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Abstract

Due to advances in computer technology, large image collections have been
digitised and archived in computers. lmage management systems are therefore
developed to retrieve relevant images. Because of the limitations of text-based image
retrieval systems, Content-Based Image Retrieval (CBIR) systems have been
developed. A CBIR system usually extracts global or local contents of colour, shape
and texture from an image to form a feature vector that is used to index the image.
Plethora methods have been developed to extract these features, hawever, there is

very little in the literature to study the closeness of each method to human perception.

This research aims to develop a human percepticn oriented content-based
image retrieval system for the Museum of Domestic Design & Architecture (MoDA)
wallpaper images. Since texture has been widely regarded as the main feature for
these images and applied in CBIR systems, psychophysieal experiments were
conducted to study the way human perceive texture and to evaluate five popular
computational models for texture representations; Grey Level Co-occurrence Matrices
(GLCM), Multi-Resolution Simultaneous Auto-Regressive (MRSAR) model, Fourier
Transform (FT), Wavelet Transform (WT) and Gabor Transform (GT). By analyzing
experimental results, it was found that people consider directionality and regularity to
be more important in terms of texture than coarseness. Unexpectedly, none of the five
models appeared to represent human perception of texture very well. 1t was therefore
concluded that classification is needed before retrieval in order to improve retrieval
performance and a new classification algorithm based on directionality and regularity
for wallpaper images was developed. The experimental result showed that the
evaluation algorithm worked effeetively and the evaluation experiments confirmed
the necessity of the classifieation step in the development of CBIR system for MoDA

collections.
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Chapter |. Introduction

1. Introduction

In the past decade, due to the development of advanced technology in
computer hardware and digital cameras, large collections of various images have been
digitised and archived in computer. These databases have applications in numerous
fields, including criminal identitication, geographic information systems, trademark
retrieval, medical image archiving and art image indexing. Effective image indexing
and retrieval methods are very important for the success of image database

development.

Currently, there are two main image retrieval techniques: text-based and

content-based image retrieval.

Traditionally, images are indexed using textual descriptions annotated by
domain experts [1]. The limitation with this system is the subjectivity of textual
descriptions. In reality, textual description cannot include an enumeration of all the

objects and their visual characteristics, especially their spatial relationship.

Content-Based lmage Retrieval (CBIR) [2-4] was hence developed in the early
1990s to overcome the drawbacks encountered by text-based systems. CBIR systems
index images using the visual contents that an image is carrying, such as colour,
texture, shape and location. A CBIR system can automatically extract these visual
features from an image and define the relative search/matching functions to perform

retrieval.

However, most current CBIR systems only extract low-level visual features,
which arc mathematical representations of colour, shape, and texture, whilst users
tend to use high-level concepts to retrieve images. Human perception of image
similarity is subjective and task-dependent. Some progress has been made towards
closing the gap between high level concepts and low level features, for example,
relevance feedback is incorporated into CBIR system in order to establish the link

between high-level concepts and low-level features, however there is little literature
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considering human visual perception in content-based image retrieval (how a user

interprets an image and performs retrieval).

The aim of this research was two fold: to investigate human perception in
conducting image retrieval and to evaluate the existing five texture models in
performing CBIR by comparison with human pereeption, an area has not previously
been well researched. The wallpapers from Museum of Domestic and Architecture
(MoDA) have been applied in this study, leading to the development of CBIR systems
for MoDA 1mages that are currently indexed using textual descriptions. Since texture
is the dominant feature represented in these images, it was the foeus of this research.
Five texture models widely applied in extracting texture features in CBIR were

assessed in comparison with human perception,

The structure for this thesis is organised as follows. A literature review is
given in Chapter 2 describing the background and basic techniques in Content-Based
Image Retrieval (CBIR). Chapter 3 describes some methods applied in this research.
Chapter 4 details the experimental methodology employed. The experimental results
and analyses are presented in Chapter 5. Based on experimental results, the developed
CBIR system for MoDA images is described in Chapters 6 and 7. Finally, the overall
conclusions and recommendations for future work will be presented in Chapters &.

The final two sections are the References and Appendices.
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2. Literature Review

Due to the rapid development of digital cameras and computer technology,
large numbers of images are collected and stored in computers. Systematic
management of these image data is therefore very importaat for future applications in
order to retrieve images effectively and efficiently. Two approaches are most
commonly used, one is texi-based image retrieval and the other is content-based

image retrieval.

2.1 Text-Based Image Retrieval

Text-based image retrieval can be traced back to the 1980s{1]. Traditionally,
images are indexed by text descriptions, such as keywords, filenames, etc. These
systems first annotate an image with text written by domain experts and then perform
image retrieval using a textual description. Though the text-based image retrieval can
get image semantic information directly and higher retrieval precision, four major

difficulties are inherent in this method of image retrieval.

o Heavy labour and time consumption

The process of detecting, describing and inputting significant data requires a
vast amount of labour and time, especially, when the size of image collections is very

large.

o Visual information scarcity

Text-based descriptions cannot sufficiently capture the visual content, for
example, a description of the semantic content of an image does not include an

enumeration of all objects and their characteristics, which may be of interest to the

USEr.

e Subjectivity

Different people may have different opinions on the same image. For example,

the textual descriptions of visual attributes such as colour, shape and texture vary

11
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greatly among people. Perception subjectivity and annotation imprecision may cause

mismatches in later retrieval processes.

o [Language problem

Language mismatch can occur when the user and the domain expert use the
different vocabularies and phrases. In other words, if a uscr does not specity the right

keywords representing his/her desired images, mismatches will occur.

On the other hand, a casual user who has no knowledge of the exact image he
is looking or, may just search for the images by sketching or describing the colour of
the object, for example, blue sky, green grasses, etc, Possibly, the user provides a sub-
image and wants fo know the images that include it or are similar to it. Text-based

systems are unlikely to find solutions to these queries.

2.2 Content-Based Image Retrieval (CBIR)

ln the past twenty years, Content-Based Image Retrieval (CBIR) has been
developed to overcome the above difficulties [2-4]. That is, images are indexed by
their own visual contents, such as colour, texture and shape. As shown in Figure 2.1, a
typical CBIR system can autornatically extract visual features from images and store
them in a visual feature database in advance. When a user submits a query, pre-
defined visual features from the query image are extracted, and then the distance
between the feature vector of the query image and the visual feature database is
calculated. Finally, a set of images are retrieved and ranked based on the degree of
similarity calculated by the feature distance. It is clear that feature extraction and
similarity measurements are the two most important parts in content-based image
retrieval. Recent CBIR systems have incorporated users' relevance feedback to
modify the retrieval process in order to generate more meaningful retrieval results

both perceptually and semantically.

Compared with the difficulties of text-based image retrieval described in

Section 2.1, CBIR system has the following advantages.
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o Less time and labour intensity

Most of the visual contents of an image, such as colour, texture and shape, can
be extracted and stored by a computer automatically. Visual feature extraction will be

described in Section 2.3.1.

o Objective retrieval results

The retrieval result is presented by the value of the search/matching functions.
Objective retrieval results can be obtained when a suitable similarity measurement is

defined. Similarity measurements will be reviewed in Section 2.3.2.

These advantages mean that CBIR systems are applied to many different areas
of science and industry, including bio-informatics, crime prevention, geographic
information systems and intellectual property. The disadvantages of CBIR are the
semantic gap between the low level vision features and high level concepts therefore
results in poor retrieval performance of many CBIR systems. How to bridge semantic

gap is a big issue to challenge most researchers.

Image Database II

Visual Feature
Natabase

. Similarity
Fetching

Image 10’s Measurement
Visual Feawre Vector
4
Visual Feature
Estraction
I 3
3
Rerrieved Inages —» Relevance Feedback _ ( Query Image

Figure 2.1 Basic framework of a CBIR system

13
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The following figures 2.2 to 2.4 show three samples of image retrieval based

on colour, texture and shape respectively.

1) Colour-based retrieval in natural photographs

Figure 2.2 Example of colour query

2) Texture-based retrieval in satellite images databases

werialDé_135_24 wriadl2 12_10
1353427 1.364383 160144 1.422658

Figure 2.3 Texture query in satellite image databases

14
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3) Shape-based retrieval in trademark image databases

1

Query image

¥ E b d

%F &b
BA T A

Figure 2.4 Shape query in trademark image databases

2.3 Methods in Content-Based Image Retrieval

Visual feature extraction, similarity measurements and relevance feedbaek are
the most important components in content-based image retrieval, as shown in Figure
2.1. They directly affect the effectiveness of the retrieval. The following sections will
review some methods applied in visual feature extraction, similarity measurements

and relevanee feedback.

2.3.1 Visual Feature Extraction

Visual feature extraction is the basis of content-based image retrieval and is to
extract the mathematieal representations of the visual contents, whieh usually include
colour, texture and shape. To extraet these visual features, many methods of image

processing have been utilized as explained below.

2.3. 1.1 Colour

Colour is one of the most important visual features in image retrieval, not only

from the point of the view of the early stages of the human visual system, but also




Chapter 2. Literature Review

from the subconscious reception of the outside-world images by the brain [5]. The

typical colour feature extraction consists of three steps.

1) Colour space definition
2) Colour space quantization

3) Colour feature representations

1) Colour space definition

Normally, colour information in digital images 1s represented by three values
Red, Green, and Blue (RGB). RGB colour space is suitable for colour reproduction on

computers but not for human perception because:

+ Non-intuition, i.e., it is hard to visualisc a colour based on the values of

R, G, B components, 1.¢., (23,45 60)

« Non-uniformity, i.e., the differences in two RGB values do not equate
to equal differences in colour perception. It is impossible to evaluate
the perceived differences between colours based on the distance in

RGB space.

Theretore, the first stage is to convert RGB colour space into other colour
spaces since most images are represented using RGB when digitised. With respect to
subjective colour perception, other colour spaces like HSI, HSV, HSL, CIE Lab,
CIE_Luv and Munsell are more appropriate [6]. In gcneral, they represent colour with

three variants based on human perception. Comparing to the RGB colour space, they

have:

* Intuition, e, uscr could define the colour easily by indicating the hue
(#), saturation (S) and intensity (/, or ¥, or L) values independently.
Hue is the attribute of a colour by which we distinguish red from
green, blue from yellow, etc. Saturation is related to colour purity and

intensity is corresponding to the brightness of the colour.

16
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» Uniformity, i.e., the equation allows the Euclidian distance between
two points in the uniform colour space to predict more accurately the
observed difference in colour. This makes colour space quantization

and colour similarity measurements easier and more accurate.

According to the advantages discussed above, colour spaces based on human
perception, 1.e. HSI, HSV, CIELab, etc. are widely applied to represent colour in most
CBIR systems [7-12].

2) Colour space quantization

There are up to 256° colours when a standard digital camera is used. Calour
quantization 1s used to reduce the size of colour space by partitioning the original
colour space into many cells. Colour quantization algorithms have two basic

approaches as follows.

» Pre-clustering

e Post-clustering

[n the pre-clustering approach, the colour space is divided into a set of
rectangular cells. Each colour is determined by its arithmetic mean or another
representation for each cell. Uniform and non-uniform quantization, which divides
colour space into cube cells and rectangular cells respectively, can be grouped as pre-

clustering approaches.

In post-clustering approach, small numbers of cluster centres are selected
randomly and cach colour is placed in a cluster corresponding to which they are
closest. The typical clustering algorithms, such as K-means clustering algorithm [13]
and Self-Organising Feature Map (SOFM) [14], can be grouped as post-clustering
approaches. By training samples, the quantized colours that are sometimes called

codebook or lookup table can represent a colour image better.
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3) Colour feature representations

The colour histogram [15] is one of the most used colour representations of an
image. The colour histogram counts the percentages of each colour in an image and

this is normally applied to represent the global or local colour distribution [16].

Global colour distnibution, which is called Global Colour Histogram (GCH),
describes the colour distribution of the whole image, ignoring the spatial distribution

of the colour.

Local colour distribution, which is called Local Colour Histogram (L.CH),
describes the colour distribution in the individual cells or regions of an image. 1t is
divided into two basic methods, which are partition-based representations and

regional represeniations.

Partition-based representations describe the colour distribution of each cell of
image individually. It decomposes images into a set of fixed cells, such as the
quadtree-based colour layout approach [17]. There is no need to explicitly represent

spatial properties of the partition cells such as area, shape and spatial location.

Regional representations describe the colour distribution of each image region
individually, such as NeTra [18], Blobworld [8] etc. This exploits the visual contents
of the image for segmentation and is necessary to represent at least its colour
distribution, size and spatial location. The spatial location of a region can be
represented by means of the spatial coordinates of its centre. The shape region can be

represented using, for example, a minimum bounding rectangle.

In addition to the colour histogram, several other colour distribution
representations have been applied in unage retrieval, including colour moments and

colour corrclograms.

The colour moments [19] are proposed to overcome the quantization effects in
the colour histogram. Based on probability theory, colour distribution can be
characterised by its moments. The first moment (mean), the second moment
(variance) and the third moment (skewness) of each of the three-colour channels are

extracted as the colour feature representations.
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The colour correlograms [20] combine the colour distribution with spatial
layout. This expresses how the spatial correlation of pairs of colour changes with
distance. Normally, a correlogram for an image is a table indexed by colour pairs, also
called colour co-occurrence matrices, where the d-th entry for position (ij) specifies
the probability of finding a pixel of colour j at a distance o from a pixel of colour i in

this image.

in comparison with all the colour representations, the colour histogram is

widely applied in most CBIR systems {7-12, 18] with the following advantages.

s Robustness, i.e., invariant to translation, scale, and rotation of image
¢ Computational simplicity

» Low storage requirements

2.3.1.2 Texture

Texture is an important cue in visual featurcs for analysis of many types of
images, such as satellite images and textile images. The “definition” of texture is

formulated by different researchers. For example,

“Texture is related to two visual components: Tone and Structure. Tone refers
to the intensity of pixels while structure concerns the spattal relationship between
pixels. An image texture is described by the number and types of its (tonal) primitives

and the spatial organization or layoui of ils (tonal) primitives.” [21)

“The texture relates mastly to a specific, spatially repetitive (micro) structure
of surfaces formed by repeating a particular element or several elements in different
relative spatial positions. Generally, the repetition involves local variations of scale,

orientation. or other geometric and optical features of the elemenis.” [22]

“"We may regard texture as what constitutes a macroscopic region. lis
structure is simply attributed to the repetitive patterns in which elements or primitives

are arranged according to a placement rule.” 23]
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So far, no one has succeeded in producing a commonly accepted definition of
texture. However, most rescarchers agree that an image of visual texture is spatially
homogeneous, and typically contains repeated structures, sometime local variation

exists in the repetition.

Image texture is measured as a funetion of the spatial variation in pixel
intensities. The quantitying global properties referred to visual features are defined,

such as coarseness, regularily, roughness, granulation etc [23, 24].

In general, three main approaches are used to extract texture features, namely
the spatial approach, frequency analysis approach and spatial frequency analysis

approach.

1) Spatial approaches, such as Random Field Model, Co-occurrence Matrices and

Tamura representations

In random field models, an image is assumed to be a homogeneous 2-D
random field. By 2-D decomposition, the itmage is expressed as the sum of three

orthogonal components corresponding (o periodicity, direetionality and randomness
(25].

Co-occurrence matrices, similar to the colour correlograms described in
Section 2.3.1.1, are used to represent the grey level spatial dependence of texture.
Some meaningful statistics from the matrices, such as moment, entropy, contrast, etc.,

are extracted as the texture representations [26-28].

Tamura representations [23] are developed based on psychological studies in
human visual perception of texture. This is a kind of computational representations of
six lexture features: coarseness, contrast, directionality, linelikeness, regularity and

roughness.
2) Frequency analysis approach, such as Fourier Transform

Fourier transform is applied 1o transform the image from spatial domain to
frequency domain. Normally, the spectrum energy of texture is represented as the

texture feature representations [29, 30].
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3} Spatial frequency analysis approach, such as Wavelet Transform and Gabor

Transform

Wavelet transform and Gabor transform have the ability to capture the
presence of dominant information at different scales and orientations for the image.
The statistical features (mean and standard deviation) or energy features are extracted

from each orientation in each scale as the texture representations respectively [31-35].

2.3.1.3 Shape

Shape is another important clue for object representations. Generally, shape

feature extraction consists of the {ollowing two steps.

1} Shape detection

2} Shape feature representations
1) Shape detection

Shape detection is the first step to describe the shape of an object. Edge point
is defined as the sharp variation point of the intensity. Based on this definition, edge
detection algorithms have two categories. There are traditional methods, such as Edge
Operators, and multi-scale edge detection, such as Wavelet Transform Modulus
Maxuna (WTMM).

Traditional methods, such as the Sobel method, Prewitt method, Zero-cross
method, Canny method etc.[36], use edge operator approximation to deviation to find
the shape of object. Furthermore, the Canny method [37] defined edge point as local
maxima of the gradient of image and this method performs better. All of these

methods detect the edge of object just in one scale.

Based on multi-scale analysis of the human visual system and the theory of
modulus maxima applied in the Canny method, Wavelet Transform Modulus Maxima
(WTMM) is applied to detect the edge of an object in different scales successfully
[38). Thus, shape feature representations in different scales can be extracted after

shape detection and the shape matching can be done at different scales.
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2) Shape feature representations

In image retrieval, shape feature representations are required to be invariant to
translation, rotation and scaling which is also called the rigid transform of object.
Mainly, the shape representations, which are invariant to rigid transform, can be
divided into three categories. There are Fourier Descriptors, Moment Invariants and

Geometric features representations.

Fourier Descriptors use the Fourier transformed edge as the shape feature
representations [39]. The first few Fourier descriptors can be used to capture the gross
essence of a boundary. Thus, these coefficients carry shape information can be used

as the basic shape feature for distinguishing between distinct boundary shapes.

Moment Invariants use region-based moments as the shape feature. From the
second-order moments and third-order moments, Hu creates the simple 7 invariant
moments [40], which are used for scale, position, and rotation invariant pattern
identification [41]. Zernike moments [42] are a set of complex orthogonal moments
and invariant to rotation, which has been successfully used in pattern recognition and

itmage analysis [43, 44].

Shape features can be described by some simple gcometric representations
[45], for example, circularity and rectangularity are mainly applied to represent the
object with typical geometric shape. Hole Area Ratio (HAR) is effective in
discriminating between symbols that have big holes and symbols that have small

holes. Eccentricity is a measure of the elongation of the shape.

Besides the rigid transform that is rotation, translation and scaling transform,
the object has the deformation transform. It is said that “there are no two leaves of
the same shape”, an object shape will have intrinsic within-class variations. The

following section will introduce some models of object deformation.

Object shape can vary. For example, it can incorporate smoothness or
elasticity constraints like the shape of balloon and cell, or the shape can be specified
using a hand-drawn form. In the 1970s, the concept of deformable templates was

introduced and applied to pattern recognition and computer vision. Based on
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application, the research about deformable templates can be divided into two classes.

These are free-form deformable models and parametric deformable models.

Free-form deformable models can represent any arbitrary shape as long as
some regularisation constraint (continuity, smoothness, etc.) is satisfied. In this
approach, an energy-minimising contour called an active contour or a “Snake” [46] is
controlled by combining it with internal contours energy that enforces smoothness,
external constraint force, and image force which attracts the contour to the desired

features. It is commonly applied to segment the organs in medical images [47].

Parametnic deformable models can encode a specific characteristic shape and
its deformation. It is commonly used when some prior information about the object
shape is available. There are two ways to parameterise the object shape class and its
deformation. This leads to two types of deform templates: analytical deformable

templates and prototype-based deformable templates.

In analytical deformable templates, the shape can be expressed by a parametric
formula, such as a set of analytical curves (e.g. ellipse), and its deformation can be
defined by changing the value of its parameters. This is applied to the deformation of
the specific geometrical shape object. For example, Yuille et al. [48] defines the eye
and mouth models using circles and parabolic curves, Dubuisson et al. [49] uses a

polygonal template to parameterise a vehicle.

In prototype-based deformable templates, the deformable templates are
derived from a set of deformation parametcrs on a prototype. A prototype that
describes the ‘most likely® or ‘average’ shape of a class of objects, can be obtained by
a sketch or an example of an object class. Therefore, this is used in image retrieval

queried by a shape sketch/example [50, 51] and object tracking in video [52].

[n all the models above, the deformable template can alter itself to match the
object to a given image. Deformable template matching can be formulated using a
Bayesian framework. Within the Bayesian framework an objective function,
sometimes called the energy function, is defined. This energy function is related to the

degree of template deformation and also the degree of matching between the
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deformable template and the object in a given image. A deformable template is

matched with a given object in an image when the energy function is minimised.

2.3.2 Similarity Measurements

Generally, a distance function is used to compare the visual features of two
images. The distance function affects directly the time spent processing a query and
the quality of the retrieval. The better the distance function simulates the similarity of
human perception using the visual features, the more effective the CBIR system is at
retrieving images relevant to the user’s needs. The computational complexity of the

distance is an important factor for speed when processing a visual query.

One typical distance function is vector distance function, such as a member of

the L, family of distance. L, distance is defined as the following.

L,(a,b)= (ipi —b,|"J; (2.1)

wherte, a=1{a,,a,,-a,}and b={b,b,,--b,} are two k-dimensional vectors. Some

well-known members of the L, family, such as L; (City-Block) distance, L;
{Euclidean) distance, L., (Chebyshev) distance, are widely used to compare the visual
features of two images. In the method of vector distance, visual features are first
modeled in the vector space, and then the geometric distances are used to compare the
visual similarity. The advantage of this method 1s its simplicity of computation.
However, the simple geometric distance may not effectively measure the real

difference of human perception.

When considering human perception, various other similarity measures are
proposcd, for example, histogram quadratic distance [7] which defines a colour cross-
correlation matrix, weighted distance which defines the weighting factors based on
human perception, and histogram intersection distance [15] which reduces the
contribution of unrelated colour by computing the intersection of each colour

histogram.
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In summary, CBIR technologies strive 10 erecate mathematical representations
of images derived by a set of rules of the human visual system and to design similarity

measurcments based on human perception.

2.3.3 Relevance Feedback

Relevance teedback (RF) is a supervised learning technique used to improve
the cffectiveness of CBIR systems. The main idea is to use positive and negative
examples from users to improve system performanee. For a given query. the CBIR
system first retrieves a list of rankcd images according to a predefined similarity
measurement of visual features. Then, a user selects a set of positive (relevant) and/or
negative (irrelevant) examples from the retrieved images. The system will refine the
retrieval results based on the feedback and present a new list of images to the user.
Image retrieval based on relevance feedback is repetitive and gradually advancing
proeesses, the interaction between the system and the user enables the retrieval to

approach the user’s expectation. and hnally answers the request.

The aim of relevance feedback 1s to study from the interaction between
retrieval system and user, to diseover and capture the user’s actual demand, and to
modify the retrieval process, thus obtaining a retrieval result whieh tallies as precise
as possible with the user’s actual request. The key issue in relevance feedback is how
to etfectively utilize the information provided from user’s feedback to increase the
retrieval aceuracy. A variety of relevance feedback techniques have been proposed in
the last decade. The main algorithms include feature re-weighting, Bayesian target

search, Support Vector Machines (SVM) learning and decision trees.

Rui et al. [53] proposed relevance feedback based on the interaetion of
retrieval approach. Based on a user's feedback, the user's subjective perception was
captured by dynamieally updating weights for visual features, i.e. eolour, texture etc.
‘fhe experimental results earried on more than 70000 Corel images show that the
proposed approach ean capture the user's information needs more precisely. This

approach of relevance feedback has first been implemented in a Multimedia Analysis

and Retrieval System (MARS) [9).
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Ishikawa et al. [34] applied the computational method of global optimization
to relevance fecdback. Theyv formulized a minimization problem on the parameter
estimating process. The user can give several examples, and optionally, their
‘goodness’ scores. Based on the user’s information, the system can ‘guess’ which
visual leatures are important, which correlations are important, and with what weight.
Experimental results on real and synthetic databases show this method can estimate
the ‘hidden’ distance function in the user’s mind quickly and accurately. The

MindReader retrieval system was designed based on this approach.

Cox et al. [55] applied a Bayesian approach to CBIR with relevance feedback.
The Bayesian rule was applied to predict the user’s actions ftor refining its answers to
converge to a desired target image. This was done via a probability distribution over
possible image targets, rather than refining a query. A Bayesian image retrieval
systen1, PicHunter was designed by using Bayes's rule to predict the target image the
user wants based on his/her actions. Experimental results show the system performs

quite well for a wide spectrum of users tested on a wide variety of target images.

Hong et al. [56] proposed to incorporate Support Vector Machines (SVM) into
CBIR with relevant feedback. This approach utilized both positive and negative
feedback for image retrieval. SVM was applied to classify the positive and negative
images. The SVM learning resulis were used to update the preference weights for the
relevant images. This not only released the users from providing an accurate
preference weight for each positive relevant image but also utilized the negative
information. Experimental results on Corel images show that the proposed approach

offers improvements over the previous approach that uses positive examples only
(Rui et al.),

MacArthur et al. [57] applied learned decision trees as a relevanee feedback
retrieval system. For each retrieval iteration, a Decision Tree (DT) was leamed to
uncover a common thread between all images marked as relevant. This tree was then
used as a model for inferring which of the unseen images the user was most likely to
desire.The technique of relevance feedback decision tree was applied in a pre-existing
CBIR system for High Resolution Computed Tomography (HRCT) images of the

human lung. Experimental results show this approach achieves better retrieval as
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measured in off-line experiments and as judged by a radiologist who is a lung

specialist.

From the past research, relevance feedback has been shown as an effective
scheme to improve the retrieval performance of CBIR and has already been

incorporated as a key part when designing a CBIR system.

2.4 Some Samples of CBIR System

Several CBIR systems, both commercial and researeh, have been proposed,
such as QBIC [7], NeTra (18), Blobworld [8), MARS [9], Viper [10], Photobook 23],
VisualSEEK [11]. CIRES [12], etc, the comprehensive reviews are in [58] and

webpage '. Most of them support one or more of the following options.

* Query by Example (QBE), i.e., the user specifies a target query image,
which can be a normal image, a low resolution scan of an image, or a
user sketch using painting tools with graphical interface.

*  Query by Features (QBF), i.e., users specify queries by the description
of the visual features directly, for example, “retrieve all images that
contains 25% red pixels”. This query is usually specified by the use of
specialized graphical interface tools.

o Query by Keywords, 1.e., content-based queries are often combined
with text and keywords at the same time to get powerful retrieval

methods for image databases.

Here, we select a few representative systems and highlight their distinctive

characteristics.

QB[C*TM) (Query By Image Content) developed by IBM is the first
commercial CBIR system. Its system framework and techniques had a great effect on
later image retrieval systems. The @QBIC system allows gueries on large image

databases, based on colour, texture, shape, example images/sketch, and keywords. It
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is applied in the U. S. Patent and Trademark Office (USPTQ) and the Siate Hermitage
Museum in Russia. The online demo” is shown in Figure 2.5.

l.ng-.l]: e Julu m g B Boraws Textue B Guecs Sivin

Figure 2.5 QBIC on-line demn

NeTra 1s a prototype image retrieval system that was developed in the
Alexandria Digital Lihrary (ADL) project. NeTra uses colour, texture, shape and
spatial location information in the segmented regiouns to search and retrieve similar
regions from an image databasc. That is, the query image is split into regions and the
user can choose which region is utilised, queries can be performed based on colour,
location, shape or texture of the chosen regions. 1t is suitable for retrieving images

that contain multiple complex objects. The online demo’ is shown in Figure 2.6.

Figure 2.6 NeTra on-line demo
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Blobworld was develaped by University of California. Similar to NeTra. it can
segment each image into separate "Blobs" that roughly correspand to objects or parts
of objects automatically. It allows query image based an the objects and adjusts the

visual feature weights, one example of weight definition shown as below. The online

4 - . -
dema” is shown in Figure 2.7.

Al

Figure 2.7 Blobworld on-line dema

MARS (Multimedia Analysis and Retrieval System) was developed by the
Computer Science Department, University aof lllinois at Urbana-Champaign. MARS
supports queries on a combination of low level features {(calour, texture shape) and
textual descriptions. The MARS team formally proposes a relevance feedback
architecture in image retrieval [9, 53]. In MARS, the user selects relevant images
from previous retrieval results and provides a preference weight for each relevant
image. The weights for the low-level features, ie., colour and texture, etc., are
dynamically updated based on the user’s feedback. Based on this feedback, the high

level concepts implied by the query weights are automatically refined. The online

dema” 1s shawn in Figure 2.8,

4. hup: relib cs.berkeley edu photosblobwarld 29
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Figure 2.8 M ARS on-line demo

Table. 2.1 is a summary of techniques in some CBIR systems [8-12, 18, 25,
55].
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Table 2.1 Summary uf technigues in some CBIR systems
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2.5 MoDA and its Collections

Ant design collections from MoDA (Museum of Domestic Design &
Architecture) are used for our system. MoDA is part of Middlesex University. It is
widely regarded as one of the world's most comprehensive collections of nineteenth
and twentieth century decorative arts for the home. Its collections are recognised to he
of outstanding national academic importance and are a unique resource for scholar
and design professionals. MoDA has an outstanding collection of wallpapers and
textiles dating from the 1870s to the 1960s, it comprises around 40,000 designs (for
wallpapers, textiles, earpets and other domestic furnishings), 5,000 wallpaper samples
and 5,000 textile samples. Some samples are shown in Figure 2.9. Most of them have
been digitised and indexed using keywords denoted by the art design experts at
MoDA.

Figure 2.9 Same samples frnm MnDA

Parts of MoDA collections are available on MoIDA s online eatalogue", whieh

can be searched based on keywords.

Figure 2.10 On-line search engine based an text in MaDA
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However, some clients prefer to retrieve images by visual content, for
example. querying similar colourful images, or with similar texture patterns.
pie. querying

Therefore, it is necessary to develop a CBIR system for MoDA collections.

2.6 Current Research Work on Wallpaper Images

Current researches on CBIR for wallpaper images are divided into two groups.
One focuses on texture. The visual features of wallpaper, which are directionality,
regularity and symmetry. are extracted and perform retrieval based on similarity
measurements. The other concentrates on symmetry. According to the theory of

symmetry groups, the symmetry features are extracted for repeated pattemn retneval.

2.6.1 Texture-Based Wallpaper Retrieval

Wallpaper images typically nave visual texture features according to the
definition of texture described in Section 2.3.1.2. This normally presents spatially
homogeneous areas, contains repeated patlerns, or shows geometric structure, as seen
in Figure 2.9, [t refers to visual texture properties like coarseness, regularity and

directionality.

Some research work on texture-hased image retrieval for fabric images, such
as for textile images, which have similar visual texture features to wallpaper images,

i.e. directionality, regularity and symmetry.

Lau et al. [59] proposed a CBIR system called ‘Montage’, which supports
CBIR based on the colour histogram, sketch, texture and shape for fashion. textile and
clothing images. It uses the co-occurrence matrices as the texture feature
representations. The performance for query based on texture shows hetter results than

query based on colour and on sketch for fabric images.

Balmelli et al. [60] first attempted to define the perceptual features for fabric
images in the wavelet domain. Three perceptual features: directionality, regularity and

symmetry, are extracted from edge and correlation characteristics of the wavelet
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subbands in horizontal and ventical direction respectively. The texiure feature vector

is expressed as follows.

where D .D R R S.,S, represent the features of directionality, regulanty and

symmetry in horizontal and vertical direction respectively. Bashar et al. [61] further
improved these three feature representations and applied the texture feature vector to
perform retricval by similarity measurements for textile (e.g. curtain) images. The
experimental results showed that directionality features provide the better retrieval

results than regularity and symmetry features.

