
applied
sciences

Article

Adaptive Dynamic Disturbance Strategy for
Differential Evolution Algorithm

Tiejun Wang 1,* , Kaijun Wu 2 , Tiaotiao Du 2 and Xiaochun Cheng 3,*
1 School of Mathematics and Computer Science Institute, Northwest Minzu University,

LanZhou 730030, China
2 School of Electronic and Information Engineering, LanZhou Jiao Tong University, LanZhou 730070, China;

wkj@mail.lzjtu.cn (K.W.); dtt_0909email@163.com (T.D.)
3 Department of Computer Science, Middlesex University, London NW4 4BT, UK
* Correspondence: wtj@mail.lzjtu.cn (T.W.); xiaochun.cheng@gmail.com (X.C.)

Received: 22 February 2020; Accepted: 9 March 2020; Published: 13 March 2020
����������
�������

Abstract: To overcome the problems of slow convergence speed, premature convergence leading
to local optimization and parameter constraints when solving high-dimensional multi-modal
optimization problems, an adaptive dynamic disturbance strategy for differential evolution algorithm
(ADDSDE) is proposed. Firstly, this entails using the chaos mapping strategy to initialize the
population to increase population diversity, and secondly, a new weighted mutation operator is
designed to weigh and combinemutation strategies of the standard differential evolution (DE).
The scaling factor and crossover probability are adaptively adjusted to dynamically balance the global
search ability and local exploration ability. Finally, a Gauss perturbation operator is introduced to
generate a random disturbance variation, and to accelerate premature individuals to jump out of
local optimization. The algorithm runs independently on five benchmark functions 20 times, and
the results show that the ADDSDE algorithm has better global optimization search ability, faster
convergence speed and higher accuracy and stability compared with other optimization algorithms,
which provide assistance insolving high-dimensionaland complex problems in engineering and
information science.

Keywords: differential evolution algorithm; adaptive dynamic disturbance strategy; Gauss
perturbation; benchmark functions

1. Introduction

The differential evolution (DE) algorithm was proposed by Storn and Price in 1995 [1,2]. It was
originally used to solve the Chebyshev polynomial problem, and is a bionic optimization algorithm
based on swarm evolution. DE’s unique population memory capability gives the algorithm a strong
global search capability and robust performance. As a highly efficient parallel search algorithm with
few controlled parameters, the DE algorithm has been widely used in neuron networks [3,4], power
systems [5,6], vehicle routing problems [7–11] and many other fields [12–20]. Like other intelligent
algorithms, however, the DE algorithm also has disadvantages such as precocity, strong parameter
dependence and difficulty in obtaining global optimum values for high-dimensional complex objective
functions [21–27]. Therefore, researchers proposed a number of improvement strategies for DE’s
existing shortcomings. First, to improve the existing parameters—Chiou et al. [28] proposed a
variable scaling factor differential evolution algorithm, which does not require mutation selection.
The type of operation, compared to the random scaling factor, has a large improvement in performance.
Secondly, adding new operations was suggested—Wang et al. [29] proposed a generalized inverse
differential evolution algorithm, which introduces generalized opposition-based learning based on

Appl. Sci. 2020, 10, 1972; doi:10.3390/app10061972 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1062-9051
https://orcid.org/0000-0002-8939-1874
http://www.mdpi.com/2076-3417/10/6/1972?type=check_update&version=1
http://dx.doi.org/10.3390/app10061972
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 1972 2 of 12

reverse learning techniques; this prevents the algorithm from falling into a local optimum to a certain
extent. Third, multiple groups—Ali et al. [30] divided the population into independent subgroups,
with each having different mutation and updating strategies, and introduced a multi-population
DE to solve large-scale global optimization problems. Finally, the fourth suggestion was the hybrid
algorithm—Trivedi et al. [31] proposed a hybrid evolutionary model based on genetic algorithms and
differential evolution. The binary variables evolved based on the genetic algorithm and the continuous
variables evolved based on the DE algorithm, which was used to solve a nonlinear, high-dimensional,
highconstrained and mixed-integeroptimization problem.

These classical improved algorithms improve the optimization performance of the DE algorithm
to a certain extent, but for some high-dimensional and complex problems, there are still disadvantages
of falling into the local optimum. Experiments show that the most critical operation in the DE algorithm
is differential variation, and the core of differential variation is the composition of differential vectors.
Most of the existing improved algorithms adopt adaptive adjustment parameters or randomly choose
a mutation strategy. Although the random strategy improves the global search ability of the algorithm
and population diversity, the evolutionary direction of the population is more difficult to control,
which may cause the population to deviate from the direction of the optimal value search, and an
excessive number of iterations will also lead to a decrease in the convergence rate of the algorithm.

In order to balance the global optimum and the local optimum, an adaptive dynamic disturbance
strategy differential evolution algorithm is proposed in this paper. On the basis of the adaptive
adjustment of policy level control parameters, it is added a dimensional variation disturbance strategy.
Through the theoretical analysis of algorithm factors and performance testing of standard test functions,
the results show that when the adaptive dynamic disturbance strategy for differential evolution
(ADDSDE) algorithm is used to solve complex optimization problems such as high-dimensions and
multi-peaks, the global optimal solution can be obtained with a minimum number of iterations, and
the algorithm has strong robustness.

