 0.78 0.84 0.87 1.00 0.89 0.94 0.92 0.93 0.93 0.94 0.89 0.84 
6 0.81 0.66 0.93 0.87 0.89 1.00 0.93 0.88 0.90 0.87 0.81 0.88 0 88 
7 0.83 0.73 0.93 0.87 0.94 0.93 1.00 0.83 0.85 0.94 0.90 0.88 0.85 
8 0.85 0.61 0.71 0.92 0.92 0.88 0.83 1.00 0.94 0.84 0.88 0.88 0.85 
9 0.87 0.66 0.82 0.81 0.93 0.90 0.85 0.94 1.00 0.88 0.88 0.89 0.76 
10 0.84 0.77 0.84 0.87 0.93 0.87 0.94 0.84 0.88 1.00 0.98 0.82 0.78 
11 0.85 0.75 0.75 0.87 0.94 0.81 0.90 0.88 0.88 0.98 1.00 0.83 0.76 
12 0.85 0.75 0.81 0.83 0.89 0.88 0.88 0.88 0.89 0.82 0.83 1.00 0.83 
13 0.85 0.75 0.79 0.94 0.84 0.88 0.85 0.85 0.76 0.78 0.76 0.83 1.00 
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Appendix 4: Rankings Based on Texture Features 

after Pre-processing 

Contents: 

Table A4.1 Coefficient matrix of rank corrélation between subjects' rankings based on 
coarseness 
Table A4.2 Coefficient matrix of rank corrélation between subjects' rankings based on regularity 
Table A4.3 Coefficient matrix of rank corrélation between subjects' rankings based on 
directionality 

In Tables A4.1(a), A4.2(a) and A4.3(a), the entry Tlimof table expresses the 

ranking of the m l h image by the nlh subject, where the subscription n, m of Tnm 

represents the number of row and column respectively. 

T 

In Tables A4.1 (b), A4.2 (b) and A4.3 (b), the entry n m o f table expresses the 

coefficient of rank corrélation between mlh subject and nlh subject, where the 
T 

subscription n, m of "m represents the number of row and column respectively. 

Table A4.1 Rankings and corresponding coefficient matrix based on coarseness 

Subjects 
Ranks Assigned for Coarseness 

Subjects 
1 2 4 5 6 7 8 9 10 

Subject 3 8 2 1 9 6 4 6 3 5 10 

Subject 4 9 4 1 8 6 7 10 2 3 5 

Subject 5 6 2 1 9 6 5 10 4 3 8 

Subject 7 9 3 1 8 5 7 10 2 4 6 

Subject 9 10 2 1 7 6 5 9 T 

J 4 8 

Subject 10 10 4 1 6 7 5 9 2 3 8 

Subject 11 9 4 1 8 6 5 10 3 2 7 

Subject 12 10 4 1 S 7 5 9 2 3 6 

Subject 13 9 4 1 8 6 5 10 3 2 7 

(a) Rankings based on coarseness 
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3 4 5 7 9 10 11 12 13 
^ 
J 1.00 0.63 0.81 0.71 0.86 0.77 0.75 0.75 0.75 
4 0.63 1.00 0.81 0.98 0.87 0.88 0.94 0.95 0.94 
5 0.81 0.81 1.00 0.85 0.86 0.79 0.90 0.81 0.90 
7 0.71 0.98 0.85 1.00 0.92 0.88 0.93 0.93 0.93 
9 0.86 0.87 0.86 0.92 1.00 0.95 0.93 0.93 0.93 
10 0.77 0.88 0.79 0.88 0.95 1.00 0.94 0.95 0.94 
11 0.75 0.94 0.90 0.93 0.93 0.94 1.00 0.96 1.00 
12 0.75 0.95 0.81 0.93 0.93 0.95 0.96 1.00 0.96 
13 0.75 0.94 0.90 0.93 0.93 0.94 1.00 0.96 1.00 

(b) Coefficient matrix of rank corrélation between subjects' rankings 

Table A4.2 After pre-processing, rankings and corresponding coefficient matrix based on 

regularity 

Subjects 
Ranks Assigned for Regularity 

Subjects 
1 2 4 5 6 7 8 9 10 

Subject 3 j 8 9 5 2 4 7 10 6 1 

Subject 6 2 7 9 5 3 4 6 10 8 1 

Subject 8 1 7 8 6 3 5 4 10 9 2 

Subject 9 3 9 7 5 2 6 4 10 8 1 

Subject 10 2 7 10 6 3 4 5 8 9 1 

Subject 11 1 10 8 5 4 3 6 9 7 2 

Subject 12 1 7 10 6 2 4 5 9 8 3 

(a) Rankings based on regularity 

3 6 8 9 10 11 12 

3 1.00 0.95 0.83 0.87 0.87 0.89 0.88 
6 0.95 1.00 0.94 0.89 0.95 0.90 0.94 
8 0.83 0.94 1.00 0.92 0.93 0.85 0.94 
9 0.87 0.89 0.92 1.00 0.84 0.84 0.83 
10 0.87 0.95 0.93 0.84 1.00 0.85 0.95 
11 0.89 0.90 0.85 0.84 0.85 1.00 0.87 
12 0.88 0.94 0.94 0.83 0.95 0.87 1.00 

(b) Coefficient matrix of rank corrélation between subjects' rankings 
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Table A4.3 After pre-processing, rankings and corresponding coefficient matrix based on 

directionality 

Subjects 
Ranks Assigned for Directionality 

Subjects 
1 2 3 4 5 6 7 8 9 iO 

Subject 1 1 10 6 8 3 4 5 9 7 2 

Subject 3 2 6 9 8 5 4 3 10 7 1 

Subject 4 1 9 10 5 2 4 6 8 7 3 

Subject 5 2 9 7 6 3 4 5 10 8 1 

Subject 6 2 8 10 6 4 5 3 9 7 1 

Subject 7 2 7 9 6 4 *> 

j 5 10 8 1 

Subject 8 1 10 8 4 3 6 5 9 7 2 

Subject 9 1 9 7 5 4 6 3 10 8 2 

Subject 10 1 7 8 6 3 4 5 9 10 2 

Subject 11 1 8 7 5 3 4 6 9 10 2 

Subject 12 1 10 8 5 6 ^ 4 9 7 2 

Subject 13 9 10 7 3 4 6 8 5 2 

(a) Rankings based on directionality 

1 3 4 5 6 7 8 9 IO 11 Î2 13 
1 1.00 0.78 0.82 0.94 0.81 0.83 0.85 0.87 0.84 0.85 0.85 0.85 

0.78 1.00 0.72 0.84 0.93 0.93 0.71 0.82 0.84 0.75 0.81 0.79 
4 0.82 0.72 1.00 0.87 0.87 0.87 0.92 0.81 0.87 0.87 0.83 0.94 
5 0.94 0.84 0.87 1.00 0.89 0.94 0.92 0.93 0.93 0.94 0.89 0.84 
6 0.81 0.93 0.87 0.89 1.00 0.93 0.88 0.90 0.87 0.81 0.88 0.88 
7 0.83 0.93 0.87 0.94 0.93 1.00 0.83 0.85 0.94 0.90 0.88 0.85 
8 0.85 0.71 0.92 0.92 0.88 0.83 1.00 0.94 0.84 0.88 0.88 0.85 
9 0.87 0.82 0.81 0.93 0.90 0.85 0.94 1.00 0.88 0.88 0.89 0.76 
10 0.84 0.84 0.87 0.93 0.87 0.94 0.84 0.88 1.00 0.98 0.82 0.78 
11 0.85 0.75 0.87 0.94 0.81 0.90 0.88 0.88 0.98 1.00 0.83 0.76 
12 0.85 0.81 0.83 0.89 0.88 0.88 0.88 0.89 0.82 0.83 1.00 0.83 
13 0.85 0.79 0.94 0.84 0.88 0.85 0.85 0.76 0.78 0.76 0.83 1.00 

(b) Coefficient matrix of rank corrélation berween subjects' rankings 
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Appendix 5: Rankings for Ten Queries 

Contents: 

Table A5.1 Rankings for query 1 
Table A5.2 Rankings for query 2 
Table A5.3 Rankings for query 3 
Table A5.4 Rankings for query 4 
Table A5.5 Rankings for query 5 
Table A5.6 Rankings for query 6 
Table AS.7 Rankings for query 7 
Table A5.8 Rankings for query 8 
Table A5.9 Rankings for query 9 
Table A5.10 Rankings for query 10 

In Tables A5.1- A5.10, The entry 7"nmof table expresses the ranking of the mth 

image by the nth subject, where the subscription n, m of Tnm represents the number of 

row and column respectively. 

Table A5.1 Rankings for query 1 

Subjects 
Ranks Assigned for Query 1 

Subjects 
2 3 4 5 6 7 8 9 10 

Subject 1 6 8 5 1 3 4 9 7 2 

Subject 2 6 9 5 2 3 1 8 7 4 

Subject 3 6 8 5 3 4 1 9 7 2 

Subject 4 7 4 8 9 6 1 5 3 2 

Subject 5 7 6 5 2 4 3 9 8 1 

Subject 6 6 8 5 2 7 T 

J 9 4 1 

Subject 7 4 9 7 1 3 8 6 5 2 

Subject 8 9 8 5 2 3 4 7 6 1 

Subject 9 6 7 5 2 4 j 8 9 1 

Subject 10 8 9 5 3 6 2 4 7 1 

Subject 11 9 6 5 3 2 1 7 8 4 

Subject 12 5 9 7 1 3 4 8 6 2 

Subject 13 2 9 5 3 4 6 8 1 7 

Subject 14 7 9 6 2 1 3 8 5 4 

Subject 15 j 7 5 8 9 4 2 1 6 

Subject 16 4 5 7 3 8 2 9 6 1 
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Table A5.2 Rankings for query 2 

Subjects 
Ranks Assigned for Query 2 

Subjects 
1 3 4 5 6 7 8 9 10 

Subject 1 9 2 6 5 4 S 3 1 7 

Subject 2 9 2 4 5 6 8 3 1 7 

Subject 3 9 2 6 4 3 8 5 1 7 

Subject 4 7 3 6 8 4 5 2 1 9 

Subject 5 8 3 4 7 5 6 2 ] 9 

Subject 6 9 2 5 4 3 7 6 1 8 

Subject 7 7 6 5 1 2 9 4 8 

Subject 8 9 3 7 5 4 6 2 1 S 

Subject 9 9 3 5 6 4 7 l 8 

Subject 10 7 2 6 5 4 9 3 1 8 

Subject 11 9 3 6 5 4 8 2 1 7 

Subject 12 7 6 4 1 2 9 5 8 

Subject 13 7 9 6 2 -, 5 4 1 8 

Subject 14 8 7 6 5 2 4 3 1 9 

Subject 15 7 9 6 8 1 2 5 4 

Subject 16 9 2 6 4 5 8 3 1 7 

Table À5.3 Rankings for query 3 

Subjects 
Ranks Assigned for Query 3 

Subjects 
1 2 4 5 6 7 8 9 10 

Subject 1 5 3 8 9 4 6 1 2 7 

Subject 2 9 6 5 4 7 1 2 8 

Subject 3 8 2 5 7 3 9 4 1 6 

Subject 4 6 j 8 5 4 7 1 2 9 

Subject 5 8 3 6 5 4 7 2 1 9 

Subject 6 9 2 4 3 5 6 8 1 7 

Subject 7 8 3 6 5 4 7 2 1 9 

Subject 8 8 2 6 5 4 7 3 1 9 

Subject 9 8 2 9 4 5 6 3 1 7 

Subject 10 10 l 6 5 4 8 2 T 
J 7 

Subject 11 8 3 7 5 6 9 2 [ 4 

Subject 12 8 J 6 5 4 7 2 1 9 

Subject 13 8 5 7 6 3 4 l 2 9 

Subject 14 5 7 3 4 6 8 1 2 9 

Subject 15 9 3 2 6 5 1 4 8 7 

Subject 16 8 1 6 5 4 7 2 3 9 
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Table A5.4 Rankings for query 4 

Subjects 
Ranks Assigned for Query 4 

Subjects 
l -> 3 5 6 7 8 9 10 

Subject 1 6 4 S ^ 

j 2 1 9 5 7 

Subject 2 8 2 4 7 6 1 5 3 9 

Subject 3 3 6 S 5 4 2 9 7 1 

Subject 4 6 T 
J 5 9 4 2 7 1 8 

Subject 5 4 9 8 3 2 5 7 6 1 

Subject 6 9 2 S 4 5 7 6 1 3 

Subject 7 8 4 7 2 3 1 5 6 9 

Subject 8 9 3 4 8 6 2 5 1 7 

Subject 9 2 6 9 3 4 1 9 8 5 

Subject 10 3 8 7 9 4 1 5 6 2 

Subject 11 9 6 7 4 j 2 5 8 1 

Subject 12 8 4 7 2 -* 1 6 5 9 

Subject 13 :> 8 9 1 2 5 6 7 4 

Subject 14 8 3 4 7 5 1 6 2 9 

Subject 15 9 1 8 3 4 5 6 2 7 

Subject 16 3 8 9 4 5 1 6 7 2 

Table A5.5 Rankings for query 5 

Subjects 
Ranks Assigned for Query 5 

Subjects 
1 2 3 4 6 7 8 9 10 

Subject 1 4 3 7 6 1 8 9 2 5 

Subject 2 2 7 9 5 1 3 8 6 4 

Subject 3 7 4 2 8 ' 6 9 3 5 

Subject 4 3 5 7 8 1 6 4 2 9 

Subject 5 3 8 9 4 5 6 7 2 

Subject 6 9 2 5 6 7 8 2 4 

Subject 7 2 4 9 6 5 8 7 3 

Subject 8 8 5 4 6 ' 7 3 2 9 

Subject 9 3 6 9 5 1 4 7 8 2 

Subject 10 5 3 8 4 1 9 6 7 2 

Subject 11 2 9 7 5 4 6 S 3 

Subject 12 4 2 9 6 1 5 8 7 ^ 

Subject 13 2 7 9 j 6 8 5 4 

Subject 14 2 8 9 5 7 6 4 3 

Subject 15 5 1 7 3 4 8 9 6 2 

Subject 16 4 6 7 5 1 3 9 8 2 
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Table A5.6 Rankings for query 6 

Subjects 
Ranks Assigned for Query 6 

Subjects 
1 2 3 4 5 7 8 9 10 

Subject 1 2 3 6 5 1 7 9 4 8 

Subject 2 2 4 6 8 1 7 5 J 9 

Subject 3 8 3 5 6 1 7 9 4 2 

Subject 4 4 7 6 8 1 5 2 3 9 

Subject 5 3 8 9 4 1 5 6 7 2 

Subject 6 8 2 6 5 1 4 9 3 6 

Subject 7 2 3 9 5 1 6 8 7 4 

Subject 8 7 6 4 5 1 8 2 3 9 

Subject 9 6 9 5 1 4 7 8 2 

Subject 10 9 6 7 3 1 8 4 5 2 

Subject 11 8 4 7 2 1 9 6 5 3 

Subject 12 2 3 9 5 1 6 7 8 4 

Subject 13 1 6 8 4 2 3 9 7 5 

Subject 14 1 3 8 6 2 9 7 5 4 

Subject 15 6 2 4 5 3 8 9 7 1 

Subject 16 4 5 6 7 I 3 8 9 2 

Table AS.7 Rankings for query 7 

Subjects 
Ranks Assigned for Query 7 

Subjects 
1 2 3 4 5 6 8 9 10 

Subject 1 2 4 6 1 8 7 9 5 

Subject 2 1 6 8 2 4 3 9 5 7 

Subject 3 5 6 8 1 4 3 9 7 2 

Subject 4 2 4 5 3 9 6 7 l 8 

Subject 5 1 9 6 2 5 4 8 7 3 

Subject 6 8 6 7 2 j 5 9 4 l 

Subject 7 6 4 8 1 3 2 9 5 7 

Subject 8 5 6 7 3 2 1 8 9 4 

Subject 9 1 9 6 3 4 5 8 7 2 

Subject 10 4 8 7 1 6 9 2 

Subject 11 3 8 7 2 4 5 9 6 I 

Subject 12 6 4 8 1 3 2 9 5 7 

Subject 13 6 i 8 3 4 1 7 5 9 

Subject 14 1 5 8 3 2 4 9 7 6 

Subject 15 5 6 4 2 7 1 8 9 

Subject 16 2 8 7 1 4 5 6 9 3 
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Table A5.8 Rankings for query 8 