2.6.2 Symmetry Groups Based Wallpaper Retrieval

Wallpaper groups also called two-dimensinnal crystallographic groups were
discovered and studied in the late 19th century. Fedorov, Schoenflies, and Barlow
classify 2D repeated patterns into 17 wallpaper groups [62]. In a 2D repeated pattern,
repeated unit is repeated along twa linearly independent vectors, producing
simultaneously a covering (no gaps) and a packing (nn overlaps) of the original image
[63]. The two vectors are called translation vectors and these build up lattice structure,
seen in Figure 2,11 (¢). The 17 wallpaper groups describe patterns extended hy two
linear independent translational generators. According to the theory of wallpaper
groups, there are exactly seventeen different plane symmetry groups, which are
characterized by four distinet kinds of planar symmetry, named translation symmetry,
rotation symmetry, reflection symmetry and glide reflection symmetry. The following
figure shows an example of repeated pattern synthesis. The synthetic image includes

rotation and translatian symmetries.
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{a) (b} {c)

Figure 2.11 Repeated pattern syntheses
According to the symmetry of the wallpaper groups, beautiful patterns can be
created by repeating geometric and artistic patterns. Artlandia’ is an award-winning
software for creating repeated patterns and plug-ins for Adobe lllustrator and
Photashop. In Artlandia, the repeated unit is created first, and then the user can select
one of 17 wallpaper groups showing icons in the upper side of Figure 2.12 (a).
According to this symmetry of wallpaper groups, repeated patterns can be created

automatically. One demo of repeated patterns created hy Artlandia is shown in Figure
2.12 (b)
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(a) Artlandia (b} A demo

Figure 2.12 Artlandia: graphic design software and one dema

17 wallpaper groups have heen studied and applied in texture analysis for
decades. A computational model for wallpaper groups” classification of a given 2D
repeated patterns has been developed by Yanxi Liu et al. [64-66]. The computational

model composes of two parts. One is to find a lattice structure from peaks obtaincd by
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autocorrelation. The other is to classify the symmetry group of the repeated patterns
by computationally verifying the existence of rotation and reflection symmetry.
Applications of such a computational model include pattern indexing, texture

synthesis, image compression, and gait analysis.

Jingrui He et al. [67] first applied the theory of wallpaper groups to content-
based image retrieval . The symmetry features are defined and extracted by using
translation vectors for repeated pattern retrieval. By comparing the symmetry features
between query image and the images from the database, the images with similar
symmetry groups to the query will be retrieved. [n comparison to retrieval results with
wavelet features in 487 repeated patterns, the syminetry features have a better
performance. Their average precision in the top ten is 0.1840 whilst for wavelet is

0.1777.

2.7 The Importance of Human Visual Perception in CBIR for
Wallpaper Images

Most current CBIR systems only extract low-level visual features, which are
mathematical representations of colour, shape, and texture, whilst users tend to use
high-level concepts to retrieve images. The semantic gap between human and CBIR
systems therefore results in poor retrieval performance of many CBIR systems. The
semantic gap is a big hurdle limiting develepment of CBIR systems. The ultimate user
of an image retrieval system is human, therefore, studying human perception can help

to understand the way a user interprets an image and improve performance of CBIR.

In order to establish the link between high-level concepts and low-level
features, two research approaches have beeu developed. One is to incorporate
relevance feedback to create the interaction between a system and a user [53-57), as
described in Section 2.3.3. Another approach focuses on the study of human

perception from psychophysical experiments.

Psychophysics founded by Gustav Theodor Fechner in 1860 is a sub-discipline

of psychology dealing with the relationship between physical stimuli and their
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subjective correlates [68]. These physical stimuli can be physically measured by
human perception, such as vision, hearing, smell, taste, touch etc, for instance, colour
varying in luminance, hearing varying in frequency. Theretore, the relationship
between observed stimuli and subjective response can be generated by psychophysical
experiments. Psychophysical experiments have been widely applied to studies of

human senses of perception: hearing, smell, and vision [69-72].

One of the oldest and most successful models in cognitive psychology is
Tversky's contrast model of similarity. Tversky [73] provided a general mathematical
framewaork for the perception of similarity. He proposed perceived similarity to be a
linear combination or contrast of functions of the common and distinctive features of
objects. Data were collected from participants who performed an tmage description
and a similarity judgment task. Structural equation modeling, correlation, and
regression analyses confirmed the relationships between perceived features and
similarity of objects. The results assist retrieval systems more closely match human

similarity judgments.

Biederman [74] proposed a thecory of object recognition by components
(geons), which are a limited set of basic geometrical shapes. Biederman and his
colleagues performed a series of psychophysical experiments to provide support for
the role of geons in objcct representation. The geons were detected on the basis of
certain “non accidental” properties of contours in the image, such as colinearity,
curvilinearity, symmetry, parallelism and cotermination, and indicated that geons is

the fundamental local features of objects.

Psychophysical studies on visual texture perception have been carried out for

many years,

Some studies focus on early vision and texture perception [75]. By using
textures constructed by repeated placement of micro-patiems or texture elements,

early vision of lower-level mechanisms can be studicd to discriminate oriented lines.

Other studies concentrate on relating computational texture representations to

human perception. For example, Tamura [23, 76] has defined six texture feature
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representations  through psychophysical studies in human visual perception.
Amadasun [77] has defined five properties of texture in terms of spatial changes in

intensity according to human visual perception.

For mmage retrieval, human perception of image similarity is subjective,
semantic, and task-dependent. Vision perception varies not only between people, but
also in the domain of images. For example, people pay more attention to texture
features on satellite images, shape features on trademark images, and colour features
on the natural scene images. Psychophysical experiments are the main way to find out
the common sense among the population. It is therefore important to know how
people perceive specified images and how they perform visual content-based
retrieval. However, little work has been done on the study of visual perception in

texture-based image retrieval.

In this research, the retrieval objects are the wallpaper images obtained from
MoDA collections, which present specified perceptual texture features, named
directionality, regularity and coarseness. The aim of this research was to investigate
human perception in conducting image retrieval for wallpaper images by
psychophysical experiments, leading to development of a human perception oriented

content- based image retrieval system for wallpaper images.
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3. Methods

This chapter give some basic methods applied to this research, which includes

the methods for texture feature represcntations and for data analysis

In the section on texture feature representations, five computational methods
and their texture feature representations were introduced reprehensively. These five
models were Grey Level Co-occurrence Matrices (GLCM), Multi-Resolution
Simultaneous Auto-Regressive (MRSAR) model, Fourier Transform (FT), Wavelet
Transform (WT), and Gabor Transform (GT).

In the data analysis, two methods, which are psychophysical scaling and rank
correlation, were applied to analyze the psychophysical experimental data.
Psychophysical scaling was applied to scale perceptual events based on the data of
rankings obtained from psychophysical experiments. This was used to build the
relationship between physical stimuli and their subjective responses. Rank correlation
was used to study the relationships between different rankings on the same set of

items.

Finally, the Radon transform is introduced and applied to describe the

directionality features for wallpaper images in this research.

The following sections will detail the methods applied in this research.

3.1 Computational Texture Features

In computer vision, computational texture features are to employ appropriate
mathematical representations to simulate human texture perception in order to
facilitate computerised texture processing, such as for image retrieval, classification,
segmentation, etc. For texture analysis, three approaches are used to extract texture
features, which arc spatial analysis, such as Grey Level Co-occurrence Matrices

(GLCM), Multi-Resolution  Simultancous Auto-Regressive (MRSAR) model;
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frequency analysis, including Fourier Transform (FT); and spatial frequency analysis
that includes Wavelet Transform (WT), Gabor Transform (GT). The following
sections will detail the above mentioned five computational texture methods and the

corresponding texture feature representations.

3.1.1 Grey Level Co-occurrence Matrices (GLCM)

Grey Level Co-occurrence Matrices (GLCM) is one of the earliest methods
applied 1o texture feature analysis. This method was proposed by Haralick [26] in

1973 and has been used to represent the grey level spatial dependence of texture.

GLCM are two dimensional matrices of joint probability of all pairwise

combinations of grey levels (i, j) in a size of M*N image I{p,q) separated by a
distance & in the direction &. Mathematically, a co-occurrence matrix Ca,!g(i,j) 18

defined in Eq.{3.1).

Coaliv i) i v (1 if IHpg)=i and l(pt+Ax,g+ay)=
ijl=
aa\hJ 0 otherwise

where 3.D
Ax = d xsin(6)
Ay = d x cos(8)

A normalised co-occurrence matrix £, , (i, /) is obtained by Eq.(3.2)

C,oli,Jj
Pd.s(‘"f)z - (.7) (3.2)

2. Cuolinf)

ij=1
where L is the total number of grey level of an image.

Figure 3.1 (b) and (d) demonstrate the co-occurrence matrices of original

images (a) and (c) graphically when ¢=3, 8 = 0" (horizontal direction) respectively.
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(b) (d)
Original image Co-occurrence malrix Original image  Co-occurrence matrix
of image(a) of image (c)
a=3, 6=0 d=3. §=0°

Figure 3.1 Graphical illustration of co-occurrence matrices

Haralick proposed fourteen texture features from the co-occurrence matrices.
Four of Haralick’s features, which are energy, entropy, contrast and homogeneity, are
widely applied to texture representations [27, 78-80]). Energy measures the occurrence
of repeated pairs within an image; Entropy measures the randomness of grey-level
distribution, Contrast measures the difference in the grey intensity within an image;
Homogeneity measures the smoothness of an image. These are formulated in Eqs.
(3.3) to (3.6).

LoL
Energy: ZZ Pdlgh(i:j) (3.3)
i=l j=1
Lol
Entropy: —ZZPd_O(f,j)IOgR,_g(i,j) (3.4)
i=l =1
[
Contrast: ZZ(f—j)de,g(f‘f) (3.5)
=l gl
L& Puliv))
Homogeneity: BLEASLES (3.6)
;;lﬂt jl

In our expertment, four texture features are computed with four distances of 1,
3, 5, and 7 pixels and with four directions of 0°, 459, 90° and 135° respectively. We
chose four distances to represent four scales, and four dircctions can be easily
calculated from the co-occurrence mairices. So the feature vector includes 4
(measures) * 4 (distances) * 4 (directions) = 64 components, yielding the dimension

of the texture feature vector being 64,
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3.1.2 Multi-Resolution Simultaneous Auto-Regressive (MRSAR)
Model

Multi-Resolution Simultaneous Auto-Regressive (MRSAR) models texture as
a stationary random field and use a dense representation with a fixed neighbourhood
shape and size. MRSAR model was introduced by Mao and Jain [81] in 1992 and was
derived from Simultaneous Auto-Regressive (SAR) model, which is also popular in

texture analysis.

The SAR model is a linear regressive model. In the SAR model, the intensity
p{ij) at image position (i,j) is modelled as a linear function of the neighbouring pixels

with an additive neise term ef7,/), formulated as follows.

pli.j)= C,(pli~d, j}+ pli+d, )+ C,(pli. j - d)+ pli. j + )
+Cylpli-d, j—d)+ pli+d, j+d)+C,(pli+d,j—d)+ pli-d,j+d))
+&(i, /)
(3.7)
where C,.C, C, and C, as SAR model parameters are a set of weights associated
with neighbouring pixels along vertical, horizontal and two diagonal directions

respectively, and 4 determines the resolution of the pixel neighbourhood. Figure 3.2

shows neighbourhood of pixel X when ¢ equals 2, 3, 4 respectively.

V9 Vo V9
V7 V7 V7
V5 V5 V5

Vo{V7IVs vi|vIIve

V5 V5 VS
V7 V7 V7
Vo Vo A%

Figure 3.2 Pixel X neighbourhood V5 (d=2), V7 (d=3), V9 (d=4)
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The SAR model parameters {C_,.,i = 1,2,3,4} and Least Square Error (LSE) at

each pixel (ij) are estimated using the method of least square fitting with an

estimation window centred at {7,/). This estimation process is repeated for each pixel

within an image. Finally, the mean coefficient vector {C,.,i = 1,2,3,4} and the mean

LSE for all pixels of the image are applied to describe texture features. For instance, a

higher value of mean LSE represents a finer texture or less coarseness; and a higher

coefficient C,:z of pli,j-d)+ pli, j+d) indicates that the texture is horizontally

oriented.

The Multi-Resolution SAR (MRSAR) model is applied to describe multi-

resolution texture features by defining multiple neighbourhoods with a size of d. In

the MRSAR model, 5 features with a mean coefficient vector of {C:,.,i = 1,2,3,4} and

mean LSE at each resolution are computed respectively. In our experiment, 3
resolutions, meaning 4 being 2, 3, 4 respectively, produced a 15(=5*3) dimensional

texture feature vector.

3.1.3 Fourier Transform (FT)

The Fourier Transform (FT) is applied to convert an image from spatial
domain to the frequency doimain. The Fourier analysis provides a mathematical
framework for the analysis of images based on the frequency spectrum. Frequency
refers to how often an event occurs within a period of time. Texture is often regarded
as being related to periodic image patterns or random 1mage patterns. The images with
different texture patterns will show different features in the frequency domain. As
demonstrated in Figure 3.3, for the image (a) with directional features, its Fourier
spectrum (b) shows bright lines perpendicular to the straight lines of the image (a); for
the image (¢) with random texture features, its Fourier spectrum (d) shows bright spot

in the zero frequency.
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(b) (d)
Original image Fourier transform of Original image Fourier transform of
Image {a) image (c)

Figure 3.3 Fourier transform of images

The Discrete Fourier Transform (DFT) F(x,v) of an image f(x,y)with the

size of M*N is defined as

Fle,v)= Ml‘ ~ Z if(x,y)exp(— jZH{% + %N
*=0 y=D (3.8)

u=0,1...M-1, v=0,1,.,N-1

where » and v are the discrete spatial frequencies.

A set of statistical measures based on the frequency spectrum, including
maximum magnitude, average magnitude, energy of magnitude and variance of

magnitude, are extracted as texture descriptors, shown in Eqgs. (3.9) to (3.12) [82].

Maximum Magnitude: maxﬂF(u,v} o (,v) = (0,0)] (3.9)
' IF(u,v]

A M tude: AM = 3.10

verage Magnitude ; LT, (3.10)

Energy of Magnitude: Z|F(u,v}2 (3.11)

ey

(]F(u, v] - AM ):

Variance of Magnitude: Z I,
! f

v

(3.12)

where |F(u,v1 is the amplitude of the frequency spectrum and M*V is the number of

frequency components.
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3.1.4 Wavelet Transform (WT)

The Wavelet Transform (WT) is applied to transform an image into a
representation in both spatial and frequency domain, which is also called spatial
frequeney analvsis or multi-resolution analysis. The Wavelet transform is similar to
the multi-scale way by which the human visual system processes an image [83]. It is
indieated by psycho-visual studies that an image is decomposed into different
frequencies by the human visual system. High frequeney of an image is related to the
details of the image (e.g. edges) whilst the low frequency eorresponds to the blurred
image. The Wavelet transform has the ability to eapture the presence of dominant
information of images in different scales and orientations, and in regent years, is

widely applied in texture representations, edge detection and image compression [31-
33, 35, 38, 84].

The Continuous Wavelet Transform (CWT) of a one dimensional signal f(x)

is expressed as follows
W(s,7)= [/l (x)a(x) (3.13)

where * denotes complex conjugation. (x) is a basic Wavelet, the so-ealled mother

Wavelet. The variables of s and r express scale and translation.

A set of Wavelets , (x)ean be obtained by dilation and translation of the

mother Wavelet w(x) ,in Eq. (3.14)

W[I_T] (3.14)
M

The Discrete Wavelet Transform (DWT) are obtained whens =2",re Z.

A fast algorithm of the wavelet transform was proposed by Mallat in 1989

[85]. The 2D Wavelet decomposition of an image involves recursive filtering using
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both high-pass (F) and low-pass (L) filters along horizontal and vertical directions,
this is followed by a 2 to | sub-sampling of each output image, and is expressed in

Eq. (3.15). This will generate four Wavelet coefficient images at each scale,
ie, LL,, LH,, HL, and HH,k subbands respectively. LL, is referred to low
resolution of image whilst LF , HL, and AH _ is 1o detail the image in vertical,

horizontal and diagonal directions respectively. The process is then repeated in the
lowest frequency subband (LL ). Figure 3.4 depicts the process of a 2-scale Wavelet
transform and Figure 3.5 shows the Wavelet transform of an image in three scales.

LL, = le * I.Ly *LL,, Ll].v Jiz.l

LH, = [L: *[Hy * LL"-ILz.l LI

(3.15)
HL, = [H.r * [L_v * LLn—I]J.z,lv]\L

2.1,

HH, = [H, LAY L
: dv o,

where * denotes convolution operator, d 2’]_.. and { 2,1, is subsampling along

vertical and horizontal directions respectively, and # is the scale level.

LH;
Ll LH, Ll 2™ L,
HL, | HH:
» >
HL, HH, HL, HH,
[mage 1-scale Wavelet transform 2-scale Wavelet transform

Figure 3.4 Process of 2-scale Wavelet transform of image

(a) Original image

(b} 3-scale wavelet transform of image

Figure 3.5 3-scale Wavelet transform of an image
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Finally, the statistical measures (mean g and standard deviationo ) of the

Wavelet coefficients in each subband at each scale are computed as follows.

My = mW e (X, ¥ Yy

G = [, (v, 9) - 11, ) ey (3.16)

In our experiment, the Haar wavelet was selected from the wavelet family in
Matlab [86]. The Haar wavelet is a simplest orthogonal wavelet, compactly supported
and symmetric characters and widely applied in multi-resolution feature extraction
[87-89]. The Haar wavelet 1s defined in Eq and its associated high-pass (#) and low-
pass (L) filters is shown in Eq. (3.17) and (3.18).

1,x€[0,0.5]
w(x)=2 0,xelo,l] (3.17)
~1,xe[0.5,1]

s

ol

5l

(3.18)

We chose s=3. So there were 20 features, 3 (scales) *3 (subbands in each scale) *2
(measures) +2 (measures in the lowest resolution) =20, derived from a 3-scale

Wavelet transform. The dimension of the texture feature vector is 20.

3.1.5 Gabor Transform (GT)

The Gabor Transtorm (GT) was proposed by Gabor in 1946 [90]. [t generates
a set of Gabor filters that can be considered as orientation and scale tuneable edge and
line (bar) detectors. Using these scale and orientation filters, we can decompose an

image into different scales and orientations, which are again similar to the multi-scale
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way that the human visual system processes an image [83]. Reeently, the Gabor filters

are widely applied in the texture analysis [32, 91-94].

The two dimensional Gabor funetion g(x,y)’ and its Fourier transform G(“’ V)

3

are given in the following equations.

g6 y)=| —— lexp| - | Zo 4 2 |+ 2w
2no .o, PR S
‘ - (3.19)

e
o .- (3.20)

where ¢, =1/27¢, and o, =1/270, .

A set of self-similar Gabor filters can be generated by appropriate dilation and

rotation of g(x, ¥).

g () =a"g(x.v) a1 m,n=integer (3.21)
where
x =a"(xcosd+ ysind) and y =a™"(-xsin@+ ycos6) (3.22)
g="2
K

Here, K is the total number of orientations, and a " is the scale factor that related (o
the lower eentre frequency U, and upper centre frequency U, of the region of interest
and S is the total number of scale. Therefore, if K,U,, U, and § are defined,

K *§ Gabor filters can be generated by Eq. (3.21). Figure 3.6 visualizes a set of

Gabor filters with 4 scales and 6 orientations in eaeh scale. They can be applied to
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detect the texture features of an image in 4 scales and 6 orientations at each scale

respectively.

Scale 1

Scale 2

Scale 3

Scale 4

6=00r180° #=150 6=120 =90 6=60 =30

Figure 3.6 Visvalization of 24 Gabor flters with 4 scales and 6 orientations in the
frequency domain

Given an image f(x, y), its Gabor transform is defined to be the convolution

with the Gabor filters in Eq.(3.23)

W ()= flxy)* g, (x,p) (3.23)

n e [I,S),n € (l,K), m,n = integer

The above function can be described as the following function.

IfV.'m': (x‘-‘ y) = F_l (F('\.’ y). Gmn (x’ y)) (324)
me (I,S),n € (I,K),m,n = integer

where F(x,y) and Gm,,(x,y) are the Fourier transform of f(x,y) and gmn(x,y)

. . -1 . , . -
respectively, the sign £~ stands for inverse Fourier transform. Figure 3.7

demonstrates the Gabor transform of an image with one Gabor filter (s=3

and @ =120 ) by using Eq. (3.24),
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Tuverse
Fourier
Transfor

311 Tex1 : *’%

ure image

X, y)o G (x’ y) Filtered image
Wi (x, )")

Gy (.Y, }’)

el
Figure 3.7 Gabor transform of an image with one Gabor filter (s=3and & =120 )

After the Gabor transform of an image, the magnitudes of mean u and
standard deviation ¢ of the Gabor transform coetficients W, are extracted as the

texture feature representations, which are

Hon = | W,y Yebxdly

Gmn = ,“.quﬂ (_‘C, }’] - ,Um,, )2 dxdy (325)

The texture feature vector of an image can be expressed as

f={ﬂu,on;,u]zsdlz"'aunm9o-mn} (3.26)

me(1,8),ne(l,K) mn =integer

[n our experiment, $=4 and K=6 were chose, so the feature vector included 4
(scales} *6(orientations) *2 (measures) =48 components. Thus, the dimension of

Gabor texture feature vector was 48.
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3.2 Methods for the Data Analysis

In this section, two methods of data analysis that were used in this PhD study
are explained. They are psychophysical scaling and rank correlation, which are used
to analyze the psychophysical experimental data. Psychophysical scaling is used to
build the relationship between visual texture features and their subjective response.
Rank correlation is used to evaluate computational methods by finding relationships

between two rankings conducted by subjects and computational methods.

3.2.1 Psychophysical Scaling — Choice Score Method

Psychophysics is a sub-discipline of psychology dealing with the relationship
between physical stimuli and their subjective correlates. These physical stimuli can be
physically measurcd by human perception, such as vision, hearing, smell, taste, touch
etc, for instance, colour varying in luminance, hearing varying in frequency.
Therefore, the relationship between observed stimuli and subjective responses can be
generated by psychophysical experiments. Psychophysics is commonly used to

produce scales of human perception of various aspects of physical stimuli.

Psychophysical scaling is used to assign numbers to perceptual events bascd
on ranking order data from psychophysical experiments [95]. The following will

describe the psychophysical scaling methods obtained from rankings.

3.2.1.1 Obtaining Rankings

In our psychophysical experiment, a total of ¥ subjects were asked to rank
order M stimuli with respect to some perceptual attributes. For example: 10 subjects
were asked to rank 10 images in order of coarseness {from fineness to coarscness).

The rankings were then put into Table 3.1. The entry 7, of Table 3.1 expresses the

ranking of the m™ image by the n'™ subject.
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Table 3.1 Rankings

Sub Ranks Assigned
subjects
I 2 M- M

Subject |

Subject2 | | | 7

T
Subject V-7
Subjean | | | 7

The data of raw rank orders are in an ordinal scale, which arranges objects in
order of magnitude, but does not reveal the differences of magnitude between two
objects. An interval scale describing how much difference there is between them was

therefore nceded.

3.2.1.2 Obtaining Interval Scale — Choice Score Method

The choice score method described by Engen [96] is one of the methods used
to obtain interval-scale values from rankings. This converts rankings to choice
frequencies first, then normalizes to p values, and finally converts the p values into z
scores. The z scores represent the interval scale values for the stimuli, which have
equal intervals as a psychological scale on the assumption that the rankings are

normally distributed. The following section details the above procedures.

Step 1. Calculate the mean rank { M/, ) assigned to cach stimulus,
Step 2. Calculate a mean choice score (M) for each stimulus by subtracting

the mean rank from the number of stimuli (m).

M, =m-M, (3.27

Step 3. Normalise the mean choice scores (M_) into p values by dividing

them by (m - /).
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p=—te (3.28)

m-—1

Step 4. Convert the p values into z scores, which is given in a table in

Appendix 1.

[n this research, the choicc score method was applied to obtain psychophysicat
scaling based on the rankings obtained from psychophysical experiments.
Psychophysical scaling was used io build the relationship between visual texture

features and their subjective responses.

3.2.2 Rank Correlation — Spearman'’s Rank Correlation Coefficient

In statistics, rank correlation is the study of relationships between different
rankings on the same set of items [97]. It deals with measuring correspondence

between two rankings, and assessing the significance of this corrcspondence.

Spearman's rank correlation coefficient {98], named after Charles Spearman, is
one rank correlation method. 1t can be used to summarise the strength and direction
(negative or positive} of a relationship between two variables. The Spearman rank

correlation coefficient r, is defined as

= l- (3.29)

where 4, is the difference between the ranks assigned to the ith object in two
measurements and » is the number of the pairs. This coefficient », will always be

between 1.0 and -1.0. The value 1.0 (i.e. the two rankings are the same) means a
perfect positive correlation whilst -1.0 (i.e., one ranking is the reverse of the other)
means a perfect negative correlation. The value 0 means no correlation. The
increasing positive or negative values imply increasing positive or negative

agreement between two rankings.

53



Chapter 3. Methods

To check whether an answer could be the result of a chance, the significance

of the relationship was tested as follows.

1) Calculate the degrees of freedom. This is the number of pairs » minus 2 (n-

2).

2) Plot result of rank correlation with n-2 on the graph in Figure 3.8, with the
X axis representing the degrees of freedom and y axis being Spearman's

rank correlation coefficient.

The siginificancs of the Spaasman’s ;ank corralation casfficiants 4 nd dagenas of rpedom

14
L8]
oA

Likalinood af the
forelalon occurnng
by charca

%G
3
=

Tha hypollass
must be eei-—=d if
agnificance lavals
ard graular fhan
6% Al s 5%

dagiuas of 'rmadom rajaction lavel, i
inumber af pairs of tams in sAimble minus 2) caraladon isonly
985% ral.able.

Figure 3.8 Significance of Spearman's rank correlation coefficient

In Figure 3.8, the three red lines from top to bottom show the eritical values of
Spearman’s rank correlation coefficient ehanged with the degrees of freedom in 0.1%,
1% and 5% significance levels respectively. The significance levels correspond to the
probability of the relationship you have found heing a chance. If the rank correlation
coefficient is smaller than the critical value in the same degree of freedom in
significance level 5%, the prohahility of the relationship heing a chance is more than
5%, and then it is a possihle result of chance. If the rank correlation coefficient is
bigger than the critical value in the same degree of freedom in significance level 5%,
but smaller than that in significance level 1%, the probahility
of the relationship being a chance is between 1% and 5% and the result is significant
at the 5% level. For example, in Figure 3.8, when n=10, the degree of freedom is n-

2=8, the critical value 0.73 gives a significance level of slightly less than 5%, If the
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rank correlation coefficient with the degree of freedom 8 is smaller than 0.73, that
means the probability of the relationship being a chance is more than 5%, and then it

is a possible result of ehance.

In our research, Spearman's rank correlation coefficient was mainly applied as
an assessment method. By measuring the rank correlation coefficient between two
rankings carried out by subjects and computational methods, we can evaluate the
computational methods. We can also obtain relationships between visual similarity
and visual properties (such as regularity, directionality, coarseness etc) by measuring
rank correlation coefficient between two rankings conducted by subjects on the

experiments of visual similarity and visual properties respectively.

3.3 Radon Transform

The Radon transform [36] is the projection of the intensity values of an image

along specified directions. In general, the Radon transform of f(x,y) is the line

integral of / parallel to the y axis, as expressed in Eq. (3.30).

R,,(:(): rrf(x' cosf— y sin@,x smé—y cosOHy (3.30)
where
x -CD.SQ sing || x (331)
y —-sinf cosd |y

According to Eqs. (3.30) and (3.31), Figure 3.9 illustrates the geometry of the Radon

transformation.
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Figure 3.9 Geometry of the Radon transformation

In the field of image processing, the Radon transform is generally applied to
detect straight lines. Figure 3.10 shows an original wallpaper image, its edge image
and Radon transformation of the edge image. The Radon transform is shown in Figure
3.10 (c), where the horizontal axis expresses the projection angle & range from 0 to
179 degrees. The vertical axis expresses the corresponding coordinate along x axis.
Theretore, the locations of strong peaks in the Radon transform can represent the
location of straight lines and direction of these lines in the images. For example, in
Figure 3.10 (c), the strong peaks shown as bright points correspond to & =~ 90 and
x =-170, -140, -40, -10, 90, 120, 220 respectively, & = 16" and x =-180, -120, 60,
0,60,120,180 respectively. The line perpendicular to the angle § = 16" and located at
corresponding x is shown in red on the original 1mage in Figure 3.11. The seven

horizontal lines can be detected when & ~ 90" and x =-170, -140, -40, -10, 90, 120,
220 respectively.

(a) Original image (b) Edge image (c) Radon transform of edge image

Figure 3.10 Edge image and its Radon transform
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Figure 3.11 Straight line detection (in red) using Radon transform ( # =16 and x =
-180,-120. 60. 0, 60, 120, 180 respectively)

The Radon transform not only expresses the directionality features, but also
describes the spatial property of directionality. This overcomes the drawbacks of
directionality representations using the Fourier power spectrum and the direction
histogram. Therefore, the Radon transform can represent directionality features more
effectively. In this research, we applied the Radon transform to extract the

directionality features from wallpaper images.

57



Chapter 4. Psychophysical Experiments

4. Psychophysical Experiments

The 1deal representation of computational texture should be consistent with the
response of human visual perception. This is in the consideration that the ultimate
user of an image retrieval system is a human being. Therefore, the study of human
perception in terms of texture features and similarity measurements are crucial. To do

this, psychophysical experiments are employed.

Two psychophysical expenments were conducted in this PhD study to
investigate a human’s response on perceiving texture features and performing
similarity measurements respectively. In the first experiment, subjccts were asked to
rank sample wallpaper images based on each of the three texture features, ie.,
coarseness, regularity and directionality respectively. Psychophysical scaling, which
measures the subjects’ response to a physical stimulus in a psychophysical
experiment, was then obtained from rankings using the choice score method as
discussed in Chapter 3. Finally, the relationship between visual texture features and
their subjective response was established according to the psychophysical scaling. In
the second experiment, samplc wallpaper images were ranked based on the order of
visual similarity to the query images by subjects. These ranking results can reflect

human visual similarity measurements.

Through the two psychophysical experiments, we aimed to evaluate
computational texture representations by comparing with human vision perception in
texture representations and similarity measurements respectively, We investigated the
suitable texture representations for wallpaper images to improve retrieval accuracy,
which is in line with human visual perception. The following sections will describe

the procedure of two experiments in detail.

4.1 Experiment One: Texture Feature Perception

The purpose of this experiment was 10 obtain the rankings based on texture

features by subjects. These data were then used to establish relationships between
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visual texture features and the subjects’ response. The experimental method will be
explained in detail as follows, sample selection, subject selection, subject training and

obtaining rankings.

4.1.1 Experimental Preparation

Before the experiment, test samples and subjects were selected. Sample
images needed to represent visual features of wallpapers well. The selection of

subjects had to include all passible factors that could affect the results,

4.1.1.1 Sample Selection

Ten wallpaper images were selected from the database of MoDA images and
utilised as experimental samples, as shown in Figure.4.1. For the purpose of texture
analysis, all of the sample images were converted to grey-level images and cut to the
same size of 512*512, removing the margin of images and preparing the texture
patterns of wallpaper for eomparison.
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Figure 4.1 Experimental samples

The criterion of selection was that sample images should represent visual
texture features of wallpapers, ineluding coarseness, regularity and directionality. We
first selected one hundred images from MoDA collections randomly and grouped
them based on coarseness, regularity and directionality. Three regular images, shown
in Figure.4.] (4) (5) (6), three directional images (1) (7) (10), and four random texture
images (2) (3) (8) (9) were selected from the corresponding group.
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4.1.1.2 Subject Selection

Thirteen volunteer observers were employed to take part in the experiments,
seven women and six men with ages ranging from 25 to 50 years. Subjects were from
different countries. Six were staff and three were PhD students from the School of
Computing Science in Middlesex University. Four staff were from the MoDA
Museum. Among these observers, three were working in image proeessing, whilst

tour of them had some knowledge of wallpaper images.

4.1.2 Experimental Procedure

The experimental procedure started with subject training, that is the basic
concept of texture and texture features was explained to subjects. This helped subjects
to understand the visual features of texture and the rankings based on texture features
effectively. After training, subjects were asked to rank sample images based on each
of the texture features: coarseness, regularity and directionality. These rankings were
then applied to ereate psychophysical sealing and to build relationship between visual

texture features and their subjective response. Details are given below,

4.1.2.1 Subject Training

Before commencing the experiments, a brief explanation of the basie eoneepts

of texture and texture features were given to observers as shown below.

Texture eoncerns the intensity of pixels and the spatial relationship between
pixels. It refers to global visual properties like coarseness, regularity and

directionality [23].

s  Coarseness — Coarseness versus Fineness

Coarseness has a direct relationship to seale and repetition rates. When two
patterns differ only in scale, the magnified one is coarser. For patterns with different

structures, the bigger its element size and/or the less its elements are repeated, the

coarser it is.
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¢ Regularity — Regularity versus irregularity

Regularity is a fundamental structural property of texture. It is a simple
attribute to the repetitive patterns in which elements or primitives are arranged

according to a placement rule.