2. Standard Differential Evolution Algorithms

The differential evolution (DE) algorithm is a group heuristic optimization algorithm based on
real coding. Its basic idea is to dynamically search the global optimal value through information
sharing between groups and the unique memory of each individual. The main operations include
mutation, crossover and selection. According to the loop iterations of mutation, crossover and selection
operations, the population continuously evolves towards the optimal value. The specific definition is
as follows:

Each population in the DE algorithm consists of N individuals, and is expressed as: X =

[x1, x2, . . . , xN], where N is the number of populations; each individual corresponds to the solution of
the problem to be solved, expressed as: xi(g) = (xi1(g), xi2(g), . . . , xiD(g)), where D is the dimension
of solution, xi j(g) is the j-th component of the i-th evolving individual in the g-th generation of
the population.

2.1. Initialization

The DE algorithm initializes the population according to the principle of randomness, and sets
the optimization interval for variables as [xmin, xmax]. The initialization operation is defined as follows

xi j(0) = xmin, j + rand() · (xmax, j − xmin. j) (1)

where rand () is a random number uniformly distributed in the interval [0,1].

2.2. Mutation Operation

In each generation of evolution, the DE algorithm generates variant individuals for each individual
xi j(g) in the population, based on the mutation operation. Currently, there are multiple versions of the

Appl. Sci. 2020, 10, 1972 3 of 12

variants, which are expressed as DE/a/b, and among them, a is the type of the mutation operator, which
is generally valued as rand and best: rand means randomly selecting an individual from the population
as the mutation base, and best represents selecting the optimal individual from the population as
the mutation base; while b represents the number of differential terms, which is generally an integer.
Common mutation operation schemes are as follows:

DE/rand/1:
ti, j(g) = xr1, j(g) + F · [xr2, j(g) − xr3, j(g)] (2)

DE/best/1:
ti, j(g) = xbest(g) + F · [xr1, j(g) − xr2, j(g)] (3)

DE/rand/2:

ti, j(g) = xr1, j(g) + F · [xr2, j(g) − xr3, j(g)] + F · [xr4, j(g) − xr5, j(g)] (4)

DE/best/2:

ti, j(g) = xbest(g) + F · [xr1, j(g) − xr2, j(g)] + F · [xr3, j(g) − xr4, j(g)] (5)

Among these, r1, r2, r3, r4, r5, i ∈ {1, 2, . . . , N}, and r1 , r2 , r3 , r4 , r5 , i, Ni is the number of
populations, xbest(g) is the optimal individual of the g-th generation and F is the scaling factor.

2.3. Crossover Operation

In order to increase the diversity of the population, the DE algorithm cross-processes the original
individual xi j(g) with the generated variant individual ti j(g) according to the crossover probability
CR, thereby generating a new variant individual vi j(g). Common crossovers have two crosses, defined
as follows:

vi j(g) =

ti j(g) rand < CR or j = r

xi j(g) otherwise
(6)

Among these: rand is the random number that is uniformly distributed in the interval [0,1], CR is
the crossover probability and r is the random integer in the interval [1, 2, . . . , D].

2.4. Selection Operation

In order to determine which individual evolved to adopt the greedy choice method for the
next-generation DE algorithm—that is, to compare the fitness function values of the mutant individual
vi j(g) with the original individual xi j(g)—the individual with higher fitness value is selected to enter
the next generation. The definition is as follows:

xi j(g + 1) =

vi j(g) f [vi j(g)] < f [xi j(g)]

xi j(g) otherwise
(7)

Among these: f (x) is the fitness function or objective function.

3. An adaptive Dynamic Disturbance Strategy for Differential Evolution Algorithm

The core idea of an improved differential evolution (DE) algorithm is to generate variation
disturbance according to vector difference, ensure the diversity of the population, balance global
search and local development ability, avoid precocity of population, accelerate the rate of population
convergence and improve the convergence accuracy. So, the adaptive dynamic disturbance strategy
for differential evolution (ADDSDE) algorithm mainly improves the algorithm from four aspects
of population initialization, parameter adaptation, mutation strategy and disturbance strategy, and
comprehensively improves the global optimization search ability and convergence speed of the

Appl. Sci. 2020, 10, 1972 4 of 12

algorithm. Firstly, the chaos mapping theory is used to initialize the population. The standard DE
algorithm is a random initialization population. Although it is beneficial to the diversity of population,
it is difficult to guarantee that the quality of the population individual and the efficiency of the
algorithm is reduced. Second, an adaptive adjustment mechanism for scaling factor F and crossover
probability CR is adopted to improve the convergence speed and stability of the algorithm. Third,
the mutation strategies DE/rand/1 and DE/best/1 are dynamically weighted, and balance the global
search and local search. Finally, the Gauss perturbation strategy is introduced to accelerate individuals
to jump out of the local optimum and improve the global search ability.