Subjects 
Ranks Assigned for Query 8 

Subjects 
1 2 3 4 5 6 7 9 10 

Subject 1 6 4 1 7 2 5 S 3 9 

Subject 2 8 .Î 1 9 6 4 7 2 5 

Subject 3 6 3 1 8 5 4 7 2 9 

Subject 4 5 3 I 7 9 4 6 2 S 

Subject 5 8 2 j 6 5 4 7 1 9 

Subject 6 8 1 2 6 5 4 7 3 9 

Subject 7 7 3 2 6 4 5 8 i 9 

Subject 8 9 2 3 6 4 5 8 1 7 

Subject 9 6 2 3 7 5 4 9 1 8 

Subject 10 5 2 4 8 6 j 9 1 7 

Subject 11 8 4 1 6 5 3 9 2 7 

Subject 12 7 3 2 6 4 5 8 1 9 

Subject 13 7 3 1 8 6 4 5 2 9 

Subject 14 8 j 1 5 7 4 6 2 9 

Subject 15 7 5 2 4 'S 
j 9 6 1 8 

Subject 16 9 3 1 8 4 5 7 2 6 

Table A5.9 Rankings for query 9 

Subjects 
Ranks Assigned for Query 9 

Subjects 
1 2 3 4 5 6 7 8 10 

Subject l 8 l 2 5 6 4 7 3 9 

Subject 2 9 2 1 6 5 3 8 4 7 

Subject 3 7 2 1 6 5 3 8 4 9 

Subject 4 4 3 1 7 9 5 6 2 8 

Subject 5 7 3 1 4 8 5 6 2 9 

Subject 6 7 1 2 4 5 T 
J 6 9 8 

Subject 7 8 3 2 6 5 4 7 1 9 

Subject 8 8 1 2 6 4 5 7 3 9 

Subject9 5 3 1 4 7 6 9 2 8 

Subject 10 6 1 4 2 8 7 5 3 9 

Subject 11 8 4 2 3 6 5 9 1 7 

Subject 12 8 3 2 6 5 4 7 1 9 

Subject 13 7 3 1 8 5 4 6 2 9 

Subject 14 7 3 1 5 7 4 6 2 9 

Subject 15 9 4 2 6 5 7 8 ^ j 1 

Subject 16 9 3 2 7 5 4 8 1 6 
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Table A5.10 Rankings for query 10 

Subjects 
Ranks Assigned for Query 10 

Subjects 
1 2 T 

J 4 5 6 7 8 9 

Subject 1 1 4 8 2 5 6 J 9 7 

Subject 2 2 6 7 9 1 3 4 8 5 

Subject 3 2 6 8 4 5 1 9 7 

Subject 4 2 4 7 3 8 5 1 9 6 

Subject 5 2 7 6 3 4 5 1 9 8 

Subject 6 2 4 8 6 1 7 3 9 5 

Subject 7 1 4 9 6 2 3 5 7 S 

Subject 8 3 6 8 5 1 2 4 9 7 

Subject 9 2 8 7 1 4 5 3 9 6 

Subject 10 1 8 6 2 3 4 5 9 7 

Subject 11 3 6 8 2 4 5 1 9 7 

Subject 12 1 6 9 4 5 3 2 7 8 

Subject 13 1 8 9 4 5 3 2 7 6 

Subject 14 3 7 9 5 1 2 4 8 6 

Subject 15 3 6 9 4 2 5 l 7 8 

Subject 16 4 7 6 5 1 2 3 8 9 
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Appendix 6: Coefficient Matrix of Rank Corrélation 

between Subjects' Rankings for Ten Queries 

Contents: 

Table A6.1 Coefficients matrix of rank corrélation between subjects* rankings for query 1 
Table A6.2 Coefficients matrix of rank corrélation between subjects' rankings for query 2 
Table A6.3 Coefficients matrix of rank corrélation between subjects' rankings for query 3 
Table A6.4 Coefficients matrix of rank corrélation between subjects' rankings for query 4 
Table A6.5 Coefficients matrix of rank corrélation between subjects' rankings for query 5 
Table A6.6 Coefficients matrix of rank corrélation between subjects' rankings for query 6 
Table A6.7 Coefficients matrix of rank corrélation between subjects' rankings for query 7 
Table A6.8 Coefficients matrix of rank corrélation between subjects' rankings for query 8 
Table A6.9 Coefficients matrix of rank corrélation between subjects' rankings for query 9 
Table A6.10 Coefficients matrix of rank corrélation between subjects' rankings for query 10 

In Tables A6.1 to A6.10, the entry Tnmof table expresses the coefficient of 

ranking between mlh subject and nth subject, where the subscription n, m of Tnm 

represents the number of row and column respectively. 

Table A6.1 Coefficients matrix of rank corrélation between subjects' rankings for query 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1.00 0.87 0.88 -0.17 0.92 0.77 0.68 0.87 0.92 0.60 0.70 0.93 0.27 0.85 -0.63 0.57 
2 U.87 1.00 0.93 -0.02 0.78 0.67 0.42 0.75 0.82 0.67 0.82 0.83 0.27 0.88 -0.42 0.48 
3 0.88 0.93 1 ||(» 0.18 0.90 0.80 0.37 0.78 0.90 0.70 0.78 0.82 (».13 0.78 -0.42 (i 70 
4 -0.17 -0.02 0.18 1.00 0.07 0.18 -0.35 0.08 -0.02 0.25 0.15 -0.08 -0.35 -0.03 0.32 0.35 
5 >: 0.78 0.90 0.07 1.00 0.75 0.43 0.85 0.97 0.65 0.78 0.78 -0.08 0.68 -0.68 0.70 
6 0.77 0.67 0.80 0.18 0.75 1.00 0.48 0.72 0.70 0.65 0.40 0.75 0.32 0.58 -0.12 0.80 
7 0.68 0.42 0.37 -0.35 0.43 0.48 1.00 0.58 0.50 0.35 0.12 0.82 0.48 0.60 -0.32 0.23 
8 0.87 0.75 0.78 0.08 0.85 0.72 0.58 1.00 0.82 0.78 0.77 0.80 0.02 0.82 -0.53 n 411 
9 0.92 0.82 0.90 -0.02 0.97 0.70 0.50 0.82 1.00 0.72 0.75 0.82 -0.08 0.67 -0.63 0.67 
10 0.60 0 07 0.70 0.25 0.65 0.65 0.35 0.78 0.72 1.00 0.62 0.60 -0.20 0.52 -0.10 0.45 
11 0.70 0.82 0.78 0.15 0.78 0.40 0.12 0.77 0.75 0.62 1.00 0.57 -0.22 0.75 -0.65 0.30 
12 0.93 0.83 0.82 -0.08 0.78 0.75 0.82 0.80 0.82 0.60 0.57 1.00 0.40 0.87 -0.45 0.57 

13 0.27 0.27 0.13 -0.35 -0.08 0.32 0 4S 0.02 -0.08 -0.20 -0.22 0.40 1.00 0.42 0.20 0.02 
14 0.85 0.88 0.78 -0.03 0.68 0.58 0.60 0.82 0.67 0.52 0.75 0.87 0.42 1.00 -0.48 0.27 
15 -0.63 -0.42 -0.42 (- :•: -0.68 -0.12 -0.32 -0.53 -0.63 -0.10 -0.65 -0.45 0.20 -0.48 1.00 -0.15 
16 0.57 0.48 0.70 0.35 0.70 [| so 0.23 0.40 0.67 0.45 0.30 0.57 0.02 0.27 -0.15 1.00 
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Table A6.2 Coefficients matrix of rank corrélation between subjects* rankings for query 2 

r. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1.00 0.93 0.95 0.77 0.83 088 0.60 0.93 0.92 0.95 0.98 055 0.38 0.58 -0.15 0.98 
2 0.93 1.00 0.85 0.70 0.87 082 0.50 0.83 0.88 il ss 0 92 048 0.28 0.45 -0.25 0.95 
:• 0.95 0.85 1.00 0.63 0.70 0.97 0 68 0.85 0.78 0.90 0.90 0.67 0.43 0.57 -0.27 0.93 
4 0.77 0.70 0.63 1.00 0.93 0.63 ii 2" 0.87 0.77 0 -8 0.20 0.35 0 73 0.22 0.70 
5 0.83 0.87 0.70 0.93 1.00 0.72 0.38 0.87 0.93 0.82 0.85 i ;.s 0.37 0.68 0.07 0.80 
6 0.88 0.82 IM)- 0.63 0.72 1.00 0.65 0.80 0.73 0.83 0.82 o t r 0.45 0.60 -0.28 0.87 
7 0.60 0.50 0.27 0.38 ,,.<o 1.00 0.55 0.53 0.65 0.63 o vs 0.73 0.58 -0.23 0.62 
8 0.93 0.83 0.85 0.87 0.87 0.80 0.55 1.00 0.93 0.87 0.95 0.53 0.10 0.92 
9 0.92 0.88 0.78 0.87 0.93 0.73 0.53 0.93 1.00 0.87 0.95 0.47 11.41 0.68 0.10 :i ss 
10 0.95 0.88 0.90 0.77 0.82 0.83 0.65 0.87 0.87 1.00 0.93 0.60 0.37 0.53 -0.30 0.93 
11 0.98 0.92 0.90 i l 'S 0.85 H . s : 0.63 0.95 0.95 0.93 1.00 0.57 0.47 0.65 -0.03 0.97 
12 0.55 0.48 0.67 0.20 0.35 0.67 0.98 0.47 0.60 0.57 1.00 0.70 0.53 -0.30 0.57 
13 0.38 0.28 0.43 0.35 0.37 0.45 || "3 0.53 41 0.37 0.47 0.70 1.00 -.- 0.27 0.40 
14 0.58 0.45 0.57 0.73 0.68 0.60 0.58 0.77 0 68 0.53 0.65 0.53 0.85 1.00 0.45 0.53 
15 -0.15 -0.25 -0.27 0.22 (1.07 -1.1.28 0.10 0.10 -0.30 -0.03 -0.30 0.27 0.45 m -0.23 
16 1) 98 0.95 0.93 0.70 0.80 0.87 0.62 0.92 0.88 0.93 0.97 0.57 0.40 0.53 11 23 1.00 

Table A6.3 Coefficients matrix of rank corrélation between subjects' rankings for query 3 

rt 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 

1 1.00 0.68 0.63 (»82 0.70 0 0.70 0.67 0.65 0.58 0.58 0.70 0.73 0.35 -0.10 0.67 
2 0.68 1.00 • '8 1 - S 0.97 11.48 0.97 0.93 0.83 0.93 0.77 0.97 0.85 0.60 0.17 0.93 
3 0.63 0.78 1.00 • [,5 0.80 0.60 0.80 0 83 0.67 0.84 0.78 0.80 0.52 0.37 -0.08 0.77 
4 0.82 0.88 0.65 1.00 0.92 0.28 0.92 0.88 0.85 0.76 0.67 0.92 0.83 0.60 -0.10 0.88 
5 0.70 0.97 0.80 0.92 1.00 0.57 1.00 0.98 0 Ss 0.87 0.72 1.00 ¡1 85 0.65 0.07 (1 'H 
6 0 0.48 0.60 0.28 0.57 1.00 0.57 0.67 0.57 0.58 0.42 0.57 0.25 0.15 0.13 0.53 
" 0.70 0.97 1 KO 1 .92 1.00 0.57 1.00 0.98 0.85 0.87 0.72 1.00 0.85 0.65 0 07 0.93 
8 0.67 0.93 0.83 0.88 0.98 0.67 0.98 1.00 0.S7 0.89 0.70 0.98 0.78 0 s< 0.08 0.95 
9 0.65 0.83 0.67 0.85 0.85 0.57 0.85 0.87 1.00 0.81 0.78 0.85 0.72 0.30 -0.08 0.82 
10 0 58 0.93 0.84 0.76 0.87 0.58 0.87 0.89 0.81 1.00 0.79 0 s- 0.65 0.37 0.22 0.93 
11 0.58 0.77 0.78 0.67 0.72 0.42 0.72 0.70 0.78 0.79 1.00 0.72 0.45 0.42 -0.28 0.65 
12 0.70 0.97 i; XO 0.92 1.00 0.57 1.00 0.98 0.85 0.87 0.72 1.00 0.85 0.65 0.07 0.93 
13 0.73 0.85 0.52 0.83 Il s< 0.25 0.85 0.78 0 "2 0.65 0.45 0 85 1.00 0.52 0.23 0.75 
14 0.35 1 f , , 0.37 0.60 0.65 0.15 0.65 0.55 0.30 0.37 0.42 0.65 0.52 1.00 -0.13 0.48 
15 -0.10 0.17 11 08 -0.10 0.07 0.13 0.07 (1 lis 0.22 -0.28 0.07 0.23 -o : ; 1.00 0.23 
16 0.67 0.93 0.77 0.88 0.93 0.53 0.93 ' -0 0.82 0.93 0.65 0.93 0.75 0.48 0.23 1.00 

Table A6.4 Coefficients matrix of rank corrélation between subjects' rankings for query 4 

r, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 l .00 0.33 0.48 0.40 0.28 0.17 0.77 0.17 0.72 0.10 0.35 0.83 0.43 0.43 0.53 0.38 
2 0.33 1.00 -0.35 0.80 -0.72 0.13 0.53 0.90 -0.17 -0.13 -0.12 0.57 -0.63 0.97 0.50 -0.35 
3 0.48 -0.35 1.00 -0.10 0.73 -0.07 -0.02 -0.35 0.82 0.67 0.53 0 o2 0.57 -0.28 - ' 20 0.85 
4 0.40 0.80 -0.10 1.00 -0.43 0.20 0.25 0.83 -0.06 0.13 -0.25 0.35 -0.50 0.88 0.42 -0.25 
- 0.28 -0.72 0.73 -0.43 1.00 0 02 -0.07 -0.60 11 M, 0.47 0.55 -0.05 0.85 -11 22 0.73 

0.17 0.13 -0.07 0.20 0.02 1.00 0.07 0.37 -0.26 -0.35 0.17 0.15 -0.10 0.17 0.80 -0.22 
7 0.77 0.53 -0.02 0.25 -0.07 0.07 . on 0.28 0.38 -0.17 0.35 0.98 0.25 0.53 0.58 0.13 
8 0.17 0.90 -0.35 0.83 -0.60 0.37 0.28 : on -0.38 -0.05 -0.07 0.35 -0.72 0.92 0.50 -0.38 
9 0.72 -0.17 0.82 -0.06 0 s„ -0.26 -0.38 1.00 0.44 0 : - 0 40 070 -0.12 -0.06 0 81 
10 0.10 -0.13 0.67 0.13 0.47 -0.35 -11 " -0.05 0.44 1 00 -0.18 022 -0.08 -0.50 0.73 
11 0.35 -0.12 1- 53 -0.25 0.55 0.17 0.35 -0.07 0.34 0.40 1.00 0.30 0.38 -0.12 0.08 0.57 
12 0.83 0.57 0.O2 0.35 -0.05 o ;s 0.98 0.35 0.40 -0.18 0.30 1.00 0.23 0.60 0.65 0.12 
13 0.43 -0.63 0.57 -0.50 0.85 -0.10 0.25 -0.72 0.70 0.22 0.38 0.23 1.00 -0.55 -0.07 0.68 
4 0.43 0.97 -0.28 0.88 -0.58 11 17 0.53 0.92 -0.12 -0.08 -0.12 0.00 -0.55 1.00 0.52 -0.32 

15 0.53 0.50 -0.20 0.42 -0.22 0.80 0.58 0.50 -0.06 | -0.50 0.08 0.65 -0.07 0.52 : 00 -0.28 
16 0.38 -0.35 0.85 •H 25 0.73 -0.22 0.13 -0.38 0 81 , 0 73 0.57 0.12 0.68 -0.32 -0 28 1.00 
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Table A6.5 Coefficients matrix of rank corrélation between subjeets* rankings for query 5 

rt 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 

1 1.00 0.43 0.63 0.55 0.28 0.74 0.60 0.32 0.33 0 58 0.12 0.63 0.60 0.57 0.60 0.33 
2 0.43 1.00 Il n- 0.30 0.87 0.02 0.87 -0.23 0.90 0.40 0.85 0.70 0.88 0.78 0.23 0.85 
3 0.63 0.07 1.00 0.30 -0.10 0.80 0.17 0.47 0 0.1 7 -0.05 0.27 0.05 0.05 0.22 0.25 
4 0.55 0 30 0.30 1.00 0.10 0.24 0.27 0.67 0.07 0.07 0.12 0.20 0 30 0.43 -0.23 -0.08 
5 0.28 s -0.10 0.10 1.00 -0.03 0.78 -0.25 0.93 u "2 0.92 0.62 0.87 0.87 0.28 0.80 
6 0.74 0.02 0.80 0.24 -0.03 1.00 0.21 0.51 0.05 0.46 -0.22 0.43 0.13 0.11 0.51 0.18 
7 0.60 0.87 0 .P 0.27 " v 0.21 1.00 -0.27 0.92 0.70 0.70 0.93 0.80 0.72 0.57 
8 0.32 -0.23 0.47 0.67 0.25 0.51 -0.27 1.00 -0.35 0 -0.27 -0.17 -0.12 0 -i 2 s 0.37 
9 0.33 0.90 0 0.07 093 0.05 0.92 -0.35 1.00 0.65 0.87 0.82 0.80 0.73 0.42 0.92 
III 0.58 0.40 0.17 0.07 0 62 0.46 0.70 0 0.65 1.00 0.38 0.77 0.60 0.58 0.78 0.52 
11 0 12 0.85 -0.05 0.12 0.92 -0.22 0.70 -0.27 0.87 0.38 1.00 0.47 0.75 0.75 0.03 0.80 
12 0.63 0.70 0.27 0.20 0.62 0.43 0.93 -0.17 0.82 0.77 - " 1.00 0.63 0.52 0.70 0.77 
13 0.60 0.88 u 0 5 0.30 0.87 0.13 0.80 -0.12 0.80 0.60 0.75 0.63 1.00 0.90 0.43 0.70 
14 0.57 0.78 0.05 u 43 0.87 0.11 0.74 0 0.73 0.58 0.75 0.52 0.90 1.00 0.25 0.55 
15 0.60 0.23 0.22 -0.23 0.28 0.51 -0.28 0.42 0.78 .i i,;. 0.70 u 43 0.25 1.00 0.43 
16 0.33 085 0.25 -0.08 0.80 ' 18 0.83 -0.37 0.92 0.52 Il S u 0.77 0.70 0.55 0.43 1.00 

Table A6.6 Coefficients matrix of rank corrélation between subjects' rankings for query 6 

r, 1 2 1 4 s 6 7 8 9 II 11 12 13 14 15 If. 