» Directionality — Directionality versus Non-dircctionality

Directionality is a global property. The orientation of the texturc does not
inatter, i.e., two patterns that differ only in orientation should have the same degree of

directionality.

Some samples of texture images from the Brodatz database ° (standard texture
database) shown in Figurc 4.2 assisted the subjects to understand the perceptual
attributes of texture. Some examples in a ranking based on texture features of
coarseness (from fineness to coarseness) in Figure 4.3, regularity (from regularity to
rregularity) in Figure 4.4 and directionality (from directionality to non-directionality)
in Figure 4.5 were given respectively. When observers fully understood the concepts

of texture perceptual attributes, the experiment started.
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Figure 4.2 Texture images from Brodatz database

9. http:/www. ux_uis.no/~tranden/brodatz html 61



http://www.uxu,is.no/~tranden/brodatzhtml

Chapter 4. Psychophysical Experiments

Fineness — Coarseness

Figure 4.3 Examples for ranking from fineness to coarseness

Regularity — Irregularity

Figure 4.4 Example for ranking from regularity to irrcgnlarity

Directionality — Non-directionality

Figure 4.5 Example for ranking from directionality to non-directionality
4.1.2.2 Obtaining Rankings

After the subject training, ten sample images shown in Figure 4.1 were
displayed on the LCD (Liquid Crystal Display) of a 12 inch taptop with layout
showing in 2 rows by 5 columns. Each observer was asked to rank the images
physically by moving them around in the order of coarseness (from fineness to
coarseness), regularity (from regularity to irregularity), directionality (from

directionality to non-directionality) respectively. The observers’ rankings are shown
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in Table 3.1 in Section 3.2.1.1. This was used to obtain interval scale using choice
score method introduced in Section 3.2.1.2. The experimental results are shown in

Section 5.1.

4.2 Experiment Two: Human Visual Similarity

In this experiment, ten sample images shown in Figure 4.1 were ranked based
on visual similarity to each of ten query images by subjects respectively. These
ranking results were used to evaluate computational texture methods in visual
similarity measurements and to develop a suitable similarity measurement, which is

consistent with human visual perception.

Sixteen volunteer observers performed this experiment, eight women and eight
men with ages ranging from 25 to 50 years and with different culture backgrounds.
Half of the subjects worked in the field of image processing. Each observer was asked
to rank the ten sample images based on visual similarity to a query image in terms of

texture features.

Each observer’s similarity measurements are shown in Table 3.1 of Section
3.2.1.1. This was used to obtain the final rankings using the choice score method

introduced in Section 3.2.1.2. The experimental results are shown in Section 5.2.

4.3 Summary

This chapter described two psychophysical experiments. One is 1o rank sample
wallpaper images based on texture features (coarseness, regularity and directionality)
respectively by subjects. Another is to rank sample wallpaper images based on visual

similarity to a query image from very similar to dissimilar.

Through the two psychophysical experiments, we obtained the results of
human visual perception and visual similarity measurements for wallpaper images
based on texture features. These tesults were used to evaluatc the computational

texture methods by comparing results between computational methods and human
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perception in texture representations and similarity measurements. By analyzing the
refationship between human visual perception on perceiving similarity and texture
features for wallpaper images, we can find out which visual feature plays a more
important role in the measurements of visual similarity for wallpaper images, leading
to the development of new methods for wallpaper image retrieval. The next chapter
will present the results of two psychophysical experiments and the evaluation of five

computational methods based on the psychophysical experimental results.
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5. Experimental Results and Data Analysis

In this chapter, the results of the two psychophysical experiments based on
texture features are shown. By comparing the results between the psychophysical
experiments and the computational texture methods, we evaluated five popular
computational methods in texture representations and similarity measurements.
Finally, an analysis of the relationships between human visual similarity and visual
texture features were given in order to find out which visual texture feature played an

important role for retrieving wallpaper images.

5.1 Results of Experiment One

In experiment one, we aimed to establish a relationship between visual texture
features (coarseness, regularity and directionality) and the subjective response, which
can be applied to cvaluate the existing computational texture representations. First,
ten sample images were ranked by thirteen subjects based on each of three texture
features. Then, psychophysical scaling was obtained from these rankings using the
choice score method described in Section 3.2.1.2. Finally, relationships between
visual texture features and their subjective response were built according to
psychophysical scaling. The following will give results of psychophysical experiment
one, which included rankings and psychophysical scaling based on coarseness,

regularity and directionality respectively.

5.1.1 Rankings

Ten sample images were ranked based on texture features by thirteen subjects.
The ranking results from fineness to coarseness, regularity to irrcgularity,
directionality to non-directionality from each subject were obtained respectively, [n
order to analyze cffectively, the ranking for each subject based on coarseness,
regularity and directionality are put in Table 3.1 described in Section 3.2.1.1
separately. Finally, the rankings based on coarseness, regularity and directionality are

listed in Tables A2.1, A2.2 and A2.3 respectively, as seen in Appendix 2. In Tables
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A2.1, A2.2 and A2.3, the entry 7, of table expresses the ranking of the m™ image by
the n" subject, where the subscription n. m of T, represents the number of row and

column respectively.

In order to represent the visual perception based on averaged data, the raw

data were pre-processed to retove some inconsistent data.

5.1.2 Raw Data Analysis and Pre-Processing

In order to achieve a set of consistent averaged data, removing inconsistent
data was carried out. First, the coefficient matrix of rank correlation between subjects’
ranking was calculated. Then, via analyzing the coefficient matrix, some rankings
were removed. Three steps for raw data analysis and pre-processing are detailed as

follows.

1) Calculate the coefficient matrix of the rank correlation between subjects’ rankings

Based on the rankings shown in Appendix 2, the coefficient matrix of rank
correlation between subjects” rankings for each texture feature were calculated
respectively by using Eq. (3.29) in Section 3.2.2, here n=10. The coefficient matrix of
rank correlation for each texture features are shown in Tables A3.1, A3.2 and A3.3

respectively, as seen in Appendix 3. In Tables A3.1, A3.2 and A3.3, the entry 7, of

table expresses the coefficient of rank correiation between m™ subject and #™ subject,

where the subscription »#, m of T

nm

represents the number of row and column

respectively.

2) Analyze significance of rank correlation betwveen subjects’ rankings

To remove the inconsistent rankings with the average results, the significance
of rank correlation between subjects’ rankings were tested. In Figure 3.8, when n=10,
the degree of freedom is n-2=8, the critical value of rank correlation 0.73 gives a
significance level ol slightly less than 5%. Therefore, the critical value of rank

correlation 0.73 was used as a threshold to remove some inconsistent rankings.
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3) Remove inconsistent rankings

By analyzing the cocfficient matrix of rank correlation, the rankings that were

smaller than 0.73 (r, <0.73) were removed. Finally, the rankings that were more than
0.73 (r, »=0.73) were kept. The removed rankings were highlighted in red in

Appendix 3. The final rankings based on coarseness, regularity and directionality are
shown in Tzbles Ad.i(a), A4.2(a) and A4.3(a) respectively, and their corresponding
coefficient matrix of rank correlation are shown in Tables A4.1(b), A4.2(b) and

A4.3(b), given in Appendix 4.

After pre-processing, the raw data of rankings in Tables A4.1 (a), A4.2 (a) and
A4.3 (a) were applied to obtain psychophysical scaling based on coarseness,
regularity and directionality respectively by using choice score method introduced in

Section 3.2.1.2.

5.1.3 Psychophysical Scaling

Based on the rankings after processing, psychophysical scaling was obtained
by using choice score method introduced in Section 3.2.1.2. The ranked images based
on psychophysical scaling of coarseness, regularity and directionality are shown in
Figures 5.1, 5.2 and 5.3 respectively. In Figures 5.1 to 5.3, the sample imagc;s are
displayed in order from fineness to coarseness, from regularity to irregularity and
from directionality to non-directionality separately. The value of psychophysical
scaling is shown below each image. The number above each image is the ID number

of this image in the ten sample images, as shown in Figure 3.1.
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Psychophysical Scaling Based on Coarseness

-8

Figure 5.1 Image runking based on psychophysical scaling of enarsencss (from fineness
fo coarseness)

Psychopliysical Scaling Based on Regularity

Figure 5.2 Image ranking based nn psychophysical scaling of regularity (from regunlarity
tn irregularity)

Psychophysical Scaling Based on Directionality

Figure 5.3 Image ranking based on psychophysical sealing of directionality (from
directionality to non-directionality)
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5.2 Results of Experiment Two

In experiment two, we aimed to get the results of human perception on
perceiving similarity of wallpaper images. These data were utilised to evalnate the
existing computational texture methods in measuring visual similarity. The procedure
was as follows. First, sample images were ranked based on the degree of similanity to
a query image estimated by sixteen subjects respectively. Then, psychophysical
scaling was calculated from these rankings using choice score method described in
Section 3.2.1.2. According to the psychophysical scaling, the final rankings were

obtained.

5.2.1 Rankings

The rctrieval results of ten query images by sixteen subjects are shown in
Table 3.1 in Section 3.2.1.1. Finally, the rankings for ten queries are listed in Tables

A5.1-A5.10 separately, as seen in Appendix 5. The entry 7 of table in Appendix 5

mn

again expresses the ranking of the m" image by the n™ subject, where the subscription

n, m of T represents the number of row and column respectively.

Simitar to Section 5.1.2, the raw data of rank orders were pre-processed by

removing some rankings which were not consistent with major subjects’ rankings.

5.2.2 Raw Data Analysis and Pre-Processing

Similar to Seetion 5.1.2, three steps were applied 10 pre-process raw data.

1) Calculate the coefficient matrix of the rank correlation between subjects’ rankings

Based on the rankings given in Appendix 5, a coefficient matrix of rank
correlation between subjects’ rankings for each query was calculated respectively by
using Eq. (3.29) in Section 3.2.2, here n=9. The coefficient matrix of rank correlation
for ten queries is shown in Tables A6.1 to AG.10 respectively, given in Appendix 6. in

Tables A6.]1 to A6.10, again the entry 7,_of the tables expresses the coefficient of
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rank correlation between m" subject and ™ subject, where the subscription n. m of

7, represents the number of row and column respectively.

2) Analyze significance of rank correlation between subjects’ rankings

To remove the inconsistent rankings with the average results, the significance
of rank correlation between subjects” rankings was tested. In Figure 3.8, where n=9,
the degree of freedom is »-2=7.The value of 0.75 of rank correlation gives a
significance level of slightly less than 5%. Therefore, 0.75 was used as a threshold to

remove inconsistent rankings.

3) Remove inconsistent rankings

By analyzing the coefficient matrix of rank correlation, the rankings that were

smaller than 0.75 (r, < 0.75) were removed. The removed rankings are highlighted in

red in Appendix 6 that were removed. The final rankings for ten queries are shown in
Tables A7.1(a) to A7.10(a) respectively, and their corresponding coefficient matrix of
rank correlation are shown in Tables A7.1(b) to A7.10(b) respectively, given in

Appendix 7.

In Appendix 7, after removal of inconsistent rankings, we can see that query 4
in Table A7.4 contains the data only from four subjects out of sixteen subjects, whilst
query 6 in Table A7.6 contains the data from only three subjects. Similarly, query 7 in
Table A7.7 contains the data from three subjects. The number of subjects with similar
rankings is not over 50%, which suggests that most subjects have different opinions of
perceiving similarity for these three queries. It was difficult to obtain common
rankings from these three queries. Therefore, these three queries were not considered
in the following sections of the evaluation of computational texture methods and the
studies of human visual perception, which will be discussed in Section 5.3 and

Section 5.4 respectively.

After pre-processing, the rankings for the rest scven queries in Tables A7.1 (a)
to A7.3 (a), A7.5 (a) and A7.8 (a) to A7.10 (a) were used to obtain final rankings for

seven queries by calculating psychophysical scaling.
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5.2,3 Psychophysical Scaling

Based on rankings shown in Tables A7.1(a) to A7.3(a), A7.5(a) and A7.8(a) tc
A7.10(a}), psychophysical scaling were obtained by using the choice score method.
The ranked images for seven queries are shown in Figures A8.1 to A8.7 respectively,
given in Appendix 8. In Figures A8.1 to A8.7, images are displayed in the order from
most similar to least similar to each query image. The value of psychophysical scaling

is shown below each image.

Through two psychophysical experiments, we obtained results of human
visual perception and visual similarity measurements in terms of texture features for
wallpaper images. In the following sections, the existing computational methods are
evaluated by comparing the results between computational methods and the visual

data obtained from these two experiments.

5.3 Comparison between Computational Texture Methods and

Human Visual Perception

In this section, five computational texture methods introduced in Section 3.1
are evaluated by comparing the results obtained from each of the two psychophysical
experiments respectively. First, the compariscn was catrried cut in terms of texture
feature representations, Then, the comparison was conducted in terms of similarity
measurements. The approach of rank correlation introduced in Section 3.2.2 was used
to indicate the goodness of fit between the data calculated from computational texture

methods and perceived by subjects.

5.3.1 Comparison between Computational Texture Representations
and Visual Texture Features

In this section, we aim to examine the suitability of five computational texture
representations introduced in Section 3.1: Grey Level Co-occurrence Matrices
(GLCM), Multi-Resolution Simultanecus Auto-Regressive (MRSAR) model, Fourier
Transform (FT), Wavelet Transform (WT) and Gabor Transform (GT).
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For the approach of GLCM, texwre features were computed with four
distances of 1, 3, 35, and 7 opixels and with four directions of
0°,45°,90°135° respectively. So the featurc vector included 4 (cnergy, entropy,
contrast and homogeneity) * 4 (distances) * 4 (directions) = 64 components, detailed
in Section 3.1.1.Whilst for MRSAR, 3 resolutions (d=2, 3, 4 respectively) were
applied, leading to the feature vector with 5(4 regressive parameter and least square
error)*3(scales) =15 elements, seen in Section 3.1.2, The texture features calculated
from the approach of FT contain a vector with 4 elements, which were Maximum
Magnitude, Average Magnitude, Energy of Magnitude and Variance of Magnitude,
detailed in Secuon 3.1.3. As for the method of WT method in Section 3.1.4, the
dimension of the feature vector is 20, that was obtained by 3 (scales} *3 (subbands in
gach scale) *2 (mean and standard deviation) +2 (mean and standard deviation in
lowest resolution). The texture features from GT approach took 48 elements in the
feature vector, which was calculated by 4 (scales)*6 (orientations) * 2 (mean and

standard deviation), seen in Section 3.1.5.

Texture features of ten sample images were calculated by five computational
methods respectively. Based on the value of each texture feature, ten sample images
were ranked in decreasing order. The ranking results for each of three texture features,
i.e., coarseness, regularity, and directionality, for each computational method are
shown in Tables A9.1 10A9.5 from column 2 to column 10, listed in Appendix 9. In
Tables A9.1 to A9.5, the first row is the ranking based on texture features by subjects
and the other rows are the ranks based on each texture feature calculated by five

computational methods respectively. The data in the last column in each table
represents the coefficient of rank correlation (i7]) between each feature calculated by
each method and the data perceived by subjects. We applied the absolute value of the
rank correlation, which was in the consideration that both positive and negative rank

correlation can reflect the relationship between two variables as seen in Scction 3.2.2

in the same way.

Table 5.1 shows the average of rank correlation for each table given in

Appendix 9. [n Table 5.1, the entry T, of the table expresses the average rank

correlation between rankings of the m™ visual texture feature by subjects and ranking
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of each texture feature calculated by »™ computational method, where the subscription
Y P P

n,mof T represents the number of row and column respectively. These averages of

rank correlatton were applied to evaluate whether the computational texture
representations were consistent with the visual feature perception or not. Data analysis

and discussion will be detailed in Section 5.3.3.

Table 5.1 The average rank correlation between texture features calculated by
computational methods and visual texture features perceived by subjects

|7 GLCM MRSAR FT wr GT
Coarseness 0.37 0.38 0.41 0.40 0.42
Regularily 0.34 0.62 0.34 0.40 0.39
Directionality 0.33 0.68 0.36 042 0.41

In this section, we evaluated the five computational texture methods in terms
of texture feature representations. However, when people judge whether two images
are stmilar, they may not consider each texture feature or their combinations. The
following section will study the similarity measurements between computational

texture methods and subjects.

5.3.2Comparison Similarity Measurements between Computational
Texture Methods and Subjects

In this section, the comparison of similarity measurcments obtained by
computational methods and subjects were carried out. By using the sample query and
sample images, five computational methods, i.e. Grey Level Co-occurrence Matrices
(GLCM), Multi-Resolution Simultaneous Auto-Regressive (MRSAR) model, Fourier
Transform (FT), Wavelet Transform (WT) and Gabor Transform (GT), again were
applied to calculate similarity distances. The ranking of the corresponding
computational method for seven queries are given in Tables AlQ.1 to Al0.7
respectively, as shown in Appendix 10. In the Tables A10.1 to A10.7, the first row is
the ranking perceived by subjects, whilst the rest of the table is the retrieval
performance calculated by five computational methods. The numbers from columns 2

to 10 in Tables A10.1 to A10.7 are the [D numbers of sample images ranking in the
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order from the most similar to the least similar to the query images. The last column is

the coefficients of rank correlation between computation methods and subjects.

Table 5.2 shows the rank correlation between five computational metheds and

the human perception for seven query images. The average the rank correlation r, is

shown in last row of table,

Table 5.2 Cocfficients of rank correlation between computational methods and subjects
for seven queries

¥, GLCM MRSAR FT wr GT
Query | -0.13 0.23 0.05 0.22 0.32
Query 2 0.53 0.6 -0.18 0.35 042
Query 3 0.45 0.15 0.48 2.18 03
Query 5 -0.7 0.38 0.42 -0.7 -0.7
Query 8 045 0.23 0.55 0.18 0.32
Query 9 0.08 0.18 0.4 0.17 0.22
Query 10 0.35 0.53 0.7 0.48 0.33

', 0.15 0.36 0.35 013 0.17

The average the rank correlation was apphied to evaluate whether the five
computational methods were consistent with human perception on the visual

measurements of similarity, which is detailed in the following section.

5.3.3 Data Analysis and Discussion

By eompariscn between computational texture representations and perceived
texture features (Experiment one), as shown in Table 3.1, it can be seen that the
average rtank correlation between ranking results based on each feature of
computational methods and ranking results by the subjects based on visual texture
features 1s very low. All rank correlations are less than the significance threshold of
0.73. The value of rank correlation of 0.73 gives a significance level at 5% when the
number of comparing pairs # is equal to 10 and the degree of freedom is 8 (=10-2), as
explained in detail in Section 3.2.2. This suggested that none of the five
computaticnal texture methods can represent the texture features in terms of
coarseness, regularity and directionality individually very well. For each feature
calculated by the five computational methods, as seen in Appendix 9, the rank

correlation with coarseness, regularity and directionality are smaller than the
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significance threshold of 0.73, implying that most feature elements calculated by the
five computational texture methods are not in close carrelation with perceived texture
features (coarseness, regularity and directionality}. According to these results, we can
conclude that the five computational texture methods are not consistent with human
perception of texture features for wallpaper images in terms of coarseness, regularity

and directionality.

As for similarity measurements that are the combination of all the features in
each computational method, consistency with human visual similarity is another

interesting issug.

By comparison of similarity measured by computational texture methods and
subjects (Experiment two), as seen in Table 5.2, again, the average rank correlation
for seven query images was very low, for example, 0.15, 0.36, 0.35, 0.13 and 0.17
being the correlations with GLCM, MRSAR, FT, WT and GT respectively. Even
maximum rank correlation 0.7 obtained by FT for image query 10 was not over the
significance threshold of 0.75, that is the significance level at 5% when the number of
comparing pairs » is equal to 9 and the degree of freedoms is 7 (=9-2). Judging from
the results, we can assume that the five computational texture methods do not
simulate human vision very well in terms of performing similarity measurements on
wallpaper images, which is in line with our finding that the retrieval results obtained
by five computational texture methods are not ideal. This is supported by the
following example, which gives the top 5 retrieval results for query image 9 by the
subjects and five computational methods respectively. The number below each
computational method 1s the rank correlation between the subjects and the

corresponding computational method.

Through the analysis, we can conclude that the five computational texture
methods are not consistent with human perception in terms of texture features and
visual similarity measurements for wallpaper images. Therefore, the study of the
relationship between visual similarity and visual texture features is important to

develop suitable retrieval methods for wallpaper images.
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Figure 5.4 Comparing retrieval results between subjects and five computational methods
for query 9

5.4 Relationships between Visual Similarity Measurements
and Visual Texture Features

[n this section, we explore how human pereeive similarity based on texture
features. Based on the results obtained from our psychophysical experiments one and
two, the relationships between visual similarity and texture features can be
established. By analyzing this relationship, we found which texture features

(coarseness, regularity, and directionality) play a mare important role in performing

76



Chapter 5. Experimental Results and Data Analysis

similarity measurements for wallpaper images, leading to development of new

methods to improve retrieval aecuracy.

5.4.1 Rank Correlation between Visual Similarity Measurements

and Visual Texture Features

Based on the results of experiment one, we obtained rankings based on texture
features of coarseness, regularity and directionality respectively by subjects. Whilst
from the results of experiment two, we had rankings for seven queries respectively

observed by subjects. In both experiments, we adopted the same sample images.

According to the results obtained by subjects, we tried to establish the
relationship between visual similarity measurements and visual texture features. First,
in order to obtain the rankings for each query image based on coarseness, regularity
and directionality individually, we calculated the psychophysical distance between
cach sample image and the query image based on these three visual features
respectively. Then, by calculating the rank correlation between rankings for each
guery image based on the psychophysical distance of visual texture features and the
eorresponding ranking for each query based on visual perception, we established the
relationship between visual similarity measurements and the visual texture features.
The ranking results for seven query images are given in Tables All.l to A11.7, as
seen in Appendix 11. In Tables All.1 to AL1.7, the first row is the rankings based on
perceived similarity measurements for query images and the other rows are the
corresponding ranking for query image based on coarseness, regularity and
directionality respectively. The numbers from columns 2 to 10 in Tables All.1 to
A11.7 are the TD numbers of ranking images in the order from most similar to least
similar to each query image. The last column contains the coefficients of rank
correlation between visual similarity measurements and the eorresponding visual

texture features.

Finally, the rank correlation between perceived visual similarity and the visual

texture features for seven queries are listed in Table 5.3. The average rank correlation

r, for seven queries is shown in the last column in the table.
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Table 5.3 Coelficients of rank correlation between perceived similarity measurements
and visual texture features for seven queries

F, Query | | Query 2 | Query 3 | Query 5 | Query 8 | Query 9 | Query 10 ,-_

3
Coarseness .77 0.33 0.87 0.60 0.60 0.37 0.73 0.64
Regularity 0.93 0.73 0.75 0.93 0.77 0.32 0.80 Q.75

| Directionality 0.92 0.82 0.81 0.73 0.78 0.77 0.32 .81

The average rank correlation was applied to analyze the relationship between
perceived visual similarity and the visual texture features. The data analysis and

discussion will be detailed in Section 5.4.2,

5.4.2 Data Analysis and Discussion

In Table 5.3, the average rank correlation between visual similanty
measurements and coarseness is 0.64, and regularity is 0.75, and direetionality is 0.81.
Coefficients of rank correlation between visual similarity measurements and
regularity and directionality are over the significance threshold of 0.75 as described in
Section 3.2.2. But the rank correlation between visual similarity measurements and
coarseness 1s below the threshold of 0.75. Judging from the results, we can say that
the texture features of regularity and directionality play a more important role in
perceived visual similarity measurements for wallpaper images. We can also see this
result from the following two examples shown in Figures 5.5 and 5.6, which show the
top 5 retrieval results for query 5 and query 8 respectively. The number below each
texture feature is the rank correlation between rankings of subjects and rankings based
on corresponding texture features. In both figures, the ranking results based on
regularity and directionality is closer to ranking results based on human visual
similarity, 1t suggests that the texture features of regularity and directionality are very

important in image retrieval for these two queries.
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Figure 5.6 Comparison between ranking results based un human visual similarity and
ranking results based on visual texture feature for query 8
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Through the analysis above, we found that texture features of regularity and
directionality play an important role in performing visual similarity measurements for
wallpaper images. This provided us with the clue for the development of new methods
to improve retrieval accuracy for wallpaper images. Therefore, we considered the
texture features of regularity and directionality first in wallpaper image retrieval. The

new methods for wallpaper image retrieval will be described in Chapter 6.

5.5 Summary

This chapter presented the results of two psychophysical experiments.
Comparison of results across five computational methods and human perception for
wallpaper images, we concluded that five computational texture methods are not fully
consistent with human perception in terms of texture features and visual similarity, By
analyzing the relationship between visual similarity measurements and visual texture
features, we found that texture features of regularity and directionality a play more
tmportant role in performing visual similarity measurements for wallpaper images

than the teature of coarseness.

Therefore, the texture features of regularity and directionality are the main
featurcs in performing wallpaper image retrieval. So far, five computational texture
methods cannot represent texture features of regularity and directionality individually
very well. New methods for wallpaper image retrieval have to be developed, which
will form two stages. First, we will classify images based on regularity and
directionality respectively. Then, we will perform image retrieval in corresponding

classified group of the image database, which will be the content of Chapter 6.
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6. Image Retrieval for Wallpaper Images

This chapter describes the approach applied in this research to content-based
image retrieval for wallpaper images, and consists of two main parts, which are
classification and image retrieval. First, the query image was classified based on
regularity and directionality. After classification, image retrieval was performed in the
corresponding classes of the image database. An overview of the framework for

image retrieval is shown below in Figure 6.1.

Query Classification based on Retricved
Image directionality and regularity Image Retrieval » Images

Figure 6.1 An overview of framework for wallpaper image retricval

Classification based on regularity and directionality is described in Section
6.1. After classification, image retrieval 1s introduced in Section 6.2, Finally, a
content-based image retrieval system for wallpaper images will be presented in

Section 6.3.

6.1 Image Classification

According to the analysis of experimental results in Section 5.4, the features of
regularity and directionality played a more important role in performing visual
similarity for wallpaper images. Psychophysical experiments carried out in this study
also show that five existing computational models can not represent perceptual texture
features of wallpaper images very well, nor can they perform image retrieval
accurately for wallpaper itnages, as discussed in Section 3.3. [n order to retrieve
wallpaper images efficiently and effectively, wallpaper images were hence first
classified based on directionality and regularity before the retrieval. A schematic
diagram shown in Figure 6.2 illustrates the classification tree based on directionality

and regularity employed in this study.
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Wallpaper images

Classification based on directionality

T~

Class I: Classification based on regularity
Directional images / \
Class 2: Class 3:
Regular images Random texture images

Figure 6.2 Classification tree based on regularity and directionality

After classification, wallpaper images were classified into three groups, which
were Class |: directional images, Class 2: reguiar images; and Class 3: random
texture images. The following section will describe the method of classification based

on directionality and regularity respectively in detail.

6.1.1 Classification Based on Directionality

Directionality is a global property over an image, suggesting the orientation of
the texture does not matter, i.e., two patterns that are different only in orientations
should have the same degree of directionality. Some wallpaper images have strong
patterns of geometric structure, for example, images (1) and (2) in Figure 6.3
Therefore, directionality is a very important visual feature embedded in wallpaper

images, which is in line with the findings obtained in Section 5.4.

In the field of image processing, the feature of directionality is generally
extracted using the Fourier power spectrum, or is obtained by using a direction
histogram. Normally, directional images show obvious beams in the Fourier power
spectrum or outstanding peaks in the direction histogram, as demonstrated in image
(1) in Figure 6.3. However, some wallpaper images with the feature of directionality
do not follow this rule. For example, in Figure 6.3, wallpaper image (2) has the

feature of directionality similar to that of image (l). But, according to its Fourier
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power spectrum and direction histogram, they show features closer to non-directional

image (3) than the directional image (1).

Fourier power Direction

Image Radon transform
spectrum histogram

Figure 6.3 Wallpaper images and their Fourier power spectrum, direction histogram
and Radon transform

The reason is that the features of directionality extracted from the Fourier
power spectrum and the direction histogram are statistic ones, which can not represent
the characters of direction in the spatial domain wvisually. Since directionality is
defined as a global property over the given region, we need to consider the spatial
distribution of directional lines to represent directionality. Furthermore, the property
of directionality shown in wallpaper images are sometimes made of flowers or leaves,
some degrees of art effect, such as in image (2) in Figure 6.3. These visible
directional lines are difficult to capture in hoth approaches of Fourier power spectrum

and direction histogram.

The Radon transform (in Section 3.3) can overcome these drawbacks by using
the Fourier power spectrum and the direction histogram, and can well describe

directional lines in a spatial domain. In Figure 6.3, 1t shows the obvious different
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features between the directional image (2) and non-directional (3) in the Radon
transform. In this research, we applied the Radon transform to describe the features of

directionality for wallpaper images.

Directionality representations were extracted by the Radon transform of edge
images. Thresholding were applied to classify images into elasses of directionality or

non-directionality. Figure 6.4 briefly deseribes classification based on dircctionality.

Input texture images

[ Pertorm Radon transtorm

b4

Compute directionalily representations

—_— Directionality T
_— representations>Threshold - —
Directional images Non-directional images

Figure 6.4 Classification based on directionality

The following sections will introduce the directionality representations
extracted from the Radon transform, and elassitication based on directionality using

threshaolding.

6. 1.1.1 Directionality Representations

Since directionality is a global property over a given region, images with
strong visual sense of directionality has many specific directional lines seattering over
the region of the images. In order to represent this property effectively, we needed to
analyze the Radon transform of images in horizontal and sertical direction
respectively. We can obtain the angle of the main direction from the horizontal axis

and the spatial distribution of dircctional lines from the vertical axis. Four main steps
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were adopted. including obtaining the Radon transform of edge images; projecting the

Radon transform in the horizontal axis to decide the main direction of the image by

finding the peaks in the projection; projecting the Radon transform of the main

direction in vertical axis to ohtain the spatial distribution ol main directional lines;

and representing directionality by the combination of the features shown in both

horizontal and vertical axes in the Radon transtorm. The detailed procedure is

described as follows.

Obtain the Radon transform of an edge image

Obtain binary edge image by using the Canny f{ilter [37], as shown in Figure
6.5 (h)

Perform the Radon transform of the edge image. as demonstrated in Figure 6.5
(c)

Threshold the Radon transform. We obtained the possible points that express
the straight lines in an image, shown in Figure 6.6 (d). In this research, we set
the threshold=10%%size (1mage), suggesting therc is a likely straight line when

the total number of edge pixels along a specified direction is over the

threshold.

Obtain the main direction af an image and the directianality feature
DER e o
Project the Radon transform into the vertical direction, we obtained the curve
of projection g(x), as shown in Figure 6.6 (e)

Obtain the main direction & of images by computing the local maxima point
in g{x). Here, directional lines in image are perpendicular to the projecting

axis. Therefore, & is

(SR
(YR
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ad

tJ

where & is an angle of a projecting axis, and its value are given in horizontal
axis of Radon transform.
Ohtain the DER

by normalizing the value of peak in corresponding main

value #

direction &

DER = (6.2)

vilae (2

where P, expresses the value of peak in corresponding main direction&. The

value of DER_, , 1s between 0 and 1. The bigger the value of DER

value 6°?
the more likely there is a straight line in the direction € . As given in Figure

6.6 (e), the value of DER

vafue

, and the corresponding ¢ arc seen below the

curve of g(x).

Ohtain the spatial distribution of the main directional lines DER .,
Project Radon transform into the horizontal dircction in cach main direction
respectively. We obtained the curve f,{x) in corresponding orientation, as
shown in Figure 6.6 (f).

Compute the y° (Chi-square distribution) statistics for the curve f,(x)in
different orientations respectively, y- statistics were applied to describe the
quality of the match betwecn the distribution of the region and a uniform

distribution [99], and is defined as

Ll

z, =2 mip,

where p.= D2 L)Y flx) (6.3)

TErcgnt

m

The curve f,(x) was evenly divided into m regions in the horizontal

direction, p, is the percentage of value of £,(x) in region i over the whole
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region. The probability function — expresses the uniform distribution over
m

the zones. The smaller the value of;g:, the closer to uniform distribution the
curve distribution is. When y_. = =0, the curve shows uniform distribution.

When the value of f,(x)} is put together in cne region, 7~ nas a maximum
value y.. =m-1, which is obtained by setting one p =1 and the

other p. = 0. Finally, the spatial distribution of specified directional lines

DER, ... ¢ isdefined by normalizing y,” between 0 and | using Eq. (6.4).