3.1. Population Initialization of Chaotic Maps

The initial population of the standard DE algorithm is randomly generated. The initial population
may gather in a certain area that deviates from the optimal value, thereby reducing the efficiency of
the algorithm. Chaos is a stochastic phenomenon generated by a deterministic nonlinear dynamical
system. It has the characteristics of equilibrium instability and mutation. It can go through all states
within a certain range without repetition—that is, the randomness, regularity and ergodicity of chaos.
The most commonly used chaotic model is a one-dimensional Logistic nonlinear mapping [32], and its
optimization formula is:

yk+1 = µyk(1− yk) (8)

In this formula, µ is the control parameter whose value is a normal number, and k = 0, 1, 2 . . . is
the number of iterations. When the value of µ is determined, given the initial value y0 ∈ (0, 1), the
population sequence y1, y2, . . . yk is obtained after several iterations. According to experience, when
µ = 4, the system presents full chaos phenomenon, and there is no stable solution.

Randomly rand() generate a D-dimensional vector y0 = (y01, y02, . . . , y0D), obtain NP chaotic
vectors yq = (yq1, yq2, . . . , yqD), q = 0, 1, 2, . . . , NP − 1 according to Equation (8), and substitute
the components of NP vectors into xqj = xmin, j + yqj · (xmax, j − xmin, j), q = 0, 1, . . . , NP − 1, and
j = 1, 2, . . . , D, respectively. At this point, the initial population after chaos is obtained, the objective
function value of the initial population is calculated, and the optimal N vectors are selected as the
initial solution.

3.2. Adaptive Adjustment Strategies for Zoom Factor F and Crossover Probability CR

In the DE algorithm, the control parameters that have a great influence on the optimization
performance of the algorithm are the zoom factor F and the crossover probability CR. The zoom factor
F affects the search range of the algorithm. The larger the value of F, the higher the diversity of the
population and the better the global search ability, but the convergence speed of the algorithm
will be reduced accordingly; and the smaller the value of F, the better the retention of good
individuals, and the faster the convergence speed of the algorithm, but it is easy to fall into the
local optimum—cross-probability CR determines the search direction of the algorithm. The smaller the
value of CR, the better the global search ability of the algorithm. Otherwise, it will help improve the
local development ability.

The control of the parameters needs different adjustments in different periods. Therefore, two
relatively simple parameter adaptive strategies are proposed:

F = Fmax − (Fmax − Fmin)(
g

Gmax
) (9)

Among them, Fmax is the maximum value of the zoom factor and Fmin is the minimum value
of the zoom factor. This article takes Fmax = 0.9, Fmin = 0.2, g is the g-th generation and Gmax is the
maximum number of iterations [33].

CR = CRmin + (CRmax −CRmin)(
g

Gmax
)

2
(10)

Appl. Sci. 2020, 10, 1972 5 of 12

This takes CRmax = 0.9, CRmin = 0.2.

3.3. Weighted Dynamic Mutation Strategy

The core idea of the DE algorithm lies in how to balance global exploration capabilities and local
development capabilities. The standard DE algorithm uses the mutation strategy of Equation (2).
Individuals that are mutated are randomly selected individuals in the current population. This
increases the diversity of the mutated individuals and improves the overall exploration ability, but
the randomness largely influences the direction of evolution, which may lead to the evolution of the
population deviating from the optimal value, as well as a reduction in the convergence speed of the
algorithm. Equation (3) makes use of the optimal individual as the base of variation, which ensures
the optimization direction of evolution, improves the local development capability and accelerates
the convergence speed of the algorithm. But the optimal individuals are too single, which greatly
reduces the diversity of the population, and makes the algorithm easy to fall into local optimum.
In order to better balance the algorithm’s global exploration and local development capabilities, we
improved Equation (3) and weightily combined it with Equation (2) to propose a new weighted
dynamic mutation strategy:

ti, j(g) = µ[xr1, j(g) + F · (xr2, j(g) − xr3, j(g))]+

(1− µ)[xr1, j(g) + F · (rand · xbest(g) − xr1, j(g))]
(11)

µ = exp(−
√

g) (12)

Among them, µ ∈ [0, 1], r1, r2, r3 ∈ [1, 2, . . . , NP] and r1 , r2 , r3 , i, while rand is the
random number evenly distributed in the interval [0,1] and xbest(g) is the optimal solution of the g-th
generation population.

From Equation (12), we can see that the weighted operator µ is a monotonically decreasing
function. After weighted combination, the early stage of mutation operation focuses on the overall
exploration, and the later stage focuses on local development, making the algorithm better balanced
in global exploration and local development, which is not only conducive to the diversity of the
population, but also increases the convergence speed of the algorithm. The improvement of Equation (3)
mainly considers the singleness of the population optimal solution. Using a random selection of the
optimal solution and performing a difference with any individual of the population can increase the
diversity of the population, and can randomly adjust the evolutionary direction of the population,
making the population evolve towards the optimal direction.