1 1.00 0.77 0.38 0.30 0.22 0.56 0.70 0.25 0.30 -0.05 0.28 0.62 0.58 0.73 0.30 0.25 
2 0.77 1.00 0.10 0.78 0.07 i.29 0.42 0.5- 0.08 -0.12 0.02 Il (S 0.25 0.60 -0.12 o 0 3 

3 0.38 0.10 1.00 -0.17 0.23 0.75 0.43 0.07 0.33 0.58 0.70 0.35 0.12 0.40 0.82 0.47 

. 0.30 0.78 -0.17 1.00 0.10 0.07 0.03 0.73 0 0.02 -0.12 0.05 0.03 0.13 -0.53 -0.08 
0.22 0.07 0.23 0.10 1.00 0.03 0.70 -0.13 0.93 0.48 0.42 0.72 0.73 0.50 0.22 0.67 

6 0.56 0.29 075 0.07 0.03 1.00 0.39 0.19 0.19 0.29 0.48 0.29 0 24 0.21 0.41 0.29 
7 0.70 0.42 Il 4 3 0.03 0.70 ' 3 9 1 00 -0.17 0.83 0.22 0.43 0.98 0.80 0 85 0.50 0.68 
8 0.25 0.57 0.07 0.73 -0.13 0.19 -0.17 1.00 -0.30 0.38 0.33 -0.15 -0.33 0.02 -0.25 -0.37 
9 0.30 0.08 0.33 0 0.93 0.19 0.83 -0.30 1.00 0.35 0.35 0.85 0.82 0.55 0.37 0 8> 

III -0.05 -0.12 0.58 0.02 0.48 0.29 0.22 0.38 0.35 1.00 0.90 0.23 -0.08 0.18 0.40 0.17 
1 1 0.28 0.02 0.70 -0.12 0.42 0.48 0.43 0.33 0.35 0.90 1.00 0.42 0.07 0.42 0.60 0.17 
12 0.62 0.38 0.35 0.05 0.72 0.29 0.98 -u ..- 0.85 0.23 0.42 1.00 0.77 0 82 0.47 0.70 
13 0.58 0.25 0.12 0.03 0.73 0.24 0.80 -0.33 0.82 -0.08 0.07 0.77 1.00 0.52 0.17 0.68 
14 0.73 0.60 0.40 0.13 0.50 0.21 0.85 0.02 0.55 0.18 0.42 0.82 0.52 1.00 0.48 0.37 
15 0.30 -0.12 0.82 -0.53 0.22 0.41 0.50 -0.25 0.37 0.40 0.60 0.47 0.17 0.48 1.00 0.53 
16 0.25 0.03 0.47 .0.08 0.67 0.2'> -0 0.85 0.17 0.17 0.70 0.68 0.37 0.53 : ou 

Table A6.7 Coefficients matrix of rank corrélation between subjects' rankings for query 7 

r. 1 2 3 4 5 (. 7 8 9 11) 11 12 13 14 15 

1 1.00 0.52 o 55 0.57 0.58 0.37 0.28 O 111 0.53 0.70 0.63 0.28 0 0.43 -0.47 0.4S 

2 0.52 1.00 0.62 0.42 0.70 0.23 0.73 0.60 0.55 0.58 0.73 fi 55 0.90 -0.18 0.57 

3 0.55 0.62 1.00 -0.13 0.72 0.78 0.70 0.82 0.68 0.73 0.87 0 'ii o 12 0.65 -0.40 0.73 
4 0.57 0.42 -0.13 1.00 1 ' 1 ' 8 -0.20 0.15 -0.43 -0.05 0.27 -0.05 0.15 0.20 0 10 -0.28 -0.17 
5 0.58 0.70 0.72 0.08 1.00 0.35 0.30 0.58 0.97 0.72 0.88 0.30 -0.08 0.67 -0.18 0.88 
6 0.37 0.23 0.78 -0.20 0.35 1.00 0 53 0.48 0.40 0.77 0.72 0.53 0.10 0.27 -0.48 0.33 
- 0.28 0.73 0.70 0.15 0.30 0.53 1 0 0 0.68 0.18 0 42 0.38 1.00 0.85 0.67 -0.18 0.30 
8 0.10 0.57 0.82 -0.43 0.58 0.48 0.68 1.00 0.55 0.30 0.60 0.68 0.47 0.70 -0.07 0.65 
9 0.53 060 0.68 -0.05 0.40 0.18 0.55 1.00 - "2 0.92 o :s 0.65 -0.18 0.87 
10 0.70 0.55 0.73 0.27 0 72 0.77 0.42 0.30 0.72 1.00 0.88 042 0.43 -0.48 0.57 
11 0.63 0.58 0.87 -0.05 0.88 0.72 0.38 0.60 0.92 0.88 1.00 0.38 -0.10 0.62 -0.40 0.80 
12 0.28 0.73 0.70 0.1 S 0.30 0.53 1.00 0.68 0.18 0.42 0.38 l . l /U 0.85 0.67 u - 0.30 
13 0 0.55 0.32 0.20 -0.08 0.10 0.85 0.47 -0.23 -0.07 -0.10 0.85 1.00 0.47 -0.07 -0.05 
14 0 4 = 0.90 0.65 0.10 0.67 0.27 0.67 0 70 0.65 0.43 0 62 0.67 0.47 1.00 -0.05 0.65 
15 -0.47 -0.18 -0.40 -0.28 -0.18 -0.48 -0.18 -0 07 -0.18 -0.48 -0.40 -0.18 -0.07 -oo5 1.00 0.10 
16 048 0.57 u "3 -0.17 0.88 0.33 0.30 0.65 0.87 0.57 0.80 0.30 -0.05 0.65 0.10 1.00 
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Table A6.8 Coefficients matriv of rank corrélation between subjects' rankings for query 8 

Tt 1 2 3 4 5 6 - 8 9 10 11 12 13 14 15 16 

1 1.00 0 . 6 3 0 . 8 8 0 . 5 2 11 " " s 0 . 9 0 0 . 7 5 0 . 8 0 0 . 6 3 0 8 0 0 . 9 0 0 . 6 7 0 . 6 8 0 . 7 8 

2 0 . 6 3 1.00 0 .82 0 . 7 3 0 . 7 3 0 . 7 2 0 . 7 8 0 . 7 7 0 . 7 5 «•83 0.72 S2 0 . 7 2 1 3 " 0 . 9 3 

3 0 . 8 8 ii s : 1.00 0 . 8 3 0 . 8 8 0 . 8 8 0 . 9 2 11 - s 0 . 8 2 0 . 8 5 0 . 9 2 0 . 9 5 0 ^ 0 . 5 5 0 . 8 3 

4 0 . 5 2 0 . 7 3 0 . 8 3 1.00 0 . 7 2 0 .72 0 . 6 8 i) 5> 0 . 7 3 0 . 7 3 0 . 6 8 0 . 6 8 0 . 8 7 0 . 8 5 0 . 3 3 0 . 6 0 

5 0 .77 i) - 3 0 . 8 8 0 . 7 2 1.00 0 . 9 5 0.95 0 . 9 3 0 . 9 2 0 . 8 0 0 . 8 5 0 . 9 5 11 8 " 0 . 9 0 0 . 6 2 0 . 8 2 

6 0 . 7 8 H - 3 0 . 8 8 0 . 7 2 0 . 9 5 1.00 0 . 9 0 0 . 8 8 0 . 8 7 0 . 8 3 0 . 9 0 0 . 8 " 0 . 9 0 0.5.3 0 . 8 2 
7 0 . 9 0 0 . 7 2 0 .92 0 . 9 5 0 9 0 1.00 0 . 9 2 0 . 9 3 1.00 o . 8 3 0 . 8 5 0 . 7 5 0 . 8 3 

8 0 7 5 0 . 7 8 0 " s 0 . 5 5 0 9 3 0 . 8 8 0 . 9 2 1.00 0 8 8 •.1 - ~ 0 8 7 0 . 9 2 0 . 7 3 0 . 7 8 u.(>- 11.00 
9 0 . 8 0 0 . 7 7 0 . 9 0 0 . 7 3 0.92 0 . 8 7 0 . 9 3 0 . 8 8 1.00 0 . 9 5 0 . 8 7 0 . 9 3 0 . 7 8 0 . 7 7 0 . 5 2 0 . 7 8 

10 0 .63 0 . 7 5 0 . 8 2 0 . 7 3 0 . 8 0 0 . 7 3 0 . 7 8 0 . 7 5 0 . 9 5 1.00 0 . 7 7 0 .78 0 . 7 0 0 . 6 3 0 . 2 7 0 . 6 7 

11 0 . 8 3 D.S5 0 . 6 8 0 . 8 5 H 83 0 . 8 8 0 . 8 7 0 . 8 7 0 . 7 7 1.00 0 . 8 8 0 . 7 7 0 . 8 3 0 . 5 2 0 . 8 7 

12 0 . 9 0 0 . 7 2 0 .92 0 . 6 8 0 . 9 5 0 . 9 0 1.00 0 . 9 2 0 . 9 3 0 . 7 8 0 . 8 8 1.00 0 . 8 5 - " 5 0 . 8 3 

13 0 . 7 5 0 . 8 2 0 .95 0 . 8 7 0 . 8 7 0 . 8 7 , s 3 0 . 7 3 0 . 7 8 0 . 7 0 0 . 7 7 0 . 8 3 ; . o o 0 . 9 0 0 . 5 2 0 . 8 2 
14 0 . 6 7 0 . 7 2 0 . 8 5 0 85 0 . 9 0 0 . 9 0 0 . 8 5 Il " S (1.77 0 . 6 3 0 . 8 3 0 . 8 5 0 . 9 0 1.00 58 0 . 7 5 

15 0 . 6 8 0 , 3 7 0 .55 .1 33 0 . 6 2 1 53 0 . 7 5 0 . 6 7 0 . 5 2 0 . 2 7 0 . 5 2 0 . 7 5 0 . 5 8 1.00 0 6 0 

16 0 . 7 8 0 . 9 3 0 . 8 3 0 . 8 2 0 . 8 2 0 . 8 3 0 . 9 0 H " S 0 . 6 7 0 . 8 7 0 . 8 3 1 82 0 . 7 5 0 . 6 0 1.00 

Table A6.9 Coefficients matrix of rank corrélation between subjects' rankings for query 9 

r 1 2 3 4 5 6 7 8 9 10 ; 1 ;: 13 14 15 16 

1 1.00 0 . 9 0 0 .93 0 . 6 8 Il 88 0 . 6 5 0 . 9 2 0 . 9 5 0 . 7 8 0 . 7 2 0 . 7 8 0 . 9 2 0 . 8 5 0 . 9 2 0 . 2 8 0 . 8 0 
2 0 . 9 0 1.00 0 .93 0 . 7 2 0 . 6 7 0 . 8 8 0 . 6 7 0.38 0 . 7 5 0 . 8 5 •: 0 . 8 0 0 . 5 2 0 . 8 8 

3 0.93 0.93 1.00 0 . 6 7 0 . 7 8 0 . 7 0 0 . 8 8 0 .92 0 . 7 7 0 . 4 8 0 . 7 2 0 . 8 8 0.88 0 . 8 7 0 . 2 5 0 . 7 8 

4 0 6 8 l i >3 0 .67 1.00 0 . 8 3 0 . 2 3 0 . 6 8 0 .58 0 . 8 0 0 . 5 8 0 . 5 5 0 . 6 8 0.77 0 . 8 4 0 . 1 5 0 . 5 7 

- ¡1 8 8 0.-2 0 . 7 8 0 . 8 3 1.00 0 . 4 3 0 . 8 5 0 . 7 7 0 . 8 - 0 . 8 0 0 . 8 2 0 . 8 5 0 . 7 8 0 98 0 . 2 3 o 6 8 

6 0 . 6 5 0 . 6 7 0 . 7 0 0 .23 0 . 4 3 1.00 0 . 3 7 0 . 6 0 0 . 3 3 0 . 4 0 0 . 2 5 0 . 3 7 0 . 4 0 Il 4 ' - 0 . 0 2 

7 0 . 9 2 0 . 8 5 0 . 8 8 1 .68 0 . 8 5 0 . 3 7 1.00 0 . 9 2 0 . 7 7 0 . 5 5 0 . 8 3 1.00 0 . 9 3 0 . 9 2 0 . 3 3 0 . 9 0 

8 0.95 0 . 8 8 0 .92 1 .58 0 . 7 7 0 . 6 0 0 . 9 2 1.00 0 . 7 2 0 . 6 0 0 . 7 2 0 . 9 2 0 . 8 8 0 . 8 4 o 33 0 . 8 2 

9 0 . 7 8 0 . 6 7 0 .77 o m 0 . 8 7 0 . 3 3 0 . 7 7 0 . 7 2 1.00 0 . 6 8 ' 8 - 0 . 7 7 0 . 6 8 0 . 8 4 0 . 3 5 0 . 6 7 

10 0 . 7 2 0 . 3 8 0 . 4 8 0 . 5 8 0 . 8 0 " 4 1 0 . 5 5 0 . 6 0 0 . 6 8 1.00 0 58 0 . 5 5 0 . 4 2 0 . 7 0 0 0 . 3 2 

11 0 . 7 8 0 . 7 5 0 . 7 2 0 . 5 5 1 • : 0 25 0 . 8 3 0 . 7 2 0 . 8 7 0 . 5 8 1.00 0 . 8 3 0 .63 0 . 8 0 0 . 5 3 0 . 8 2 

12 002 0 . 8 5 0 . 8 8 0 . 6 8 0 . 8 5 0 . 3 7 1.00 0 . 9 2 0 . 7 7 0 . 5 5 0 . 8 3 ; d o 0 .93 0 . 9 2 0 . 3 3 0 . 9 0 

13 0 . 8 5 0 . 8 2 0 . 8 8 0 . 7 7 0 . 7 8 0 . 4 0 0.93 0.88 0 . 6 8 0 . 4 2 0 . 6 3 0.93 1.00 0 . 8 9 0 . 2 7 0 . 8 3 
14 11 > P 0 . 8 0 0 .87 0 . 8 4 0 . 9 8 0 . 4 7 0 . 9 2 0 . 8 4 0 . 8 4 0 . 7 0 0 . 8 0 0 . 9 2 0 . 8 9 1.00 0 . 2 3 0 . 7 7 