DERprerm 6= 1- (64)
/rmax _Iy

Value of DER ..., +is between 0 and 1, ie., the bigger the value of

DER, .0 ¢ 15, ine closer to uniform distribution the directional line

distribution is. In Figure 6.6 (1), the value of DER is shown below the

position (f

corresponding figure.

Finally, directionality representations in a specified direction & expressed

as OFR, multiplied two features obtained in horizontal direction analysis
DER,,,. pand vertical direction analysis DER .., ,in the Radon transform together

as shown in Eq. (6.5)
DER, = DER » DER (6.5)

value 8 position 8

Generally, an image with strong directionality patterns should have many
specified directional lines scattered over the regions of the image. Therefore, they

should have a bigger value in DER,

vl @Y

DER,. . o @and DER, as well.
Considering classification based on directionality, we used the maximum value of

DER; as the directionality representations and defined as follows.

DER = Max(DER,) {6.6)
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{d) Radon transform
after thresholdina

_{f) Projection af Radon transform in

horizontal direction

‘ (e) Projection (d) in vertical direction

6=0". DER,, ,=0.8032 6=0".DER = 0.9959

position 0

8, =100".DER =10.9575

pasiran 1060

6, =100 .DER_, ., =0.2859

&, =0".DER . ,=0.2290
&, =50".DER . ,=0.1100 g, =0 posaon 0 = 0.9757
1, =50", DER . ion 50 =0.5575
g, = 120°. DER ... 12 =0.7788
8, =120".DER_,,. ., =0.5177
8, =50 . DER_, ., =0.3630
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6, =50 .DER . . =0.9095

posthion

¢, =130° . DER,,, ,, =0.0989 | & =130".DER .. ., =0.6397
6, =40° _DER,, ., =0.1181

6, = 40°. DER o = 0.6875

positton

6, =130". DER o = 0.2132

pasition

8, =130".DER,,,_ ,,, =0.2782
0, =40 .DER_, , =02233

6, = 40 . DER =0.2396

<L postion _ 40

8, =130°. DER = 0.4685

=~ posiiun 130

6, =130 .DER,,, 5, =0.1391
6, =40 . DER,,, ., =0.1056

8, =40" . DER =0.4571

posiion 40

Figure 6.6 Directionality representatinns in Radan transform
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Table 6.1 gives the directionality features DER of images ((13—(6)) shown in
Figure 6.5 (a).
Table 6.1 Directionality features of images

Image (1 (2) (3) (4) (5 (6)
DER 0.7999 0.2737 04032 0.0812 0.0593 0.0652

Table 6.1 shows that images ((1) to (3) in Figure 6.5 (a)) with characteristics
of directionality have bigger values of DFER than images ((4) to (6) with lcss
directionality. Therefore, a threshold for DER were applicd to classify images into

the class of directionality or non-directionality.

6.1.1.2 Classification Based on Directionality

Twenty directional images and twenty non-directional images were chosen by
subjects from Mol)A database. Their DER were depicted in Figure 6.7. The
horizontal axis represents the sample image numbers and the vertical axis
represenis DER (#) expresses directional samples and () represents non-directional

samples.

Dewectionsdty
Man deeclionality

+X.]
ar

as-

i~
Kaa

o2

01 -

4] 2 4 8 s 10 12 14 18 18 20
Semoies

Figure 6.7 Directionality features of 40 training sam ple images
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From the Figure 6.7. it can be seen that the majority of the DER values of
directional images (¥ ) are bigger than (.18 However, the majority of the DER
values of non-directional images (.- ) are smaller than 0.18. Therefore, a DER value
0.18 was used as a threshold to distinguish directional images from non-directional

images.

In summary, directional and non-directional images were classified by a
threshold of DER=0.18 , ie., if DER>0.18 the image was labelled with
directionality, otherwise non-directionality. The classification results hased on

directionality are shown in Section 7.1.1.

6.1.2 Classification Based on Regularity

Regularity is a fundamental structural property of texture. It is simply
atinihuted to the structure of repetitive or periodic patterns. The more regular the
periodicity, the stromger the structure is. Generally, wallpaper images have strong
texture structure, such as periodic patterns. Therefare, regularity is a very important
visual feature for describing wallpaper images. This finding was also proved in

Section 5.4.

In image processing, the periodic or repetitive patterms were captured hy
computing the correlation between the intensity values in rows or columns of an
image. The curve of the Correlation Coefficient with periodic patterns shows periodic
peak, whilst the curve of the Correlation Coefficient for an irregular image tends to be
flat. Regularity represcntations were therefore extracted from the correlation
coefficient. Thresholding was applied again to classify images into regularity and
irregularity. Figure 6.8 briefly describes the procedure of classification based on

regularity.

In following sections, we will introduce the regularity representations
extracted from correlation coefficients, and classification based on regularity using

thresholding,.
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Input texture images

'

Perform vorrelation und compute
correlation coefticient

Cled)

Regular images Irregular images
Figure 6.8 Classification hased an regularity

6.1.2.1 Regularity Representations

Correlation is widely used in inding repeated patterns of images in the ficld of

image processing {60, 61, 64].

The normalized correlation ¢(i, /) between the rows (or columns) of an image

is formulated as

where . and & are the intensity values within the rows (or columns) i and §

respectively. E(e) is the expected value and o(e) is the standard deviation.

In order to analyze easily, C{d) was introduced to describe the correlation

between the rows (columns) in a distance 4.
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N—d
N—d L‘L\l,l Ty
d=123__N-1 (6.8)
where N is the number of rows (columns). Therefore, we analyzed regulanty in one

dimension of C'(d) instead of two dimensions ofc(i, nl

Figure 6.9 visualizes the correlation cocfficient matrix c(i,j) and C(d) of
images in horizontal (column) and vertical (row) direction respectively. According to

Eq. (6.8}, C(d) was obtained hy projecting correlation coefficient matrix ¢(i, /) in the

direction with 45°.

Honzontal(column) direction Vertical{row) direction
| C(d) . {a)
QOriginal Correlation . o Correlation _ o
image coefficient (Project of C(f, J) coefficient {Project of C(l,j)
matrix ¢(7, §) in @=45) matrix ¢, f) in 8 =45")

Figure 6.9 Visualizing the correlation cnefficient matrix C(i, j), ( d) of imagesin

horizantal and vertical directinn
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From Figure 6.9, C(d)curves of images with repeated patterns (images (1) to
(3)) show periodic peaks, while Cld/) curves of images without repeated patterns
(images (4) to (6)) tend to be flat. Therefore, the features of C{d) were used to

represent the characters of regularity.

In order to deseribe the periodic features of wallpaper images, two measures

of REG,,, and REG ., were derived from C{d) . REG,,, was the contrast of

C(d/) and is applied to deseribe the amplitude of the eurve whilst REG was used

pusition
10 describe the relative position of peaks that decide whether a curve showed periodic
properties or not. These two measures expressed the characteristics of C(d), i.c.,
periodic peaks for regular images or a flat curve for irregular images.
REG

is the contrast of C(4) and defined as

valt

Af N
REG . = 2E Z p_valueli)- L Z v_valuelj) {6.9)

where p_value(i) and v_value(j) are magnitudes of peaks and valleys in C(d), M

is the number of peaks and N is the number of valleys.

REG 15 defined as

pasian

g "
_ P position
REGpu.\in'un =1- (6.1 0)
P _ position
where £, ... 1S the average of distances among the peaks in C{d), T, oo 15 the

standard deviation of distances among the peaks in C{d).

C(d) with periodic peaks has bigger values of REG, . and REG

posihun ¥

whereas C(d) with a flat curve bas smaller values of REG , and REG

pasilton
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Finally, the regularity representation REG was defined as a multiplication of the two

measures shown in Eq. (6.13).

REG =|REG,,,, * REG 6.11)

Persiion

The following table gives the regularity features REG _ /t and REG _ v of

images ((1) ta (6) given in Figure 6.9) in horizontal and vertical direction

respectively.
Tahle 6.2 Regularity features of images
Horizontal{column) direction Vertical{row) direction

Image REG ome - | REGuum B | REC _h | REG . v REG wuon * | REG v
n 0.8693 0.9883 0.8591 0.7320 0.9964 0.7293
(2) 04151 0.8908 0.3698 0.7977 0.9943 0.7932
(3 1.0093 0.9965 1.0057 0.7609 0.9501 0.7229
4) 0.1840 0.8861 0.1630 0.1830 0.6239 0.1142
&) 0.2056 0.4424 0.0910 0.1822 03262 0.0594
(6) 0.0943 0.7535 0.0710 T 0.0569 0.8452 0.0481

Table 6.2 shows that regular images ((1), (2) and (3) in Figure 6.9) with
periodic peaks of C(d) have a bigger REG value ( REG & or REG v ) than
irregular images ((4), (5) and (6) in Figure 6.9) with flat curve nf("(d). Therefore,
thresholding for REG was applied to classify an image into either the regulanty or

irregularity class.

6.1.2.2 Classification Based on Regularity

Twenty regular images and twenty irregular images were chosen from the
MoDA database. Twenty regular images were selected with regularity features hoth in
horizontal and vertical direction. Their values of REG » and REG _ v are shown in
Figure 6.10. The horizontal axis represents the sample image numbers and the vertical
axis represents RE(; valne. (% ) expresses regularity samples and ( . ) represents

irregularity samples.

96



Chapter 6. Image Retrieval for Wallpaper Images

Regulanty
lrmoudanly

Figure 6.10 Regularity features of 40 training sample images

From the Figure 6.10, it can be seen that the majority of the REG values of
regular images () are bigger than 0.23. Whereas, the majonty of the REG values of
irregular images (<) are smaller than 0.23. Therefore, a REG value 0.23 was used as

threshold to distinguish regular images from irregular ones.

In summary, regular and irregular images were classified by a threshold of
REG =023, 1e, if REG _hn>023 or REG v>0.23, the image was labelled with

regularity, otherwise irregularity. The classification results based on regulanity are

shown in Section 7.1.2.

6.1.3 Classification Based on Directionality and Regularity

After introducing classification based on directionality and regularity

respeetively, we combined these two methods to classify wallpaper images.

Aecording to the results of our psychophysical experiments in Table 5.3, the
average of rank correlation between visual similarity measurements and regularity is

0.75, and directionality is 0.81. Therefore, the directionality character plays a slightly
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more important role in visual similarity measurements than regularity and this is taken

into account first in the classification.

Therefore, the wallpaper images were classified into directional images or
non-directional images first. Then, these non-directional images were further
classified based on regularity into sub-class of either regular or random texture
images. Figure 6.11 describes the procedure of classification based on directionality
and regularity. After classification, images were classified into three groups: Class |:
directional images; Class 2: regular images; and Class 3: random texture images. The
classification results based on directionality and regularity will be shown in Section
7.1.3.

Wallpaper images

l

Compute directionality
representations: DER

Y N
— If DER >0.18 S—
.

Compute regularity representations:
REG _h andREG v

If REG _K>0.23
or REG _v>0.23

A J

Class I: Class 2: Class 3:
Directional images Regular images Random texture Images

Figure 6.11 Flow of classification based on directionality and regularity

6.2 Image Retrieval

After classification, the image retrieval was performed in each specified class
by calculating similarity measurements between feature vectors of a query image and

the images in that class.
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Query image was classified based on regularity and directionality. Then,
similar texture images were rctrieved in the same classified group as the query image
by using five computational methods. The following retrieval results wete performed
in other class groups. The path for the category index is described as follows.

If query=directionality, then index path= directional images — regular images

— random texture images.
If query=regularity, then index path= regular images — directional images
— random texture images.
If query=random, then index path= random texture images — regular images
—directional images
The above index path was set based on the relationship between three different

classes.

According to the rankings based on coarseness, regularity and directionality,
obtained in Section 5.1, we calculated the coefficients of the rank correlation between
three texture features. We put rankings based on coarseness, regularity and
directionality shown in Figures 5.1, 5.2 and 5.3 in Table 6.3 and coefticients of rank

carrelation between texture features were calculated and shown in Table 6.4,

Table 6.3 Rankings based on coarseness, regutarity, and directionality

Texture Feature Rankings
Coarseness 3 8 9 2 6 5 10 4 1 7
Regularity 10 | 5 6 7 4 9 2 3 8
| Directionality ] 10 5 6 7 4 | 9 3 2 | 8

Tahle 6.4 Coefficients of the rank correlation between texture features

r Coarseness Regularity Directionality
Coarseness I 0.72 0.71
Regularty 0.72 l 0.98
! Directionality 0.71 0.98 I

Judging from the rank correlation », between different texture fcatures, we can

see the coefficients of rank correlation between regularity and directionality is 0.98. It
is higher than that between regularity and coarseness and between directionality and
coarseness. This suggests there i1s a stronger corrclation between directionality and

regularity. This can help us to set the index path between three different classes. This
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is why the class of regularity and directionality in the indexing path are followed by

each other.

The retrieval resulis by using five coniputational methods will be shown in
Section 7.2, whereas the comparison between retrieval resuits before and after

classification is discussed in Section 7.2.

6.3 A Content-Based Image Retrieval System for Wallpaper

Images

In this research, a preliminary content-based image retrieval system for

wallpaper images was developed with the diagram shown in Figure 6.12.

This system includes two main parts, which are image database processing and
image retrieval. Image database processing inside the dashed lines contains two
procedures. One 1s to classify the image database into three classes: directional,
rcgular and random images. The other is to extract the texture teatures of images by
using each of five computational methods respectively. Finally it yields the three sub-
databases of texture features, which is the texture feature database of class 1, texture
feature databasc of class 2 and texture feature database of class 3. These three sub-

databases of texture features were obtained and stored in the archives in advance,

When a user submits a query, thc query image was classified based on
directionality and regularity first. At the same time, the texture feature vectors of the
query image were extracted using one computational texture method selected by the
user. According to the classification result, the system set the category index detailed
in Section 6.2. This category index determined the ranking of three classes in the
retrieval results. Then image retrieval was performed by calculating the similarity
measurements between the feature vectors of the query image and the corresponding
texture features in the three sub-databases. Finally, a set of images were retrieved and
ranked bzsed on the degree of similarity calculated by the similarity measurements,

By recalling the image database, the retrieved images were displayed on screen.
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A graphical user interface to display the retrieval results and classification

results for wallpaper images 1s shown in Figure 7.16.

6.4 Summary

In this chapter, the methodology of content-based image retrieval for
wallpaper images was developed. First, a query image was classified based on
regularity and directionality. After classification, image retrieval was performed in the

corresponding classes of the image database.

Classification based on directionality and regularity was introduced
respectively. Directionality features of images were extracted from the Radon
transform of edge images. Regularity features were extracted from the correlation of
images. After training images, thresholds for directionality and regularity features
were ohtained and applied to classify images into directionality and non-
directionality, regularity and irregularity respectively. Finally, according to the
psychaphysical results, the classification tree based on directionality and regularity
was built. After classification, images were classified into three classes, which are

directional, regular and random textures.

After classification, image retrieval was pertormed in each specified class by
using one of five computational methods. According to the psychophysical results, the

category index for image retrieval was built.

Finally, a prototype of a content-based image retrieval system for wallpaper

images was developed and diagrammed in Figure 6.12.

Chapter 7 will give the results of classification and the results of image
retrieval after classification. A graphical user interface of a retrieval system is

presented as well,
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Image
Database

Image Database Processing

Query
Image

Texture Feature
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Classification
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Texture Featlure
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Class 1. Directionality

Texture Feature Database
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Class 2: Regularity
Texture Feature Database

Class 3: Random
Texture Feature Database

Category index
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Retrieval
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Selection
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Figure 6.12 Diagram for content-based image retrieval system for wallpaper images
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7. Results of Classification and Retrieval

In this chapter, we present the results for classification based on directionality
and regularity representatively, and classification results based on both directionality
and regularity. Then, image retrieval results after classification by five computational
texture methods are shown. A comparison between retrieval results before and after
classification is earried out to test the effectiveness of classification. A graphical user

interface for image retrieval is presented.

7.1 Results for Classification

In this section, we present the results of the classification. Two image sets are
applied. One is ten sample images shown in Figure 4.1, which ranking results based
on directionality and regularity has been obtained by psychophysical experiments,
seen in Section 5.1.3. The other includes one hundred testing images from MaDA

image database, seen in Appendix 13.

The performance of classification is estimated using False Positive (Type |
errors), False Negative (Type Il errors), True Positive and True Negative values [100-
102]. In Table 7.1, classification of a positive data as negative is considered as False
Positive and classification of negative data as positive is considered False Negative.
True Positive and True Negative are the cases where the positive is classified as

positive and negative classified as negative respectively.

Table 7.1 True Positive, False Positive, False Negative und False Positive

Positive Negative
Positive True Posilive False Positive
Negative False Negative True Negative

The False Positive Rate, False Negative Rate, Sensitivity, Specificity and
Accuracy were applied to evaluate the classification results in this research.
Sensitivity and Specificity are the proportions of positive data classified as positive,
negative data classified as negative respectively. Accuracy is the global representation

of classifier performance. They are defined as the following relation.
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False Positive Rate = False Positive / (False Positive + True Negative) {(7.1)
False Negative Ratc = False Negative / (True Positive -+ False Negative) (7.2)
Sensitivity = True Positive / {True Positive + False Negative) (7.3)
Specificity = True Negative / (False Positive + True Negative) (7.4)
Accuracy = (True Positive + True Negative) / (True Positive + False Positive

+ False Negative + True Negative) (7.5)

In the following sections, we show the results based on directionality and
regularity respectively first. Then, the final classification results combining regularity

and directionality are presented.

7.1.1 Classification Based on Directionality

Directionality features of images were presented by using the Radon transform
of edge images. DER was obtained by analyzing the Radon transform of edge images
in horizontal and vertical direction. A threshold of DER was set to classify images
into directionality and non-directionality. According to the preliminary study on
training images in Seetion 6.1.1.2, wallpaper itnages were elassified into direetionality
and non-directionality by a threshold of DER =0.18. For test images, if the value of
DER>0.18, the image was labelled as having the property of directionality,

otherwise, non-directionality.

7.1 1] Results

The following gives the results of classification based on directionality from
two sets of image data, whieh are ten sampie images and one hundred images from

MoDA collection respectively.

1) Classification results based on directionality for ten sample images

Figure 7.1 shows the ranking results for ten sample images from directionality
to non-directionality by subjects, obtained in Section 5.1.3. Figure 7.2 shows

classification results based on directionality for the ten sample images. The classified
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directional images are shown in Figure 7.2(a) and the classified non-directional
images shown in Figure 7.2(b). DER values of each image are shown below the

image.
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Figure 7.2 Classification based on directionality for ten sample images
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Compared to the ranking results by subjects, the top two images were
classified into the class of directionality by the classification method, and the last four
images were classified into the class of non-directionality, which was consistent with

the subjects’ ranking resuits

2) Classification results based on directionality for one hundred test images

One hundred wallpaper images shown in Appendix 13 were used to test the
classification method based on directionality. These images include 33 directional
images and 67 non-directional images as categorized by subjects. The False Positive,
False Negative, True Positive and True Negative values for 100 test images are shown
as in Table 7.2. False Positive and False Negative are the errors where the directional
image is clasgified as non-directionality and non-direction image classified as
directionality respectively. True Positive and True Negative are the cases where the
directional image is classified as directionality and non-direction image classified as

non-dircctionality respectively.

Table 7.2 Classification results based an directionality for 100 test images

Directionality Non-dircetionality
Directionality True Posilive =28 False Posilive =5
Non-directionality False Negative =5 True Negalive =62

The False Positive Rate, False Negative Rate, Sensitivity, Specificity and
Accuracy were calculated using Eqgs (7.1) to (7.5).

False Positive Rate = 5/ (5+62)=7.5%
False Negative Rate = 5/ (5+28) = 15.2%
Sensitivity = 28 / (5+28) =84.8%
Specificity = 62 / (5+62)=92.5%
Accuracy = (28+62) / (28+5+5+62) = 90%

The classification results show 7.5% error for classifying directional images as
non-directionality and 15.2% for classifying non-directional images as directionality,
84.8% accurate classification for directionality and 92.5% accurate classification for

non-directionality. The global classification accuracy is 90%.
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Figure 7.3 shows some examples of correctly classified directional textures
and non-directional textures. The misclassified textures are shown in Figure 7.4.

DER values of each images are shown below the figure.
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Figure 7.3 Some correctly classified dircetional textures and non-directional textures and
their directionality representations
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Figure 7.4 Misclassified textures and their directionality representations

7.1.1.2 Analysis

Figure 7.4{a) shows misclassified non-directional textures. For images (2), (3),
(4), and (5) in Figure 7.4(a) have repeated geometric structures like rectangle and
diamond. Their directional lines were captured by the Radon transform. According to
the human visual perception, these images arc more like regular images than
directional images due to content in the geometric structures. Therefore, these images
were classified as non-directional images by subjects instead of directional images.
For image (1), the vertical plant branches were captured by the Radon transform. Due
to the visual interruption such as leaves and the random distribution of directional

elements, these images were classified as random images instead by subjects.

Figure 7.4(b) shows misclassified directional textures. For images (3), (4) and
(3) in Figure 7.4(b), they werc classified into directional images by subjects due to the
existing obvious bi-directional line segments crossing with each other. Therefore,
these directionality features were not captured by the Radon transform easily. For
images (1) and (2), there are only two directional lines in each direction, not covering

whole image region. Therefore, the value of spatial distribution of directional lines
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DER is small. It leads to a small DER . The description of DER .., ,and

position_§

DER 15 in Section 6.1.1.1.

Although there are some misclassifications, we still have 90% accuracy for
classification based on directionality in the 100 testing images. Some examples of
correctly classified images are shown in Figure 7.3. For the 10 sample images, the
classified images mostly match the ranking based on directionality by subjects, as

seen in Figure 7.2.

From the analysis above we can see that this classification method classified
images into directionality and non-directionality effectively. it is more suitable for
those directional images that have many directional lines scattered over the whole

image region.

7.1.2 Classification Based on Regularity

Regulanty features of images were presented by calculating the correlation
coefficients of the images. As described in Section 6.1.2, regularity representatton
REG was extracted from correlation coefficients of an image. A threshold of REG
was set to classify images into regularity and irregularity. According to a preliminary
study on training images in Section 6.1.2.2, regular and irregular images were

classified by a threshold of REG =0.23. For test images, if REG _4# >0.23 or

REG _v>0.23, the image was labelled as regularity, otherwise, irregularity.

7.1.2.1 Results

The following will give two elassification results based on regularity, which
again are for ten sample images and one hundred images from the MoDA collection.
1) Classification results based on regularity for ren sample images

Figure 7.5 shows the ranking results by subjects for ten sample images from

regularity to irregularity, obtained in Section 5.1. Figure 7.6 shows classification
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results based on regularity for the ten sample images. The classified regular images
are shown in Figure 7.6(a) and in Figure 7.6(b} for irregular images. The values of

REG _# and reG _v for each image are given under the image.

TS
(N

A ]
PN R ENE
¥ ﬁ!‘f..x..< (

’ -
A &\.5‘1 f
"E:*J?‘q%f ¥ 3.—:
Ei{o}g st ;ﬁéi ke - ¥ - L sl = MA
REG _h:0.8591 | REG h:03676 | REG _h:1.0057 | REG _h:0.5666 | REG 4 :0.6046

REG _v:0.7293 | ReG _v:0.7932 | REG _v:0.7229 | REG _v:0.0223 | Rec v 10.2502
) {2) €] (4) (5)

!
el

et

(a) class [: Regularity

LD St e it T S :
REG _ 500543 | REG _#:0.0292 | REG _ 4:0.0096 08
REG _ v 10 REG _v:0.1044 | REG _v:0.0660 | rec  +:0.0241 | REG _v:0.0542

() {6) (2) 3 4)

(b} Class 2: Irregularity
Figure 7.6 Classification based on regularity for ten samples images

In comparison with the ranking results done by the subjects, the top four
images were classified into the class of regularity, and the last four images were

classified into the class of irregularity, which was very conmsistent with human
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perception. The image ranked in the 5 position was classified as irregular, because

we could not find periodic features by correlation, though it looks regular.

2) Classification results based on regularity for one hundred test images

One hundred wallpaper images shown in Appendix 13 were used as test
samples, which include 59 regular and 41 irregular images. The False Positive, False
Negative, True Positive and True Negative values for 100 test images are shown as in
Table 7.3. False Positive and False Negative are the errors where the regular image 1s
classified as nrregulanity and irregular image classified as regularity respectively. True
Positive and True Negative are the cases where the regular image is classified as

regularity and irregular image classified as irregularity respectively.

Table 7.3 Classification results based on regularity for 100 test images

Regularity Irregularity
Regularity True Positive =53 False Positive =6
Irregularity False Nepative =6 True Negative =35

The False Positive Rate, False Negative Rate, Sensitivity, Specificity and
Accuracy were calculated using Eqs (7.1) to (7.5).

False Positive Rate = 6 / (6+35) =14.6%
False Negative Rate =6 / (6+53) = 10.2%
Sensitivity = 53/ (6+53) =89.8%
Specificity = 35/ (6+35) = 85.4%
Accuracy = {53+35) / (53+6+6+35) = 88%

The classification results show 14.6% error for classifying regular images as
irregularity and 10.2% for classifying irregular images as regularity, 89.8% accurate
classification for regularity and 854% accurate classification for irregularity. The

global classification accuracy is 88%.
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Figure 7.7 shows some examples of correctly classified regularity and

irregularity. The misclassified textures are shown in Figure 7.8. The values of reG

and rec

_v of each image are shown under each image.
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Figure 7.7 Some ¢orrectly classified regular textures and irregular textures and
their REG values in horizontal and vertical dircetion respectively
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Figure 7.8 Misclassified textures and their REG values in horizontal and vertical
direction

7.1.2.2 Analysis

Figure 7.8(a) shows misclassified irregular textures. These classification errors
are mainly caused by one reason. For all of images in Figure 7.8(a), they really have
repeated patterns and their regularity features can be obviously presented by
correlation coefficients. But due to the boundary between repeated patterns is not
clear, these repeated pattems are not easy 1o be detecled by the subjects. Therefore,

these images are normally classified into irregular images by subjects.
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Figure 7.8(b) shows miselassified regular textures. These classification errors
could be caused by the following reason: for all images in Figure 7.8(b) have repcated
patterns according to human visual perception, but when you see them in detail, you
could find differences in repeated patterns. Therefore these regular features to human
perception could not be captured by correlation. This might be why they were

misclassified into irregularity.

Although there are a few misclassifications, there still is 88% accuracy for
classification based on regularity in the 100 testing images. For 10 sample images, the
classified images mostly match the ranking results perceived by subjects, as seen in

Figure 7.6.

From the analysis above, we can see that this classification method can
classify images into regulanty and irregularity effectively. 1t is considered more
suitable for those regular images with repeated patterns being absolutely repeated in
horizontal or vertical direction and repeated patterns having an obvious boundary as

well as having at least two repeated cycles.

7.1.3 Classification Based on Directionality and Regularity

Wallpaper images were classified based on directionality first. The images
were classified into directional images and non-directional images. Then, we
classified non-directional images based on regularity. Finally, non-directional images
were classified into regular images and random texture images. Figure 5.14 gives the

flow of elassification based on directionality and regularity.

7.1.3.1 Results

The following sections will give two classification results based on both

directionality and regularity, working on sample images with numbers of ten and one

hundred respectively.
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1) Classification results based on directionality and regularity for ten sample
images

Figure 7.9 shows the classification results based on directionality and
regularity for the ten sample images. The classified directional images are shown in
Figure 7.9(a), the classified regular images shown in Figure 7.9(b) and the random

texture images shown in Figure 7.9(c).
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Figure 7.9 Classification based on directionality and regularity for ten sample images

2) Classification results based on directionality and regularity for one hundred test
images

One hundred wallpaper images shown in Appendix 13 were used to test the
classification method based on directionality and regularity. We considered
directionality first. The images were classified into directional images and non-
directional images. Then, we considered regularity in non-directional images. Finally,

non-directional images were classified regular images and random texture images.
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Therefore, 100 images include 33 directional images and the rest images include 26
regular images and 41 random texture images. The False Positive, False Negative,
True Positive and True Negalive values for each class were oblained against all other
classes, detailed in Section 7.1. The False Positive Rate, False Negative Rate,
Sensitivity, Specificity and Accuracy for three classes were calculated using Eqs (7.1)
to (7.5) respectively, as shown in Table 7.4,

Table 7.4 Classification results based on directionality and regnlarity for 100 images

Classes Posi't:isialseRa te Neazi?\lieRate Sensitivity Specificity Accuracy
Directionality 7.5% 15.2% £4.8% 92.5% 90%
Repularity 8.1% 23.1% 76.9% 91.9% 88%
Random 11.9% 17.1% | 82.9% 88.1% R6%

The following figure gives some samples of misclassification.
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Figure 7.10 Misclassified textures
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7.1.3.2 Analysis

In Figure 7.10(b), the directional textures misclassified into non-directional
textures were classificd to regularity. In Figure 7.8(b), misclassified images (1), (4),
(5) and (6) were classified into directional textures first. Therefore, the regular
textures misclassified into random texture have only two images left, shown in Figure
7.10(d). As seen in Figure 7.10, there were six images (4 in directionality group and 2
in random group) that were misclassified into directionality or random from the
regular textures, and seven images (1 in directionality group and 6 in regularity group)
misclassified into directionality or regularity from the random textures. The reason for
misclassification was explained in Section 7.1.1.2 and 7.1.2.2. Therefore, there are
90% accuracy for the class of directionality, 88% for the class of regularity, and 86%

for the class of random textures.

After ciassification, the image retrieval was performed in specified class by
calculating similarity between feature vectors of a query image and the images in the

specified class. The retrieval results will be presented in Section 7.2.

7.2 Results for Image Retrieval after Classification

In this section, we present the retrieval results after classification by using five
computational methods. Two sets of test samples were applied to evaluate the
retrieval results by using five computational texture methods after classification. One
test set consists of seven queries in ten sample images. The ranking results in terms of
similarity to the query image perceived by subjects were obtained in Section 5.2.3.
The other test set contains nine queries in a set of 100 images from the MoDA image
collections. For each query, similar images ranked by subjects were obtained, given in
Appendix 15. These ranking results were applied to evaluate the retrieval results
performed by each of the five computational texture methods respectively. In order to
test the effectiveness of image retrieval after classification, the comparison between

retrieval results before and after classification is presented as Tollows.
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7.2.1 Results

Two retrieval results are given in this section for the data sets of seven queries

in ten sample images and of nine queries in one hundred images.

1) Retrieval results for seven queries in ten sample images

The ranking results of the corresponding computational method for seven
queries are given in Appendix 12, Tables Al2.] to Al12.7 respectively. In Tables
Al12.1-A12.7, the first row is the ranking done by the subjects and is obtained in
Section 5.2.3. The other rows are retrieval resulis after classification calculated by
five computational methods respectively. The numbers from columns 2 1o 10 in
Tables A12.1-A12.7 are the label of ranking images in the order from most similar to
less similar to query images. The last column is the coefficients of rank correlation

between computation methods and subjects.

Finally, the rank correlation between five computational methods and subjects
for seven queries are listed in Table 7.5. The average of the rank correlation for seven

queries were calculated and shown in the last row of the table. These average values

of rank correlation r. were employed to evaluate the retrieval results by five

computational methods after classification.

Tahle 7.5 Coeflicients of rank correlation between subjects and computational methods
for image retrieval after classification

v, GLCM MRSAR FT wr GT
Query | 0.78 0.72 0.78 0.72 0.72
Query 2 0.95 0.85 0.93 050 0.90
Query 3 0.98 0.95 0.95 098 0.95
Query 5 0.73 0.82 0.82 0.72 0.73
Query § 1.00 0.93 0.98 0.98 0.97
Query 9 0.98 0.93 0.95 0.98 0.7
Query 10 2.83 .88 £.00 0.83 0.88
Average K| 0.89 0.87 0.91 0.87 0.87

In order to evaluate the performance of image retrieval afier classification
effectively, the comparison between retrieval results before classification and after

classification are presented in Table 7.6. In Table 7.6, the second column is the

average of rank correlation r; of retrieval results before classification, which is
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obtained in Section 5.3.2. The average of rank correlation # - of retrieval results after
classification are given in the third column. The improvement by comparing re after

classification with ». before classification are calculated and given in the last column.

The average values for five computational texture methods are shown in last row.