3.4. Disturbance Mutation Strategy

Evolutionary algorithms are prone to fall into premature phenomenon in the late iterations.
For the DE algorithm, at the later stage of the iteration, the differences between population individuals
are gradually narrowed, and the diversity of populations is drastically reduced, thus forming the
“aggregation” phenomenon. If at this time populations findthe global optimal solution, it has no
impact on the algorithm; if it the local optimal solution is found, it is not conducive to the further
exploration of the population, and cann’t find the global optimal solution. To describe this state, the
following precocious definition is given:

Definition 1 variance of population fitness is shown as follows:

σ2 =
1
N

N∑
i=1

∣∣∣ fi − favg
∣∣∣2 (13)

Among these, fi is the current individual fitness value, favg is the average fitness value of the
individual and N is the number of populations. From the equation, we can see that the smaller the
value of σ2, the more the population gathers together easily. Otherwise, it is in a stage of random search.

Appl. Sci. 2020, 10, 1972 6 of 12

Definition 2 population precocious cardinality, if σ2 < det and

fbest(g) > δ (14)

Then we can say that the individual is premature at the g-th generation.
Among these, fbest(g) is the optimal value for the g-th generation, det is the variance threshold

value and δ is precision value. This algorithm setting det = 1 × 10−6, δ = 1 × 10−6.
If there is a precocious phenomenon in the g-th generation, a new mutation operation is carried

out on individuals, and the mutation strategy is as follows:

xi(g) = µxr1, j(g) + (1− µ)xbest(j) + β(xr2, j(g) − xr3, j(g)) (15)

β = F(1 + 0.5η) (16)

Among these, the weighting coefficient µ is the same as Equation (8), and r1, r2, r3, i are a random
number of interval [1,N]. N is the number of populations, and j is a random number in interval [1,D].
xbest(j) is the optimum of the i-th population, while η is the random variable submitted to Gauss(0, 1).

From Equation (15), we can see that the new mutation strategy comprises two parts: the
µxr1, j(g) + (1−µ)xbest(j) part is weighted by random and optimal individuals, and use the information
of the optimal individual to guide other individuals to evolve in the direction of optimization; while
the β(xr2, j(g) − (xr3, j)(g)) part uses Gaussian perturbation vector differences to randomly generate
perturbation mutates in order to accelerate individuals to jump out of the local optimum and improve
the overall search ability.

3.5. Algorithm for Implementation Process

Step 1 Initialize each parameter. The number of populations N, the dimension of the solution D,
the maximum evolutionary generation Gmax, the upper and lower bounds of the individual
variables xmax, xmin, the maximum and minimum of the scaling factor Fmax, Fmin, the maximum
and minimum of the mutation probability CRmax, CRmin, the precocious cycle Q, the precision
value δ and the variance threshold value det.

Step 2 Initialize the population. The chaotic mapping strategy was used to generate NP initial
populations, and the fitness values of the individuals were calculated and ranked in order of
magnitude. From the NP populations, the top N fitness values were selected as the initial
population of the algorithm.

Step 3 Calculate F, CR, µ according to Equations (9), (10) and (12).
Step 4 Mutation operation. Calculate variant individuals ti, j(g) according to Equation (11).
Step 5 Crossover operation. Find a new variant individual. vi, j(g) according to Equation (6).
Step 6 Selection operation. The next generation xi, j(g + 1) is obtained from Equation (7).
Step 7 Update the local and global optimal values.
Step 8 Check whether the population is precocious or not; if it isprecocious, the mutation operation

will be carried out again. If σ2 < det and fbest(g) > δ, for j = 1 to D, Calculate new individuals
xi(g) according to Equations (15) and (16), and update the optimal value.

Step 9 Repeat Steps 4–8 for N times.
Step 10 If g does not reach the maximum number of iterations Gmax, then go to Step 3, otherwise

output xbest, fbest.

4. Simulation Experiment and Algorithm Performance Analysis

4.1. Test Function and Comparison of Algorithms

To verify the feasibility, effectiveness and overall optimization of the algorithm, this algorithm was
compared with the standard differential evolution (DE) algorithm, the well-known SADE algorithm [34]

Appl. Sci. 2020, 10, 1972 7 of 12

and the CAPSO algorithm [35]. All the algorithms went through 30 independent tests on five benchmark
functions with different characteristics to compare the performance of each algorithm in terms of
convergence speed, the accuracy of the optimal solution and their robustness. Among them, f1 is
the Sphere simple unimodal function, f2 is the Rosenbrock non-convex and ill-conditioned unimodal
function and f3 is the Rastrigin multi-peak function. There are approximately 10 n local minimum
points in the interval of variables. f4 is the Griewank multi-peak function, and there are a large number
of local minimum points. f5 is the Ackley non-convex and ill-conditioned multi-modal function.
The test function description is shown in Table 1.

Table 1. Test Functions.