15 0 . 2 8 0 . 5 2 0 .25 0/.5 0 . 2 3 - 0 . 0 2 0 . 3 3 0 . 3 3 0 . 3 5 0 0 . 5 3 0 . 3 3 0 . 2 7 0 . 2 3 1 00 0 . 6 7 

16 0 . 8 8 0 .78 57 0 . 6 8 0 . 2 5 0 . 9 0 0 . 8 2 0 . 6 7 0 . 3 2 0 . 8 2 0 . 9 0 0 . 8 3 0 . 7 7 0 . 6 7 1.00 

Table A6.10 Coefficients matrix of rank corrélation between subjects' rankings for query 10 

rt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1.00 0 . 2 8 0 . 9 0 0 . 8 5 0 . 8 2 0 08 0 . 6 3 0 . 5 8 0 . 8 2 0 . 7 3 0 . 8 8 0 . 8 0 0 . 7 0 0 . 5 2 0 . 7 3 0 . 4 3 

2 0 . 2 8 1.00 0 . 4 7 0 . 1 3 0 4 2 0 73 0 . 7 5 0 . 8 0 0 . 3 0 0 . 4 5 0 . 3 5 0 . 5 0 <>.53 0 . 8 0 0 . 5 5 0 . 6 7 
' 0 9 0 0 4 7 1.00 0 . 8 2 0 9 5 0 . 7 2 0 .63 0 .73 0 . 8 8 0 . 7 7 0 . 9 8 0 . 8 8 0 . 7 0 0 . 9 0 0 . 6 7 

1 0 . 1 3 0 . 8 2 : ' Il -5 0 . 4 3 0 . 3 5 0 . 3 5 0 . 6 7 0 . 4 8 0 . 8 0 0 . 7 3 0 . 6 7 0 . 2 8 0 . 5 5 0 . 2 5 

5 82 • 42 0 . 9 5 0 . 7 5 1.00 0 . 6 0 0 . 5 3 0 . 6 8 0 . 8 8 0 . 8 2 0 . 9 3 0 . 8 2 0 . 7 8 0 . 6 2 83 0 . 7 3 

6 1 68 0 . 7 3 0 .72 0 . 4 3 0 . 6 0 1.00 0 . 7 0 0 . 7 0 0 . 5 3 0 . 5 2 0 . 6 5 0 . 5 3 0 . 5 0 0 . 6 7 0 . 7 3 0 . 5 0 

7 0.6.3 0 . 7 5 0 .63 0 . 3 5 0 . 5 3 0 . 7 0 1.00 0 . 8 5 0 . 4 5 0 . 6 0 0 . 5 5 0 . 7 8 0 . 6 5 0 . 8 2 0 . 7 3 Il 7() 

8 0 . 5 8 0 . 8 0 0 .73 0 . 3 5 0 . 6 8 0 . 7 0 H 8 5 1.00 0 . 6 5 0 . 7 5 0 . 7 0 0 . 7 3 0 . 7 0 0 . 9 7 0 . 7 8 0 . 9 0 

9 0 . 8 2 0 . 3 0 0 . 8 8 0 . 6 7 0 . 8 8 0 . 5 3 H 45 0 . 6 5 1.00 0 . 9 2 0 . 9 0 (1 73 0 . 8 0 0 . 6 5 0 . 7 2 0 . 5 8 

10 | 0 . 7 3 0 . 4 5 0 . 7 7 0 . 4 8 0 . 8 2 0 . 5 2 0 . 6 0 0 . 7 5 0 . 9 2 1.00 0 . 7 5 0 . 7 0 0 . 7 3 0 . 7 2 0 .63 0 . 7 0 

11 0 . 8 8 0 . 3 5 0 08 0 9 3 0 .65 0 . 5 5 0 .70 0 . 9 0 1.00 0 . 8 3 S 0 . 6 7 0 . 6 5 

12 0 . 8 0 0 . 5 0 0 .88 0 . 7 3 0 82 0 . 5 3 0 . 7 g 0 . 7 3 0 . 7 3 0 . 7 0 0 . 8 3 1.00 0 . 9 3 0 . 7 3 Il 85 0 . 6 7 

; . : , 70 1 53 0 .85 0 . 6 7 Il 0 . 5 0 ( , 5 0 . 7 0 0 . 8 0 0 . 7 3 0 . 8 0 0 . 9 3 1.00 0 . 7 7 0 . 7 8 0 . 6 0 

14 0 . 5 2 0 . 8 0 0 -0 0 . 2 8 0 6 2 0 . 6 7 0 . 9 7 H 65 0 . 7 2 0 . 6 7 0 . 7 3 0 . 7 7 1.00 0 .78 0 . 8 3 

15 0 . 7 3 0 . 5 5 0 . 9 0 0 . 5 5 0 . 8 3 0 . 7 3 0 . 7 8 11 " 2 0 . 6 3 0 . 8 8 0 85 0 . 7 8 0 . 7 8 1.00 0 . 7 7 

16 0 . 4 3 0 . 6 7 0 . 6 7 0 . 2 5 0 . 7 3 0 50 0 . 7 0 0 . 9 0 il 58 0 . 6 5 0 . 6 7 0 . 6 0 0 . 8 3 0 . 7 7 | 1.00 
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Appendix 7: Rankings after Pre-processing for Ten 

Queries 

Contents: 

Table A7.1 After pre-processing, rankings and correspondîng coefficient matrix for query ' 
Table A7.1 After pre-processing, rankings and correspondîng coefficient matrix for query 1 
Table A7.2 After pre-processing, rankings and correspondîng coefficient matrix for query 2 
Table A7.3 After pre-processing, rankings and correspondîng coefficient matrix for query' 3 
Table A7.4 After pre-processing, rankings and correspondîng coefficient matrix for query 4 
Table A7.5 After pre-processing, rankings and correspondîng coefficient matrix for query' 5 
Table A7.6 After pre-processing, rankings and correspondîng coefficient matrix for query 6 
Table A7.7 After pre-processing, rankings and correspondîng coefficient matrix for query 7 
Table A7.8 After pre-processing, rankings and correspondîng coefficient matrix for query 8 
Table A7.9 After pre-processing, rankings and correspondîng coefficient matrix for query 9 
Table A7.10 After pre-processing, rankings and correspondîng coefficient matrix for query 10 

In Tables A7.1(a) to A7.10(a), the entry Tnmof table expresses the ranking 

order of the mlh image by the nih subject, where the subscription n, m of Tnm represents 

the number of row and column respectively. 

T 
In Tables A7.1(b)-A7.10(b), the entry ""of table expresses the coefficient of 

ranking order between m l h subject and nlh subject, where the subscription m of n m 

represents the number of row and column respectively. 

Table A7.1 After pre-processing, raw data of ranking order and corresponding coefficient 

matrix for query 1 

Subjects 
Ranks Assigned for Query 1 

Subjects 
2 3 4 5 6 7 8 9 10 

Subject l 6 8 5 l 3 4 9 7 2 

Subject 2 6 9 5 2 1 8 7 4 

Subject 3 6 8 5 3 4 1 9 7 2 

Subject 5 7 6 5 2 4 3 9 8 1 

Subject S 9 8 5 2 3 4 7 6 1 

Subject 9 6 7 5 2 4 8 9 1 

Subject 11 9 6 5 3 2 1 7 S 4 

Subject 12 5 9 7 1 3 4 8 6 2 

Subject 14 7 9 6 1 3 8 5 4 

(a) Rankings for query 1 
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1 2 3 5 8 9 11 12 14 

! 1.00 0.87 0.88 0.92 0.87 0.92 0.70 0.93 0.85 
2 0.87 1.00 0.93 0.78 0.75 0.82 0.82 0.83 0.88 
3 0.88 0.93 1.00 0.90 0.78 0.90 0.78 0.82 0.78 
5 0.92 0.78 0.90 1.00 0.85 0.97 0.78 0.78 0.68 
8 0.87 0.75 0.78 0.85 1.00 0.82 0.77 0.80 0.82 
9 0.92 0.82 0.90 0.97 0.82 1.00 0.75 0.82 0.67 
11 0.70 0.82 0.78 0.78 0.77 0.75 1.00 0.57 0.75 
12 0.93 0.83 0.82 0.78 0.80 0.82 0.57 1.00 0.87 
14 0.85 0.88 0.78 0.68 0.82 0.67 0.75 0.87 1.00 

(b) Coefficients matrix of rank corrélation between subjects' rankings for query 1 

Table A7.2 After pre-processing, rankings and corresponding coefficient matrix for query 2 

Subjects 
Ranks Assigned for Query 2 

Subjects 
1 3 4 5 6 7 8 9 10 

Subject 1 9 2 6 5 4 8 J 1 7 

Subject 2 9 2 4 5 6 8 3 ' 7 

Subject 3 9 2 6 4 3 8 5 1 7 

Subject 5 8 3 4 7 5 6 2 1 9 

Subject 6 9 2 5 4 3 7 6 1 8 

Subject 8 9 3 7 5 4 6 2 1 8 

Subject 9 9 3 5 6 4 7 1 8 

Subject 10 7 2 6 5 4 9 3 1 8 

Subject 11 9 3 6 5 4 8 2 1 7 

Subject 16 9 2 6 4 5 8 3 1 7 

(a) Rankings for query 2 

1 2 3 5 6 8 9 10 11 16 

1 1.00 0.93 0.95 0.83 0.88 0.93 0.92 0.95 0.98 0.98 
2 0.93 1.00 0.85 0.87 0.82 0.83 0.88 0.88 0.92 0.95 
3 0.95 0.85 1.00 0.70 0.97 0.85 0.78 0.90 0.90 0.93 
5 0.83 0.87 0.70 1.00 0.72 0.87 0.93 0.82 0.85 0.80 
6 0.88 0.82 0.97 0.72 1.00 0.80 0.73 0.83 0.82 0.87 
8 0.93 0.83 0.85 0.87 0.80 1.00 0.93 0.87 0.95 0.92 
9 0.92 0.88 0.78 0.93 0.73 0.93 1.00 0.87 0.95 0.88 
10 0.95 0.88 0.90 0.82 0.83 0.87 0.87 1.00 0.93 0.93 
11 0.98 0.92 0.90 0.S5 0.82 0.95 0.95 0.93 1.00 0.97 
16 0.98 0.95 0.93 0.80 0.87 0.92 0.88 0.93 0.97 1.00 

(b) Coefficients of rank corrélation between subjects' rankings for query 2 
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Table A7.3 After pre-processing, rankings and correspondîng coefficient matrix for query 3 

Subjects 
Ranks Assigned for Query 3 

Subjects 
1 2 4 5 6 7 8 9 10 

Subject 2 9 3 6 5 4 7 1 2 8 

Subject 4 6 3 8 5 4 7 1 2 9 

Subject 5 8 3 6 5 4 7 2 1 9 

Subject 7 8 3 6 5 4 7 2 1 9 

Subject 8 8 2 6 5 4 7 3 l 9 

Subject 9 8 2 9 4 5 6 3 1 7 

Subject 10 10 1 6 5 4 8 2 3 7 

Subject 12 8 3 6 5 4 7 2 l 9 

Subject 13 S 5 7 6 ^ 

j 4 1 2 9 

Subjecl 16 8 1 6 5 4 7 2 3 9 

(a) Rankings for query 3 

rs 2 4 5 7 S 9 10 12 13 16 

2 1.00 0.88 0.97 0.97 0.93 0.83 0.93 0.97 0.85 0.93 
4 0.88 1.00 0.92 0.92 0.88 0.85 0.76 0.92 0.83 0.88 
5 0.97 0.92 1.00 1.00 0.98 0.85 0.87 1.00 0.85 0.93 
7 0.97 0.92 1.O0 1.00 0.98 0.85 0.87 1.00 0.85 0.93 
8 0.93 0.88 0.98 0.98 1.00 0.87 0.89 0.98 0.78 0.95 
9 0.83 0.8S 0.85 0.85 0.87 1.00 0.81 0.85 0.72 0.82 
10 0.93 0.76 0.87 0.87 0.89 0.81 1.00 0.87 0.65 0.93 
12 0.97 0.92 1.00 1.00 0.98 0.85 0.87 1.00 0.85 0.93 
13 0.85 0.83 0.85 0.85 0.78 0.72 0.65 0.85 1.00 0.75 
16 0.93 0.88 0.93 0.93 0.95 0.82 0.93 0.93 0.75 1.00 

(b) Coefficients of rank corrélation between subjects1 rankings for query 3 

Table A7.4 After pre-processing, rankings and corresponding coefficient matrix for query 4 

Subjects 
Ranks Assigned for Query 4 

Subjects 
1 2 3 S 6 7 8 9 10 

Subject 2 8 2 4 7 6 1 5 3 9 

Subject 4 6 3 5 9 4 2 7 1 8 

Subject 8 9 3 4 8 6 2 5 1 7 

Subject 14 8 3 4 7 5 1 6 2 9 

(a) Rankings for query 4 

2 4 8 14 
1 1.00 0.80 0.90 0.97 
4 0.80 1.00 0.83 0.88 
8 0.90 0.83 1.00 0.92 
14 0.97 0.88 0.92 1.00 

(b) Coefficients of rank corrélation between subjects' rankings for query 4 
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Table A7.5 After pre-processing, rankings and corresponding coefficient matrix for query 5 

Subjects 
Ranks Assigned for Query 5 

Subjects 
1 2 J 4 6 7 S 9 10 

Subjcct 2 2 7 9 5 1 
^ 

j 8 6 4 

Subject 5 3 S 9 4 1 5 6 7 2 

Subject 7 2 4 9 6 1 5 8 7 3 

Subject 9 3 6 9 5 1 4 7 8 2 

Subject 11 2 9 7 5 1 4 6 8 -> 
j 

Subject 13 2 7 9 3 ] 6 8 5 4 

Subject 14 2 8 9 5 1 7 6 4 3 

Subject 16 4 6 7 5 1 3 9 8 2 

(a) Rankings for query 5 

i 5 7 9 ! 1 13 14 16 

2 1.00 0.87 Û.87 0.90 0.85 0.88 0.78 085 
S 0.87 1.00 0.78 0.93 0.92 0.87 0.87 0.80 
7 0.87 0.78 1.00 0.92 0,70 0.80 0.72 0.83 
9 0.90 0.93 0.92 1.00 0.87 0.80 0.73 0.92 
11 0.85 0.92 0.70 0.87 1,00 0.75 0.75 0.80 
13 0.88 0.87 0,80 0.80 0.75 Î.00 0.90 0.70 
14 0.78 0 87 0,74 0.73 0.75 0.90 1.00 0.55 
16 0.85 0.80 0.83 0.92 0.80 0.70 0.55 1.00 

(b) Coefficients of rank corrélation berween subjects' rankings for query 5 

Table A7.6 After pre-processing, rankings and corresponding coefficient matrix for query 6 

Subjects 
Ranks Assigned for Query 6 

Subjects 
1 2 J 4 5 7 8 9 10 

Subject 7 2 3 9 5 1 6 8 7 4 

Subject 12 2 j 9 5 1 6 7 8 4 

Subject 14 1 .5 8 6 2 9 7 5 4 

(a) Rankings for query 6 

7 12 14 

7 1.00 0.98 0.85 
12 0.98 1.00 0.82 
14 0,85 0.82 1.00 

(b) Coefficients of rank corrélation between subjects' rankings for query 6 
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Table A7.7 After pre-processing, rankings and corresponding coefficient matrix for query 7 

Subjects 
Ranks Assigned for Query 7 

Subjects 
1 2 4 5 6 8 9 10 

Subject 5 1 9 6 2 5 4 S 7 3 

Subject 9 1 9 6 3 4 5 8 7 2 

Subject 11 3 8 7 2 4 5 9 6 1 

(a) Rankings for query 7 

5 9 11 

5 1.00 0.97 0.88 
9 0.97 1.00 0.92 
11 0.88 0.92 1.00 

(b) Coefficients of rank corrélation berween subjects' rankings for query 7 

Table A7.8 After pre-processing, rankings and corresponding coefficient matrix for query 8 