Table 7.6 Comparison of retrieval results before and after classification by using five
computational texture methods

Computational rs before rs after improved
texture methods classification classification
GLCM Q.15 0.89 0.74
MRSAR 0.36 0.87 0.51
FT 0.35 0.91 0.56
WT 0.13 0.87 0.74
GT 0.17 0.87 0.70
Average 0.23 0.88 0.65

2) Retrieval results for the dataset with nine queries in one hundred images

In order to evaluate CBIR efficiently, the second test was carried out using
nine queries in one hundred sample images as presented in Appendix 13. The nine
queries images were selected from MoDA collections, which include three directional
images as shown in Figure 7.11 (images (3).(4) and (9)}, three regularity images as
shown in Figure 7.11 (images (1),(6) and (8)), and three random texture images as

shown in Figure 7.11(images (2), (5) and (7)).
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Figure 7.11 Nine query images selected from MnDA collections

Thirteen volunteer observers were asked to get top nine ranking from one

hundred testing images based on visual similarity to each query image. The rankings
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are listed in Appendix 14. In Tables A14.1-A14.9, the entry T, of table expresses the

ID number of images in 100 image database ranked in the m™ position by the ™

subject, where the subscription n. m of T,

T

represents the number of row and column

respectively.

Due to the ranking results obtained top ten ranking results from one hundred
images, while the choice score method as described in Section 3.2.1 is only suitable to
analyze ranking results for all sample images, 1.e. obtaining ten ranking images from
ten samples, therefore the choice score method is not suitable for obtaining final
retrieval results in this experiment. A statistics method of accumulated histogram was
applied to obtain the final ranking results by subjects, which is to comprehensively
consider the frequency of each image / ranking in top M by N subjects and the ranking

position for each image. The formula is expressed as follows,

M
AH, = Hist, (7.6)

r=1

where FHist, is the frequency of each image ranking in top r by N subjects. in this

experiment, M was set to 10 suggesting to get top 10 ranking results and N represents
13 subjects. The final top ten ranking results for each query were obtained in the

deceased order of AH, values, as showed in Appendix 15. In Tables A15.1-A15.9,

images are displayed in order of visual similarity from most similar to least similar to
each query image. The number above the image is the 1D number of the image in the

100 image dataset, and the corresponding accumulated histogram is showed below

each image.

These retrieval results for nine queries in one hundred wallpaper images by

subjects were used to evaluate retrieval results in CBIR system for wallpaper images.

Traditional evaluation methods for image retrieval, which are precision-recall
and mean average precision [103], were applied to evaluate the retrieval results after

classification by five computational methods. The following contents give the
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definition of preccision, recall and mean average precision, and the corresponding

results for nine queries done by five computational methods respectively.

With respect to a given query, the images can be partitioned into four sets, in

terms of relevant or not, retrieved or not, shown as in Table 7.7.

Table 7.7 Four sets for retrieving images

Relevani irrelevant
Retrieved A B
Not Retrieved C D

Precision is defined as a fraction of retrieved images that are relevant to the

user’s infonnation needed, and formulated as

A
AU B

Percision =

(7.7}
Recall is dehined as a fraction of relevant images retrieved, and expressed as

Recall = —A— (7.8)
AuC

Precision-recall graphs are applied to show the refrieval performance at each
point in the ranking. The horizontal axis expresses recall and vertical axis expresses

the corresponding precision at standard recall points 10%, 20%,...,100%.

Average Precision (AP) is applied to measure the effectiveness of a ranked list

for a single query, and defined as

. ] &
Average Precision (APY)=— > F 7.9
g (AP)=—-3 P (7.9)

r i=l

where N, is the total number of relevant images in a dataset, £, is the precision when

‘

retrieve the i relevant image.

After all queries are done, the mean of all average precisions (MAP) is

calculated. Mean Average Precision (MAP) is the overall performance measurcd and

defined as
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. ] M
Mean Average Precision (MAP) = i E AP, (7.10)
=

where M 1s the total number of the queries, and AP, is the average precision for the

I

i" query.

In this study, we obtained the ranking results of top ten for nine queries ranked
by subjects, as shown in Appendix 15. The ranked images for each query were
assumed to be relevant to the corresponding query in the sample size of 100 image
database. Based on this information, the following contents will give the results of
precision-recall graphs, Average Precision (AP) and Mean Average Precision (MAP)
for the retrieval results after classification and before classification together with the

comparison results before and after classification,

e Retrieval results after classification

The precision-recall graphs for nine queries after classification are shown in
Figures Al16.1 (b) — Al16.9 (b) of Appendix 16 respectively. The curve with (-*-)
expresses precision-recall by nsing the method of GLCM, (-0-) for MRSAR, (-x-) for
FT, (o) for WT, and (- o) for GT. The Average Precision (AP) of each query were
calculated by using Eq.(7.9) and shown in Figure 7.12. In Figure 7.12, the horizontal
axis expresses the number of nine queries and vertical axis expresses their

corresponding average precision.
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Figure 7.12 Average precision for nine queries after classification
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The average precision for nine queries are listed in Table 7.8, Mean Average

Precisions (MAP) was calculated by using Eq.(7.10} and shown in the last row in
Table 7.8.

Table 7.8 Average precision and mean average precision for nine queries after
classification

Average .

Precisionﬁ AP) GLCM MRSAR FT wT GT
Query | 0.13 0.18 0.22 0.14 0.15
Query 2 0.39 0.38 0.46 0.45 0.38
Query 3 0.33 0.69 0.68 0.61 0.56
Query 4 0.18 0.16 0.30 0.37 .35
Querys 0.38 0.69 0.52 0.54 0.62
Query 6 0.21 0.4] 0.38 0.31 0.30
Query 7 0.55 0.41 0.25 0.30 0.52
Query 8 0.40 0.39 0.26 0.45 0.30
Query 9 0.26 0.36 0.20 0.23 0.30

Mean Average

Precision(MAP) 0.31 0.41 0.36 0.38 0.39

e Retrieval results before classification

Similarly, the precision-recall graphs for nine queries before classification are
shown in Figures Al16.1 (a) — A16.9 (a) of Appendix 16 respectively. The Average
Precision (AP) of each query were calculated by using Eq.(7.9) and shown in Figure
7.13. Afier obtaining the average precision for nine queries, the Mean Average

Precisions (MAP) was calculated by using Eq.(7.10) and shown in the last row in
Table 7.9.
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Figure 7.13 Average precision for nine queries before classification
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Table 7.9 Average precision and mean average precision for nine queries befure
classifiention

Pr;;:gﬁ‘;\ ” GLCM MRSAR FT WT GT
Query | 0.10 0.15 0.19 0.13 0.11
Query 2 0.17 0.19 0.23 0.23 0.20
Query 3 0.10 0.46 0.55 0.37 0.39
Querv 4 Q.11 0.08 0.27 0.17 0.20
Querys 0.23 0.49 0.26 0.34 0.41
Query 6 Q.11 0.22 0.26 0.13 0.12
Query 7 0.49 0.33 0.11 0.17 0.32
Query 8 0.27 0.135 0.12 0.23 0.20
Query 9 0.17 0.19 0.11 0.13 0.12

Mean Average -

Precision(MP‘\'P) Q.19 0.25 0.23 0.21 0.23

o  Comparison retrieval results before and after classification

In order to further evaluate the effectiveness of image retrieval after
classification, the comparison between retricval results before and after classification
is fulfilled in Table 7.10. la Table 7.10, the second eolumn is the Mean Average
Precision (MAP) of retrieval results before classification, whilst the Mean Average
Precision (MAP) of retrieval results afier classification arc shown in the third column.
The last column shows the improvement by eomparing MAP after with before
classification. The average values for five computational texture methods are shown
in the last row,

Table 7.10 Comparison retricval resnlts before and after classilication by using five
compntational texture methods for nine gueries in dataset of one hundred images

Computational MAP before MAP after Improved
texiure methods classification classification
GLCM 0.19 0.31 0.12
MRSAR 0.25 0.41 0.16
Fr 0.23 0.36 0.13
wr 0.21 0.38 0.17
CGT 0.23 0.39 0.16
Average 0.22 0.37 0.15

The following figures show two examples. One is comparison retrieval results
before and after classification by using GLCM for query 3, shown in Figure 7.14.The
other is compartson retricval results before and after classification by WT for query 7,
shown in Figure 7.15. Figures 7.14(a) and 7.15 (a) are the ranking results done by
subjects, whilst Figures 7.14(b) and 7.15 (b) are the retrieval results before
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Figures 7.14(c} and 7.15 (c) show the retrieval results after

classification.

classification.
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Fignre 7.14 Comparison retrieval results before and after classification by GLCM for

query 3
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{c) Retrieval results after classification by using W7

Figure 7.15 Comparison retrieval results before and aflter classificatian by WT for query
7

o Query timme

Table.7.11 shows the average query time for nine queries in one hundred
images using five texture methods respectively. All methods run in Matlab 6.5 with

CPU of Inter Pentium M 1.4GHz and 1GB RAM. The second column is the average
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guery time for five methods before classification, whilst the average query time after

classification is shown in the third column,

Table 7.11 Query time

Computational
lexture methods

Time for retneval
before classification

Time for retrieval
after classification

{Seconds) (Seconds)
GLCM 4.3 33
MRSAR 22.1 214
FT 2.8 2.1
WT 23 1.8
GT 26.8 26.0

7.2.1 Analysis

Based on the retrieval results shown above, the analysis and evaluation in
terms of visual similarity by subjects form two parts. One is to evaluate the
performance of image retnieval afier and before classification; second is to investigate
the goodness of five computational texture methods in performing image retrieval

after classification.

o lmage retrieval after classification

Considering the seven queries in the dataset of ten sample images, the average
rank correlation with subjects’ ranking results for all five methods is 0.88, as seen in
Table 7.6, whilst the retrieved results before classification is only 0.23, demonstrating

a big improvement when comparing with the retrieved results before classification.

For the image dataset with nine queries and one hundred samples, the average
of Mean Average Precision (MAP) for all five methods is 0.37, as shown in Table
7.10. Since the retrieval results before classification is 0.22, 0.15 improvement was
achieved. According to the visual evaluation, the retrieval results after classification
have better match than before classification, as illustrated for the two examples shown
in Figure 7.14 and Figure 7.15. The reason could be that the retrieved images ranked
in front belong to the same class as the query, therefore the visual match of images
reirieved after classification are better than that before classification, even if the

average MAP for retrieval after classification only has 0.37,
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According to the Table 7.11, the average query time after classification is
quicker than before classification. Since similarity measurement was performed in the
corresponding class group instead of whole image dataset. The methods of MRSAR

and GT take fong time (over 20s) to extract the features of query image.

¢ Evaluation of five computational texture methods

According to average r, and MAP for all queries in Tables 7.5 and 7.8, it is

difficult to conclude which computational method is better, due to the fact that the

values for cach method are similar. Based on the values of r, and AP for individual

query, it is also hard to decide which method is suitable for what type of query image.
This is because that these five texture methods can not represent texture features
(directionality, regularity and coarseness) for wallpaper images well, as proved in
Section 5.3.1. Therefore, all methods can not perform image retrieval ideally in the

way human perception performs.

We can conclude that retrieval for wallpaper images after classification has
better performance than retrieval before classification. By using five texture methods,
we couldn’t get ideal retrieval results after classification though some improvement
had been seen than before classification. Therefore, a new way to represent texture

features for wallpaper images is required in the future.

7.3 A GUI for Wallpaper Images

The following interface was developed to perform Content-Based Tmage

Retrieval (CBIR) for wallpaper images using MATLAB [36].
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T

Conlent Based imace Ratwval lor WalDapers

Figure 7.16 Interface of content-based image retrieval for wallpaper images

The systcm is running according to the following steps.

e Query Creation

An image is selected lo be a query from the list of images shown in the left
area. This list is obtained from the MoDA collection. The query image is shown in the

upper middle arca. In the future, a query image can also be created by scanning or a

sketch.

o Classification results

When the “Classification™ button is pressed, the class of the query image is
shown in right of “Classification Result’. All the images helonging to the same class
as the query image are shown in the upper right area. When the hutton “Prev 57 or
“Next 57 is pressed. these images will be shown on the screen in a group of 5 images
each time. When the "Output” button is clicked, the classification results will be saved

into a file in terms of image names.
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o Retrieval results

When the computational texture method from ‘Retrieval Method’ in the
bottom middle area is selected, the corresponding results is shown at the bottom right
area retrieved using this method. Again, when the button “Prev 57 or “Next 5”is
clicked, the previous or next 5 similar images are shown. All the similar image

numbers will be saved into a file once the *Qutput” button is clicked.

Using the interface shown in Figure 7.16, users can get the image retrieval
results calculated using each of five texture models and the classification results of a
query image, whereby the images from the same class from a database are also shown

on the screen for users to browse.

7.4 Summary

In this chapter, we presented the results of image classification and image
retrieval. The results of psychophysical experiments obtained in Chapter 5 served as

benchmarks for evaluation of each methodology.

In order to evaluate the classification methods for directionality and regularity,
we examined classification based on directionality and regularity respectively in a
dataset with one hundred samples of wallpaper images, as seen in Table 7.2 and 7.3.
The classification results combining both fratures are shown in Table 7.4. On the
other hand, for the dataset with ten sample images, their rank results based on
directionality and regularity perceived by subjects were obtained from psychophysical
experiments. In principle, the classification results for this dataset match the ranking

results ordered by subjects.

For image retrieval, we presented the retrieval results by using five
computational texture methods for the two datasets, 1.e., seven queries with ten
sample images and nine queries with one hundred images. According to the data
analysis and visual effect, we concluded that image retrieval for wallpapers after
classification performed better than before classification. As for the five texture

methods, they did not retrieve images matching human perception, even after
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classification, although an improvement was achieved with the classification. It was
therefore concluded that a new texture representation model for wallpaper images

needs to be developed in the future in order to match the retrieval results similar to

human perception.
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8. Conclusions and Future Work

This Chapter will draw together conclusions from my research. The
contributions to knowledge are presented and the possible directions for future work

are also discussed.

8.1 Conclusions

The aims of this research were twa fold. One aim was to investigate human
perception in conducting image retrieval, and another was to evaluate the performance
of five existing texture models in performing Content-Based Image Retrieval (CBIR)
in comparison with human perception. These five models have been widely applied in
retrieving texture feature of images. MoDA wallpaper images were employed in the
rescarch, of which most of images can be categorised as having texture-like patterns.
Therefore, texture structure is the main content to be studied in this research, leading

to the development of a perception-driven CBIR system for MoDA collections.

Two psychophysical experiments were designed and conducted. The first one
was to study a human'’s response in perceiving each individual component of a texture
feature, i.e., coarseness, regularity and directionality. The second experiment was to
investigate the way in which a subject sees similarity of two images in terms of
texture patterns. A statistic method for scoring was introduced to rank subjects’ data
when ranking images in terms of coarseness, regularity and directionality
respectively, and when ordering images in terms of similarity to the query image. The
results showed that visual components of regularity and directionality played a more
important role in perceiving similar images than coarseness, with rank correlation
being 0.75, 0.81, and 0.64 respectively. Since 0.75 is the threshold of significance,
regularity and directionality are the main texture features to be studied in the

remaining work.

Five computational models of texture representations were studied based on
the two psychophysical experiments conducted above. They are Grey Level Co-

occurrence  Matrix  (GLCM), Multi-Resolution Simultaneous  Auto-Regressive
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(MRSAR) model, Fourier Transform (FT), Wavelet Transform (WT)} and Gabor
Transform (GT). Texture feature vectors are computed using these five models and
are eompared with subjects” data. It was found that none of these models was
consistent with the subjects’ data, with mean coefficients of rank correlation being
0.15, 0.36, 0.35, 0.13 and 0.17 for GLCM, MRSAR, FT, WT, and GT respectively. It
was therefore decided to introduce classification before applying any of these models

in performing CBIR for MoDA images.

According to the results of psychophysical experiments, users focued on
directionality and regularity when perceiving a texture rather than coarseness.
Classification was then carried out on directionality first (Class 1). Then, the
remaining non-directional data were further classified into groups of with regular
(Class 2) and random texture patterns (Class 3). Image retrieval was conducted in the
classified group where a query image falls into. In comparison with the subjects’ data,
the accuracy for classifying directionality, regularity, and random textures were 90%,
88% and 86% respectively. After classification, the retrieval performance of the five
models in terms of Mean Average Precision (MAP) were 0.31, 0.41, 0.36, 0.38 and
0.39 for GLCM, MRSAR, FT, WT, and GT respectively, whercas MAP are 0.19,
0.25, 0.23, 0.21, and 0.23 respectively before the elassification, implying some
degrees of improvement. Although the improvement is not huge, every model’s
performanee was improved. It is therefore concluded that classification is necessary
when using any of these five models to take part in CBIR for the MoDA collection. In
order to match human perception, new models are needed to represent texture

features.

8.2 Contributions

This dissertation presents the approach of human perception oriented Content-
Based Image Retrieval (CBIR) for wallpaper images. This research contributes to

knowledge in the following ways:
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To CBIR

Paving some way for future application of CBIR based on human
visual perception. Via the psychophysical experiments, we can study
human visual perception for images. The experimental results can be
applied to evaluate the computational method of visual features and
choice the better visual feature representations for image collection,
Through analyzing the experimental results, we can learn which visual
features perform the more important role in visual similarity to help us

weight the visual featurcs to match the human visual perception.

Evaluating the performances of five popular computational methods in
texture representations and similarity measurements in relation to
human perception for wallpaper images. Though the hmited
parameters were selected in each method, we provided the evaluation
method based on human perception via comparing the rank correlation

between computaticnal methods and human perception.

Improving the retrieval performance for wallpaper images based on

human visual perception, as seen in Table 7.10.

To classification

Applying Radon transform to represent the feature of directionality to
classify images. Radon transform presents not only the statistical
distnibution but also spatial distribution of directional lines. This
overcomes the drawbacks of traditional statistical descriptions of
directionality and better represents the directionality for wallpaper

images, as seen in Section 6.1.1.

Defining a regularity representation from corrclation sequence to
classify images based on regularity in Eq. (6.11). Through considering
the magnitudes (in Eq. (6.9)) and positions (in Eq. (6.10)) of the peaks
in correlation sequence, we can easy distinguish the regularity with

periodic peaks and irregularity with flat curve.

134



Chapter 8. Conclusions and Future Work

s Designing classification trees based on human visual perception in
Figure 6.11. The directionality character is first take into account for
classification, since this plays a slightly more important role in visual
similarity for wallpaper images than regularity, as proved in Table 5.3

and Section 6.1.3.
s To MaoDA images

s Providing a CBIR system to enhance their current text-based image
retrieval system and elassifying the image database based on

directionality and regularity automatically.

¢ Better understanding of relationship between visual texture features
and visual similarity for wallpaper collections, that is the directionality
and regularity play a more important role than coarseness in visual
similarity. Comparing to regularity, the directionality is slight

important, as proved in Table 5.3.

8.3 Future Work

In this study, all the findings obtained from psychophysical experiments were
based on a limited dataset, i.e., ten and one-hundred sample images for testing visual
feature perception and visual similarity, which is in the consideration that subjects
might get tired if more images are included. In the future, tests should replicate this
study with large sample sizes to confirm, verify or contradict the findings. When
doing similarity experiments, for some queries, only a few subjects (25%) had similar
views, whilst the majority of subjects ranked images in different ways. These queries
were removed in order to make the experimental results reflect the common sense of
human perception. Further experiments are needed using similar query images. A

larger subject team is alse needed to do those experiments.

Although in general, none of those five models shows consistent retrieval
results with that by subjeets. Some models do perform better for some individual

components of texture feature than the others. Future work should include
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combinations of some or all of these to form a better representation of texture

consistent with human perception,

In this dissertation the scope of the study is limited to texture fcature analysis
for wallpaper images. Colour is the other important teature to represent the wallpaper
images. In the future, the original colour images should be utilised and a colour
representation should be formulated simulating human colour perception. Finally,
based an human visual perception, a CBIR systemn combining colour and texture

features should be developed.

In this research, we focused on CBIR for wallpaper images. In the future, the
method of CBIR based on human visual perception could be extended to the retrieval

of other types of images.
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Appendices

Appendix 1: p-z Conversation Table

In Table Al, the p values change from 0.01 to 0.995, the corresponding z

values are show the below row,

Table Al: p-z conversation table '°

p - z values

r———— =

p 001 002 | 003 | 004 005 006 007 | 0.08 009 | 0.

2 233 205 | -188 |-175  -1.64 | -1.55 | -1.48 | 141 | -1.34 ] -1.28 |
Pl OAL 012 013 ] 004015006 [0.17 | 018 | 0.19 | 002 .
- T

e 123 o108 113 108 o104 [-099 [ 095 [-0.92 [ -088 | 084
pj 021 022 [ 023 [024 | 025 [ 026 | 027 [ 028|029 [ 03 |
2] 081 | 0.7 | -0.74 | -0.71 | -0.67 | -0.64 | -0.61 | -0.58 | -0.55 | -0.52 |
p 031 032033 [034 | 035 | 036|037 038|039 | 04

2| 05 1047 | -044 | -041 | -0.39 | -0.36 | -0.33 | -0.31 | -0.28 | -0.25
| 041 [ 042 [ 043 [ 044 [ 045 [ 046 | 047 [ 048 [ 049 | 03
‘20023 02 |-0.18 |-015]-013] 0.1 |-0.08]-005]-003] 0
plosi Jos2 053 [ 034 ]055] 0356 057]058]05] 06 |
.z 0.03 1005 {008 [ 0.1 013 015|018 ] 02 |023] 025 |
'pl 061 ) 062 ] 063 | 064, 065 066|067 | 0.68 ] 069 | 07
2, 028 [ 031 [ 033 | 036 | 039 | 041 | 044 | 047 | 05 | 052

P 071 072073 [ 0740751076 | 077 [ 078 [079 [ 08

2] 055 058 | 061 | 0.64 | 067 | 071 [074 [ 077 [ 081 | 0.84

'p, 081 | 082 [ 083 084 . 085 | 0.86 | 0.87 | 0.88 | 0.89 | 09
7 088 092 095|099 | 1.04 | 1.08 | 115 118 123 | 1.28 ,
pl o091 1092 {093 | 094! 09s 096|097 [098 | 099 | 0995 ]
. 134 1141 148 [1ss 164 [ 175 [ 188 | 205 ' 235 | 258 |

10, hitp:/fwww. tihre, pov/safety/pubsf03063/0%. him 146



Appendices

Appendix 2: Rankings Based on Texture Features

Contents:

Table A2.1: Rankings based on coarseness
Table A2.2: Raukings based on regularity
Table A2.3: Rankings based on directionality

[n Tables A2.1, A2.2 and A2.3, the entry T, of table expresses the ranking of

the m" image by the ™ subject, where the subscription n, m of T, represents the

number of row and column respectively.

Table A2.1 Rankings based on coarseness

Subjects Ranks Assigned for Coarseness

1 2 3 4 5 6 7 8 9 10
Subject | 9 6 3 8 1 5 10 7 4 2
Subject 2 9 5 2 1 10 ) 6 7 4 3
Subject 3 g 2 1 9 6 4 6 3 5 10
Subject 4 9 4 1 8 6 7 10 2 3 5
Subject 5 6 2 1 9 6 3 10 4 3 8
Subject 6 10 6 3 2 2 1 9 4 5 7
Subject 7 9 3 1 8 5 7 10 2 4 6
Subject 8 1 8 2 7 3 9 6 10 3 4
Subject 9 10 2 i 7 6 5 9 3 4 8
Subject 10 10 4 1 6 7 5 9 2 3 S
Subject 1] 9 4 i 8 6 5 10 3 2 7
Subject 12 10 4 ] 8 7 3 9 2 3 6
Subject 13 9 4 1 8 6 5 10 3 2 7
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Table A2.2 Rankings based on regularity

Subjects Ranks Assigned for Regularity

| 2 3 4 3 6 7 8 9 10
Subject | g 4 9 10 2 5 3 7 6 ]
Subject 2 2 10 7 9 I 4 B 3 6 3
Subject 3 3 8 9 3 2 4 7 10 6 1
Subject 4 1 9 7 5 3 4 10 8 6 2
Subject 5 6 7 10 4 3 1 5 B 9 2
Subject 6 2 7 9 5 3 4 6 10 8 1
Subject 7 2 5 9 7 3 4 10 8 6 f
Subject 8 ] 7 8 6 3 5 4 10 9 2
Subject 9 3 9 7 5 2 6 4 10 8 1
Subject 10 2 7 10 6 3 4 5 8 9 |
Subject 11 I 10 8 3 4 3 6 9 7 2
Subject 12 | 7 10 6 2 4 5 9 8 3
Subjeet 13 3 7 5 10 | | 4 9 | 8 6 2

Table A2.3 Rankings based on directionality

Subjeets Ranks Assigned for Directionality

1 2 3 4 5 6 7 8 9 10
Subject | I 10 6 8 3 4 5 9 7 2
Subject 2 1 9 6 10 4 2 5 7 8 3
Subject 3 2 6 9 8 5 4 3 10 7 1
Subject 4 ! 9 10 5 2 4 6 8 7 3
Subject 5 2 9 7 6 3 4 5 19 8 1
Subject 6 2 8 10 é 4 5 3 9 7 1
Subject 7 2 7 9 6 4 3 5 10 8 !
Subject 8 1 10 8 4 3 6 5 9 7 2
Subject 9 1 9 7 5 4 6 3 10 B 2
Subject 10 I 7 8 & 3 4 3 9 10 2
Subject 1| 1 8 7 3 3 4 6 9 10 2
Subject 12 1 10 8 5 6 3 4 9 7 2
Subject 13 1 9 10 7 3 4 6 8 5 2
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Appendix 3: Coefficient Matrix of Rank Correlation
between Subjects’ Rankings Based on Texture
Features

Contents:

Table A3.1Coefficient matrix of rank correlation between subjects’ rankings based on coarsencss
Table A3.2 CoefTicient matrix of rank correlation between subjects’ rankings based on regularity
Table A3.3 Coefficient matrix of rank correlation between subjects’ rankings based on
directionality

In Tables A3.1 to A3.3, the entry T, of table expresses the coefficient of rank
correlation between m™ subject and n™ subject, where the subscription n, m of T,

represents the number of row and column respectively.

Table A3.1Coefficient matrix of rank correlation between subjects’ rankings based on coarseness

1 2 3 4 5 [3 7 8 g 10 11 12 13
1.00 0.04 Q.11 0.56 G.38 Q.16 0.55 0.27 $.39 0.32 0.53 0.47 0.53
0.04 1.00 | 0.06 | 0.31 0.02 0.44 0.21 -0.03 | ©.26 0.36 0.22 0.31 6.22
0.11 -0.06 1.00 0.63 0.81 0.36 071 0.28 | 0.86 Q.77 0.75 0.75 $.75
0.56 031 0.63 1.00 0.81 0.41 (.98 0069 | 0.87 Q.88 0.94 (.95 0.94
0.38 0.02 G.81 0.81 1.00 0.32 685 | 0060 [ 0.86 Q.79 090 0.81 0.90
G.16 0.44 0.36 041 0.32 1.00 .38 | -0.54 | 0.59 0.70 0.54 0.58 0.54
§.55 0.21 0.71 0.98 0.85 0.38 LO0 | -0.12 | 092 Q.88 0.91 0.93 0.93
637 | 003 | 028 | 009 [ 000 | 054 [ -0.12 1.00 | 0321 036 ) 015 | 028 | 015
0.3% 0.26 0.86 0.87 0.86 0.5 0.92 -0.32 1.00 (.95 0.93 0.93 0.93
10 ] 0.32 0.36 0.77 088 0.79 0.7¢ 0.88 | 036 | 095 1.00 0.94 .95 .94
1 | 0.53 0.22 0.75 0.94 .90 0.54 093 | -0.15 | 093 0.94 1.00 0.96 1.60
12 | 0.47 0.31 Q.75 0.95 081 0.58 093 | 028 | 693 0.95 0.96 1.00 6.96
13 | 053 0.22 0.75 (.94 0.90 0.54 093 | -6.15 [ 093 0.94 1.00 (.96 1.00

wloo[w|on|un] v ed |-

Table A3.2 Coefficient matrix of rank correlation between subjects’ rankings based on regularity

r 1 2 3 4 5 53 7 8 9 10 11 12 13

1 1.00 0.32 0.44 005 0.50 0.43 0.41 042 .43 0.53 0.19 0.44 0.45
2 Q.32 1.00 0.66 0.78 0.3% 0.58 .67 0.54 0.56 0.62 0.70 0.85 0.84
3 0.44 0.66 1.060 0.85 0.76 0.95 G.83 0.83 .87 .87 0.89 0.88 0.68
4 0.05 0.78 0.85 1.60 0.50 0.79 0.84 0.66 0.67 .70 087 0.72 0.75
5 0.50 0.39 .76 0.50 1.00 0.79 0.55 0.67 (.66 .82 0.70 0.75 035
6 0.43 0.58 (.95 0.79 0.79 i.00 Q.81 0.94 (.89 0.95 0.90 0.94 0.61
7 0.4} 0.67 0.33 0.84 0.55 0.81 1.00 0.65 0.55 0.76 0.68 0.75 $.78
8 0.42 0.54 (.83 0.66 0.67 0.94 0.65 1.00 0.92 (.93 0.85 0.94 0.56
9 (.43 0.56 0.87 0.67 0.46 0.89 0.55 0.92 1.00 0.84 0.84 0.83 0.56
10 ] 0.53 0.62 0.87 Q.70 0.82 0.95 0.76 0.93 0.84 .00 0.85 $.95 0.56
] ¢1s 0.7¢ 0.89 0.87 ¢.70 ¢.90 (.68 0.85 0.84 0.85 1.00 087 0.59
121 044 0.65 0.88 6.72 (.75 .94 G.75 0.94 0.83 0.95 0.87 100 0.59
13 ] 645 0.84 0.68 0.75 0.35 0.61 0.78 0.56 0.56 0.56 0.59 0.59 .00
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Table A3.3 Coefficient matrix of rank correlation between subjects’ rankings based on

directignality

r, 1 2 k) 4 5 G 7 8 9 10 11 12 13

1 1.00 0.90 0.78 (.82 0.94 0.8) 0.83 0.83 0.87 (.84 .85 0.85 0.833
2 0.90 1.00 0.72 0.68 0.78 0.66 0.73 0.61 0.66 0.77 0.75 0.75 0.75
3 0.78 0.72 1.00 .72 0.34 0.93 0.93 0.71 0.82 0.34 0.75 0.81 0.79
4 082 0.68 0.72 1.00 087 0.87 .87 0.92 0.81 0.87 0.87 0.83 0.94
5 0.94 0.78 0.84 0.87 1.00 (.89 0.94 0.92 0.93 0.93 (.94 0.89 0.34
6 .81 0.66 0.93 0.87 0.8% 1.00 0.93 0.88 0.9 0.87 0.81 D.88 (.88
7 0.83 0.73 0.93 0.87 0.94 0.93 1.00 0.83 0.85 0.04 0.90 0.88 (.85
3 0.85 0.61 0.71 .92 0.92 .88 0.83 1.00 (.94 (.84 0.88 (.88 0.85
9 0.87 0.60 0.82 0.81 0.93 .90 0.85 .94 1.00 0.88 (.88 0.39 .76
10 | 0.84 0.77 D84 0.87 0.93 0.87 0.94 0.84 0.88 1.00 (.98 0.32 0.78
11 (.85 0.75 0.75 (.87 0.94 .81 0.90 0.88 0.88 4.98 1.00 (.83 0.76
12 | 08§ 075 081 033 0.89 0.83 0.83 0.8 089 0.82 0.83 1.00 0.83
13 | 0.85 0.75 0.79 0.94 0.84 .88 0.83 0.85 0.76 0.78 0.76 083 1.0
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Appendix 4: Rankings Based on Texture Features

after Pre-processing

Contents:

Table Ad.1 Coefficient matrix of rank correlation between subjects’ runkings based on
coarseness

Tabhle A4.2 Coefficient matrix of rank correlation between subjects’ rankings based on regularity
Table A4.3 Coefficient matrix of rank correlation between subjects’ rankings based on
directionality

In Tables A4.1(a), A4.2(a) and Ad.3(a), the entry T, of table expresses the

h

ranking of the m™ image by the #n™ subject, where the subscription n. m of T,

Hm

represents the number of row and column respectively.
In Tabies Ad.1 (b), A4.2 (b} and A4.3 (b), the entry T of table expresses the

coefficient of rank correlation between m™ subject and #™ subject, where the

. T .
subscription n, m of " represents the number of row and columnn respectively.