Type Function
Name Formula Range of

Optimization
Optimal

Value

Unimodal
Sphere f1(x) =

n∑
i=1

x2
i [−100,100] 0

Rosenbrock f2(x) =
n∑

i=1

[
100(xi+1 − xi)

2 + (xi − 1)2
]

[−10,10] 0

Multi-peak
Rastrigin f3(x) =

n∑
i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.12,5.12] 0

Griewank f4(x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos(xi√
t
) + 1 [−600,600] 0

Ackley f5(x) = −20 exp(−0.2

√
n∑

i=1
x2

i) − exp(1
n

n∑
i=1

cos(2πxi)) + 20 + e [−32,32] 0

4.2. Analysis of Results

This experiment was programmed using Matlab. It was run 20 times independently on a HP
PC with Intel(R) Core(TM) i5-2450M CPU, 2.50 GHz RAM 4.00 GB. The algorithm parameters were
set as follows: The adaptive dynamic disturbance strategy for differential evolution (ADDSDE)
algorithm, population number N = 50, Fmax = 0.9, Fmin = 0.2, CRmax = 0.9, CRmin = 0.2, Q = 15,
δ = 1 × 10−6, the parameter settings of the comparison algorithm DE, SADE and CAPSO are the same
as the original. Consider the cases when variable dimension D = 30 and D = 50. The number of
iterations is appropriately changed according to the complexity of each test function. The optimal
value, average optimal value and standard deviation of each algorithm are shown in Tables 2 and 3,
and the convergence curve of each algorithm is shown in Figure 1.

As can be seen from Tables 2 and 3, the optimization result of the ADDSDE algorithm is significantly
higher than that of the other three algorithms. For the five standard test functions selected, the ADDSDE
algorithm can obtain the optimal value 0, except f5 = Ackley function. The convergence accuracy is
optimal. The standard deviation shows that the ADDSDE algorithm is very stable. For ill-conditioned
high-dimensional complex functions, other algorithms cannot get the theoretical optimal value,
some algorithms are far from the theoretical optimal value, and the stability of the algorithm is not
satisfactory. From Tables 2 and 3, it can be seen that with the increase of the dimension of the solution,
the evolutionary abilities of other algorithms also decrease accordingly with different degrees.

Analyzing the convergence curve of each algorithm in Figure 1, we know that the convergence
curve of ADDSDE converges to the optimal solution almost at the speed of vertical descent. Additionally,
its optimization ability is strong, and the convergence accuracy is high. Even for high-dimensional
solutions, it can be quickly fixed to the optimal position. Due to the complexity of the function and
the high dimension of the problem, the other comparison algorithms are easily trapped in the local
optimumand the convergence speed is also slow.

Appl. Sci. 2020, 10, 1972 8 of 12

Table 2. 30-dimensional function optimization results.

Function Algorithm Optimal Value Average Optimum Standard Deviation

f1

DE 8.10 × 10−6 1.02 × 10−5 2.84 × 105

SADE 1.10 × 10−11 3.67 × 10−11 8.41 × 10−12

CAPSO 5.72 × 10−13 1.29 × 10−12 4.91 × 10−13

ADDSDE 0 0 0

f2

DE 2.57 × 101 3.59 × 101 7.96 × 100

SADE 1.83 × 101 2.65 × 101 6.33 × 100

CAPSO 5.42 × 100 7.56 × 100 1.41 × 100

ADDSDE 0 0 0

f3

DE 7.94 × 101 1.19 × 102 2.91 × 101

SADE 3.01 × 101 3.59 × 101 6.21 × 100

CAPSO 2.10 × 101 2.53 × 101 5.31 × 100

ADDSDE 0 0 0

f4

DE 0 3.69 × 10−4 1.65 × 10−3

SADE 0 0 0
CAPSO 8.62 × 10−1 9.52 × 10−1 6.80 × 10−2

ADDSDE 0 0 0

f5

DE 1.10 × 10−9 9.86 × 10−9 1.37 × 10−8

SADE 5.48 × 10−11 6.55 × 10−11 4.39 × 10−11

CAPSO 3.05 × 100 3.48 × 100 2.61 × 100

ADDSDE 9.56 × 10−16 9.56 × 10−16 0

Table 3. 50-dimensional function optimization results.

Function Algorithm Optimal Value Average Optimum Standard Deviation

f1

DE 1.20 × 10−4 1.11 × 10−3 1.29 × 10−3

SADE 1.79 × 10−5 2.55 × 10−5 8.47 × 10−6

CAPSO 4.11 × 102 6.13 × 10−2 1.65 × 102

ADDSDE 0 0 0

f2

DE 4.48 × 101 8.94 × 101 4.62 × 101

SADE 4.70 × 101 6.44 × 101 1.64 × 101

CAPSO 1.15 × 102 2.45 × 102 1.09 × 102

ADDSDE 0 0 0

f3

DE 3.45 × 102 3.62 × 102 1.98 × 101

SADE 1.67 × 102 1.94 × 102 1.54 × 101

CAPSO 1.16 × 102 1.63 × 102 2.98 × 101

ADDSDE 0 0 0

f4

DE 5.17 × 10−4 3.85 × 10−2 3.98 × 10−2

SADE 2.97 × 10−5 4.53 × 10−5 2.37 × 10−5

CAPSO 5.92 × 101 9.83 × 101 2.52 × 101

ADDSDE 0 0 0

f5

DE 1.01 × 10−3 1.13 × 10−3 8.75 × 10−4

SADE 4.34 × 10−7 1.02 × 10−6 6.11 × 10−7

CAPSO 3.76 × 100 3.98 × 100 3.71 × 10−1

ADDSDE 9.56 × 10−16 9.56 × 10−16 0

Appl. Sci. 2020, 10, 1972 9 of 12

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13

(a) (b)

(c) (d)

(e) (f)

Figure 1. Cont.