Subjects 
Ranks Assigned for Query 8 

Subjects 
1 2 3 4 5 6 7 9 10 

Subject ! 6 4 1 7 2 5 8 3 9 

Subject 3 6 3 1 8 5 4 7 2 9 

Subject 5 8 2 3 6 5 4 7 1 9 

Subject 6 8 1 2 6 5 4 7 3 9 

Subject 7 7 3 2 6 4 5 8 1 9 

Subject 8 9 2 3 6 4 5 8 1 7 

Subject 9 6 2 3 7 5 4 9 1 8 

Subject 11 8 4 1 6 5 3 9 2 7 

Subject 12 7 3 2 6 4 5 8 1 9 

Subject 13 7 3 1 8 6 4 5 2 9 

Subject 14 8 3 1 5 7 4 6 2 9 

Subject 16 9 3 1 8 4 5 7 2 6 

(a) Rankings for query 8 

1 3 5 6 7 8 9 11 12 13 14 16 
1 1.00 0.88 0.77 0.78 0.90 0.75 0.80 0.80 0.90 0.75 0,67 0.78 
3 0.88 1.00 0.88 0.88 0.92 0.78 0.90 0.85 0.92 0.95 0.85 0.83 
5 0.77 0.88 1.00 0.95 0.95 0.93 0.92 0.85 0.95 0.87 0,90 0,82 
6 0.78 0.88 0.95 1.00 0.90 0.88 0.87 0.83 0.90 0.87 0.90 0.82 
7 0.90 0.92 0.95 0.90 1.00 0.92 0.93 0.88 1.00 0.83 0.85 0.83 
S 0.75 0.78 0.93 0.88 0.92 1.00 0.88 0.87 0.92 0.73 0.78 0.90 
9 0.80 0.90 0.92 0.87 0.93 0.88 1.00 0.87 0.93 0.78 0.77 0.78 
11 0.80 0.85 0.85 0.83 0.88 0.87 0.87 1.00 0.88 0.77 0.83 0,87 
12 0.90 0.92 0.95 0.90 1.00 0.92 0.93 0.88 1.00 0.83 0.85 0.83 
13 0.75 0.95 0.87 0.87 0.83 0.73 0.78 0.77 0,83 1.00 0.90 0,82 
14 0.67 0.85 0.90 0.90 0.85 0.78 0.77 0.83 0.85 0.90 1.00 0.75 
16 0.78 0.83 0.82 0.82 0.83 0.90 0.78 0.87 0.83 0.82 0.75 !.00 

(b) Coefficients of rank corrélation berween subjects1 rankings for query 8 
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Table A7.9 After pre-processing, rankings and corresponding coefficient matrix for query 9 

Subjects 
Ranks Assigned for Query 9 

Subjects 
1 2 j 4 5 6 7 8 10 

Subject 1 8 1 2 5 6 4 7 9 

Subject 2 9 2 1 6 5 3 8 4 7 

Subject 3 7 2 1 6 5 3 8 4 9 

Subject 5 7 1 4 8 5 6 2 9 

Subject 7 8 3 2 6 5 4 7 1 9 

Subject 8 8 1 2 6 4 5 7 3 9 

Subject 11 8 4 2 3 6 5 9 1 7 

Subject 12 8 j 2 6 5 4 7 1 9 

Subject 13 7 ^ 
-> 1 8 5 4 6 2 9 

Subject 14 7 3 1 5 7 4 6 2 9 

Subject 16 9 3 2 7 5 4 8 1 6 

(a) Rankings for query 9 

1 2 3 5 7 8 11 12 13 14 16 

1 K0O 0.90 0.93 0.88 0.92 0.95 0.78 0.92 0.85 0.92 0.80 
2 0.90 1.00 0.93 0.72 0.85 0.88 0.75 0.85 0.82 0.80 0.88 
3 0.93 0.93 1.00 0.78 0.88 0.92 0.72 0.88 0.88 0.87 0,78 
5 0.88 0.72 0.78 1.00 0.85 0.77 0.82 0.85 0.78 0.98 0,68 
7 0.92 0.85 0.88 0.85 1.00 0.92 0.83 1.00 0.93 0.92 0.90 
S 0.95 0.88 0.92 0.77 0.92 1.00 0.72 0.92 0.88 0.84 0.82 
11 0.78 0.75 0.72 0.82 0.83 0.72 1.00 0.83 0.63 0.80 0.82 
12 0.92 0.85 0.88 0.85 1.00 0.92 0.83 1.00 0.93 0.92 0.90 
13 0.85 0.82 0.88 0.78 0.93 0.88 0.63 0.93 1.00 0.89 0.83 
14 0.92 0.80 0.87 0.98 0.92 0.84 0.80 0.92 0.89 1.00 0.77 
16 0.80 0.88 0.78 0.68 0.90 0.82 0.82 0.90 0.83 0.77 1.00 

(b) Coefficients of rank corrélation between subjects' rankings for query 9 
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Table A7.10 After pre-processing, rankings and corresponding coefficient mat rix for query 

10 

Subjects 
Ranks Assigned for Query 10 

Subjects 
1 2 3 4 5 6 7 8 9 

Subjeci 1 1 4 S 2 5 6 J 9 7 

Subject 3 2 6 8 3 4 5 1 9 7 

Subject 5 2 7 6 3 4 5 1 9 8 

Subject 9 2 S 7 1 4 5 3 9 6 

Subject 10 1 8 6 2 3 4 5 9 7 

Subject 11 6 8 2 4 5 1 9 7 

Subjeci 12 1 6 9 4 5 3 2 7 8 

Subject 13 1 8 9 4 5 T 

J 2 7 6 

Subjeci 15 6 9 4 2 5 1 7 8 

(a) Rankings for query 10 

1 3 5 9 10 11 12 13 15 

l 1.00 0.90 0.82 0.82 0.73 0.88 0.80 0.70 0.73 
3 0.90 1.00 0.95 0.88 0.77 0.98 0.88 0.85 0.90 
5 0.82 0.95 1.00 0.88 0.82 0.93 0.82 0.78 0.83 
y 0.82 0.88 0.88 1.00 0.92 0.90 0.73 0.80 0.72 
10 0.73 0.77 0.82 0.92 1.00 0.75 0.70 0.73 0.63 
11 0.88 0.98 0.93 0.90 0.75 1.00 0.83 0.80 0.88 
12 0.80 0.88 0.82 0.73 O.70 0.83 1.00 0.93 0.85 
13 0.70 0.85 0.78 0.80 0.73 0.80 0.93 1.00 0.78 
15 0.73 0.90 0.83 0.72 0.63 0.88 0.85 0.78 1.00 

(b) Coefficients of rank corrélation betwcen subjects* rankings for query 10 
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Appendix 8: Image Rankings for Seven Queries by 

Subjects 

Contents: 

Figure A8.1 Image rankings for query 1 by subjects 
Figure A8.2 Image rankings for query 2 by subjects 
Figure A8.3 Image rankings for query 3 by subjects 
Figure A8.4 Image rankings for query 5 by subjects 
Figure A8.5 Image rankings for query 8 by subjects 
Figure A8.6 Image rankings for query 9 by subjects 
Figure A8.7 Image rankings for query 10 by subjects 

In Figures A8.1-A8.7, images are displayed in order of visual similarity from 

most similar to least similar to each query image. The value of psychophysical scaling 

is shown below each image. 
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Appendix 9: Comparison between Computational 

Texture Représentations and Visual Texture Features 

Contents: 

Table A9.1 Comparison between texture features of G L C M with visual feature perception 
Table A9.2 Comparison between texture features of MRSAR with visual feature perception 
Table A9.3 Comparison between texture features of FT with visual feature perception 
Table A9.4 Comparison between texture features of VVT with visual feature perception 
Table A9.5 Comparison between texture features of G T with visual feature perception 

In Tables A9.1-A9.5, the first row is the ranking based on texture features 

ranking by subjects and the other rows are rankings based on each texture feature 

calculated by Five computational methods respectively. The data in the last column in 

each table represents the coefficient of rank corrélation (\rs\) between each feature 

calculated by each method and the data perceived by subjects 

Table A9.1 Comparison between texture features of G L C M with visual feature 

perception 

Subjects 3 8 9 2 6 5 10 4 1 7 K1 
/ . 10 4 6 8 9 1 7 3 5 2 0.19 

fi 2 5 8 3 7 9 1 10 6 4 0.43 

f} 
2 5 3 7 9 1 8 6 10 4 0.27 

f, 4 10 6 1 7 9 8 3 5 2 0.55 
10 4 6 9 8 1 7 3 5 2 0.2 

A 2 5 8 3 7 9 1 10 6 4 0.43 

A 2 5 3 7 9 8 1 6 10 4 0.36 

h 4 10 6 1 7 9 8 3 5 2 0.55 

/ , 10 4 6 8 9 1 7 3 5 2 0.19 

/» 2 5 -i 
J 8 7 9 1 6 10 4 0.47 

/.. 2 5 3 7 9 1 S 6 10 4 0.27 

f» 4 10 6 1 7 9 8 3 5 2 0.55 

fn 10 4 6 9 8 1 7 3 5 2 0.2 

fu 2 5 ^ 

j 8 7 9 6 10 1 4 0.54 
2 5 3 7 9 8 1 6 10 4 0.36 
4 10 1 6 7 9 8 3 5 2 0.6 

f» 10 4 6 8 9 1 7 3 5 2 0.19 

f» 2 5 3 8 7 9 1 10 6 4 0.44 

f» 2 5 3 1 7 9 8 6 10 4 0.21 

fn 4 10 7 1 6 9 8 3 5 2 0.67 

fu 10 4 6 8 9 l 7 ^ 5 2 0.19 
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fn 2 5 8 3 9 7 1 10 6 4 0.52 

A , 2 5 3 9 1 7 8 6 10 4 0.37 

A . 4 10 7 l 6 9 8 j 5 2 0.67 

A , 10 4 8 6 9 7 1 3 5 2 0.16 

As 2 5 3 8 7 9 1 10 6 4 0.44 

A , 2 5 3 1 7 9 8 6 10 4 0.21 

A . 4 10 7 1 6 9 S 3 5 2 0.67 

/» 10 4 6 8 9 1 7 -s 5 2 0.19 

/» 2 5 3 8 7 9 10 1 6 4 0.47 

A , 2 5 3 7 1 9 S 6 10 4 0.2 

/ « 4 10 1 7 9 6 8 3 5 2 0.64 

/ « ¡0 4 8 6 9 7 1 3 5 2 0.16 

f» 2 5 3 8 7 9 l 10 6 4 0.44 

A , 2 5 1 ^ 

j 7 9 8 6 10 4 0.12 

A . 4 10 7 6 1 8 9 3 5 2 0.61 

fil 10 4 8 6 9 7 1 3 5 2 0.16 

fît 2 5 8 ^ 9 7 1 10 6 4 0.52 

A , 2 5 3 1 9 7 8 6 10 4 0.3 

Au 4 10 7 1 6 9 8 3 5 2 0.67 

A , 10 4 8 6 9 3 7 l 5 2 0.04 

Aï 2 5 3 8 7 9 1 10 6 4 0.44 

A3 2 5 1 3 7 9 8 6 10 4 0.12 

A , 4 10 7 6 1 8 9 3 5 2 0.61 
10 4 6 8 9 1 7 J 5 2 0.19 

/ * 2 5 3 8 7 9 1 10 6 4 0.44 

A» 2 5 3 1 7 9 8 6 10 4 0.21 

As 4 10 7 1 9 6 8 3 5 2 0.65 

/ * 10 4 8 6 9 1 3 7 5 2 0.04 

Ao 2 5 3 8 7 9 1 10 6 4 0.44 

A . 2 5 1 3 7 9 8 6 10 4 0.12 

A» 4 10 7 6 1 8 9 3 5 2 0.61 

A J 10 4 8 6 9 7 1 3 5 2 0.16 

fa 2 5 8 3 9 7 1 6 10 4 0.54 

A , 2 5 3 1 9 7 8 6 10 4 0.3 

f» 4 10 7 1 6 8 9 3 5 2 0.66 

A : 10 4 8 6 9 3 l 7 5 -i i. 0.05 

fn 2 5 3 8 7 9 1 10 6 4 0.44 

A . 2 5 1 7 3 9 S 6 10 4 0.01 

/ « 4 10 7 6 l 8 9 3 5 2 0.61 

A i 10 4 6 8 9 1 7 3 5 2 0.19 

/ « 2 5 3 8 7 9 1 10 6 4 0.44 

A J 2 5 T J l 7 9 8 6 10 4 0.21 

A . 4 10 | 7 1 6 9 8 3 5 2 0.67 

(a) Comparison between texture featurcs of G L C M and visual feature of coarseness 

Subjects 10 1 S 6 7 4 9 2 3 S Kl 
A 10 4 6 8 9 1 7 3 5 2 0.28 

A 2 5 8 3 7 9 1 10 6 4 0.45 
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A 2 5 3 7 9 1 8 6 10 4 0.28 

A 4 10 6 1 7 9 8 3 5 2 0.5 

A 10 4 6 9 8 1 7 3 5 2 0.32 

A 2 5 S 3 7 9 1 1 0 6 4 0.45 

A 2 5 j 7 9 8 1 6 10 4 0.38 

A 4 10 6 1 7 9 8 3 5 2 0.5 

A 10 4 6 8 9 1 7 3 5 2 0.28 

AD 2 5 3 8 7 9 1 6 10 4 0.48 

/ m 
2 5 3 7 9 1 8 6 10 4 0.28 

A : 4 10 6 1 7 9 8 3 5 2 05 

A , 10 4 6 9 8 1 7 3 5 2 0.32 

I» 2 5 3 8 7 9 6 10 1 4 0.49 

As 2 5 *> 
Ù 7 9 8 1 6 10 4 0.38 

A , 4 10 1 6 7 9 8 j 5 2 0.53 

A 10 4 6 8 9 1 7 3 5 2 0.28 

As 2 5 3 8 7 9 1 10 6 4 0.44 

A , 2 5 3 1 7 9 8 6 10 4 0.19 

A . 4 10 7 1 6 9 8 3 5 2 0.48 

A i 10 4 6 8 9 1 7 3 5 2 0,28 

fu 2 5 8 3 9 7 1 10 6 4 0.48 

A , 2 5 3 9 1 7 8 6 10 4 0.27 

A . 4 10 7 1 6 9 8 3 5 2 0.48 

A , 10 4 8 6 9 7 1 3 5 2 0.18 

f* 2 5 j 8 7 9 1 10 6 4 0.44 

/« 2 5 3 1 7 9 8 6 10 4 0.19 

A . 4 10 7 1 6 9 8 3 5 2 0.48 

A , 10 4 6 8 9 1 7 3 5 2 0.28 

A * 2 5 3 8 7 9 10 1 6 4 0.43 

A 2 5 3 7 1 9 8 6 10 4 0.22 

A i 4 10 1 7 9 6 8 3 5 2 0.48 

A3 10 4 8 6 9 7 1 3 5 2 0.18 

A , 2 5 3 8 7 9 1 10 6 4 0.44 

As 2 5 1 ^ 7 9 8 6 10 4 0.1 

A* 4 10 7 6 1 8 9 3 5 2 0.42 

A* 10 4 8 6 9 7 1 3 5 2 0.18 

A i 2 5 8 3 9 7 1 10 6 4 0.48 

A* 2 5 3 1 9 7 8 6 10 4 0.21 

Ao 4 10 7 1 6 9 8 3 5 2 0.48 

A , 10 4 8 6 9 3 7 1 5 2 0.04 

A , 2 5 3 8 7 9 1 10 6 4 0.44 

A i 2 5 1 3 7 9 8 6 10 4 0.1 

f» 4 10 7 6 1 8 9 3 5 0.42 

f» 10 4 6 8 9 1 7 3 5 2 0.28 

A . 2 5 3 8 7 9 1 10 6 4 0.44 

A ; 2 5 3 1 7 9 8 6 10 4 0.19 

A 8 
4 10 7 1 9 6 8 3 5 2 0.44 

A , 10 4 8 6 9 1 3 7 5 2 0.16 

A . 2 5 3 8 7 9 1 10 6 4 0.44 

A , 2 5 1 3 7 9 8 6 10 4 0.1 

A i 4 10 7 6 l 8 9 3 5 2 0.42 
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/» 10 4 S 6 9 7 1 _> 5 2 0.18 

A , 2 5 8 3 9 7 I 6 10 4 0.52 

As 2 5 3 1 9 7 8 6 10 4 0.21 

A* 4 10 7 ! 6 S 9 3 5 2 0.44 

/ » 10 4 8 6 9 3 1 7 5 2 0.08 

As 2 5 3 8 7 9 1 10 6 4 0.44 

A* 2 5 1 7 3 9 8 6 10 4 0.05 

A . 4 10 7 6 l 8 9 3 5 2 0.42 

A i 10 4 6 8 9 1 7 3 5 2 0.28 

A , 2 5 3 8 7 9 1 10 6 4 0.44 

A 3 
2 5 3 1 7 9 8 6 10 4 0.19 

A . 4 10 7 1 6 9 8 3 5 2 0.48 

(b) Comparison betwcen texture features of G L C M and visual feature of regularity 