Table A4.1 Rankings and corresponding coefficient matrix based on coarseness

Subjects Ranks Assigned for Coarseness

1 2 3 4 5 ) 7 8 9 10
Subject 3 8 2 1 9 6 4 6 3 5 10
Subject 4 9 4 1 8 ) 7 10 2 3 5
Subject 5 4 2 1 9 6 3 10 4 3 8
Subject 7 9 3 ! 8 5 7 10 2 4 6
Subject © 10 2 1 7 6 3 9 3 4 8
Subject 10 10 4 1 6 7 5 9 2 3 8
Subject 11 9 4 1 8 6 5 W] 3 2 7
Subjeci 12 10 4 1 8 7 3 9 2 3 6
Subject 13 9 4 1 3 6 3 10 3 2 7

(2} Rankings based on coarseness
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" 3 4 5 7 9 10 1 12 13
3 1.00 0.63 0.81 0.71 0.86 0.77 0.75 0.75 0.75
4 0.63 1.00 0.81 0.98 0.87 0.88 0.94 0.95 0.94
3 081 0.81 1.00 0.85 0.86 0.79 0.90 0.81 0.90
7 0.71 0.98 0.85 1.00 0.92 0.88 0.93 0.93 0.93
9 0.86 0.87 0.85 0.92 1.00 0.95 0.93 0.93 0.93
19 0.77 0.88 0.79 0.88 0.95 1.00 0.94 0.95 0.54
1i 0.75 0.94 .99 0.93 0.93 0.94 1.00 0.96 1.00
12 0.75 0.95 0.81 0.93 0.93 0.95 0.96 1.00 0.96
13 0.75 0.94 0.90 0.93 0.93 0.94 1.00 0.96 1.00

{b) Coefficient matrix of rank corrclation between subjects' rankings

Table A4.2 After pre-processing, rankings and corresponding eoefficient matrix based on

regularity

Ranks Assigned for Regularity
Subjects
1 2 3 4 5 6 7 8 9 10
Subject 3 3 8 9 5 2 4 7 10 6 ]
Subject 6 2 7 9 5 3 4 6 10 8 1
Subject 8 1 7 8 6 k! 5 4 10 9 2
Subject 9 3 9 7 5 2 6 4 10 g [
Subject 10 2 7 10 6 3 4 5 & 9 |
Subject 11 1 10 8 5 4 3 6 9 7 2
Subject 12 l 7 ] 6 2 4 5 9 8 3
(u) Rankings based on regularity

F, 3 6 8 9 10 11 12

3 1.00 0.95 0.83 0.87 0.87 0.89 0.88

6 0.95 1.00 0.94 0.89 0.95 0.90 0.94

8 Q.83 0.54 [.00 092 0.93 0.85 0.94

9 Q.87 0.89 0.92 1.00 0.84 0.84 0.83

10 0.87 0.95 0.93 0.84 1.00 0.85 0.95

11 0.89 0.90 0.835 0.84 0.83 1.00 0.87

12 0.88 0.94 0.94 0.83 0.95 0.87 1.00

(b) Coefficient matrix of rank correlation between subjects’ rankings
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Table A4.3 After pre-processing, rankings and corresponding coefficient matrix based on

directionality

Ranks Assigned fur Directionality

Subjects

[ 2 3 4 5 6 7 g 9 i0
Subject 1 I 10 6 8 3 4 5 9 7 2
Subject 3 2 6 9 8 3 4 3 10 7 1
Subject 4 ] 9 10 5 2 4 6 8 7 3
Subject 5 2 9 7 6 3 4 5 10 8 I
Subject 6 2 8 10 6 4 5 3 9 7 I
Subject 7 2 7 9 6 4 3 5 10 8 |
Subject 8 | 10 8 4 3 6 5 9 7 2
Subject 9 1 7 5 4 6 3 10 8 2
Subject 10 ! 7 8 6 3 4 3 9 10 2
Subject 11 i 8 7 5 3 4 6 9 10 2
Subject 12 ] 10 8 B 6 3 4 9 7 2
Subject 13 i 9 10 7 3 4 6 8 5 2

(8) Rankings based on direetionality

r o 3 | 4 ] s | 6 70 8 | o |0 tt ] 2|3
I 1.00 | 078 | 0.82 | 094 | 081 | 083 | 0.85 | 0.87 | 0.84 | 085 [ 0.85 [ 085
3 1078 100 | 072 ]1084 | 093 093] 071 |08 ] 084 ] 075] 081 [0.79
4 | 082 | 072 | 100 | 087 | 087 | 087 | 092 | 0.81 | 0.87 | 0.87 | 0.83 | 094
3 {094 | 084 | 087 | 1.0 | 0.8 | 0.94 [ 092 | 093 | 093 | 094 | 0.89 1084
6 | 081 | 093 | 0.87 | 089 | 1.00 | 093 | 0.88 | 090 | 0.87 | 0.81 | 0.88 | 0.88
7 1 0831093 | 087 | 094 | 093 | 1.00 [ 083 | 085 | 0.94 | 090 | 0.88 [0.85
8 |08 | 071 | 092 | 0% | 088 | 083 | 1.00 | 094 | 0.84 | 0.88 | 0.88 | 085
9 | 087 [ 082 | 081 | 093 | 05 | 0.85 [ 094 | 1.00 | 0.88 | 0.88 [ 0.89 | 0.76
10 | 084 | 0.84 | 087 | 093 | 087 | 094 | 0.84 | 088 | 1.00 | 098 | 0.82 | 0.78
1] 08 | 075 | 087 | 094 | 081 050 | 0.88 | 0.88 | 0.98 1.00 | 0.R3 | 0.76
(2| 085 | 081 | 083 | 089 | 088 | 0.88 | 088 | 0.89 | 0.82 | 0.83 [ 1.00 [ 0.83
i3] 085 [ 079 | 094 | 0.84 | 088 | 085 | 085 [ 076 | 078 [ 0.76 | 0.83 [ 1.00

(b) CoefTicient matrix of rank eorrelation between subjects’ rankings
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Appendix 5: Rankings for Ten Queries

Contents:

Table AS5.1 Rankings for query 1
Table AS.2 Rankings for query 2
Table A5.3 Rankings for query 3
Table AS5.4 Rankings for query 4
Table A5.5 Rankings for query §
Table A5.6 Rankings for query 6
Table A5.7 Rankings for query 7
Table AS.8 Rankings for query 8
Table A5.9 Rankings for query 9
Table A5.10 Rankings for query 10

In Tables AS.1- A5.10, The entry 7, of table expresses the ranking of the "

image by the A subject, where the subscription n, m of T represents the number of

row and column respectively.

Table AS5.1 Rankings for query 1

Subjects Ranks Assigned for Query 1
2 3 4 3 6 7 8 9 10
Subject 1 6 8 5 1 3 4 9 7 2
Subject 2 6 9 5 yi 3 ! 8 7 4
Subject 3 6 8 3 3 4 1 9 7 2
Subject 4 7 4 8 9 6 1 5 3 2
Subject 5 7 6 5 2 4 3 9 8 l
Subject 6 6 8 5 2 7 3 9 4 1
Subject 7 4 9 7 1 3 8 6 5 2
Subject 8 9 8 5 2 3 4 7 6 I
Subject 9 6 7 5 2 4 3 g 9 1
Subject 10 8 9 5 3 6 2 4 7 !
[ Subject 11 9 6 3 3 2 1 7 8 4
Subject 12 5 9 7 ] 3 4 8 6 2
Subject 13 2 9 3 3 4 6 8 1 7
Subject 14 7 9 6 2 ] 3 8 5 4
Subject 13 7 5 8 9 4 2 1 6
Subjcct 16 4 5 7 3 8 2 9 6 1
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Table A5.2 Rankings for query 2

Subjects Ranks Assigned for Query 2
1 3 4 5 6 7 8 S 10
Subject | 9 2 6 3 4 8 3 ] 7
Subject 2 9 2 4 5 6 8 3 I 7
Subject 3 9 2 6 4 3 8 5 l 7
Subject 4 7 3 6 8 4 3 2 [ 9
Subject 5 8 3 4 7 5 6 2 i 9
Subject 6 S 2 5 4 3 7 6 1 g
Subject 7 7 6 5 | 2 9 4 3 8
Subject & 9 3 7 5 4 6 2 1 8
Subject 9 9 3 5 6 4 7 l 2 8
Subject 10 7 2 6 5 4 9 3 i 8
Subject 11 9 3 6 3 4 8 2 1 7
Subject 12 7 6 4 I 2 9 5 3 8
Subject 13 7 9 6 2 3 5 4 ] 8
Subject 14 8 7 6 5 2 4 3 | 9
Subject 15 7 9 6 8 3 1 2 5 4
Subject 16 5 2 6 4 5 8 3 1 7

Table AS5.3 Rankings for query 3

Subjects Raukf Assigned for Query 3
] 2 4 3 6 7 8 9 10
Subject | 5 3 8 9 4 6 1 2 7
Subject 2 9 3 6 3 4 7 1 2 8
Subject 3 8 2 5 7 3 9 4 1 6
Subject 4 6 3 8 3 4 7 ] 2 9
Subject 3 8 3 6 3 4 7 2 1 9
Subject 6 9 2 4 3 3 6 8 ] 7
Subject 7 8 3 6 5 4 7 2 ] 9
Subject § g 2 6 5 4 7 3 i 9
Subject 9 8 2 9 4 5 6 3 1 7
Subject 10 10 [ 6 5 4 8 P 3 7
Subject 11 8 3 7 5 6 9 2 | 4
Subject 12 g 3 6 3 4 7 2 | 9
Subject 13 8 5 7 6 3 4 [ 2 9
Subject 14 3 7 3 4 6 8 ] 2 9
Subject 15 9 3 2 6 5 1 4 8 7
Subject 16 8 1 6 5 4 7 2 3 9
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Table AS.4 Rankings for query 4

Subjects Ranks Assigned for Query 4

1 2 3 5 6 7 8 9 10
Subject | 6 4 R4 3 2 ] 9 3 7
Subject 2 8 2 4 7 6 I 5 3 9
Subject 3 3 6 8 5 4 2 9 7 1
Subject 4 6 3 3 9 4 2 7 1 g
Subject 3 4 9 8 3 2 5 7 6 [
Subject 6 9 2 8 4 B 7 6 i 3
Subject 7 8 4 7 2 3 ] 5 6 9
Subject 8 9 3 4 3 6 2 5 i 7
Subject 9 2 6 9 3 4 I 9 8 5
Subject 10 3 8 7 9 4 I 5 6 2
Subject 11 9 6 7 4 3 2 5 8 |
Subject 12 8 4 7 2 3 ] 6 5 9
Subject 13 3 g g ! 2 5 6 7 4
Subject 14 8 3 4 7 5 [ 6 2 9
Subject !5 9 ! 8 3 4 5 6 2 7
Subject 16 3 8 9 4 5 | 6 7 2

Table A5.5 Rankings for query 5

Subjects Ranks Assigned for Query §

] 2 3 4 6 7 8 9 10
Subject | 4 3 7 6 I 8 9 2 5
Subject 2 2 7 g 5 ! 3 8 6 4
Subject 3 7 4 2 8 ] 6 9 3 5
Subject 4 3 5 7 8 | 6 4 2 9
Subject 5 3 2 9 4 1 5 6 7 2
Subject 6 9 2 5 6 ] 7 g 2 4
Subject 7 2 4 9 6 1 5 8 7 3
Subject 8 8 5 4 6 1 7 3 2 9
Subject 9 3 6 9 5 | 4 7 8 2
Subject 10 5 3 8 4 i 9 6 7 2
Subject 11 2 v 7 5 1 4 6 8 3
Subject 12 4 2 g 6 i 3 8 7 3
Subject 13 2 7 9 3 ] 6 g 5 4
Subject 14 2 8 g 5 1 7 6 4 3
Subject 15 b 1 7 3 4 8 9 6 2
Subject 16 4 6 7 5 ] 3 9 8 2
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Table A5.6 Rankings for query 6

Ranks Assigned for Query 6
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Table AS.7 Rankings for query 7

Ranks Assigned for Query 7
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Table A5.8 Rankings for query 8

Appendices

Subjects

Ranks Assigned for Query 8

4 5 6

L

Subject |

]

5

Subject 2

Le

-~ el ~a

Subject 3

N Q|

ol | -~
o o

Subject 4

wa

2 2 (=) e N

Subject 5

ted

wn O Wh

Subject 6

o]

Ln

Subject 7

b

L I SN R 8 Y I - -

Subject 8

[ [P¥]

[¥¥)

Subject 9

(=, O -1 cQ [oe] wh

+ (¥])

W oso] oL I =1 ON =

Subject 10

NN B O |

el

Subject 1}

o]

Subject 12

D O

Subject 13

o | | ral o

Subject 14

A )

-~ ] B ] | ] =] &
[

[R50 I ¥

Subject 15

2

i wn] | o o] o] ] ] ] | | ]

)

Subject 16

NS ~J o ~1 ~J [#4] W

1

5
q
4
9
5

g 4

-l [ [, % W]

S

o ool w| vl o] | | oo| -a| o] | W w| o] W] e

Table A5.9 Raukings for query 9

Subjects

Ranks Assigoed for Query 9
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Table A5.10 Rankings for query 10

Appendices

Subjects Raunks Assigne_d for Query 10

i 2 3 4 5 6 7 8 9
Subject | | 4 8 2 3 ] 3 9 7
Subject 2 2 6 7 9 ] 3 4 8 3
Subject 3 2 6 8 3 4 3 I 9 7
Subject 4 2 4 7 3 8 5 I 9 6
Subject 3 2 7 6 3 4 3 ] 9 8
Subject 6 2 4 8 8 ] 7 3 9 3
Subject 7 1 4 9 6 2 3 5 7 8
Subject § 3 6 8 5 1 2 4 9 7
Subject 9 2 8 7 1 4 5 3 9 6
Subject 10 1 8 6 2 3 4 3 9 7
Subject 11 3 6 8 2 4 5 ] 9 7
Subject 12 1 6 9 4 3 3 2 7 8
Subject 13 1 8 9 4 5 3 2 7 6
Subject 14 3 7 9 5 | 2 4 8 6
Subject 13 3 6 9 4 2 5 1 7 8
Subject 16 g 7 6 B 1 2 3 8 9
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Appendix 6: Coefficient Matrix of Rank Correlation

Appendices

between Subjects’ Rankings for Ten Queries

Cnntents:

Table A6.1 Caoefficients matrix of rank correlatina between suhjects®
Table A6.2 Coefficicnts matrix of rank carrelation hetweeo subjects’
Table A6.3 Coefficicots matrix of rank eorrelation between subjects’
Table A6.4 Caefflicients matrix af rank correlation between subjects’
Table A6.5 Coefficients matrix of rank correlation hetween subjects’
Table A6.6 Coefficicuts matrix of rauk correlation between subjects’
Table A6.7 Coefficients matrix of rank correlation between subjeets’
Table A6.8 Cocfficicnts matrix of rank carrelation betw een subjects’
Table A6.9 Caefficicots matrix of rauk correlatian between suhjects’
Table A6.10 Coefficients matrix of rauk currelation between subjeets’ rankings for query 10

rankings for query 1
rankings for query 2
rankings for query 3
rankings for query 4
raokings for query &
rankings for query 6
raukings far query 7
raukings far query 8
rankings for query 9

In Tables A6.1 to A6.10, the entry T, of tahle expresses the coefficient of

. h . h . .o -
ranking between m" subject and n" subject, where the subscription n. m of

represents the number of row and column respectively.

Table A6.1 Coefficieats matrix of rank eorrelation hetween subjects’ rankiangs for query 1

T

I 3 3 ' 5 8 9 11 12 3 14 :
1 100 | 087 | 0B% | -0.17 | 092 | 077 | 068 | 087 | 092 | 060 | 070 | 093 | 027 | 085 | 063 | 0.57
2 087 1.00 0.93 002 0.7% .67 .42 n7s 0Rr? Q67 08 [iR:R] 027 [1R:3:8 147 048
3 0 088 | 093 | ton | 0!8 | 090 | 080 [ 037 078 | 090  c70 078 | 082 | w13 | 078 | 042 | w7
-0.17 0.0 NIR 1.00 an7 018 .35 0.0% -0.02 0.25 .18 008 {035 .03 0.32 0.35
5 2L n7E 090 | 007 | 100 | 075 | 043 0 085 | 097 | 065 | 078 | 0.7% | -0.08 | 068  -068 | 0.70
0.77 0.67 (.80 0.1% 4.75 1.00 (.48 0.72 010 .65 .40 0.75 .32 .58 012 .80
7 068 | 042 | 037 | 035 043 | 048 | 1.00 | 058 | 050 035 | 012 | 082 | 048 | 0e0 | -032 | 013
& | 0RY | 075 | 078 | 008 | 085 | 072 | 058 | 1.00 | ORY | 078 | 077 | 080 | 002 | 082 | -0.53 | wdn
9 092 () R3 {1 90 002 097 .70 (1.50 R 1.00 N7l 0.75 0R? 008 n67 0.63 .67
060 | 067 | 070 | 025 | 065 | 065 | 035 078 [ 072 0 100 | 062 | 060 | -020 | 052 | 010 ] 045
N 070 08 | 07 | 015 | 078 | 040 | 012 | 037 075 | 062 [ 100 | 057 | 02| 075 | -065 ] 030
121 093 | 083 | 08 | 008 | 078 | 075 | 082 | 080 | 082 060 | 0357 | 1.00 | 040 | 087 | -045 | 0.57
037 | 027 | 013 | 035 008 | 032 | 048 | 002 | 008  -020| -022 ] 040 | loo | 042 | 020 | 002
14 {1.8S {1RR 078 )03 &k {) 5% .60 .82 0a7 0s} 078 R7? 047 1.00 148 na?
063 642 | 042 022 | 068 | 012 032 053 063 000 065 | -045 ] 020 | 048 | 100 | -0.15
0357 | 048 | 070 | 035 | 070 | nwa | 023 040 | 067 | 045 | 030 | 057 | oo | 027 005 ) 1an
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[Fable A6.2 Coefficients matrix of rank cnrrelation between subjects” rankings for query 2

o 2 3 4 5 6 7 8 9 I T T R A E R PO I E T
1 [ 1.00 | 0093 [ 095 077 | 081 | 088 060 | 093 092 | 095 | 098 | 055 | 038 | 038 |-015 09%
2 0.93 1.00 0.85 0.70 087 082 0.50 (83 8RR IRR n92 0 48 028 0.45 .25 095
2 (.95 .85 1400 .63 0.70 0.97 0.68 .85 0.78 0.%0 0.90 0.67 0.43 0.57 027 | n93
4 1077 (070 063 | 100 | 093 [ 063 02" | 087 [077 o~ |20 035 [n7: [0z o0
5 i 0.83 0.87 I (.70 .93 1.00 0.7 0.38 .87 .92 0.82 0.8B5 n3e 0.37 .68 0417 U.88)
4 0.88 0.82 1= 0.63 0.72 1.00 0.65 .80 0.73 .83 0.82 1187 045 .60 N8 | 1R?
b 0.60 0.50 0.27 0.38 1.3 1.00) {1.35 0.53 0.65 0.63 {198 0.73 .58 -0.23 | 0.62
§ | 093 | 082 | OXS | 0K7 | 087 | 0.80 @55 | 1.00 | 093 | 0.57 | 095 0.53 010 | 0.92
9 0.92 .88 0.78 0.87 0.93 0.73 0.53 .93 1.00 0.87 0.95 47 1. 0.68 0.10 L2
10 | 0.95 11.8K 0.90 0.77 0.82 (.83 .65 {).%7 (.87 1.00 0.93 0.60 0.37 0.53 -3.30 | 0.93
11 | 0.98 0.92 90 1R .85 1% .63 {1.935 (195 (.93 1.080 0.57 .47 .65 003 | 097
S 12| n.ss 0.48 0467 0.2Q (.35 0.67 .98 1047 0.60 0.57 | 100 .70 0.53 .30 | 157
13 1 038 0.J8 043 0.35 0.37 .45 0.3 0.53 di 0.37 0.47 0.70 1.00 . 027 0.40
14 | 0.58 045 0.57 0.73 0.68 0.60 058 Q.77 .68 0.53 0.65 0.53 .85 1441 0.45 0.53
15 018 -025 | 027 022 1.7 T 010 0.10 -0.30 | -0.02 0.30  0.27 0.45 HI -0.23
16 | 1198 0.95 0.93 (.70 080 | 0.87 0.62 092 | 0BR | 093 097 | 0.57 0.40 0.53 14,23 1.04
Table A6.3 Coefficients matrix of rank correlation between snhjects’ rankings for query 3
r 1 2: 3 4 5 & 7 B 9 10 11 2 13 14 15 1o
LoD | 068 | 63 | sl | 070 0 070 | 067 | 065 | 058 | 058 | 070 | 073 | 035 | -0.10 | 0.67
2 .68 100 .78 T 0.97 14K .97 {1.92 0.83 0.93 0.77 0.97 0.85 0.60 017 0.93
3 0.63 0.78 1.00 ins | OR0 0.60 0.80 0.%3 0.67 0.84 0.78 0.80 0.52 .37 -0.08 0.77
4 0.82 (.88 0.65 1.00 192 0.28 0.92 18R 0.85 0.76 0.67 0.92 0.R3 0.60 -0.10 0.88
5 0.70G 0.97 .80 0492 | 1.00 0.57 1.00 0.98 R A 0.87 0.72 1.00 185 .65 0.07 13113
6 0 0.48 0.60 028 | 0.57 1.00 0.57 0.67 057 | 038 .42 0.57 0.25 0.15 0.13 0.53
- 0.70 0.97 0.80 0.92 © 1.00 0.57 1.00 0.98 085 | (R7 0.72 1.00 0.85 0.65 007 .93
8 0.67 0.93 (.83 088 | 198 067 0.98 1.00 A7 | 089 0.70 0.98 0.78 {) ~< nng .95
9 0.65 0.83 0.67 0.85 _ 0.8S 0.57 0.85 0.87 1.00 | 0.8] 0.78 0.85 0.72 0.30 108 .82
10 QI .93 0.84 0.76 | OR7 0.58 0.87 0.89 0.81] 1.00 0.79 X~ 0.65 0.37 022 093
11 0.58 0.77 0.78 0.57 0.72 0.42 0.72 0.70 .78 4.79 1.00 0.72 0.45 0.42 (.28 0.65
13 0.70 0.97 IR0} 0.9  1.00 0.57 1.00 0.98 (.85 0.R7 0.72 1.00 085 0.65 0.07 0.93
13 0.73 0.85 Q.52 0.83 1K< 0.23 {85 0.78 0,72 0.65 0.45 0.85 [.00 .52 0.23 0.75
147 035 | oon | 037 | 060 0 065 | 015 | 065 | 055 1 030 | 037 | 042 | 065 | 052 | 100 | -013 1 0.4R
151 -0.10 0.17 g | -0.10 .07 I 0.13 | 007 | hhnx 122 | -0..'.’8_ ONn7 | 023 | 112 | 1.00 | 023
16| 067 | 093 | 077 | 08% | 003 | 053 | 093 | uvs | 0.82 | 093 | 0.65 | 093 | 075 | 048 | 623 | 100
Fable A6.4 Coefficients matrix of rank currelation between subjects® rankings for query 4
r, | | 2 3 4 | 5 [ 7 8 | 9 10 11 12 | 13 14 15 | 16
1 1.00 .33 0.48 040 0.28 I 0.17 0n.7? 0.17 0.72 0.10 | 0.15 0.83 0.43 i 0.43 | 0353 0.38 |
21033 | 100 | 035 | 0RO | -072 | 013 | 053 | 090 | -0.17 | -0.13 | -0.12 | 057 | -0.63 | 0.97 | 0.50 | -0.35
3 0.48 -0.25 1.00 010 .73 -0.07 | 002 | 0325 .82 0.67 .53 412 .57 -0.28 | - 20 0.85
4 040 080 | 0.10 100 | 043 0.20 0.25 .83 006 @ 013 .25 | 0.33 0.50 | 0.88 042 .25
- | 028 072 | 073 [ -043 | 100 | 002 | 007 | -060 | nse | 047 | 085 | D05 | 08S 4132 1 0Mm
1 | 017 0.13 | 007 | 0.20 | 0.2 10 | 007 | 037 | 026 -035 ] 017 | 015 | 030 017 | 0RD | 022 |
I 7 Po77 [ as3 |-002f 025 | 007 007 | o0 [ 02 | 038 | 017 035 f 098 025 | 051 | asj | 612
I8 1 017 090 | -033 | 083 -0.60 037 § 028 | 1.00 038 | «005 | 007 | 035 0720 092 | 030 -0.38
9 1072 017 | 082 | 006 | isn | -026 | [ -038 | 100 044 | o3 | odn | 070 | -002 1 0068 | DRI
M) 010 0 013 | 067 | 0.3 047 [ 035 | ni” [ 005 | 044 | 1.00 0.18 | 021 | -0.08 | -0.50 | 073 |
11 Q.15 012 1.51 -0.25 0.55 0.17 0.33% .07 (.34 0.40 1.0 (.30 0 3% -0.12 0 OR 0 57
120 083 | 0357 | ou2 | 035 0 005 wis | 098 | 035 | 040 | 048 | 030 | oo | 023 | 060 | 0.65 | .12
150 043 | 063 | 0157 | 050 | 085 | 010 ] 035 | 072 ] 070 0 022 | 038 | 033 | 100 | -055 | 007 | G6R |
4] 043 | 097 | 028 | 088 | 058 | 17 | 0.53 | 092 | -0.02 | -0.08 | 0.17 | nen | -0.55 | .00 | 057 | 0.32
15 00.53 .50 -0.20 .42 22 0.80 {.5% (.50 0.06 -0.50 0.08 0.a35 .07 .52 100 -0218
16 | 0.3% -01.25 I 0.BS AL2S 0.73 I -0.22 0.13 -(038% el | 073 | 0.57 0.12 0.68 ] -0.32 | R ] l 1 00 ]
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Table A6.5 Coefficients matrix of rank correlation between subjects” rankings for query 5

r, ] 2 3 4 5 6 ] 9 10 1 12 13 14 15 16
10N | 0a3 | 063 | 053 | 028 | 093 | 060 | 032 | 033 | usy | 002 | 063 | 060 | 0.57 | 060 | 033
20043 [ 100 | 00T | 030 087 | 001 | 087 | 033 | 090 | 040 | 085 | 0.70 | 088 | 078 | 0.23 | 088
3| 063 | 607 | 100 | 030 | -G.00 | 080 | 007 | 0.47 0 017 | -005 | 027 [ ows | 605 | n2z | 02s
4 055 | 030 | 03¢ | 100 | 010 | 033 | 027 | 067 | 007 | 007 | 002 | 030 | 030 | 043 | -0.23 | -0.08
s 0% K | 010 010 | 106 | 003 678 | 0251 093 | uel | 092 | 062 | 0.87 | O&7 | 028 , 0.80
6 | 074 | 002 | OB | 024 | 003 | 100 | 021 | 081 | 005 | 046 | -022 | 043 | 013 | 0.1 | 051 | 018
7 060 | 08T | 017 | 027 oo 37 T o092 Tow [ o | 093 | 080 | 0.72 | 0.57
& | 032 | 023 | 0.47 | 067 | 0235 | 051 | 027 | 100 | 035 0 027 | 007 | 012 | 6 | -h3x | 037
9 | 033 | 090 0 007 | 063 | 005 | 097 | 035 | 100 | 065 | OK7 | 082 | 08 | 073 | 047 | 042
10| 058 | 040 | 017 | 007 | 061 | 046 | 0.70 0 065 | 100 | 038 | 077 | 060 | 058 | 078 | 032
110 012 | GRS | 05 | 002 | 092 | 22| 070 | 027 | 087 | 0.3% | 140 | 0.47 | 075 | 075 | 003 | 0.80
12| 063 | 070 | 037 | 020 | 062 | 043 | 093 017 | 082 | 0.77 - | 100 | 063 | ns2 | 070 | 077
13| 060 | 088 | wns | 030 | 087 | 013 | 08 | -2 080 | 0.60 | 075 | 0.63 | 1.00 | 090 | 043 | 0.70
14| 057 | 078 | 005 | w4z | 087 | 011 | 074 i 073 | 058 | 075 | 052 090 | 100 | 025 | 055
15 060 | 023 | 022 | 023 0.28 | 0.5 028 | 042 | 078 | 003 | 070 | 043 | 035 | 100 | 043
16| 033 [ axs [ 025 | 008 | o080 | 1% [ 083 | 037 | 002 | 052 | use [ 077 [ 070 | 0ss | 043 | 100
Table A6.6 Coeflicients matrix of rank correlation betw een subjects® rankings for query 6
r, 1 2 | 4 5 6 7 ] 9 10 1 12 13 14 15 16
1 160 | 077 | 03% | 030 | 022 | 056 | 0.70 | 025 | 0.30 | 005 | 028 | 0.62 | 058 | 073 | 030 | 0.25
7| 077 | 100 | 010 | 078 | 007 | 39 | 042 | u5" | 008 | -0.12 | 002 | 0% | 025 | 0.60 | 0.12 | nu3
3 | 038 | 030 | 100 | 017 | 023 | 075 | 043 | 007 | 033 | 058 | 0.70 | 0.35 | 0.12 | 040 | 0.82 | 047
030 | D78 | 017 | 100 | 010 | 007 | 003 | 073 0 002 | 012 | 0.05 | 003 | 013 | -053 | -0.08
032 | 007 | 023 | 010 | 100 | 003 | 070 | 013 | 093 | 048 | 042 | 072 | 073 | 050 | 022 | 067
6 | 056 | 029 | 075 | 007 | 003 | 100 | 039 | 0.19 | D19 | 025 | 048 | 029 | 02a | 021 | 041 | 029
7 070 | 042 | ua3 | Q0¥ | 070 | 34 | Lo | 017 | 083 | 022 | 043 | 098 | 080 | 0.85 | 0.50 | 068
N .25 0.57 0.07 0,73 .13 | 019 -0.17 1.060 -0.30 0.38 0.33 -0.15 | -0.33 | 0.02 -0.25 | -0.37
9 | 03 | 008 | 0.33 0 093 | 019 | 083 | 030 100 | 035 | 035 | O8RS | 082 | ns55 | 037 | 1#s
W | <0415 | 012 058 | 002 | 048 | 029 | 0632 | 038 | 035 | 1.00 | 090 | 023 | -00R | 0I% | 040 | 0.17
11 038 {002 070 012 043 | 048 | 043 | 033 | 035 [ 090 | 100 | 042 | 007 | nax | 060 | 017
12 062 | 038 | 035 | 005 | 072 | 029 | 092 | v~ | O0RS | 023 | n4a2 | 100 | 077 | 0% | 047 | 070
13| 058 | 025 | .12 | 003 | 073 | D24 | 080 | -033 | 082 | -008 | 007 | 077 | 100 | 052 | 0.17 | 0.68
14| 073 | 060 | 040 | 013 | 030 | 031 | 085 | 002 | 055 | 018 | 042 | 082 | 057 | 1400 | .48 | .37
15 030 | 002 082 | 053] 032 | 041 | 050 | 025 037 | 040 | 0.60 | 047 | 0.17 | G4% | .00 | 0.53
16 | 035 | 003 | .47 | -00% | 0.67 | 029 0 085 | 017 | 017 | 0.70 ' 0.6% | 0.37 | 0.33 | 1.8
Tabie A6.7 Coefficients matrix of rank correlation between subjects® rankings for query 7
r, 1 2 3 1 5 f 7 8 9 11 il 12 13 14 15
1| 100 | 052 | nss | 057 | 058 L 037 | 028 | wilu | 053 | 070 | 063 | 0.8 0 0.43 | 047 | 0.4%
2 | 052 1008 [ 062 | 042 | 070 | 023 | 0173 060 | 055 | 054 | 0.7% | 055 | 0.90 | -0.18 | 0.57
3 | n55 | 062 | 100 | 003 | 0727 | 07R | 070 | OB2 | 068 | 073 | 087 | o470 | w32 | 065 | 440 | 0.73
4 | 057 | 042 | 013 | 100 | wux | 030 | 015 | 043 | 005 | 027 | 005 | 0.15 | 020 | 010 | 028 | 017
S | 0%8 070 | 072 | 008 | 100 | 035 | 030 | 058 | 197 | 0.72 | 088 | 0.30 | 0.08 | 067 | -0.18 | 0.%8
& | 037 | 023 | 0.78 | 0.20 | 035 | 1.00 | 0531 | 048 04 | 077 | 072 | 0.5% | 0.10 | 0.27 | 048 | 0.31
-l 0% 073 ] 070 | 005 | 030 L 053 | 10 | 068 L 018 | 043 | 038 | 100 | 0%5 . 067 | -0.18 | 0.30
% | 010 | 057 | 082 | 043 | 05K | 048 | 06R | 100 | 0.55 | 0.30 | 0.60 | (L.6X | 047 | 070 | 007 | 0.65
9 | 053 060 068 | 005 040 | 0IR | 155 | 100 | 72 | 092 | o nes | -01r | 087
10| 070 055 073 | 027 | 072 | 077 | hA42 | 030 | 073 | 100 | 0.88 | 042 0.43 | 048 | 057
11| 063 | 058  N&7 | D05 | OR& 073 | 038 | 660 007 | 088 | 100 | 03% | 010 062 | 040 | 080
12| 038 | 073  0N70 | 015 | 030 | 0531 | 100 | O6R | 018 | 043 | 038 | luu | 085 | neT | wax | 03
13 0 055 132 | 020 | -008 | 010 | 085 | 047 | -0.23 | 007 | -000 | O.8% | 1.00 | n47 | 07 | 005
14| ual | 090 065 | 010 | 067 | 027 | 06T | 070 | 0AS | 04y | na | 067 | 0a7 | 100 | 008 | 068
95 | 047 | 018 | 140 | 028 | 018 | D48 | 018 | 607 | 008 | 048 | 040 | <008 | 007 | nos | 100 | f10
06 [ 048 087 ot [ 017 | 0RR | 033 | a30 | 065 | 087 | 057 | (RN | 030 | 005 | 065 | 010 | 1400
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Table A6.8 Caoefficients matrix of rank correlation between subjects’ rankings for query 8

r, I 2 1 4 5 0 - 8 9 n I 12 13 14 13 16
1100 | 063 | U088 | 032 | n x| 09 | 075 | 080 | 06 | 080 | 090 | 0.67 | 068 @ 0.78
7 063 | 100 | 082 | 073 | 073 071 | 078 | 077 | 0.75 | w3 | 0.72 B | 0.7 | a7 093
3 088 | X1 | 100 | D83 | 0%% | 088 | 097 | X 082 | 085 | 001 | 095 | 0%~ | 035 @ N.83
4 052 | 073 | 08} | 1.00 | 072 | 072 | 0.68 | .55 | 071 | 0.7% | 0.8 | 0.0 | 087 | 085 | 0.33 | 0.60
5 077 | n-F | OB8 | 072 | 100 | 095 | 095 | 093 | 091 | 08B0 | 085 | 095 | n& | 090 | 042 | 082
"6 | 078 | 03 | OB8 | 072 | 0.95 | 100 | 090 | OB® | 087 083 | 090 | N8~ | 0.90 | 133 | OR2
7 090 | 072 | 092 095 | 050 | 100 | 092 | 093 00 | 183 | 0R5 | 075 | OR3