Appl. Sci. 2020, 10, 1972 10 of 12

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 13

(g) (h)

(i) (j)

Figure 1. Convergence curve of each algorithm: (a) Function f1 = Sphere when D = 30; (b) Function f2
= Rosenbrock when D = 30; (c) Function f3 = Rastrigin when D = 30; (d) Function f4 = Griewank when
D = 30; (e) Function f5 = Ackley when D = 30; (f) Function f1 = Sphere when D = 50; (g) Function f2 =
Rosenbrock when D = 50; (h) Function f3 = Rastrigin when D = 50; (i) Function f4 = Griewank when D
= 50; and (j) Function f5 = Ackley when D = 50.

Analyzing the convergence curve of each algorithm in Figure 1, we know that the convergence
curve of ADDSDE converges to the optimal solution almost at the speed of vertical descent.
Additionally, its optimization ability is strong, and the convergence accuracy is high. Even for
high-dimensional solutions, it can be quickly fixed to the optimal position. Due to the complexity of
the function and the high dimension of the problem, the other comparison algorithms are easily
trapped in the local optimumand the convergence speed is also slow.

5. Conclusions

For the solution of high-dimensional complex optimization problems, many improved DE
algorithms still have many deficiencies in solution accuracy, speed, and so on. For this reason, this
paper uses the advantages of the standard differential evolution (DE) mutation strategy to improve
and combine mutation strategies based on chaotic mapping theory. The control parameters are
adaptively weighted, and Gaussian perturbation strategies are adopted in the later iterations to
prevent prematureness and jumping out of local optima, thus constituting an adaptive dynamic
disturbance strategy differential evolution algorithm (ADDSDE). In order to verify the feasibility,
effectiveness and optimization of the algorithm, five standard tests were selected for performance
testing and compared with the DE algorithm, the SADE algorithm and the CAPSO algorithm.

Figure 1. Convergence curve of each algorithm: (a) Function f1 = Sphere when D = 30; (b) Function
f2 = Rosenbrock when D = 30; (c) Function f3 = Rastrigin when D = 30; (d) Function f4 = Griewank
when D = 30; (e) Function f5 = Ackley when D = 30; (f) Function f1 = Sphere when D = 50; (g) Function
f2 = Rosenbrock when D = 50; (h) Function f3 = Rastrigin when D = 50; (i) Function f4 = Griewank
when D = 50; and (j) Function f5 = Ackley when D = 50.

5. Conclusions

For the solution of high-dimensional complex optimization problems, many improved DE
algorithms still have many deficiencies in solution accuracy, speed, and so on. For this reason, this
paper uses the advantages of the standard differential evolution (DE) mutation strategy to improve
and combine mutation strategies based on chaotic mapping theory. The control parameters are
adaptively weighted, and Gaussian perturbation strategies are adopted in the later iterations to prevent
prematureness and jumping out of local optima, thus constituting an adaptive dynamic disturbance
strategy differential evolution algorithm (ADDSDE). In order to verify the feasibility, effectiveness and
optimization of the algorithm, five standard tests were selected for performance testing and compared
with the DE algorithm, the SADE algorithm and the CAPSO algorithm. Finally, the simulation results
show that when the algorithm is applied to high-dimensional and complex optimization problems, it
can still quickly converge to the theoretical optimal value. It has a strong ability of global exploration
and jumping out of the local optimal. Besides, the algorithm is stable and has a certain reference value
and promotion value, which provide assistance in solving high-dimensionaland complex problems in
engineering and information science.

Appl. Sci. 2020, 10, 1972 11 of 12

Author Contributions: T.W. designed the main idea, the chaotic mapping strategy and the adaptive adjustment
strategies of the manuscript. K.W. designed the weighted dynamic mutation Strategy and disturbance mutation
strategy of the manuscript. T.D. implemented the algorithm and analyzed the experimental results. X.C. revised
the manuscript and perfected the language of the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was fundedby the National Social Science Foundation of China (No. 15CGL001).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Storn, R.; Price, K. Differential evolution a simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

2. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Natural
Computing Series; Springer: New York, NY, USA, 2005.