Subjects 1 10 5 6 7 4 9 3 2 8 K1 
A 1 0 4 6 8 9 1 7 3 5 2 0.25 

A 2 5 8 3 7 9 1 10 6 4 0.48 

A 2 5 3 7 9 1 8 6 10 4 0.27 

A 4 10 6 1 7 9 8 J 5 2 0.5 

A 10 4 6 9 8 1 7 3 5 2 0.28 

A 2 5 8 3 7 9 1 10 6 4 0.48 

A 2 5 3 7 9 8 1 6 10 4 0.38 

A 4 10 6 1 7 9 8 3 5 2 0.5 

A 10 4 6 8 9 l 7 3 5 2 0.25 

Ao 2 5 3 8 7 9 1 6 10 4 0.48 

A, 2 5 3 7 9 1 8 6 10 4 0.27 

fn 4 10 6 1 7 9 8 3 5 2 0.5 

A 10 4 6 9 8 1 7 3 5 2 0.28 

A4 2 5 3 8 7 9 6 10 1 4 0.53 

As 2 5 7 9 8 I 6 10 4 0.38 

A* 4 10 1 6 7 9 8 5 2 0.54 

A : 10 4 6 8 9 1 7 3 5 2 0.25 

A . ? 5 3 8 7 9 1 10 6 4 0.45 

A , 2 5 3 1 7 9 8 6 10 4 0.15 

A:o 4 10 7 1 6 9 8 T 

J 5 2 0.48 

A , 10 4 6 8 9 1 7 3 5 2 0.25 

A ; 2 5 8 3 9 7 1 10 6 4 0.5 

A3 2 5 3 9 1 7 8 6 10 4 0.25 

A ; 4 10 7 1 6 9 8 3 5 2 0.48 

As 10 4 8 6 9 7 1 3 5 2 0.13 

A * 2 5 ^ J 8 7 9 1 10 6 4 0.45 

A , 2 5 3 l 7 9 8 6 10 4 0.15 

A . 4 10 7 1 6 9 8 3 5 2 0.48 

A3, 10 4 6 8 9 1 7 3 5 2 0.25 

Ao 2 5 3 8 7 9 10 1 6 4 0.47 

A , 2 5 3 7 1 9 8 6 10 4 0.2 

A> 4 10 1 7 9 6 8 j 5 2 0.49 

A3 10 4 8 6 9 7 1 3 5 2 0.13 
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2 5 3 8 7 9 1 [0 6 4 0.45 

As 2 5 1 3 7 9 8 6 10 4 0.07 

f» 4 10 7 6 1 8 9 3 5 2 0.41 

fil 10 4 8 6 9 7 l 3 5 2 0.13 

f» 2 5 8 3 9 7 1 10 6 4 0.5 

fi, 2 5 3 1 9 7 8 6 10 4 0.18 

A , 4 10 7 1 6 9 8 3 5 2 0.48 

f» 10 4 8 6 9 3 7 1 5 2 0.01 
2 5 3 8 7 9 1 10 6 4 0.45 

A 3 
i 5 1 ^ 

J 7 9 8 6 10 4 0.07 

f, 4 10 7 6 1 8 9 3 5 2 0.41 

f» 10 4 6 8 9 1 7 3 5 2 0.25 

A * 2 5 ^ 8 7 9 1 10 6 4 0.45 

f» 2 5 1 7 9 S 6 10 4 0.15 

A , 4 10 7 1 9 6 8 3 5 2 0.44 

A i 10 4 8 6 9 1 3 7 5 2 0.14 

A . 2 5 3 8 7 9 1 10 6 4 0.45 

A , 2 5 1 T J 7 9 8 6 10 4 0.07 

fa 
4 10 7 6 1 8 9 T 

J 5 2 0.41 

A , 10 4 8 6 9 7 1 3 5 2 0.13 

f» 2 5 8 3 9 7 1 6 10 4 0.53 

f» 2 5 1 9 7 8 6 10 4 0.18 

f» 4 10 7 1 6 8 9 3 5 2 0.44 

A T 10 4 8 6 9 3 1 7 5 2 0.05 

f» 2 5 3 8 7 9 1 10 6 4 0.45 

u 2 5 1 7 3 9 8 6 10 4 0.03 

Ao 4 10 7 6 1 8 9 3 5 2 0.41 

A . 10 4 6 8 9 1 7 3 5 2 0.25 

/ « 2 5 3 8 7 9 1 10 6 4 0.45 

A 3 
2 5 3 l 7 9 8 6 10 4 0.15 

f» 4 10 7 1 6 9 8 3 5 2 0.48 

(c) Comparison between texture featurcs of G L C M and visual feature of directionality 

Table A9.2 Comparison between texture features of M R S A R with visual feature 

perception 

Subjects 3 8 9 2 6 5 10 4 l 7 k' 1 
A 6 5 10 1 4 3 9 7 8 2 0.28 

f, 6 5 1 10 9 4 8 7 2 0.19 
2 8 7 3 9 4 1 10 5 6 0.31 

f, 2 8 7 •1 
j 4 9 10 1 5 6 0.27 

A 2 3 5 8 9 7 10 1 4 6 0.58 

A 6 5 10 1 3 4 7 9 8 2 0.28 

f-, 6 5 1 9 4 8 / 10 2 3 0.27 

A 2 8 3 9 7 10 4 1 5 6 0.54 

A 2 8 3 4 7 9 10 5 1 6 0.44 
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Ao 2 5 J 8 9 7 10 1 6 4 0.55 

fil 6 1 10 5 7 4 9 8 2 0.32 

fl2 1 6 5 9 4 7 8 ? 10 0.35 

A i 2 8 10 9 **> 7 4 5 1 6 0.47 

A 2 8 4 10 3 7 9 5 1 6 0.27 

fis 2 5 -> j 8 9 7 10 1 6 4 0.55 

(a) Comparison between texture features of MRSAR and visual feature of eoarseness 

Subjects 10 1 5 6 7 4 9 2 3 8 k l 
fx 6 5 10 1 4 3 9 7 8 2 0.75 

f. 6 5 1 10 9 4 8 3 7 2 0.67 

fi 2 8 7 3 9 4 1 10 5 6 0.77 

f, 2 8 7 j 4 9 10 1 5 6 0.75 

A 2 3 5 8 9 7 10 l 4 6 0.55 

A 6 5 10 1 3 4 7 9 8 2 0.73 

f 1 6 5 1 9 4 8 7 10 2 3 0.44 

A 2 8 3 9 7 10 4 1 5 6 0.77 

f» 2 8 ^ j 4 7 9 10 5 1 6 0.82 

Ao 2 5 3 8 9 7 10 1 6 4 0.45 

AI 6 1 10 3 5 7 4 9 8 2 0.7 

f,2 1 6 5 9 4 7 8 2 3 10 0.36 

fi 2 8 10 9 3 7 4 5 1 6 0.54 

A« 2 8 4 10 3 7 9 5 1 6 0.56 

As 2 5 3 8 9 7 10 1 6 4 0.45 

(b) Comparison between texture features of M R S A R and visual feature of regularity 

Subjects 1 10 5 6 7 4 9 3 2 8 k l 
A 6 5 10 1 4 3 9 7 8 2 0.78 

A 6 5 I 10 9 4 8 3 7 2 0.71 

fi 2 8 7 J 9 4 1 10 5 6 0.79 

f, 2 8 7 3 4 9 10 1 5 6 0.79 

A 2 3 5 8 9 7 10 1 4 6 0.58 

A 6 5 10 1 3 4 7 9 8 2 0.78 

A 6 5 1 9 4 8 7 10 2 3 0.49 

A 2 8 •T. J 9 7 10 4 1 5 6 0.82 

A 2 8 3 4 7 9 10 5 1 6 0.87 

A . 2 5 3 8 9 7 10 1 6 4 0.49 

fn 6 1 10 3 5 7 4 9 8 2 0.78 
fn 1 6 5 9 4 7 8 2 3 10 0.45 
fn 2 8 10 9 3 7 4 5 1 6 0.66 

A, 2 8 4 10 3 7 9 5 1 6 0.67 

f» 2 5 3 8 9 7 10 1 6 4 0.49 

(c) Comparison between texture features of MRSAR and visual feature of directionality 
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Table A9.3 Comparison betwcen texture features of FT with visual featurc perception 

Subjects 3 L 8 9 2 6 5 10 4 1 7 |r, | 

/, 2 5 S 3 7 9 10 1 6 4 0.45 

A 10 2 4 7 9 j 1 S 5 6 0.24 

A to 2 4 7 9 1 S 5 6 0.24 

f* 5 10 1 7 2 6 4 9 8 3 0.70 

(a) Comparison betwcen texture features of F T and visual feature of coarseness 

Subjects 10 1 5 6 7 4 9 2 j 8 Kl 
A 2 5 8 3 7 9 10 1 6 4 0.44 

A 10 2 4 7 9 3 1 8 5 6 0.03 

A 10 2 4 7 9 3 1 8 5 6 0.03 

A 5 10 1 7 2 6 4 9 8 3 0.85 

(b) Comparison betwcen texture features of FT and visual feature of regularity 

Subjects 1 10 5 6 7 4 9 2 8 K1 
A 2 5 S 3 7 9 10 1 6 4 0.49 

A 10 2 4 7 9 3 1 8 5 6 0.09 

A 10 2 4 7 9 ^ j 1 8 5 6 0.09 

A 5 10 1 7 2 6 4 9 8 J 0.78 

(c) Comparison between texture features of FT and visual feature of directionality 

Table A9.4 Comparison between texture features of W T with visual feature perception 

Subjects 3 8 9 2 6 5 10 4 1 7 Kl 
A 10 2 4 7 9 3 1 8 5 6 0,24 

A 5 2 7 10 I 9 8 3 6 4 0.25 

A 2 5 9 8 3 1 7 6 10 4 0.52 

A 5 2 1 7 8 9 3 10 6 4 0.07 

A 2 5 8 9 7 1 6 10 4 0.55 

A 5 2 7 1 3 8 10 9 6 4 0.09 

A 2 5 3 8 9 6 7 10 1 4 0.68 

A 2 5 7 8 3 9 10 6 1 4 0.30 

A 2 5 8 3 9 1 7 6 10 4 0.55 

Ao 2 5 1 8 7 9 3 10 6 4 0.05 

A. 2 5 3 8 9 7 6 1 10 4 0.60 

A : 2 5 8 3 7 9 1 10 6 4 0.43 

Au 2 5 3 8 9 7 10 1 6 4 0.55 

AN 2 8 5 3 7 9 10 1 4 6 0.47 

A.< 2 5 3 8 9 7 1 6 10 4 0.55 

A . 2 5 8 7 9 3 1 10 6 4 0.30 

An 2 5 3 8 9 7 6 1 10 4 0.60 
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fil 2 5 3 7 8 9 10 6 1 4 0.42 

A . 2 S 3 5 7 9 4 10 1 6 0.53 

f* 2 7 8 3 5 9 4 10 1 6 0.27 

(¡1) Coniparison between texture features of WT and visual featurc of coarscness 

Subjects 10 1 5 6 7 4 9 2 3 8 k 1 
fi 10 2 4 7 9 J ! 8 5 6 0.03 

A 5 2 7 10 1 9 8 3 6 4 0.31 

A 2 5 9 8 3 1 7 6 10 4 0.42 

A 5 2 1 7 8 9 3 10 6 4 0.02 

A 2 5 3 8 9 7 1 6 10 4 0.5 

A 5 2 7 1 3 8 10 9 6 4 0.04 

A 2 5 3 8 9 6 7 10 1 4 0.5 

A 2 5 7 8 3 9 10 6 l 4 0.36 

A 2 5 8 9 1 7 6 »0 4 0.48 

A . 2 5 1 8 7 9 3 10 6 4 0.1 

A , 2 5 3 8 9 7 6 1 10 4 0.53 

fn 2 5 8 3 7 9 1 10 6 4 0.45 

fn 2 5 3 8 9 7 10 1 6 4 0.45 
2 8 5 3 7 9 10 1 4 6 0.55 

A= 2 5 3 8 9 7 1 6 10 4 0.5 

A* 2 5 8 7 9 3 1 10 6 4 0.38 
2 5 3 8 9 7 6 [ 10 4 0.53 

A* 2 5 3 7 8 9 10 6 1 4 0.39 

U 2 S 3 5 7 9 4 10 1 6 0.73 

Ao 2 7 8 3 5 9 4 10 1 6 0.65 

(b) Coniparison between texture features of WT and visual feature of regularity 

Subjects 1 10 5 6 7 4 9 3 2 8 k 1 
Ai 10 2 4 7 9 3 1 8 5 6 0.09 

A 5 2 7 10 1 9 8 3 6 4 0.22 

A 2 5 9 8 3 1 7 6 10 4 0.43 

A 5 2 1 7 8 9 3 10 6 4 0.02 

A 2 5 3 8 9 7 1 6 10 4 0.5 

A 5 2 7 1 3 8 10 9 6 4 0.04 

A 2 5 3 8 9 6 7 10 1 4 0.54 

A 2 5 7 8 3 9 10 6 1 4 0.43 

A 2 5 8 3 9 1 7 6 10 4 0.48 

Ao 2 5 I 8 7 9 3 10 6 4 0.12 

A , 2 5 3 8 9 7 6 1 10 4 0.54 

f» 2 5 8 3 7 9 1 10 6 4 0.48 

An 2 5 3 8 9 7 10 I 6 4 0.49 
2 8 5 i J 7 9 10 l 4 6 0.6 

A , 2 5 3 S 9 7 1 6 10 4 0.5 

A,„ 2 5 8 7 9 3 1 10 6 4 0.43 

AIT 2 5 3 8 9 7 6 l 10 4 0.54 

A I 2 5 3 7 8 9 10 6 1 4 0.44 
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u 2 8 3 5 7 9 4 10 1 6 0.77 

A . 2 7 8 3 5 9 4 10 ] 6 0.7 

(c) Comparison betwcen texture features of VVT and visual feature of direetionality 

Table A9.5 Comparison between texture features of G T with visual feature perception 

Subjects 3 8 9 2 6 5 10 4 1 7 k 1 
/, 5 2 3 7 8 9 1 6 10 4 0.35 

A 5 2 3 8 9 6 10 4 7 1 0.73 
5 2 8 9 6 1 4 10 7 0.70 

A 5 2 1 8 9 7 -\ 
J 6 10 4 0.14 

A 5 2 S 3 9 6 7 10 1 4 0.65 

A 2 5 3 8 9 1 6 10 7 4 0.66 

f, 2 5 3 7 8 1 9 6 10 4 0.30 

A 5 2 T 

J 8 9 7 6 10 4 1 0.61 

A 5 2 8 3 9 7 6 1 10 4 0.56 

Ao 2 5 1 8 9 7 3 6 10 4 0.16 

Au 2 5 3 9 8 7 6 10 1 4 0.61 

Ai 2 5 -s 
j 

8 9 1 7 6 10 4 0.56 

f» 2 ^ 

j 8 7 9 1 10 6 4 0.50 

A* 2 5 3 8 9 7 10 6 1 4 0.60 

fK 
2 5 8 3 9 7 10 1 4 6 0.50 

A . 2 5 8 9 3 1 7 10 6 4 0.50 

/ n 2 5 3 8 9 7 10 1 6 4 0.55 

fi* 2 5 3 8 9 7 10 1 6 4 0.55 

A* 2 5 3 6 7 8 9 1 10 4 0.42 

A* 2 5 8 3 7 9 10 4 1 6 0.43 

A i 2 8 3 5 9 7 1 4 10 6 0.58 

An 2 5 3 8 7 9 6 1 10 4 0.52 

f» 2 3 8 5 9 7 1 4 10 6 0.59 

A, 2 5 3 8 7 9 1 10 6 4 0.44 

A» 7 2 5 1 6 8 3 9 10 4 0.24 

f» 5 2 10 8 3 9 4 6 7 ! 0.48 

f« 2 5 6 1 8 9 3 4 10 7 0.32 

A i 5 1 7 2 9 8 ^ 6 10 4 0.19 

f» 5 2 6 8 9 -* 
j 4 10 7 1 0.58 

AD 5 2 10 8 1 3 9 7 6 4 0.21 

A , 2 5 7 1 3 6 8 10 9 4 0.10 

A Ï 5 2 7 8 10 3 6 9 4 1 0.14 

fu 5 2 7 8 1 9 6 10 4 3 0.18 

f» 1 2 5 7 9 8 10 J 4 6 0.26 

As 2 5 7 9 8 6 10 J 4 1 0.18 

A, 2 5 7 I 10 8 3 6 9 4 0.24 

f» 2 -, J 8 7 1 9 5 10 6 4 0.43 

A , 2 5 8 10 9 7 6 4 1 0.52 

fi. 2 8 9 3 5 7 10 1 4 6 0.62 

f la 2 1 9 8 7 3 5 10 4 6 0.15 
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f» 2 8 9 5 7 10 1 4 6 0.62 