% | 075 | 078 | 0.% | 055 | 093 | ORKR | N92 | 100  ORR | -~ | 087 | N82 | 073 | 0.78 | ua- | 0.60

9 [ 08¢ | 077 | 090 | 073 | 092 | ux? | 053 | 088 | 1.00 | 095 | 087 | 093 | 078 | 0.77 | 052 0.7%

10 | 0.6 | 075 | 082 | 073 | 080 | 073 | 078 | 075 | Q95 | 100 | 0.77 | 038 | 0.70 | 0.63 | 027 | 0.67

11 083  0R: 068 | 0R5 | 0.43 | OR8 | 087 | 0.87 | 0.77 | 100 | 0.8% | 0.77 | 0D.43 | N.52 087

177090 | 072 | 092 | 068 | 065 | 090 | 100 | 092 | 093 | 0.78 | 0.88 | 1L.00 0185 | .5 | DR3

13 075 | 082 | 095 | 087 | 087 | 087 | 1R | 073 | 078 | 0. | 077 | 0.83 | toa | 090 | 052 | (082

14| 067 | 072 | 085 | DRE | 090 | 09G | Q85 | WK | 1177 | 063 | 083 | 0.85 | 0.90 | 1.00 S8 0.75

15| 068 | 037 | 055 | 033 | 0.62 | 153 | 075 | 0.67 | 053 | 027 | 052 | 0.75 0.58 | 1.00 | 0.60

6 | 0.78 | 093 | 0.53 82 | 0.82 | 083 | 090 | n-x | 067 | 087 | 083 | 082 | 0.75 | 0.60 1.00

Table A6.9 Coefficients matrix nf rank correlation between subjects® rankings for query 9

r 1 2 3 4 5 6 7 8 9 10 1 11 13 14 15 1t

T 7100|7060 093 [068 | rxw | 065 | 092 | 095 078 | 072 | 078 | 0.92 | 0.85 | 092 | 0.28 | 0.8

2 | 090 | 100 | 093 071 | 0.67 088 067 | 0% | 075 | 085 23 | oRo | 032 | nss

3,093 | 093 | 100 | 067 | 078 | 0.70 | ORR | 092 077 | 0.48 | 0.72 | 0X% | 088 | 087 | 025 | 0.78

4 | 068  u~1 | 0n7 | 100 | ORY | 023 | 068 | N5% | 080 | 058 | 0.55 | 06% | a77 | DR | 0.5 | 057

g 073 078 [ 083 | 160 | 043 | 085 | 077 | 0R" | 080 | 0.82 | 085 | 0.78 | 09% | 023 | naK

G | 065 067 070 | 033 | D43 | 1.00 | 037 | 0.60 | 033 | 030 | 0.25 | 0.37 | 040 | na: | 002

7 | 092 085 | O88 | 068 | N85 L 037 | 100 | 092 | 077 | 055 | DR3 | 100 | 693 | 697 | 033 | non

B | 095 | nDXR 0492 [ 058 | 077 | 060 | 092 | Lo 073 | 660 | 072 | 692 | 088 | 084 | 033 | 082

9 | 078 | 067 | 077 | 080 | 087 | 033 | 077 | 077 | 100 | 668 | %" | 077 | 068 | 084 | 035 | 0.47

10| 072 | 038 048 | 0S8 | O80 | ~44 | 055 | 060 068 | 1.00 | 058 | 055 | 042 | aq0 0 0.32

117 078 075 072 | 055 | 03 | 025 | 083 | 072 087 | 058 | (00 | 083 | 063 | DRD | 0.53 | 0.82

12| 192 | 085 U088 | 0.68 | 085 | ¢.37 | 100 | 092 | 077 | 055 | O%3 | 1 | 093 | 092 | 033 | 090

13| D&S | OQR2 | 088 | 0.77 | 0.78 | 0.40 | 093 | QRF | 068 | 042 | 063 | 093 | 100 | 089 | 027 | 083

14 | 0 | 080 | G87 | 1R4 | 0.98 | 0.47 | 092 | 084 | 084 | 070 | 080 | 092 | 0.89 | 1.0 | 0.23 | 077

15| 028 | 052 025 | 0.15 | 023 | 002 | 0.33 | 033 | 0.35 0 0.53 | 033 | 027 | 023 | 100 | 047

16 088 | 0.7% 57 | 0.68 | 0.25 | 090 | 0K2 | 067 | 032 | 082 | 090 | 083 | 077 | 067 | 1.00

Table A6.10 Coefficients matrix of rank correlatinn hetween subjects’ rankings far query 10

, 1 2 3 4 5 6 1 ] q 10 1 12 13 4 15 16

1 100 | 028 | 09 | 085 | 082 | veX | 063 | 058 | 082 | 073 | O8R | 0D.RO | 0.70 | 052 | 0.73 | 0.43

2 | 028 | 100 | 047 | 013 | 042 | 073 | 075 | 0.80 | 030 | 0.45 | 035 | 0.50 | 153 | 0.80 | .55 | 0.47

) 090 Q47 100 0.82 095 Q.72 0.63 0.71 .88 0.77 098 088K N.70 1.90 0.67

i 017 | 082 | 1. oS04 | 035 | 035 | 067 | 048 | 080 | 073 | 067 | 028 | 0355 | 125

§ | H2 | 042 | 095 | 075 | 100 | 060 | 053 | 068 | O8% | 082 | 093 | 082 | 0.78 | 0.62 ¥ | 073

6 068 | 073 072 | 643 | 060 | 100 | 070 | 070 | 053 | 052 | 065 | 053 | 050 | 067 | 073 | 050
7 D6 | 075 | 63 | 035 | 053 | 070 | 100 | D85 | 045 | 060 | 055 | 0.78 | 0.65 | 082 | 073 | (7

£ | 058 | 08D | 073 | ¢35 | D68 | 070 | nxs | 1.00 | 065 | 0.75 | 070 | .73 | 0.70 | 097 | 0.78 | 0.90
"6 082 | 030 | 088 | 067  ON¥E | 053 | nd5 | 065 | 100 | 081 | 090 | 173 | ORG | 065 | 072 | 05R

101 073 045 | 077 | 048 | 082 | 052 | 060 | 675 | 002 | 100 | 075 | 070 | 073 | 0.72 | 063 | 0.70

11| 088 | 035 | 0ux 693 | 065 | 055 | 070 | 096 100 | 083 5 0.67 0.65

12| N8O | 050 | 088 | 0.73 | 082 | 057 | 078 | 0793 | 073 | 070 | 08} | 100 | 093 | D73 | RS | {67

17| a7 [ 051 | 0835 | 067 | u 0.50 65 | 070 | 080 | 073 | ago | 093 | 100 | 077 | 0.7% | a0

14| N3 [ 080 | o7u | 028 | 062 | 067 097 | nes | 072 | a&7 | 073 | 077 | 100 | 0.8 | 083

15| 073 | 055 | 060 | 055 083 073 | 078 | n72 | 063 | 088 | D8S | 078 | 078 | 100 | 0.77

16| 043 | 067 | 067 | 025 | 673 | 030 | 0.70 | 090 | 1.58 065 | 067 | 060 | 083 | 0.77 | 100
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Appendix 7: Rankings after Pre-processing for Ten

Queries

Contents:

Table A7.1 After pre-processing, rankings and correspanding coefficient matrix for query 1
Table A7.1 After pre-processing, raokings and corresponding coefficient matrix for query 1
Table A7.2 After pre-processing, rankings and corresponding cocfficient matrix for query 2
Table A7.3 After pre-processing, rankings and corresponding coeflicient matrix for query 3
Table A7.4 After pre-processing, rankings and corresponding coefficient matrix for query 4
Table A7.5 After pre-proccssing, rankings and correspunding cocfficient matrix for query 5
Table A7.6 After pre-processing, rankings and correspanding coefficient matrix for query 6
Table A7.7 After pre-processing, rankings and corresponding coefficient matrix for guery 7
Table A7.8 After pre-processing, rankings and corresponding cocfficient matrix for query 8
Table A7.9 After pre-processing, rankings and corresponding cocfficient matrix for query 9
Table A7.10 After pre-processing, rankings and corresponding coefficient matrix for query 10

In Tables A7.1(a) to A7.10(a), the entry 7, of tablc expresses the ranking
order of the m" image by the #™ subject, where the subscription », m of T, represents
the numbcr of row and column respectively.

In Tables A7.1(b)-A7.10(b), the entry T of table expresses the coefficient of
ranking order between m" subject and #™ subject, where the subscription n, m of Tom

represents the number of row and column respectively.

Table A7.1 After pre-processing, raw data of ranking order and corvesponding coefficient

matrix for query 1

Subjects Ranks Assigned for Query 1

2 3 4 5 6 7 8 9 10
Subject | 6 & 5 ! 3 4 9 7 2
Subject 2 6 9 5 2 3 | 8 7 4
Subject 3 6 8 5 3 4 1 9 7 2
Subject 5 7 6 5 2 4 3 9 8 1
Subject 8 9 8 5 2 3 4 7 6 |
Subject 9 6 7 5 2 4 3 8 9 !
Subject 11 9 6 5 3 2 1 7 8 4
Subject 12 5 9 7 l 3 4 B 6 2
Subject 14 7 9 6 2 ] 3 8 5 4

(2) Rankings for query 1
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r 1 2 3 5 8 9 11 12 14

i 100 | 087 | 088 | 092 | 087 | 092 | 070 | 0.93 | C.83
2 | 087 | 1.00 | 093 | 078 | 0.75 | ©.82 | 0.82 | D.83 | 0.88
3 1088 | 093 100 | 090 [ 098 | 050 | 0.78 | 082 | 0.78
5 ] 082 | 078 | 050 .00 | 085 § 057 | 078 | ©.78 | 0.68
8 | 087 | 075 | 078 | 0.83 1.00 | 0.82 | 0.77 | 0.80 | 0.82
9 | 052 [ 082 | 050 | 097 | 0.82 1.00 | 0.75 | 0.82 | 0.67
111070 | 082 {078 | 078 | 077 | 0.75 1.00 | 0.57 [ 0.75
12109 | 085 | 082 | 0.8 | 0.80 | 0.82 | 0.57 1.00 | 0.87
4 | 085 ) 088 ; 078 | 0.68 [ 0.82 | 067 | 0.75 | 0.87 1.00

Appendices

(b) Cocflicients matrix of rank correlation between subjects’ rankings for query 1
J g

Table A7.2 After pre-processing, rankings and corresponding coefficient matrix for query 2

Ranks Assigned for Query 2

Subjects
[ 3 4 5 6 7 B 9 10
Subject ] 9 2 6 5 4 8 3 1 7
Subject 2 9 2 4 5 6 g 3 1 7
Subject 3 9 2 6 4 3 8 5 1 7
Subject 5 8 3 4 7 5 6 2 1 9
Subject 6 9 2 S 4 3 7 6 1 8
Subject 8 9 3 7 5 4 6 2 1 8
Subject 9 g 3 5 6 4 7 ] 2 8
Subjecl 10 7 2 6 5 4 9 3 ] 8
Subject 11 9 3 6 5 4 8 2 ] 7
Subjecl 16 9 2 6 4 5 8 3 1 7
(a) Rankings for query 2
', | 2 3 5 6 8 9 10 1 16
1 [1.00 {095 (095 [083 |088 | 095 | 092 [ 095 | 098 | 098
2 | 0.93 1.00 } 085 | 087 | (.82 | 0.83 0.88 [ 0.88 [ 0.92 0.95
3 [ 095 | 0.85 100 | 070 [ 097 [ 085 | 078 | 090 [0.90 | 093
5 | 0.83 | 087 |0.70 100 1072 | 087 | 093 | 0.8 |0.85 0.80
6 {088 | 082 {097 | 072 100 | 08¢ 073 [ 083 | 0.8 | 087
8 1093 1083 {108 | 087 | 080 1.0¢ | 0.93 | 0.87 | 0.95 0.92
9 1092 | 088 J0.78 [09 [073 {093 1.00 | 0.87 | 095 .88
10 {095 | 088 |09 [ 082 [083 0.87 | 0.87 1.00 | 0.93 091
11 1098 1092 |09 ]08 [08 |4095 095 1093 1.00 | 097
16 1098 095 |09 [ 080 [087 j092 [088 |093 [097 | 1.00

{(b) Coefficients of rank correlation between subjects’ rankings for query 2
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Table A7.3 After pre-processing, rankings and corresponding coefficient matrix for query 3

Ranks Assigned for Query 3
Subjects -
1 2 4 5 6 7 8 9 10
Subject 2 9 3 6 5 4 7 1 2 8
Subject 4 6 3 3 5 4 7 | 2 9
Subject 5 g 3 6 5 4 7 2 1 9
Subject 7 8 3 ) 5 4 7 2 1 9
Subject 8 8 2 6 5 4 7 3 ] 9
Subject 9 8 2 9 4 3 6 3 ] 7
Subject 10 10 1 6 5 4 8 2 3 7
Subject 12 38 3 6 5 4 7 2 [ 9
Subject 13 8 5 7 6 3 4 1 2 g
Subject 16 g 1 6 5 4 7 3 9
(2} Rankings for query 3
r, 2 4 5 7 8 g 10 12 13 16
2 1.0 [ 088 | 097 | 097 | 093 | 083 | 093 | 097 | 085 | 0.93
4 0.88 1.00 | 092 | 092 | 038 | 085 | 0.76 | 092 | 0.8 { 088
S | 097 [ 092 | 100 [ 100 [ 098 | 0.85 [ 087 | 1.00 [ 0.85 | 0.93
7 | 097 [052 } ro0 [ 100 [ 098 | 085 | 087 | 1.00 | 0.85 | 0.93
8 [ 093 [ 08 jo98 (098 [ t00 | 087 | 089 | 698 | 0.78 | 0.95
9 083 1 085 1 085 | 085 | 087 100 | 081 08 | 072 { 082
10 ] 093 | 0% | 087 | 087 [ 089 [ 081 1.00 | 087 | 065 | 093
12 | 097 | 0.92 1.00 1.00 | 058 | 0835 | 0.87 1.00 | 085 | 093
131 085 | 0.83 | 085 | 085 078 | 0.72 | 0.65 | 0.85 1.00 | 0.75
16 | 003 | 08 | 093 | 093 095 | 082 1 083 | 093 | 0.75 1.00

(b} Coefficients of rank carrelation between subjects” rankings for query 3

Table A7.4 After pre-processing, rankings and corresponding coefficient matrix for query 4

Ranks Assigned for Query ¢
Subjects T
1 2 3 5 6 7 8 S 10
Subject 2 8 2 4 7 6 i 5 3 9
Subject 4 6 3 5 9 4 2 7 1 8
Subject 8 9 3 4 8 6 2 3 | 7
Subject 14 8 3 4 7 5 1 6 2 9
(a) Rankings for query 4
'y 2 4 g 14
2 1.00 | 0.80 090 | 097
4 | 080 [ 1.00 | 083 | 0.88
8 | 0% | 083 1.00 | 092
14 | 097 | 088 | 092 1.00

(b) Coefficients of rank correlation between subjects’ rankings for query 4

166



Appendices

Table A7.5 After pre-processing, runkings and corresponding coefficient matrix for query 5

Ranks Assigned for Query 5

Subjects
1 2 3 4 6 7 8 9 10
Subjecet 2 2 7 9 3 1 3 8 6 4
Subject 5 3 8 9 4 1 3 6 7 2
Subject 7 2 4 9 6 I 5 8 7 3
Subject 9 3 ] 9 3 ) 4 7 8 2
Subjeet 11 2 9 7 5 1 4 6 8 3
Subject 13 2 7 9 3 1 6 8 5 4
Subject 14 2 g 9 5 ] 7 6 4 3
Subject 16 4 6 7 5 1 3 9 B 2
(2 Rankings for query 5
]2 5 7 9 I 13 14 16
2 1.00 0.87 0.87 0.90 0.85 0.88 0.78 085
5 1 087 [1.00 | D78 | 093 [ 092 | 087 | 087 [ 080
7 087 | 078 100 | 092 [ 070 | 080 | 072 | 083
9 090 | 0.93 0.92 1.00 | 087 | 08 | 073 [ 082
11| 085 (.92 0.70 0.87 1.00 0.75 0.75 0.80
13 | 0.88 0.87 0.80 0.30 0.75 1.00 0.90 0.70
14 | 0.78 0.87 0.74 0.73 0.75 0.90 1.00 0.55
16 | 085 | 08) | 0.83 | 092 | 0.80 [ 0.70 | 055 1.00

(b} Cuefficients of rank correlatiun between subjects’ rankings for query 5

Table A7.6 After pre-processing, rankings and corresponding cuefficient matrix for query 6

Ranks Assigned for Query 6

Subjects 1 2 3 4 3 7 8 9 10
Subject 7 2 3 9 5 1 6 8 7 4
Subject 12 2 3 9 5 1 6 7 8 4
Subject 14 | 3 B 6 pi 9 7 5 4

(b) Coefficients uf rank correlation between subjccts® rankings for guery 6

(a) Rankings for query 6

r, 12 14

7 100 | 098 | 0.85
12 ) 098 | 1.00 | 082
14 | 085 | 082 1.00

16
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Table A7.7 After pre-processing, rankings and corresponding coefficient matrix for query 7

Ranks Assigned for Query 7
Subjects =
| 2 3 4 5 6 8 9 10
Subject 5 1 9 6 2 5 4 8 7 3
Subject 9 1 9 6 3 4 3 8 7 2
Subject |1 3 8 7 2 4 5 9 6 1

(a) Rankings for query 7

R EE 9 il

5 1.0G | 097 { 0.88

9 | 097 1.00 | 092

11 ] 088 | .92 1.00

{b) Coefficients nf rank corrclation between subjects’ rankings for query 7

Tabie A7.8 Alter pre-processing, rankings and cerrespending coefficient matrix fur query 8

Ranks Assigned for Query 8
Subjects
l 2 3 4 5 6 7 9 10
Subject 1 6 4 1 7 2 5 8 3 9
Subject 3 6 3 1 8 5 4 7 2 9
Subject 5 8 2 3 6 5 4 7 1 9
Subject 6 8 i 2 6 5 4 7 3 9
Subjecet 7 7 k! 2 6 4 5 g [ 9
Subject 8 9 2 3 6 4 3 g ] 7
Subject 9 6 2 3 7 5 4 9 1 8
Subject 11 8 4 [ 6 5 3 9 2 7
Subjecr 12 7 3 2 6 4 5 g 1 9
Subject 13 7 3 ] 8 6 4 5 2 9
Subject 14 g 3 ] 5 7 4 6 2 9
Subject 16 9 3 1 8 4 5 7 2 6
(a) Rankings for query 8
r 1 3 5 6 7 8 9 1 12 13 14 16
1 1.00 | 0.88 077 | 078 | 090 | 0.75 0.80 0.80 0.9¢ 0.75 0.67 0.78
3 0.88 100 | 088 | 088 | 092 | 0.78 0.90 0.85 0.92 0.95 0.85 0.83
3 0.77 | 0.88 1.00 | 095 095 | 0.93 0.92 0.85 0.95 0.87 0.90 0.82
6 0.78 0.38 § 0.95 1.00 090 | 0.88 | 087 0.83 0.9% 0.87 0.90 0.82
7 0.90¢ | 0.92 0.95 0.90 1.00 | 0.92 .93 0.88 1.00 0.83 0.85 0.83
8 0.75 0.78 | 0.93 088 | 0.92 1.00 .88 0.87 0.92 0.73 0.78 0.90
9 0.80 0.90 0.92 0.87 0.93 0.88 1.00 0.87 .93 0.78 0.77 .78
11 ] 080 | .85 0.85 0.83 0.88 | 6.87 0.87 1.00 .88 | 0.77 0.33 187
12 | 0.90 0.92 0.95 0.90 1.00 0.92 0.93 0.88 1.00 0.83 0.85 0.83
13 | 0.75 0.95 0.87 0.87 0.83 0.73 0.78 0.77 0.83 1.00 €.90 0.82
14 | 0.67 0.85 0.90 09¢ | 085 | 0.78 [ 0.77 0.83 0.85 0.90 1.00 0.75
16 | 0.78 | 0.83 0.82 | 0.82 | 0.83 | 090 0.78 0.87 0.83 0.82 0.75 1.00

(b) Coeflicients of rank correlation between subjects’ rankings for query 8
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Table A7.9 After pre-processing, rankings and corresponding ceefficient matrix for query 9

Ranks Assigned for Query 9
Subjects _
] 2 3 4 5 6 7 8 10
Subject 1 g ] 2 5 6 4 7 3 9
Subject 2 9 2 ] 6 5 3 8 4 7
Subject 3 7 2 ] 6 5 3 8 4 9
Subject 5 7 3 | 4 8 3 ] 2 9
Subject 7 g 3 2 6 5 4 7 | 9
Subject 8 8 | 2 6 4 3 7 3 9
Subject 11 B8 4 2 3 6 5 9 ] 7
Subject 12 g 3 2 6 5 4 7 L 9
Subject 13 7 3 1 8 5 4 ) 2 9
Subject 14 7 3 ] 5 7 4 6 2 9
Subject 16 9 3 2 7 5 4 g ] 6
(a) Rankings for query 9
r, t 2 3 5 7 8 l 12 13 14 16
| 100 [ 090 | 093 [ 088 | 092 [ 095 [ 078 | 092 | 0.85 0.92 | 0.80
2 (090 [ 100 [ 095 | 072 | 085 [ 088 [ 075 | 0.85 [ 0.82 | 0.80 | 0.88
31093 70035 [ 100 078 | 088 | 092 | 0.72 | 0.88 | 088 | 0.7 | 0.78
5 1088 | 072 [ 078 | 100 | 085 [ 077 | 082 | 0.85 ; 078 | 0.98 | 0.68
71092 | 085 | 088 | 0.8 | 1.00 [ 092 | 083 [ 1.00 [ 093 | 092 ] 090
8 | 095 7088 [ 0921077 [ 092 [100 | 072 [ 092 [ 08 | 084 | 082
I 078 | 075 ] 072 1 082 | 083 | 0.72 £00 | 083 | 063 | 0.80 [ 0.82
12| 092 [ 085 | 088 | 085 100 [ 092 | 0.83 100 | 093 0.92 | 0.90
13 085 | 082 | 088 | 078 | 093 | 088 | 0.63 0.93 1.00 | 0.89 [ 0.83
141 092 | 080 | 087 | 098 | 092 | 084 | 080 [ 092 [ 089 1.00 | 0.77
16 | 0.80 | 0.8%8 | 0.78 | 068 | 090 | 0.82 | 0.82 | 050 | 083 | 0.77 | 100

(b) Cuefficients of rank correlation betwcen subjects’ rankings for query 9
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Table A7.10 After pre-processing, rankings and corresponding coefficient matrix for query

10
Ranks Assigned for Query 10
Subjects -
! 2 3 4 5 6 7 8 9
Subject 1 4 8 5 6 3 9 7
Subject 3 2 6 g 3 4 3 1 9 7
Subject 5 2 7 ) 3 4 3 l 8 8
Subject 9 2 8 7 I 4 5 3 9 6
Subject 10 1 8 6 2 3 4 5 9 7
Subject 11 3 6 g 2 4 3 ! 9 7
Subject 12 1 6 9 4 3 3 2 7 8
Subject 13 ] 8 9 4 5 3 2 7 6
Subjeet 15 3 6 9 4 2 5 ] 7 8
(a) Rankings for query 10
r, | 1 5 9 10 1 12 13 15
| 100 | 090 | 082 | 082 [ 073 | 088 [ 080 | 070 [ 0.73
3 0.90 100 | 095 1 08 | 077 | 098 | 088 | 0.85 0.90
3 0.82 | 095 1.00 [ 088 | 0.82 | 0.93 082 | 078 | 083
9 0.82 0.88 0.88 1.00 0.92 0.90 0.73 0.80 0.72
10 | 0.73 0.77 0.82 0.92 1.00 0.75 0.70 0.73 0.63
| 088 0.68 0.93 090 | 073 1.0¢ 0.83 0.80 0.88
12 | 0.80 Q.88 0.82 0.73 0.70 0.83 1.00 0.93 0.85
131 030 | 085 | 0.78 | 0.80 | 0.73 0.80 | 083 1.00 | 078
151 073 | 090 | 0.8 [ 0.72 | 0.63 088 | 085 { 0.78 1.00

(b) Cocfficients of rank correlation between subjects’ rankings for query 10
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Appendix 8: Image Rankings for Seven Queries by
Subjects

Contents:

Figure A8.1 Image rankiags for query t by subjects
Figure A8.2 Image rankings fur query 2 by subjects
Figure A8.3 Image rankings for query 3 by subjects
Figure A8.4 Image rankings for query $ by subjects
Figure A8.5 Image rankings fur query 8 by subjects
Figure A8.6 Image rankings for query 9 by subjects
Figure A8.7 Imuge rankings for query 10 by subjects

In Figures A8.1-A8.7, images are displayed in order of visual similarity from
most similar to least similar to each query image. The value of psychophysical scaling

is shown below each image.

Figure A8.1 Image rankings for query 1 by subjects
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Figure A8.2 Image rankings for query 2 by subjects

Figure A8.3 Image rankings for query 3 by subjects
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Figure A8.4 Image rankings for query 5 by subjects
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Figure A8.5 Image raakings for query 8 by subjects
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Figure A8.6 Image rankings for query 9 by subjects

Figure A8.7 Image rankings for query 10 by subjects
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Appendix 9: Comparison between Computational

Texture Representations and Visual Texture Features

Contents:

Table A9.1 Comparison between texture features of GLCM with visual feature perception
Table A9.2 Comparison between texture features of MRSAR with visual feature perceptinn
Table A%.3 Comparison between texture features of FT with visual feature perception
Table A9.4 Comparison between texture features ufl WT with visual feature perception
Table A9.5 Comparison between texture features nf GT with visual feature perception

In Tables A9.1-A9.5, the first row is the ranking based on texture features
ranking by subjects and the other rows are rankings based on each texture feature
calculated by five computational methods respectively. The data in the last column in

each table represents the cecefficient of rank correlation (

¥.|) between each feature

calculated by each method and the data perceived by subjects

Table A%.]1 Comparisnn between texture features of GLCM with visual feature

perception
Subjects 3 8 9 2 6 3 10 4 ] 7 |7,
7 10 4 6 8 9 1 7 3 5 2 0.19
'R 2 5 8 3 7 9 ! 10 6 4 0.43
5 2 5 3 7 9 | 8 6 10 4 0.27
s 4 10 6 | 7 9 8 3 5 2 0.55
S 10 4 6 9 8 I 7 3 5 2 0.2
5 2 5 8 3 7 9 ] 10 6 4 0.43
5 2 5 3 7 9 8 ] 6 10 4 0.36
s 4 10 6 1 7 9 g 3 5 2 0.55
fs 10 4 6 8 9 1 7 3 5 2 0.19
S 2 5 3 8 7 9 | 6 10 4 0.47
A 2 5 3 7 9 ! g 6 10 4 0.27
S 4 10 6 i 7 9 8 3 5 2 0.55
5 10 4 6 9 8 ! 7 3 3 2 02
Su 2 3 3 8 7 9 6 10 1 4 0.54
S 2 5 3 7 g 8 | 6 10 4 0.36
D 4 10 1 6 7 9 g 3 5 2 0.6
e 10 4 6 8 9 I 7 3 5 2 0.19
T 2 5 3 8 7 9 ! 10 6 4 0.44
Fs 2 5 3 1 7 9 g 6 10 4 0.
S 4 10 7 | 6 9 & 3 5 2 0.67
I (0 4 6 8 9 | 7 3 5 2 0.19
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Tahle A9.2 Comparison between texture features of MRSAR with visnal feature

perception
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fie 2 3 3 8 9 7 10 1 6 0.35
f 6 1 10 3 3 7 4 9 8 2 0.32
fa 1 6 3 9 4 7 8 2 3 10 0.35
S 2 8 i0 9 3 7 4 5 1 6 0.47
S 2 & 4 10 3 7 9 5 1 6 0.27
fis 2 5 3 8 9 7 10 1 6 4 0.55
(a) Comparison between texture features of MRSAR and visual feature of coarsencss
Subjects } 10 1 5 6 7 4 9 2 3 8 |,
5 6 5 10 1 4 3 9 7 8 2 0.75
£ 6 5 ] 0 9 4 8 3 7 2 0.67
7 2 8 7 3 9 4 ] 10 5 6 0.77
£ 2 8 7 3 4 9 10 1 3 6 0.75
I 2 3 5 8 9 7 10 [ 4 6 0.55
T 6 S 10 ] 3 4 7 9 g 2 0.73
I 6 5 1 9 4 8 7 10 2 3 0.44
fs 2 8 3 9 7 10 4 I 5 6 0.77
fe 2 8 3 4 7 9 10 5 1 6 0.82
S 2 5 3 8 9 7 0 ] 6 4 0.45
I 6 1 10 3 5 7 4 9 8 2 0.7
S | 6 5 9 4 7 g 2 3 10 0.36
m 2 8 10 9 3 7 4 5 | 6 0.54
S 2 8 4 10 3 7 9 5 1 6 0.36
fis 2 5 3 8 g 7 10 ] 6 4 0.45
(b) Comparison between texture features of MRSAR and visnal feature of regularity
Subjects | 10 3 6 7 4 9 3 2 8 |7,
h 6 5 10 ] 4 3 9 7 8 2 0.78
fs 6 5 1 10 9 4 8 3 7 2 0.71
Iy 2 8 7 3 9 4 [ 10 5 6 0.79
fa 2 8 7 3 4 9 10 1 3 6 0.79
£ 2 3 5 g 9 7 10 | 4 6 0.58
S 6 5 10 1 3 4 7 9 8 2 0.78
£ 6 5 [ 9 4 8 7 10 2 3 0.49
fs 2 8 3 9 7 10 4 | 5 6 0.82
I 2 8 3 4 7 9 10 3 ] 6 0.87
Fie 2 5 3 8 9 7 10 I 6 4 0.49
I 6 i ¢ 3 5 7 4 9 B8 2 0.78
Fie i 6 5 9 4 7 8 2 3 10 0.45
Fi 2 8 G 9 3 7 4 5 | 6 0.66
s 2 8 4 10 3 7 9 5 1 6 0.67
s 2 5 3 8 9 7 10 1 6 4 0.49