3. Bas, E. The Training Of Multiplicative Neuron Model Based Artificial Neural Networks With Differential
Evolution Algorithm For Forecasting. J. Artif. Intell. Soft Comput. Res. 2016, 6, 5–11. [CrossRef]

4. Bao, J.; Chen, Y.; Yu, J.S. A regeneratable dynamic differential evolution algorithm for neural networks with
integer weights. Front. Inf. Technol. Electron. Eng. 2010, 11, 939–947. [CrossRef]

5. Lakshminarasimman, L.; Subramanian, S. A modified hybrid differential evolution for short-term scheduling
of hydrothermal power systems with cascaded reservoirs. Energy Convers. Manag. 2008, 49, 2513–2521.
[CrossRef]

6. Xu, Y.; Dong, Z.Y.; Luo, F.; Zhang, R.; Wong, K.P. Parallel-differential evolution approach for optimal
event-driven load shedding against voltage collapse in power systems. IET Gener. Transm. Distrib. 2013, 8,
651–660. [CrossRef]

7. Berhan, E.; Krömer, P.; Kitaw, D.; Abraham, A.; Snavel, V. Solving Stochastic Vehicle Routing Problem with
Real Simultaneous Pickup and Delivery Using Differential Evolution. In Innovations in Bio-inspired Computing
and Applications, Proceedings of the 4th International Conference on Innovations in Bio-Inspired Computing and
Applications, IBICA 2013, Ostrava, Czech Republic, 22–24 August 2013; Springer: Berlin/Heidelberg, Germany,
2014; Volume 237, pp. 187–200.

8. Teoh, B.E.; Ponnambalam, S.G.; Kanagaraj, G. Differential evolution algorithm with local search for capacitated
vehicle routing problem. Int. J. Bio Inspired Comput. 2015, 7, 321–342. [CrossRef]

9. Pu, E.; Wang, F.; Yang, Z.; Wang, J.; Li, Z.; Huang, X. Hybrid Differential Evolution Optimization for the
Vehicle Routing Problem with Time Windows and Driver-Specific Times. Wirel. Pers. Commun. 2017, 95,
1–13. [CrossRef]

10. Lai, M.Y.; Cao, E.B. An improved differential evolution algorithm for vehicle routing problem with
simultaneous pickups and deliveries and time windows. Eng. Appl. Artif. Intell. 2010, 23, 188–195.

11. Al-Turjman, F.; Deebak, B.D.; Mostarda, L. Energy Aware Resource Allocation in Multi-Hop Multimedia
Routing via the Smart Edge Device. IEEE Access 2019, 7, 151203–151214. [CrossRef]

12. Jazebi, S.; Hosseinian, S.H.; Vahidi, B. DSTATCOM allocation in distribution networks considering
reconfiguration using differential evolution algorithm. Energy Convers. Manag. 2011, 52, 2777–2783.
[CrossRef]

13. Wu, K.J.; Li, W.Q.; Wang, D.C. Bifurcation of modified HR neural model under direct current. J. Ambient
Intell. Humaniz. Comput. 2019. [CrossRef]

14. Kotb, Y.; Ridhawi, I.A.; Aloqaily, M.; Baker, T.; Jararweh, Y.; Tawfik, H. Cloud-Based Multi-Agent Cooperation
for IoT Devices Using Workflow-Nets. J. Grid Comput. 2019, 17, 625–650. [CrossRef]

15. Reddy, S.S. Optimal power flow using hybrid differential evolution and harmony search algorithm. Int. J.
Mach. Learn. Cybern. 2018, 10, 1–15. [CrossRef]

16. Sangaiah, A.K.; Medhane, D.V.; Han, T.; Hossain, M.S.; Muhammad, G. Enforcing Position-Based
Confidentiality with Machine Learning Paradigm Through Mobile Edge Computing in Real-Time Industrial
Informatics. IEEE Trans. Ind. Inform. 2019, 15, 4189–4196. [CrossRef]

17. Sangaiah, A.K.; Samuel, O.W.; Li, X.; Abdel-Basset, M.; Wang, H. Towards an efficient risk assessment in
software projects–Fuzzy reinforcement paradigm. Comput. Electr. Eng. 2017. [CrossRef]

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1515/jaiscr-2016-0001
http://dx.doi.org/10.1631/jzus.C1000137
http://dx.doi.org/10.1016/j.enconman.2008.05.021
http://dx.doi.org/10.1049/iet-gtd.2013.0385
http://dx.doi.org/10.1504/IJBIC.2015.072260
http://dx.doi.org/10.1007/s11277-017-4107-5
http://dx.doi.org/10.1109/ACCESS.2019.2945797
http://dx.doi.org/10.1016/j.enconman.2011.01.006
http://dx.doi.org/10.1007/s12652-019-01478-w
http://dx.doi.org/10.1007/s10723-019-09485-z
http://dx.doi.org/10.1007/s13042-018-0786-9
http://dx.doi.org/10.1109/TII.2019.2898174
http://dx.doi.org/10.1016/j.compeleceng.2017.07.022

Appl. Sci. 2020, 10, 1972 12 of 12

18. Qiu, T.; Wang, H.; Li, K.; Ning, H.; Sangaiah, A.K.; Chen, B. SIGMM: A Novel Machine Learning Algorithm
for Spammer Identification in Industrial Mobile Cloud Computing. IEEE Trans. Ind. Inform. 2019, 15,
2349–2359. [CrossRef]

19. Jamdagni, A.; Tan, Z.Y.; He, X.J.; Nanda, P.; Liu, R.P. RePIDS: A Multi Tier Real-time Payload-Based Intrusion
Detection System. Comput. Netw. 2013, 57, 811–824. [CrossRef]