A : 2 5 8 3 10 9 7 1 6 4 0.53 

As 2 5 7 3 8 6 9 1 4 10 0.27 

A „ 2 8 7 3 5 9 10 4 6 1 0.43 

A* 2 S 7 3 9 5 4 10 1 6 0.41 

A - 2 5 7 1 9 8 3 6 4 10 0.05 

A , 2 7 8 3 9 5 10 4 1 6 0.32 

A . 2 8 7 5 3 9 10 4 1 6 0.32 

(a) Comparison between texture features o f G T and visual feature of coarseness 

Subjects 10 1 5 6 7 4 9 2 3 8 lri 1 
A 5 2 -1 7 8 9 1 6 10 4 0.36 

A 5 2 3 8 9 6 10 4 7 1 0.45 

A 5 2 3 8 9 6 1 4 10 7 0.44 

A 5 2 1 8 9 7 3 6 10 4 0.1 

A 5 2 8 3 9 6 7 10 1 4 0.45 

A 2 5 3 8 9 1 6 10 7 4 0.41 

A ? 5 J 7 8 1 9 6 10 4 0.36 

A 5 2 3 8 9 7 6 10 4 1 0.5 

A 5 2 8 3 9 7 6 1 10 4 0.48 

Ao 2 5 1 8 9 7 3 6 10 4 0.16 

A. 2 5 3 9 8 7 6 10 1 4 0.4S 

A» 2 5 3 8 9 1 7 6 10 4 0.47 

A i 2 ^ 

J 5 8 7 9 1 10 6 4 0.52 

AM "1 5 3 8 9 7 10 6 1 4 0.48 

As 2 5 8 3 9 7 10 1 4 6 0.49 

A , 2 5 8 9 3 1 7 10 6 4 0,42 

A , 2 5 *> 

j 8 9 7 10 1 6 4 0.45 

A . 2 5 j 8 9 7 10 1 6 4 0.45 

AP 2 5 3 6 7 8 9 1 10 4 0.32 

A„ 2 5 8 3 7 9 10 4 1 6 0.52 

A , 2 8 j 5 9 7 1 4 10 6 0.72 

A i 5 3 8 7 9 6 1 10 4 0.5 

A i 2 3 S 5 9 7 1 4 10 6 0.71 

Ai, 2 5 3 8 7 9 1 10 6 4 0.44 

A , 7 2 5 1 6 8 9 10 4 0.04 

/ M 5 2 10 8 3 9 4 6 7 1 0.18 

A I 2 5 6 1 8 9 3 4 10 7 0.08 

Ai. 5 1 7 2 9 8 3 6 10 4 0.13 

/ » 5 2 6 S 9 T 
J 4 (0 7 1 0.33 

Ao 5 2 10 8 1 3 9 7 6 4 0.1 

A , 2 5 7 1 3 6 8 10 9 4 0.05 

A : 5 2 7 8 10 6 9 4 1 0.14 

A 3 
5 2 7 8 1 9 6 10 4 3 0.04 

A , l 2 5 7 9 8 10 3 4 6 0.15 

A5 2 5 7 9 S 6 10 3 4 1 0.22 

A6 5 7 1 10 8 3 6 9 4 0.21 

/ « 2 j 8 7 1 9 5 10 6 4 0.6 
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As 2 5 8 10 3 9 7 6 4 1 0.32 

/ ] 9 2 8 9 -y J 5 7 10 1 4 6 0.67 

A« 2 1 9 8 7 J 5 10 4 6 0.33 

A l 2 8 9 3 5 7 10 l 4 6 0.67 

Aï 2 5 S 3 10 9 7 1 6 4 0.35 

A l 2 5 7 3 8 6 9 1 4 10 0.42 

f» 2 S 7 -* 5 9 10 4 6 1 0.67 

A , 2 8 7 3 9 5 4 10 1 6 0.76 

A» 2 5 7 1 9 8 3 6 4 10 0.14 

f» 2 7 8 j 9 5 10 4 1 6 0.64 

A . 2 8 7 5 3 9 10 4 1 6 0.58 

(b) Comparison betwecn texture features of G T and vîsual feature of regularity 

Subjects 1 10 5 6 7 4 9 3 2 8 k 1 
A 5 2 3 7 8 9 1 6 10 4 0.35 

A: 5 2 3 8 9 6 10 4 7 1 0.5 

A 5 2 3 8 9 6 1 4 10 7 0.43 

A 5 2 1 8 9 7 3 6 10 4 0.09 

A 5 2 8 3 9 6 7 10 1 4 0.49 

A 2 5 J 8 9 1 6 10 7 4 0.41 

A 2 5 3 7 8 l 9 6 10 4 0.35 

A 5 2 3 8 9 7 6 10 4 1 0.54 

A 5 2 8 3 9 7 6 1 10 4 0.49 

A . 2 5 1 8 7 3 6 10 4 0.16 

A , 2 5 3 9 8 7 6 10 1 4 0.52 

A i 2 5 3 8 9 1 7 6 10 4 0.45 

A3 2 3 5 8 7 9 I 10 6 4 0.52 

A , 2 5 3 8 9 7 10 6 1 4 0.53 

A* 2 5 8 3 9 7 10 1 4 6 0.54 

A . 2 5 8 9 3 l 7 10 6 4 0.44 

A i 2 5 3 8 9 7 10 1 6 4 0.49 

A , 2 5 3 8 9 7 10 1 6 4 0.49 

A , 2 5 3 6 7 8 9 1 10 4 0.33 

A . 2 5 8 3 7 9 10 4 1 6 0.58 

A . 2 8 3 5 9 7 1 4 10 6 0.72 

An 2 5 3 8 7 9 6 1 10 4 0.52 

A , 2 3 8 5 9 7 1 4 10 6 0.7 
2 5 3 8 7 9 1 10 6 4 0.45 

A i 7 2 5 1 6 8 3 9 10 4 0.04 

A . 5 2 10 8 3 9 4 6 7 1 0.3 

A7 2 5 6 1 8 9 3 4 10 7 0.09 

A . 5 1 7 2 9 8 3 6 10 4 0.18 

A , 5 2 6 8 9 3 4 10 7 l 0.41 

A . 5 2 10 8 1 j 9 7 6 4 0.03 

A , 2 5 7 1 3 6 8 10 9 4 0.05 

A i 5 2 7 8 10 3 6 9 4 1 0.25 

A3 5 2 7 8 1 9 6 10 4 3 0.02 

A , 1 2 5 7 9 8 10 3 4 6 0.15 

185 



Appendices 

A , 2 5 7 9 S 6 10 3 4 1 0.35 

/ M 2 5 7 1 10 8 j 6 9 4 0.15 

/ « 2 j S 7 1 9 5 10 6 4 0.58 

/» 2 5 8 10 3 9 7 6 4 1 0.44 

Ao 2 S 9 j 5 7 10 1 4 6 0.72 

AD 2 1 9 8 7 3 5 10 4 6 0.32 

A , 2 8 9 3 5 7 10 1 4 6 0.72 

A . 2 5 8 J 10 9 7 1 6 4 0.42 

/« 2 5 7 3 8 6 9 1 4 10 0.43 

fa 2 8 7 3 5 9 10 4 6 1 0.75 

A s 
2 8 7 3 9 5 4 10 1 6 0.81 

A , 2 5 7 1 9 8 3 6 4 10 0.14 

/ « 2 7 8 3 9 5 10 4 1 6 0.7 

A , 2 8 7 5 3 9 10 4 l 6 0.65 

(c) Comparison bctwccn texture features of G T and visual feature of directionality 
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Appendix 10: Comparison Similarity Measurements 

between Computational Texture Methods and Subjects 

Contents: 

Table A10.1 Comparison between computational methods and subjects in similarity 
measurements for query 1 
Table AIO.2 Comparison between computational methods and subjects in similarity 
measurements for query 2 
Table A 10.3 Comparison between computational methods and subjects in similarity 
measurements for query 3 
Table A10.4 Comparison between computational methods and subjects in similarity 
measurements for query 5 
Table A10.5 Comparison between computational methods and subjects in similarity 
measurements for query 8 
Table A 10.6 Comparison between computational methods and subjects in similarity 
measurements for query 9 
Table A10.7 Comparison between computational methods and subjects in similarity 
measurements for query 10 

In Tables AIO. 1 - A 10.7, the first row is the ranking done by subjects and the 

other rows are retrieval results calculating by fi ve computational methods. The 

numbers from column 2 to 10 in Tables A 10.1-A 10.7 are the ID numbers of ranking 

images in the order from most similar to least similar to each query image. The last 

column is the coefficients of rank corrélation between computation methods and 

subjects. 

Table A10.1 Comparison between computational methods and subjects in similarity 
measurements for query 1 

Subjects 5 10 7 6 4 2 9 3 S '** 
GLCM 1 9 6 -* 8 5 4 10 2 -0.13 
MRSAR 10 4 6 9 7 3 8 5 2 0.25 

FT 9 7 6 5 3 8 4 10 2 0.05 
wr 6 10 7 9 8 4 5 2 0.22 
GT 6 10 7 4 9 8 3 5 2 0.32 

Table A 10.2 Comparison between computational methods and subjects in similarity 
measurements for query 2 

Subjects 9 *> 8 6 5 4 7 10 1 rs 
GLCM 5 3 9 7 8 1 6 4 10 0.53 
MRSAR S 3 9 7 4 5 1 10 6 0.60 

FT 7 4 10 9 j 8 1 5 6 -0.18 
WT 5 8 3 7 9 1 10 6 4 0.35 
GT 5 8 3 7 9 1 6 10 4 0.42 
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Table A10.3 Comparaison between computational methods and subjects in similarity 
measurements for query 3 

Subjects 9 8 2 6 5 4 7 1 10 rs 
GLCM 9 7 8 l 5 6 2 4 10 0.45 
MRSAR 9 8 7 I 10 4 6 5 2 0.15 

FT 9 8 7 4 1 6 5 2 10 0.48 
WT 8 9 7 1 10 6 5 4 2 0.18 
GT 8 9 7 6 10 1 4 5 2 0.30 

Table A 10.4 Comparison between computational methods and subjects in similarity 
measurcments for query 5 

Subjects 6 1 10 7 4 9 2 8 3 rs 
GLCM 3 2 9 7 8 1 6 4 10 -0.70 
MRSAR 10 1 6 9 3 4 8 7 2 0.58 

FT 6 1 8 7 3 9 10 4 2 0.42 
WT 8 3 9 7 2 1 6 10 4 -0.70 
GT 8 2 3 7 9 1 6 10 4 -0.70 

Table A10.5 Comparison between computational methods and subjects in similarity 
measurements for query 8 

Subjects 9 3 2 6 5 4 7 1 10 

GLCM 9 7 6 3 1 5 4 2 10 0.45 
MRSAR 3 9 7 4 1 10 6 2 5 0.25 

FT 3 9 7 6 1 5 4 2 10 0.55 
WT 3 9 7 1 10 6 5 4 2 0.18 
GT 3 9 7 6 10 1 5 4 2 0.32 

Table A 10.6 Comparison between computational methods and subjects in similarity 
measurements for query 9 

Subjects 3 8 2 6 5 4 7 1 10 r, 
GLCM 7 1 8 3 6 5 4 2 10 0.08 
MRSAR 8 3 7 1 4 10 6 5 2 0.18 

FT 3 7 8 4 1 6 5 2 10 0.40 
WT 8 3 7 1 10 6 4 5 2 0.17 
GT 8 3 7 10 6 1 4 5 2 0.22 

Table A10.7 Comparison between computational methods and subjects in similarity 
measurements for query 10 

Subjects l 7 4 5 6 2 9 3 8 

GLCM 4 6 1 8 7 9 3 5 2 0.35 
MRSAR 1 4 6 9 7 3 8 5 2 0.53 

FT 4 1 7 2 9 3 5 6 8 0.70 
WT 6 4 1 7 9 j 8 5 2 0.48 
GT 4 6 9 1 7 3 8 5 2 0.33 
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Appendix 11: Rank Corrélation between Visual 

Similarity Measurements and Visual Texture Features 

Contents: 
Table A l l . l Rank corrélation between visual similarity measurements and visual texture feature 
for query 1 
Table A l 1.2 Rank corrélation between visual similarity measurements and visual texture feature 
for query 2 
Table A l 1.3 Rank corrélation between visual similarity measurements and visual texture feature 
for query 3 
Table Ail.4 Rank corrélation between visual similarity measurements and visual texture feature 
for query 5 
Table A l 1.5 Rank corrélation between visual similarity measurements and visual texture feature 
for query 8 
Table A l 1.6 Rank corrélation between visual similarity measurements and visual texture feature 
for query 9 
Table A l 1.7 Rank corrélation bcfwecn visual similarity measurements and visual texture feature 
for query 10 

In Table A 11,1-A 11.7, the first row is the ranking based on human similarity 

measurements for query images and the other rows are the corresponding rankings for 

query image based on coarseness, regularity and directionality respectively. The 

numbers from column 2 to 10 in Table A l 1.1-Al 1.7 are the ID numbers of ranking 

images in order from most similar to less similar for query images. The last column is 

the coefficients of rank corrélation between visual similarity measurements and the 

corresponding visual texture feature. 

Table A l l . l Rank corrélation between visual similarity measurements and visual texture feature 
for query 1 

Subjects 5 10 7 6 4 2 9 J 8 

Coarseness 7 4 5 10 6 2 8 9 3 0.77 
Regularity 5 6 10 7 4 9 2 3 8 0.93 

Directionality 10 5 6 7 4 9 -* 2 S 0.92 

Table A l 1.2 Rank corrélation between visual similarity measurements and visual texture feature 
for query 2 

Subjects 9 3 S L 6 5 4 7 10 [ 

Coarseness 9 8 6 5 10 4 1 J 7 0.53 
Regularitv 3 8 9 4 7 6 1 5 10 0.73 

Directionality 3 8 9 4 7 6 5 10 1 0.82 
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Table A l 1.3 Rank corrélation between visual similarity measurements and visual texture feature 
for query 3 

Subjects 9 S 2 6 5 4 7 1 10 

Coarseness S 9 2 6 5 10 4 1 7 0.87 
Regularity 2 8 9 4 7 6 1 :> 10 0.75 

Directionality 9 2 8 4 7 6 5 10 1 0.83 

Table A l 1.4 Rank corrélation between visual similarity measurements and visual texture feature 
for query 5 

Subjects 6 1 10 7 4 9 2 8 3 

Coarseness 6 10 4 2 9 1 8 7 3 0.60 
Regularity 1 10 6 7 4 9 2 j 8 0.93 

Directionality 6 7 4 10 9 1 .> 2 8 0.73 

Table A i l . 5 Rank corrélation between visual similarity measurements and visual texture feature 
for query' 8 

Subjects 9 3 2 6 5 4 7 1 10 '•, 
Coarseness 9 2 6 5 10 4 3 1 7 0.60 
Regularity 3 2 9 4 7 6 1 5 10 0.77 

Directionality 2 3 9 4 7 6 5 10 1 0.78 

Table A i l . 6 Rank corrélation between visual similarity measurements and visual texture feature 
for query 9 

Subjects 3 8 2 6 5 4 7 1 10 

Coarseness 2 8 6 5 10 4 1 3 7 0.37 
Regularity 4 7 2 3 8 6 1 5 10 0.32 

Directionality 3 2 4 8 7 6 5 10 1 0.77 

Table A i l . 7 Rank corrélation between visual similarity measurements and visual texture feature 
for query 10 

Subjects 1 7 4 5 6 2 9 3 8 r, 
Coarseness 4 5 6 1 7 2 9 8 3 0.73 
Regularity 5 1 6 7 4 9 2 3 8 0.80 

Directionality 1 5 6 7 4 9 3 2 8 0.82 
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Appendix 12: Comparison between Subjects and 

Computational Texture Methods for Image Retrieval 

after Classification 

Contents: 

Table A12.I Comparison between computational methods and subjects in similarity 
measurements for query 1 after classification 
Table A 12.2 Comparison between computational methods and subjects in similarity 
measurements for query 2 after classification 
Table A 12.3 Comparison between computational methods and subjects in similarity 
measurements for query 3 after classification 
Table A l 2.4 Comparison between computational methods and subjects in similarity 
measurements for query 5 after classification 
Table A12.5 Comparison between computational methods and subjects in similarity 
measurements for query 8 after classification 
Table A 12.6 Comparison between computational methods and subjects in similarity 
measurements for query 9 after classification 
Table A12.7 Comparison between computational methods and subjects in similarity 
measurements for query 10 after classification 

In Tables A12.1-A12.7, the First row is the ranking done by subjects and the 

other rows are retrieval results calculating by Five computational methods after 

classiFication. The numbers from column 2 to 10 in Tables A12.1-A12.7 are the ID 

numbers of ranking images in order from most similar to less similar for query 

images. The last column is the coefficients of rank corrélation between computation 

methods and subjects. 