(c) Cnmparison between texture features of MRSAR and visual feature of directionality
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Tahle A9.3 Comparison between texture featwres of FT with visual feature perception

Subjects | 3 8 9 2 6 5 10 4 1 7 ||
i 2 5 8 3 7 9 10 1 6 4 0.45
I [0 2 4 7 9 3 I 8 5 6 0.24
J; 10 2 4 7 9 3 i 8 5 6 0.24
£ h] 10 1 7 2 6 | 4 9 g8 3 0.70
(a) Comparison between texture features of FT and visual feature of coarseness
Subjects | 10 1 5 6 7 4 9 2 3 g [r.]
A 2 3 8 3 7 g 10 I 6 4 0.44
I 10 2 4 7 9 3 I 8 5 6 0.03
f 10 2 4 7 9 3 I g 5 6 0.03
S 3 10 I 7 2 ) 4 9 8 3 0.85
(b) Comparison between texture features of FT aad visual feature uf regularity
Subjects | 1 10 5 6 7 4 9 3 2 8 A
b 2 3 & 3 7 9 10 ! 6 4 0.49
/s 10 2 4 7 9 3 1 8 5 6 0.09
A 10 2 4 7 9 3 1 8 5 6 0.09
J 5 10 ] 7 2 6 4 9 8 3 0.78
(¢) Comparison between texture features of FT and visual feature of directionality
Table A9.4 Comparison between texture features of WT with visual feature perception
Subjects | 3 8 9 2 6 5 10 4 1 7 Ir,|
i 10 2 4 7 9 3 ] 8 5 6 024
S 3 2 7 10 1 9 8 3 6 4 0.25
/s 2 5 9 8 3 1 7 ) 10 4 0.52
S 5 2 ] 7 g 9 3 10 6 4 0.07
fs 2 5 3 8 6 7 ] 6 10 4 0.55
fe 5 2 7 ! 3 8 10 ] 6 4 0.09
e 2 5 3 8 9 6 7 10 1 4 0.68
s 2 5 7 B 3 9 10 6 1 4 0.30
s 2 5 8 3 9 I 7 6 i0 4 0.53
S 2 5 1 8 7 9 3 10 6 4 0.0
s 2 300 3 8 9 7 6 ! ] 4 0.60
S 2 5 8 3 7 9 ! 10 6 4 0.43
S 2 5 3 8 9 7 10 ] 6 4 0.55
Fu 2 8 5 3 7 9 10 1 4 6 047
s 2 5 3 8 9 7 ] 6 10 4 0.35
F 2 5 8 7 9 3 i 10 6 4 0.30
Fi 2 5 3 g 9 7 6 ] 10 4 0.60
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S 2 3 1 8 9 10 6 ! 4 0.42
S 2 S 7 9 4 10 ] 6 0.53
fw 2 3 5 9 : 10 1 6 0.27
(a) Comparison between fexture leatures of WT and visual feature of coarseness

Subjects | 10 1 5 6 7 4 9 2 3 8 |r, |
/i 10 2 4 7 9 3 ! 3 S 6 0.03
s 3 2 7 10 ] 9 8 3 6 4 0.31
55 2 5 9 8 R} J 7 6 10 4 0.42
7y 5 2 ] 7 8 9 3 10 6 4 0.02
I 2 5 3 8 9 7 1 6 10 4 0.5
Js 5 2 7 1 3 g 10 9 6 4 0.04
I 2 5 3 8 9 6 7 10 ! 4 0.5
Js 2 5 7 8 3 9 10 6 [ 4 0.36
F 2 3 8 3 9 | 7 6 0 4 048
T 2 5 I 8 7 9 3 10 6 4 0.1
S 2 5 3 8 9 7 6 I 10 4 0.53
S 2 3 8 3 7 9 1 0 6 4 0.45
fa 2 5 3 8 9 7 10 1 6 4 0453
S 2 8 3 3 7 9 10 ] 4 6 0.55
Fis 2 5 3 B 9 7 1 6 10 4 05
T 2 5 g 7 9 3 I 10 6 4 0.38
fi 2 5 3 8 9 7 6 [ 10 4 0.53
S 2 3 3 7 8 9 10 6 l 4 0.39
o 2 8 3 5 7 9 4 10 ! 6 0.73
T w 2 7 8 3 3 9 4 10 1 6 0.65
(b) Comparison between texture features of WT and visual feature of regularity

Subjects | | 10 3 6 7 4 9 3 2 8 |7, |
5 10 2 4 7 9 3 1 8 5 6 0.09
/i 3 2 7 10 l 9 8 3 6 4 0.22
£ 2 5 9 8 3 | 7 6 0 4 0.43
fs S 2 1 7 8 9 3 10 6 4 0.02
s 2 3 3 8 9 7 I 6 10 4 0.5
fe S 2 7 l 3 8 10 9 6 4 0.04
I pA 5 3 8 9 6 7 10 1 4 0.34
Iy 2 5 7 8 3 9 10 6 i 4 043
I 2 5 8 3 9 i 7 6 10 4 0.48
S 2 3 ] & 7 9 3 10 6 4 0.12
I 2 3 3 8 9 7 6 1 10 4 0.54
fo 2 3 8 3 7 9 1 i0 6 4 0.48
Fi 2 3 3 8 9 7 (0 ] 6 4 0.49
Jis 2 8 S 3 7 9 10 1 4 6 0.6
Fis 2 b 3 3 9 7 1 6 10 4 0.3
S 2 5 8 7 9 l 1 10 6 4 043
S 2 5 3 8 9 7 6 l (0 4 0.34
Fis 2 3 3 7 8 9 10 6 ! 4 0.44
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fio 2 8 5 7 ] 4 10 1 6 0.77
S 2 7 3 3 9 4 10 I 6 0.7
(¢) Cumparison between texture features of WT and visual feature of directionality
Table A9.5 Comparison hetween texture features of GT with visual feature perception
Subjects | 3 8 9 2 6 5 10 4 | 7 |7 |
I 5 2 3 7 8 9 I 6 10 4 0.35
£ 3 2 3 8 9 6 10 4 7 ] 0.73
5 3 2 3 8 9 6 1 4 10 7 0.70
17 3 2 | 8 9 7 3 6 10 4 0.14
£ 5 2 3 3 9 6 7 10 ] 4 0.65
s 2 5 3 8 ] [ 6 10 7 4 0.66
/e 2 5 3 7 8 ] 9 6 10 4 0.30
Sy 5 2 3 g 9 7 6 10 4 1 061
Se 5 2 g 3 9 7 6 | 0 4 0.56
Fio 2 3 1 8 9 7 3 6 10 4 0.16
S 2 5 3 9 8 7 6 10 | 4 0.61
So 2 5 3 g 9 ] 7 6 10 4 0.56
S 2 3 3 8 7 9 1 10 6 4 0.50
S 2 S 3 g g 7 10 6 1 4 0.60
S 2 5 8 3 9 7 10 1 4 6 0.50
fs 2 5 8 9 3 | 7 10 6 4 0.50
S 2 5 3 8 9 7 10 1 6 4 0.55
S 2 5 3 8 9 7 10 1 6 4 0.55
Lo 2 5 k! 6 7 8 9 | 10 4 0.42
S 2 5 8 3 7 9 10 4 ] 6 0.43
I 2 8 3 5 9 7 1 4 10 6 0.58
I 2 5 3 8 7 9 6 I 10 4 0.52
- 2 3 8 5 9 7 | 4 10 6 0.59
S 2 5 3 8 7 9 ] 10 o 4 0.44
S 7 2 5 ] 6 g 3 9 10 4 0.24
S s 5 2 10 g k! 5 4 6 7 | 0.48
S 2 5 6 1 8 9 3 4 10 7 0.32
L 5 I 7 2 9 8 3 6 (o 4 0.19
Sz 5 2 6 R 9 3 4 10 7 1 0.58
S 5 2 10 2 I 3 9 7 6 4 0.21
fa 2 5 7 1 3 6 8 10 9 4 0.10
[ 3 2 7 8 10 3 6 9 4 1 0.14
I 5 2 7 g ! 9 6 10 4 3 0.18
S ] 2 3 7 9 8 10 3 4 6 0.26
S 2 3 7 9 8 6 10 3 4 { 0.18
I 2 5 7 1 10 8 3 6 9 3 0.24
S 2 3 g 7 1 9 3 10 6 4 0.43
S 2 5 8 10 3 9 7 6 4 ] 0.52
[ 2 8 9 3 5 7 10 I 4 6 0.62
i 2 | 9 8 7 3 5 10 4 6 0.15
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Appendix 10: Comparison Similarity Measurements
between Computational Texture Methods and Subjects

Contents:

Table A10.1 Comparison between compatatianal methods and subjects in similarity
measurements for query 1

Tahle A10.2 Comparisan between computatipnal methods and subjects i similarity
measurements for guery 2

Table A10.3 Comparison between computational methods and snbjects in similarity
measurements for query 3

Table A10.4 Comparison between computational methods and subjects in similarity
measurements for query 5

Table A10.5 Comparisen hetween computatinnal methods and subjects in similarity
measurements for query 8

Table A10.6 Comparison between computational methods and sobjects in similarity
measurements for query 9

Table A10.7 Comparison between computational methods and subjects in similarity
measurements for query 10

In Tables A10.1-A10.7, the first row s the ranking done by subjects and the
other rows are retrieval results calculating by five computational methods. The
numbers from column 2 to 10 in Tables A10.1-A10.7 are the D numbers of ranking
images in the order from most similar to least similar to each query image. The last
column is the coefficients of rank correlation between computation mcthods and

subjects.

Table A10.1 Comparison between computational methueds and subjects in similarity
measnrements for query 1

Subjects | S o | 7 6 4 | 2 9 3 s r,

GLCM 7 9 6 3 8 5 4 10 2 -0.13

MRSAR 10 4 6 9 7 3 3 5 2 0.25
FT 9 7 6 5 3 8 4 10 2 0.05
WwT 6 10 7 9 8 4 3 3 2 0.22
GT 6 10 7 4 9 8 3 5 2 0.32

Table A10.2 Comparisen hetween computational methods and subjects in similarity
measurements for query 2

Subjects 9 3 g 6 5 4 7 10 I r

GLCM 3 3 9 7 8 ] & 4 10 0.53

MRSAR 8 3 9 7 4 3 ! L0 6 0.60
FT 7 4 10 9 3 8 | 5 6 -0.18
W 3 8 3 7 9 i 10 6 4 0.35
GT 5 8 3 7 9 | 6 10 4 0.42

187




Appendices

Table A10.3 Comparison between computational methods and subjects in similarity
measurements for query 3

Subjects | 9 8 2 6 5 4 7 | 1o r,

GLCM | 9 7 8 | 5 6 2 4 10 0.45

MRSAR |9 R 7 1 10 3 6 5 2 0.15
FT 9 g 7 3 1 6 5 2 10 0.48
wT g 9 7 | 10 6 5 3 2 0.18
GT g 9 7 6 10 1 4 5 2 0.30

Table A10.4 Comparison between computational methods and subjects in similarity
measurements for query 5

Subjects 6 1 10 7 4 9 2 g 3 r,

GLOM 3 2 9 7 g ] & 4 10 -0.70

MRSAR 10 1 6 9 3 4 8 7 2 0.38
FT 6 1 8 7 3 9 10 4 2 0.42
wr g 3 9 7 2 ] 6 10 4 -0.70
GT g 2 3 7 9 | 6 10 4 -0.70

Table A10.5 Comparison between computatinnal methods and subjects in similarity
measurements for query 8

Subjects g 3 2 6 5 4 7 i 10 r,

GLCM 9 7 ) 3 1 5 4 2 10 0.43

MRSAR 3 9 7 4 1 10 6 2 5 0.25
FT 3 9 7 6 1 5 4 2 10 0.535
wT 3 ) 7 1 10 6 5 4 2 0.18
GT 3 9 7 6 10 1 5 4 2 0.32

Table A10.6 Comparison between computational methods and suhjects in similarity
measurements for query 9

Subjects 3 8 2 6 5 4 7 ] 10 ¥,

GLCM 7 ! 8 3 6 5 4 2 10 0.08

MRSAR 8 3 7 | 4 {1} 6 5 2 0.18
FTr 3 7 g8 4 | 6 5 2 10 0.40
wr 8 3 7 1 10 6 4 5 2 0.17
T g 3 7 10 6 I 4 5 2 0.22

Table A10.7 Comparison between computational methods and subjeets in similarity
measurements for query 10

Subjects 1 7 4 5 G 2 9 3 8 r,
GLCM 4 6 ] 8 7 9 3 5 2 0.35
MRSAR | 4 6 9 7 3 8 5 2 0.53
FT 4 ] 7 2 9 3 3 6 8 0.70
WwT 6 4 ! 7 9 3 8 5 2 0.43
GT 4 6 9 ] 7 3 8 3 2 0.33
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Appendix 11: Rank Correlation between Visual

Similarity Measurements and Visual Texture Features

Contents:

Tuble A11.1 Rank currelation between visual similarity measurements and visnal texture feature
fur query 1

Table Al1.2 Rank correlation between visnal similarity measurements and visual texture feature
for query 2

Table Al1.3 Rank correlation between visual similarity measuremenis and visual texture feature
for query 3

Table A11.4 Rauk correlation between visual similarity measurements and visual texture feature
for query 5

Table A11.5 Rank correlation between visnal similarity measurements and visual texture leature
for query 8

Table Al1.6 Rank carrelation between visual similarity measurements and visual texture feature
for query 9

Table Al1.7 Rank correlation between visua) similarity measurements and visual texture feature
for query 10

in Table AI1.1-A11.7, the first row is the ranking based on human similarity
measurements for query images and the other rows are the corresponding rankings for
query image based on coarseness, regularity and direetionality respectively. The
numbers from column 2 to 10 in Table All.1-A11.7 are the [D numbers of ranking
images in order from most similar 1o less similar for query images. The last column is
the coefficients of rank correlation between visual similarity measurements and the

corresponding visual texture feature.

Table A11.1 Rank correlation between visual similarity measurements and visual texture feature

for query 1
Subjects 5 10 6 4 2 9 3 8 r,
Coarseness 7 4 10 6 2 g 9 3 0.77
Regularity 3 6 10 7 4 9 2 3 8 0.93
Directienality 10 5 6 7 4 9 3 2 8 0.92

Table A11.2 Rank correlatinn between visual similarity measurements and visual texture feature

for query 2
[ Subjects 9 3 3 6 5 4 7w ol »
Coarseness 9 8 6 5 10 4 ] 3 7 0.53
Regularity 3 8 9 4 7 6 1 5 10 0.75
Directionality 3 8 9 4 7 6 3 10 i 0.82
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Table A11.3 Rank correlation between visual similarity measurements and visual texture feature

for query 3
Subjects 9 b 2 6 b 7 ! 10 ¥
Coarseness 8 9 2 6 3 10 4 | 7 0.87
Regularity 2 g 9 4 7 6 ] 5 10 0.75
Directionality | 9 2 8 4 7 6 5 10 | 0.83

Table A11.4 Rank corrclatiun between visual similarity measarements and visnal texture featnre

for query §
Subjects 6 ! 10 7 4 5 2 8 3 r,
Coarseness 6 10 4 2 9 ] 8 7 3 0.60
Regularity 1 10 6 7 4 9 2 3 ] 0.93
Directionality 6 7 4 10 9 ] 3 2 8 0.73

Table A11.5 Rauk correlation between visual similarity measurements and visual texcure feature

far query 8
Subjects 9 3 2 6 5 4 7 1 10 F
Coarseness 9 2 6 5 10 4 3 1 7 0.60
Regularity 3 2 9 4 7 6 1 5 10 0.77
Directionality 2 3 9 4 7 6 5 10 | 0.78

Table A11.6 Rank currelation between visual similarity measurements and visual texture feature

for query 9
[ Subjects r 3 8 [ 2 6 5 4 7 1 10 ¥,
Coarseness 2 8 6 5 10 4 ! 3 7 0.37
Regularity 4 7 2 3 8 6 ] 5 10 0.32
Directionality 3 2 4 3 7 6 5 10 ] 0.77

Table A11.7 Rank correlation between visual similarity measurements and visual texture feature
for query 10

Subjects 1 7 4 5 6 2 9 3 8 r,
Coarseness 4 5 6 ! 7 2 9 8 3 0.73
Regularity 5 ] 6 7 4 9 2 3 8 0.80

Directionality l 5 6 7 4 9 3 2 8 0.82
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Appendix 12: Comparison between Subjects and
Computational Texture Methods for Image Retrieval
after Classification

Contents:

Table A12.1 Camparison between computational methods and subjects in similarity
measurements for query [ after classification

Table A12.2 Comparison hetween computational methnds and subjects in similarity
measurements for query 2 after classifieation

Table A12.3 Comparison between cumputatienal methads and subjects in similarity
measurements for query 3 after classilication

Table A12.4 Camparison between computational methods and subjects in similarity
measurements for query S after classification

Table A12.5 Comparisun between enmputational methods and subjects in similarity
measurements for query 8 after classification

Table A12.6 Comparison between computatiunal methods and subjeets in similarity
mcasurements for query 9 alter classification

Table A12.7 Comparison between eomputational methods and subjeets in similarity
measurements for query 19 after classifieation

In Tables A12.1-A12.7, the first row is the ranking done by subjects and the
other rows are retrieval results calculating by five computational methods after
classification. The numbers from column 2 to 10 in Tables A12.1-A12.7 are the ID
nutmbers of ranking images in order from most similar to less similar for query
images. The last column is the coefficients of rank correlation between computation
methods and subjects.

Table A12,1 Comparison between computational methods and subjects in similarity
measurements for query 1 after classification

Subjects 3 10 7 6 & 2 9 3 8 ¥

GLCM 7 10 6 3 4 9 3 8 2 0.78

MRSAR [0 7 4 6 3 9 3 8 2 0.72
FT 7 10 6 5 4 9 3 8 2 0.78
wr 10 7 6 4 5 9 8 3 2 0.72
GT 10 7 6 4 3 9 8 3 2 072

Table A12.2 Comparisun between computational methods and subjects in similarity
measnrements for query 2 after classification

Subjects 9 3 8 6 3 4 7 10 [ ¥,

GLCM 3 9 8 5 6 4 7 1 10 0.93

MRSAR 8 3 9 4 5 6 7 1 10 0.83
FT 9 3 8 4 5 6 7 10 i 0.93
wr 8 3 9 3 6 4 7 [ 10 0.90
GT 3 3 9 5 6 | 4 7 | 10 0.90
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Table A12.3 Comparison between computational methods and subjects in similarity
measurements for query 3 afier classification

Subjects 9 8 2 6 5 4 7 1 10 r,
[ GLCM | 9 8 2 5 6 4 7 1 10 0.98
| MRSAR |9 8 2 4 6 5 7 | 10 095

FT 9 B 2 3 6 5 7 1 10 0.95
WT 8 9 2 6 5 4 7 1 10 0.98
GT g 9 2 6 4 5 7 10 ! 0.95

Table A12.4 Comparison between computational methods and sobjects in similarity
measorements for query 5 after classification

| subjects | 6 | o |7 [ 9 2 8 3 r,
GLCM 6 4 7 ] 10 3 2 9 8 0.73
MRSAR 6 4 10 1 7 9 3 8 2 0.82

FT 6 4 ] 7 10 9 3 8 2 0.82
Wwr 6 4 7 1 10 8 3 9 2 0.72
GT 6 4 7 1 10 8 2 3 9 0.73
Table A12.5 Comparison between computational methods and subjects in similarity
measurements for query 8 after classification
Subjects 9 3 2 6 5 4 7 1 10 ¥,
GLCM 9 3 2 6 3 4 7 1 10 1.00
MRSAR 3 9 2 4 6 5 7 1 10 0.93
FT 3 9 2 6 5 4 7 1 10 0.98
wr 3 9 2 6 5 4 7 | 10 0.98
r— GT 3 4 2 6 5 4 7 10 ] 0.97
Table A12.6 Comparison between computational methods and subjects in similarity
measurements for query 9 after classification
Subjects 3 8 2 6 5 4 7 1 10 r
GLCM 8 3 2 6 5 4 7 1 10 0.98
MRSAR 8 3 2 4 6 5 7 1 10 0.93
FT 3 8 2 4 6 5 7 ! 1D 0.95
WwT 8 3 2 6 5 4 7 I 10 0.98
GTr 8 3 2 6 5 4 7 10 | 0.97
Tahle A12.7 Comparison between computational methods and subjects in similarity
measurements for query 10 after classification
Subjects l 7 4 3 6 2 9 3 s r,
GLCM ] 7 4 6 5 8 9 3 2 0.83
MRSAR 1 7 4 6 3 9 3 g 2 0.88
FT ! 7 4 5 6 2 9 3 8 [.00
WT 1 7 6 3 4 9 3 8 2 0.83
GT 1 7 4 6 3 9 3 8 2 0.88
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For the purpose of texture analysis, the sample images are converted to grey-level images and normalized to the same size of 512x512

pixels. The number below each image is the ID number of the image in the 100 image dataset.

Appendix 13: One Hundred Test Wallpaper Images
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Appendix 14: Rankings for Nine Queries in One
Hundred Images by Subjects

Contents:

Table Al4.1 Rankings for query 1
Table A14.2 Rankings for query 2
Table A14.3 Raukings for query 3
Table Ald.d4 Rankings for query d
Table Al4.5 Rankings for query 5
Table A14.6 Raukings for query 6
Table A14.7 Rankings for query 7
Table A14.8 Rankings for query 8
Table Al4.9 Rankings for query 9

In Tables Al4.1-A14.9, the entry T, of table expresses the 1D number of

images in 100 image dataset ranked in the m™ position by the #™ subject, where the

suhscription n, m of T represents the number of row and column respectively.

m

Table A14.1 Rankings for query 1

Subjects Ranking results
Subject 1 79 100 36 20 49 78 57 18 i
Subject 2 14 18 74 L 79 46 5 4 20
Subject 3 79 46 20 36 57 18 14 74 44
Subject 4 36 44 18 20 11 100 57 49 38
Subject 3 20 79 74 46 38 55 11 36 100
Subject 6 74 38 79 20 11 14 100 18 44
Subject 7 100 74 79 57 44 24 20 18 44
Subject § q 14 36 44 46 53 74 79 100
Subject 9 55 74 100 18 14 135 73 49 38
Subject 10 20 74 38 79 11 14 100 18 44
Subjeet 11 38 20 74 79 37 49 46 55 5
Subject 12 20 46 55 11 14 74 100 79 44
Subject 13 55 79 37 38 3 4 46 16 12

Table A14.2 Rankings for query 2

Subjects Ranking results

Subject | 30 29 77 47 92 96 97 47 98
Subject 2 30 27 96 48 47 29 92 2 66
Subject 3 31 30 77 27 47 32 92 48 28
Subject 4 77 30 96 97 31 30 2 48 47
Subject 5 27 77 48 30 97 2 47 29 52
Subject 6 27 30 48 47 2 31 52 77 97
Subject 7 3 56 99 9l 98 80 77 66 52
Subject 8 17 64 52 27 47 1 13 67 2
Subject & 48 47 52 77 80 97 2 31 32
Subjeet 10 27 30 48 47 2 31 52 77 97
Subieet 11 30 47 2 52 77 97 98 27 66
Subject 12 80 62 53 77 52 64 47 2 18
Subject 13 66 52 28 2 56 16 27 I 76
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Table A14.3 Rankings for query 3

Appendices

Subjects Ranking results

Subject | 3 35 51 39 7 19 17 50 34
Subject 2 3 50 5 35 13 7 39 19 34
Subject 3 3 39 35 51 7 13 6 61 50
Subject 4 51 50 3 (3 7 39 19 35 94
Subject 5 13 3 7 35 34 39 50 51 19
Subject 6 3 13 39 51 33 34 50 7 9
Subject 7 13 5l 39 35 7 3 13 33 34
Subject 8 3 39 35 13 30 7 51 13 34
Subject 9 3 13 7 51 39 35 50 17 34
Subject 10 3 13 35 34 51 39 50 7 19
Subject L 13 35 31 50 3 39 7 34 19
Subject 12 3 30 51 7 39 t3 34 35 12
Subject 13 3 7 50 51 39 35 24 i3 39

Table A14.4 Rankings for query 4

Subjects Ranking results

Subject | 87 69 85 4 3 89 46 4 11
Subject 2 69 87 90 26 84 85 89 4 3
Subject 3 69 87 86 88 23 84 I3 75 81
Subject 4 85 90 87 34 86 69 4 89 88
Subject 5 69 87 88 86 85 84 15 22 23
Subject 6 69 87 86 23 81 38 84 83 11
Subject 7 59 85 84 86 87 59 11 15 60
Subject 8 15 85 49 87 69 79 11 69 t4
Subject 9 34 85 89 37 87 88 46 38 49
Subject 10 6% 87 86 23 1 81 88 84 85
Subject 11 69 87 86 835 23 100 73 4 5
Subject 12 5 69 79 13 49 85 4 11 22
Subject 13 36 69 87 88 34 83 78 14 15

Table A14.5 Rankings for query 5

Subjects Ranking results ]
Subject | 31 3 58 97 27 48 47 29 96
Subject 2 47 48 29 30 27 97 66 77 80
Subject 3 31 96 30 66 97 77 29 98 30
Subject 4 77 67 64 48 47 3l 30 29 98
Subject 5 3l 29 48 77 47 97 67 27 30
Subject 6 29 31 27 30 47 48 77 52 97
Subject 7 3l 21 91 92 96 64 66 77 28
Subject § 47 28 31 27 21 48 29 30 97
Subject 9 3l 27 48 2 52 66 58 47 28
Subject 10 3 21 27 30 47 48 77 52 97
Subject 11 31 47 77 97 29 30 I6 2 66
Subject 12 64 16 21 27 31 48 30 97 47
Subject 13 66 67 76 52 48 2 28 31 80
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Table A14.6 Rankings for query 6

Appendices

Subjects Ranking results

Subject | 95 74 37 49 100 79 45 44 | 75
Subject 2 74 49 55 10 4 5 73 0 1 15
Subject 3 37 33 95 4 24 38 44 49 74
Subject 4 37 95 49 15 35 46 24 13 8
Subject 5 37 35 95 74 10 18 44 75 49
Subject 6 37 33 49 75 74 44 ] 24 53
Subject 7 37 95 32 15 10 12 41 74 95
Subjeci 8 37 13 44 74 55 70 8] 95 49
Subject 9 37 70 gl 44 74 79 35 | 36
Subject 10 37 55 75 74 49 44 1 24 53
Subject 1| 37 74 55 14 93 70 75 49 I
Subjeet 12 37 ! 49 13 44 35 74 93 70
Subject 13 37 79 6 55 70 36 71 78 100

Table A14.7 Rankings for query 7

Subjects Raunking results

Subject | 63 93 33 62 56 75 99 42 32
Subject 2 32 41 54 53 63 ! o3 43 33
Subject 3 32 63 33 53 54 43 72 41 93
Subject 4 33 91 41 72 33 41 29 43 33
Subject 5 32 29 30 53 63 99 33 93 1
Subject 6 32 29 63 30 53 33 l 99 93
Subject 7 32 41 43 42 53 54 72 o8 63
Subject 8 56 64 82 IXi 92 48 32 33 ]
Subject 9 32 60 98 64 33 41 77 30 53
Subject 10 32 29 63 30 53 76 99 ] 93
Subject 11 63 32 75 33 [ 41 92 72 48
Subject 12 63 62 56 64 82 48 32 33 1
Subject 13 63 62 32 33 64 9l 99 72 93

Table A14.8 Rankings for query 8

Subjects Ranking results

Subject | I8 78 57 20 79 (1 4 5 46
Subject 2 44 18 14 100 74 49 35 3 4
Subject 3 44 18 14 57 74 75 81 79 100
Subject 4 100 18 57 36 38 (1 20 14 7
Subject 5 I8 44 14 74 100 78 70 10 75
Subject 6 44 18 14 100 74 37 70 75 99
Subject 7 18 14 36 44 75 74 57 g8 100
Subject 8 79 74 57 88 15 46 49 44 20
Subject 9 74 15 49 73 14 18 70 1] 71
Subject 10 44 I8 14 100 74 37 70 75 9%
Subject 11 74 18 44 49 14 37 70 31 12
Subject |2 14 18 44 100 36 23 73 79 1
Subject 13 44 i4 I8 74 100 73 79 78 4§
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Table A14.9 Rankings for query 9

Appendices

Subjects Ranking results

Subject | 79 20 i1 38 46 12 5 4 18
Subject 2 18 12 46 79 20 4 3 11 57
Subject 3 79 20 57 18 38 45 3 14 33
Subject 4 20 57 79 38 36 11 t8 46 100
Subject 5 79 38 20 35 46 3 4 11 37
Subject & 79 20 38 33 74 46 49 11 100
Subject 7 20 79 46 57 46 38 49 89 50
Subject 8 79 74 57 88 73 46 49 44 20
Subject 9 79 20 H Kh] 46 57 12 3 93
Subject 10 79 20 38 55 74 49 46 11 100
Subject |1 79 38 20 33 5 4 46 11 49
Subject 12 38 20 14 44 46 49 88 37 74
Subject 13 7% 20 38 46 36 15 12 75 1i
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Appendix 15: Image Rankings for Nine Queries in One
Hundred Images by Subjects

Contents:

Figure A15.1 Image rankings for query | by subjects
Figure A15.2 Image runkings for query 2 by subjects
Figure A13.3 Image rankings for query 3 by subjects
Figure AI5.4 Image rankings for query 4 by subjects
Figure A15.5 Image rankings for query 5 by subjects
Figure A15.6 Image rankings for query 6 by subjects
Figure A15.7 Image rankings for query 7 by subjects
Figure A15.8 Image rankings for query 8 by subjects
Figure A15.9 Image raukings for query 9 by subjects

fn Tables A13.1-A15.9, images are displayed in order of visual similarity from
most similar to least similar to each query image. The number above the image is the
ID number of the image in the 100 image dataset as seen in Appendix 13, and the

corresponding accumulated histogram is showed below each image.
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Figure A15.1 Image rankings for query 1 by subjects
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Figure A15.3 Image rankings for query 3 by subjects
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Figure A15.5 Image rankings for query 5 by subjects
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Appendix 16: Precision-Recall Graphs for Nine
Queries in One Hundred Images by Using Five

Computational Methods

Contents:

Figure A16.1 Precision-recall graphs for query 1
Figure A16.2 Precisian-recall graphs far query 2
Figure A16.3 Precision-recall graphs for query 3
Figure A16.4 Precisiou-recall graphs for query 4
Figure A16.5 Precisian-recall graphs for query §
Figure A16.6 Precision-recall graphs for query 6
Figure A16.7 Precision-recall graphs for query ?
Figure A16.8 Precision-recall graphs for query 8
Figure A16.9 Precision-recall graphs for query 9

In Figures A16.]1 - A16.9, the horizontal axis expresses recall and vertical axis
expresses the corresponding precision at standard recall points 10%. 20%.....100%.
The curve with (-*-) expresses precision-recall by using the method of GLCM, (-0-)
expresses MRSAR, (-x-) expresses FT, (- 0 -) expresses WT, and (-o-) expresses GT.
Figure(a) shows precision-recall before classification and Figure(b) shows precision-

recall after classification.

LA} Lh LB} te LE] a8 ar 3 i Al

(a) Befare classification (b) After classificalion

Figure A16.1 Precision-recall graphs far query 1
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'f
(a) Before ¢lassification {b) After classification
Figure A16.2 Precision-recall graphs for query 2
{a) Before classification {b) After classification
Figure A16.3 Precision-recall graphs for query 3
LB [T S R T B TR S S S TR T ' § s 4y sa &4 ee 2t er o»

{a) Before classification (b) After classification

Figure A16.4 Precision-recall graphs far query 4
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(a) Before classification (b) After classification

Figure A16.5 Precision-recall graphs for query §

(a) Before classification (b) After classification

Figure A16.6 Precision-recall graphs for query 6

2 41 ' T as 2 4 as
{a) Before classification (b) After classification

Figure A16.7 Precision-recall graphs for query 7
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{a) Before classification (b ) After classification

Figure A16.8 Precision-recall graphs for query 8

(a) Before classification (b) After classification

Figure A16.9 Precision-recall graphs for query 9
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