20. Autili, M.; Mostarda, L.; Navarra, A.; Tivoli, M. Synthesis of decentralized and concurrent adaptors for
correctly assembling distributed component-based systems. J. Syst. Softw. 2008, 81, 2210–2236. [CrossRef]

21. Zhang, S.; Liu, Y.; Li, S.; Tan, Z.; Zhao, X.; Zhou, J. FIMPA: A Fixed Identity Mapping Prediction Algorithm
in Edge Computing Environment. IEEE Access 2020, 8, 17356–17365. [CrossRef]

22. Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an Intrusion Detection System Using a Filter-Based
Feature Selection Algorithm. IEEE Trans. Comput. 2016, 65, 2986–2998. [CrossRef]

23. Aljeaid, D.; Ma, X.; Langensiepen, C. Biometric identity-based cryptography for e-Government environment.
In Proceedings of the Science & Information Conference, London, UK, 27–29 August 2014; IEEE: Piscataway,
NJ, USA, 2014; pp. 581–588.

24. Ramirez, R.C.; Vien, Q.T.; Trestian, R.; Mostarda, L.; Shah, P. Multi-path Routing for Mission Critical
Applications in Software-Defined Networks. In Proceedings of the International Conference on Industrial
Networks and Intelligent Systems, Da Nang, Vietnam, 27–28 August 2018; Springer: Cham, Switzerland, 2018.

25. Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-Adapting Control Parameters in Differential
Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 2006, 10,
646–657. [CrossRef]

26. Wainwright, M.J. Structured Regularizers for High-Dimensional Problems: Statistical and Computational
Issues. Annu. Rev. Stat. Its Appl. 2014, 1, 233–253. [CrossRef]

27. Sun, G.; Peng, J.; Zhao, R. Differential evolution with individual-dependent and dynamic parameter
adjustment. Soft Comput. 2017, 22, 1–27. [CrossRef]

28. Chiou, J.P.; Chang, C.F.; Su, C.T. Variable scaling hybrid differential evolution for solving network
reconfiguration of distribution systems. IEEE Trans. Power Syst. 2005, 20, 668–674. [CrossRef]

29. Wang, H.; Wu, Z.; Rahnamayan, S. Enhanced opposition-based differential evolution for solving
high-dimensional continuous optimization problems. Soft Comput. 2011, 15, 2127–2140. [CrossRef]

30. Ali, M.Z.; Awad, N.H.; Suganthan, P.N. Multi-population differential evolution with balanced ensemble of
mutation strategies for large-scale global optimization. Appl. Soft Comput. 2015, 33, 304–327. [CrossRef]

31. Trivedi, A.; Srinivasan, D.; Biswas, S.; Reindl, T. A genetic algorithm—Differential evolution based hybrid
framework: Case study on unit commitment scheduling problem. Inf. Sci. 2016, 354, 275–300. [CrossRef]

32. Ou, C.M. Design of block ciphers by simple chaotic functions. Comput. Intell. Mag. IEEE 2008, 3, 54–59.
[CrossRef]

33. Shen, Y.; Wang, Y. Operating Point Optimization of Auxiliary Power Unit Using Adaptive Multi-Objective
Differential Evolution Algorithm. IEEE Trans. Ind. Electron. 2016, 64, 115–124. [CrossRef]

34. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm with Strategy Adaptation for
Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [CrossRef]

35. Ying, W.; Zhou, J.; Lu, Y.; Qin, H.; Wang, Y. Chaotic self-adaptive particle swarm optimization algorithm for
dynamic economic dispatch problem with valve-point effects. Energy Convers. Manag. 2011, 38, 14231–14237.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TII.2018.2799907
http://dx.doi.org/10.1016/j.comnet.2012.10.002
http://dx.doi.org/10.1016/j.jss.2008.04.006
http://dx.doi.org/10.1109/ACCESS.2020.2966399
http://dx.doi.org/10.1109/TC.2016.2519914
http://dx.doi.org/10.1109/TEVC.2006.872133
http://dx.doi.org/10.1146/annurev-statistics-022513-115643
http://dx.doi.org/10.1007/s00500-017-2626-3
http://dx.doi.org/10.1109/TPWRS.2005.846096
http://dx.doi.org/10.1007/s00500-010-0642-7
http://dx.doi.org/10.1016/j.asoc.2015.04.019
http://dx.doi.org/10.1016/j.ins.2016.03.023
http://dx.doi.org/10.1109/MCI.2008.919074
http://dx.doi.org/10.1109/TIE.2016.2598674
http://dx.doi.org/10.1109/TEVC.2008.927706
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Standard Differential Evolution Algorithms
	Initialization
	Mutation Operation
	Crossover Operation
	Selection Operation

	An adaptive Dynamic Disturbance Strategy for Differential Evolution Algorithm
	Population Initialization of Chaotic Maps
	Adaptive Adjustment Strategies for Zoom Factor F and Crossover Probability CR
	Weighted Dynamic Mutation Strategy
	Disturbance Mutation Strategy
	Algorithm for Implementation Process

	Simulation Experiment and Algorithm Performance Analysis
	Test Function and Comparison of Algorithms
	Analysis of Results

	Conclusions
	References