Table A12.1 Comparison between computational methods and subjects in similarity 
measurements for query 1 after classification 

Subjects 5 10 7 6 4 2 9 3 8 

GLCM 7 10 6 5 4 9 3 8 2 0.78 
MRS A R 10 7 4 6 5 9 3 8 2 0.72 

FT 7 10 6 4 9 3 8 2 0.78 
WT 10 7 6 4 5 9 8 3 2 0.72 
GT 10 7 6 4 5 9 8 3 2 0.72 

Table A12.2 Comparison between computational methods and subjects in similarity 
measurements for query 2 after classification 

Subjects 9 3 8 6 5 4 7 10 1 

GLCM 3 9 8 5 6 4 7 1 10 0.95 
MRSAR 8 3 9 4 5 6 7 1 10 0.85 

FT 9 3 8 4 5 6 7 10 1 0.93 
WT 8 3 9 5 6 4 7 1 10 0.90 
GT S 3 9 5 6 4 7 1 10 0.90 
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Table A12.3 Comparison berween computational methods and subjects in similarity 
measurcments for query 3 after classification 

Subjects 9 8 2 6 5 4 7 l 10 

GLCM 9 8 2 5 6 4 7 l 10 0.98 
MRSAR 9 8 2 4 6 5 7 1 10 0.95 

FT 9 8 2 4 6 5 7 1 10 0.95 
WT 8 9 2 6 5 4 7 1 10 0.98 
GT 8 9 2 6 4 5 7 10 1 0.95 

Table A12.4 Comparison bctween computational methods and subjects in similarity 
measurements for query 5 after classification 

Subjects 6 l 10 7 4 9 2 8 T 

GLCM 6 4 7 ! 10 3 2 9 8 0.73 
MRSAR 6 4 10 1 7 9 3 8 2 0.82 

FT 6 4 1 7 10 9 J S 2 0.82 
WT 6 4 7 1 10 8 T 

J 9 2 0.72 
GT 6 4 7 1 10 8 2 3 9 0.73 

Table A12.5 Comparison berween computational methods and subjects in similarity 
measurements for query 8 after classification 

Subjects 9 3 2 6 5 4 7 1 10 

GLCM 9 3 2 6 5 4 7 1 10 1.00 
MRSAR -y J 9 2 4 6 5 7 1 10 0.93 

FT 3 9 2 6 5 4 7 1 10 0.98 
WT 3 9 2 6 L 5 4 7 1 10 0.98 
GT 3 9 2 6 5 4 7 10 1 0.97 

Table A12.6 Comparison between computational methods and subjects in similarity 
measurements for query 9 after classification 

Subjects 3 8 2 6 5 4 7 l 10 >*.< 

GLCM 8 3 2 6 5 4 7 1 10 0.98 
MRSAR 8 3 2 4 6 5 7 1 10 0.93 

FT 3 8 2 4 6 5 7 1 10 0.95 
WT 8 3 2 6 5 4 7 1 10 0.98 
GT 8 3 2 6 5 4 7 10 1 0.97 

Table A12.7 Comparison between computational methods and subjects in similarity 
measurcments for query 10 after classification 

Subjects l 7 4 5 6 2 9 3 S 

GLCM 1 7 4 6 5 8 9 j 2 0.83 
MRSAR 1 7 4 6 5 9 T 

J 8 2 0.88 
FT 1 7 4 5 6 2 9 -> 8 1.00 
WT 1 7 6 5 4 9 3 8 2 0.83 
GT 1 7 4 6 5 9 3 8 2 0.88 
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Appendix 13: One Hundred Test Wallpaper Images 

Appendices 

For Ihe purpose of texture analysis, the sample images are converted to grey-level images and normalized to the same size of512x5)2 

pixels. The number below each image is the ID number of the image in the 100 image dataset. 
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Appendix 14: Rankings for Nine Queries in One 

Hundred Images by Subjects 

Contents: 

Table A14.I Rankings for query 1 
Table A14.2 Rankings for query 2 
Table A 14.3 Rankings for query 3 
Table A14.4 Rankings for query 4 
Table A14.5 Runkings for query 5 
Table A14.6 Rankings for query 6 
Table A14.7 Rankings for query 7 
Table A14.8 Rankings for query 8 
Table A14.9 Rankings for query 9 

In Tables A 14.1-A 14.9, the entry Tnmof table expresses the ID number of 

images in 100 image dataset ranked in the mlh position by the subject, where the 

SLibscription n, m of Tnm represents the number of row and column respectively. 

Table A14.1 Rankings for query 1 

Subjects Ranking rcsults 
Subject 1 79 100 36 20 49 78 57 18 11 
Subiect 2 14 18 74 11 79 46 5 4 20 
Subject 3 79 49 20 36 57 18 14 74 44 
Subject 4 36 44 18 20 11 100 57 49 38 
Subject 5 20 79 74 46 38 55 11 36 100 
Subject 6 74 38 79 20 11 14 100 18 44 
Subject 7 100 74 79 57 44 24 20 18 44 
Subiect 8 (l 14 36 44 46 55 74 79 100 
Subject 9 55 74 100 18 14 15 73 49 38 
Subject 10 20 74 38 79 11 14 100 18 44 
Subiect 11 38 20 74 79 37 49 46 55 5 
Subject 12 20 46 55 11 14 74 100 79 44 
Subject 13 55 79 37 38 5 4 46 36 12 

Table A14.2 Rankings for query 2 

Subjects Ranking results 
Subject 1 30 29 77 47 92 96 97 47 98 
Subject 2 30 27 96 48 47 29 92 2 66 
Subject 3 31 30 77 27 47 82 92 48 28 
Subject 4 77 80 96 97 31 30 2 48 47 
Subject 5 27 77 48 30 97 2 47 29 52 
Subject 6 27 30 48 47 2 31 52 77 97 
Subject 7 31 96 99 91 98 80 77 66 52 
Subject 8 77 64 52 27 47 1 18 67 2 
Subject 9 48 47 52 77 80 97 2 31 32 
Subject 10 27 30 48 47 2 31 52 77 97 
Subject 11 30 47 2 52 77 97 98 27 66 
Subject 12 80 62 53 77 52 64 47 2 18 
Subject 13 66 52 28 2 56 16 27 1 76 
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Table A14.3 Rankings for query 3 

Subjects Ranking results 
Subjecl 1 3 35 51 39 7 19 r 17 50 34 
Subject 2 50 51 35 13 7 39 19 34 
Subject 3 3 39 35 51 7 13 6 61 50 
Subject 4 51 50 j [3 7 39 19 35 94 
Subject 5 13 3 7 35 34 39 50 51 19 
Subject 6 3 13 39 51 35 34 50 7 19 
Subject 7 13 51 39 35 7 13 35 34 
Subject 8 *> 

j 39 35 13 50 7 51 13 34 
Subject 9 3 13 7 51 39 35 50 17 34 

Subject 10 3 13 35 34 51 39 50 7 19 
Subject 11 13 35 51 50 3 39 7 34 19 
Subject 12 3 50 51 7 39 13 34 35 12 
Subject 13 3 7 50 51 39 35 24 13 59 

Table A14.4 Rankings for query 4 

Subjects Ranking results 
Subject 1 87 69 85 4 5 89 46 14 11 
Subject 2 69 87 90 26 84 85 89 4 5 
Subject 3 69 87 86 88 23 84 15 75 81 
Subject 4 85 90 87 84 86 69 4 89 88 
Subject 5 69 87 88 86 85 84 15 22 23 
Subject 6 69 87 86 23 81 88 84 85 11 
Subject 7 59 85 84 86 87 59 11 15 60 
Subject 8 15 85 49 87 69 79 11 69 14 
Subject 9 84 85 89 57 87 88 46 38 69 
Subject 10 69 87 86 23 11 81 88 84 85 
Subject 11 69 87 86 85 23 100 73 4 5 
Subject 12 5 69 79 15 49 85 14 11 22 
Subject 13 86 69 87 88 84 85 78 14 15 

Table A14.5 Rankings for query 5 

Subjects Ranking results 
Subject 1 31 30 58 97 27 48 47 29 96 
Subject 2 47 48 29 30 27 97 66 77 80 
Subject 3 31 96 30 66 97 77 29 98 30 
Subject 4 77 67 64 48 47 31 30 29 98 
Subject 5 31 29 48 77 47 97 67 27 30 
Subject 6 29 27 30 47 48 77 52 97 
Subject 7 31 21 91 92 96 64 66 77 28 
Subject 8 47 28 31 27 21 48 29 30 97 
Sub[ect 9 31 27 48 "> 52 66 58 47 28 

Subject 10 31 21 27 30 47 48 77 52 97 
Subject 11 31 47 77 97 29 30 16 2 66 
Subject 12 64 16 21 27 31 48 30 97 47 
Subject 13 66 67 76 52 48 2 28 31 80 
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Table AN.6 Rankings for query 6 

Subjects Ranking results 
Subject 1 95 74 37 49 100 79 45 44 75 
Subject 2 74 49 55 10 4 5 73 70 15 
Subject 3 37 55 95 4 24 38 44 49 74 
Subject 4 37 95 49 15 55 46 24 13 8 
Subject 5 37 55 95 74 10 IS 44 75 49 
Subject 6 37 55 49 75 74 44 1 24 53 
Subject 7 37 95 32 15 10 12 41 74 95 
Subject 8 37 13 44 74 55 70 81 95 49 
Subject 9 37 70 81 44 74 79 55 1 36 

Subject 10 37 55 75 74 49 44 1 24 53 
Subject 1 1 37 74 55 14 95 70 75 49 1 
Subject 12 37 1 49 13 44 55 74 95 70 
Subject 13 37 79 6 55 70 36 71 78 100 

Table A 14.7 Rankings for query 7 

Subjects Ranking results 
Subject 1 63 93 33 62 56 75 99 42 32 
Subject 2 32 41 54 53 63 1 93 43 33 
Subject 3 32 63 33 53 54 43 72 41 93 
Subject 4 33 91 41 72 33 41 29 43 53 
Subject 5 32 29 30 53 63 99 33 93 1 
Subject 6 32 29 63 30 53 33 1 99 93 
Subject 7 32 41 43 42 53 54 72 98 63 
Subject 8 56 64 82 77 92 48 32 33 1 
Subject 9 32 60 98 64 33 41 77 30 53 

Subject 10 32 29 63 30 53 76 99 1 93 
Subject 11 63 32 75 53 l 41 92 72 48 
Subject 12 63 62 56 64 82 48 32 33 1 
Subject 13 63 62 32 33 64 91 99 72 93 

Table A14.8 Rankings for qucry 8 

Subjects Ranking results 
Subject 1 18 78 57 20 79 11 4 5 46 
Subject 2 44 18 14 100 74 49 55 5 4 
Subject 3 44 18 14 57 74 75 81 79 100 
Subject 4 100 18 57 36 38 11 20 14 7 
Subject 5 18 44 14 74 100 78 70 10 75 
Subject 6 44 18 14 100 74 37 70 75 99 
Subject 7 18 14 36 44 75 74 57 88 100 
Subject 8 79 74 57 88 75 46 49 44 20 
Subject 9 74 15 49 73 14 18 70 11 71 
Subject 10 44 18 14 100 74 37 70 75 99 
Subiect 11 74 IS 44 49 14 37 70 81 12 
Subject 12 14 18 44 100 36 23 75 79 1 
Subject 13 44 14 18 74 100 73 79 78 41 
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Table A 14.9 Rankings for query 9 

Subjects Ranking results 
Subject 1 79 20 ! 1 38 46 12 5 4 18 
Subject 2 38 12 46 79 20 4 5 11 57 
Subject 3 79 20 57 18 38 45 5 14 55 
Subject 4 20 57 79 38 36 11 18 46 100 
Subject 5 79 38 20 55 46 5 4 11 57 
Subject 6 79 20 38 55 74 46 49 11 100 
Subject 7 20 79 46 57 46 38 49 89 90 
Subject 8 79 74 57 88 75 46 49 44 20 
Subject 9 79 20 11 38 46 57 12 5 95 

Subject 10 79 20 38 55 74 49 46 11 100 
Subject 11 79 J 38 20 55 5 4 46 11 49 
Subject 12 38 20 14 44 46 49 88 57 74 
Subject 13 79 20 38 46 36 15 12 75 11 
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Appendix 15: Image Rankings for Nine Queries in One 

Hundred Images by Subjects 

Contents: 

Figure A15.1 Image rankings for query I by subjects 
Figure A15.2 Image rankings for query 2 by subjects 
Figure A15.3 Image rankings for query 3 by subjects 
Figure A15.4 Image rankings for query 4 by subjects 
Figure A 15.5 Image rankings for query 5 by subjects 
Figure A15.6 Image rankings for query 6 by subjects 
Figure A15.7 Image rankings for query 7 by subjects 
Figure A15.8 Image rankings for query 8 by subjects 
Figure A15.9 Image rankings for query 9 by subjects 

In Tables Al5.1 - A 15.9, images are displayed in order of visual similarity from 

most similar to least similar to each query image. The number above the image is the 

ID number of the image in the 100 image dataset as seen in Appendix 13, and the 

corresponding accumulated histogram is showed below each image. 
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Figure A15.1 Image rankings for query 1 by subjects 
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Figure A15.2 Image ranking» for query 2 by subjects 
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Figure A l 5.5 Image rankings for query 5 by subjects 
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Query 6 

Figure A15.6 Image rankings for query 6 by subjects 
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Figure A15.7 Image rankings for query 7 by subjects 
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Query 8 

Figure A15.8 Image rankings for query 8 by subjects 
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Appendix 16: Precision-Recall Graphs for Nine 

Queries in One Hundred Images by Using Five 

Computational Methods 

Contents: 

Figure A 16.1 Precision-recall graphs for quer> 1 
Figure A 16.2 Preeision-recall graphs for query 2 
Figure A 16.3 Precision-recall graphs for query 3 
Figure A 16.4 Precision-recall graphs for query 4 
Figure A16.5 Precision-recall graphs for query 5 
Figure A 16.6 Precision-recall graphs for query 6 
Figure A 16.7 Precision-recall graphs for query 7 
Figure A 16.8 Precision-recall graphs for query 8 
Figure A 16.9 Precision-recall graphs for query 9 

In Figures A 16.1 - A 16.9, the horizontal axis expresses recall and vertical axis 

expresses the corresponding précision at standard recall points 10%. 20%,...,100%. 

The curve with (-*-) expresses precision-recall by using the method of GLCM, (-o-) 

expresses MRSAR, (-x-) expresses FT, ( - • -) expresses WT, and (-o-) expresses GT. 

Figure(a) shows precision-recall before classification and Figure(b) shows precision-

recall after classification. 

t l 05 03 0« 09 • • t» 00 01 l 0< 0 Î •] 04 09 S* 0 ' 91 0 » < 

(a) Before classification (b) After classification 

Figure A 16.1 Precision-recall graphs for query 1 
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*t -

(a) Before classification (b) After classification 

Figure A 16.2 Precision-recall graphs for query 2 
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(a) Before classification (b) After classification 

Figure A 16.3 Precision-recall graphs for query 3 
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(a) Before classification (b) After classification 

Figure A 16.4 Precision-recall graphs for query 4 
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(a) Before classification (b) After classification 

Figure A 16.5 Precision-recall graphs for query 5 

(a) Before classification (b) After classification 

Figure A 16.6 Precision-recall graphs for query 6 
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(a) Before classification (b) After classification 

Figure A 16.7 Precision-recall graphs for query 7 
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(a) Before classification (b ) After classification 

Figure A 16.8 Precision-rccall graphs for query 8 

(a) Before classification (b) After classification 

Figure A 16.9 Precision-recall graphs for query 9 
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