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ABSTRACT
The aim of requirements-based testing is to generate test
cases from a set of requirements for a given system or piece
of software. In this paper we propose a formal semantics
for the generation of test cases from requirements by revis-
ing and extending the results presented in previous works
(e.g. [21, 20, 13]). We give a syntactic characterisation of
our method, defined inductively over the syntax of LTL for-
mulae, and prove that this characterisation is sound and
complete, given some restrictions on the formulae that can
be used to encode requirements. We provide various exam-
ples to show the applicability of our approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Verification

Keywords
Coverage metrics, Requirements-based testing

1. INTRODUCTION
A number of systems currently deployed present a signifi-

cant amount of complexity, as in the case of the NASA rovers
Spirit and Opportunity [18, 19] exploring the surface of Mars
since January 2004. The complexity of these systems make
them prone to errors and there is a growing interest in tools
and methodologies to perform formal verification of these
systems in order to avoid safety issues, economical losses,
and mission failures. For instance, in the case of the rovers,
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a number of conditions are imposed to avoid damage and
to minimize the risk of failures; examples of conditions (i.e.,
requirements) include “all scientific instruments must be ap-
propriately stored when the rover is moving”and“if the rover
is at a given rock, then it must send a picture or a chemical
analysis of the rock”. These kinds of conditions are called
flight rules and affect various stages of system development,
from design to deployment.

Typically, a model is available for this kind of applications,
in the form of a labelled transition system or some other
equivalent formalism (e.g. a Promela model for the model
checker SPIN [12], a planning model written in PDDL [10],
etc.). The availability of such models makes theoretically
possible the direct verification of flight rules in a formal way
using model checking and verifying the requirement against
the given model. In practice, a number of issues arise:

• the size of the state space may be too large to be anal-
ysed exhaustively with a model checker;

• the model of the system could be provided in a lan-
guage that is not easily encoded in the input language
of a model checker (see, for instance, the problem of
translating PDDL models into an adequate input for
a model checker [15, 14]);

• consider the formula “if the rover is moving, then all
instruments are stored”: this formula could be true
because the rover never moves, which is something a
model checker cannot capture directly. In some cases,
we are interested in “stressing” a particular atomic
proposition in a formula, and make a formula true be-
cause of that particular proposition.

As a consequence, testing comes as a natural choice to
enable the verification of domains that cannot be trans-
lated into model checking problems for the first two issues
mentioned above. Moreover, the third issue can be alle-
viated by extending the Modified Condition/Decision Cov-
erage (MC/DC) metric: this metric is required by critical
avionic software and can be used to stress all the atoms in
a formula (see Section 3.1 for further details).

However, MC/DC only reasons about propositional for-
mulae appearing in a program: instead, our concern here is
to reason about requirements and provide a metric for the
coverage of flight rules usually expressed in temporal logic.
Intuitively, a requirement (expressed as a temporal logic for-
mula) is covered by a set of executions paths of the system.
Our aims in this paper are twofold:



1. Define in a formal way what it means for an execution
path π to be an adequate test case for a formula ϕ
and an atom a appearing in the formula. We will use
the notation FLIP(ϕ, a) to denote the set of execution
paths that are adequate tests for a in ϕ (the meaning
of FLIP will become clear in the following sections).

2. Given a formula ϕ and an atom a, provide a procedure
to derive a new formula [ϕ]a (called a trap formula)
such that

π |= [ϕ]a ⇐⇒ π ∈ FLIP(ϕ, a)

i.e., the test cases for a formula ϕ being true in a path
π because of atom a are all (and only) the paths π that
satisfy the trap formula [ϕ]a.

Recent works in this direction include [21, 20, 13]: a dis-
cussion and comparison is presented in Section 3.2.

The rest of the paper is organised as follows: we introduce
our notation and preliminary concepts in Section 2. In Sec-
tion 3 we start by reviewing Modified Condition/Decision
Coverage (MC/DC), a metric for Boolean expressions in a
program; we then review related work, and we introduce
our metric FLIP in Section 3.3, proving the correctness of
our definitions. We provide examples of our metric in Sec-
tion 4, together with a discussion on how results should be
interpreted. We conclude in Section 5.

2. PRELIMINARIES AND NOTATION
We assume some familiarity with temporal logic and with

LTL in particular. We refer to [6] for more details.
Consider a LTL formula ϕ, interpreted over (finite or infi-

nite) paths π, built from a set of states S. By a slight abuse
of notation, we equate logic formulae to their semantic va-
lidity set and consider that

ϕ(π) ≡ π |= ϕ ≡ π ∈ ϕ

Given a finite path π = s1 → s2 → · · · → sn in S∗ and
1 ≤ i ≤ j ≤ |π|, we define

π(i) = si

π(i : j) = si → · · · → sj

π(i :) = si → · · · → s|π|

By extension, for infinite paths π = s1 → s2 → · · · in Sω,
|π| = ω and these notations still apply, with π(i :) = si →
· · · .

2.1 Projections and Variants
Let AC(ϕ) be the set of atomic conditions in a formula

ϕ, and a ∈ AC(ϕ) one such condition. We write s(a) for
the truth value of condition a in state s, and π(a) for the
sequence of truth values of a along states of a path π. More
generally, given a set of atomic conditions X we denote by
s(X) the (vector of) values of conditions in X in state s and
by π(X) the sequence of such values along π (also called the
projection of π over X).

Definition 1. Given X ⊆ AC(ϕ), a path π′ is an X-

variant of a path of π, denoted π
X↔ π′, iff

π(AC(ϕ)−X) = π′(AC(ϕ)−X)

In what follows, we will only consider variants with re-
spect to a single condition a, which we will denote π

a↔ π′.
Obviously,

a↔ is an equivalence relation over paths, so each
path π induces an equivalence class [π]a = {π′ | π′ a↔ π}1.

By construction, if π
a↔ π′, then |π| = |π′| and for any i, j

we have that π(i : j)
a↔ π′(i : j).

2.2 Linearity
This section discusses the distinction between atomic con-

ditions a1, . . . , an occurring in a (propositional or temporal)
formula ϕ(a1, . . . , an) and the possibly multiple occurrences
of the same condition, and the impact on the functional
dependency between the value of those conditions and the
value of the formula. This will be used to consider coverage
of test cases with respect to single occurrences (or possibly
multiple covariant occurrences, see below) of a given condi-
tion.

Definition 2. A formula ϕ is linear in a condition a iff a
occurs only once in ϕ. It is constant in a if a does not occur
in ϕ.

For instance, F (a∧ b)∧ F (¬a∧ c) is linear in b and c but
it is not linear in a.

Let count(a, ϕ) be the number of occurrences of a in ϕ.
ϕ is linear or constant in a iff count(a, ϕ) is 1 or 0. The
linearization of ϕ, denoted lin(ϕ) is obtained by replacing
every occurrence of any condition a in ϕ by a distinct variant
ai, where 1 ≤ i ≤ count(a, ϕ). By construction, lin(ϕ) is
linear in all its conditions. We define unlin(lin(ϕ)) = ϕ; in
particular unlin(ai) = a.

In what follows, we will restrict the analysis to formulae
that are linear in their conditions, or equivalently, consider
multiple occurrences of the same condition in a formula as
distinct conditions.

2.3 Monotonicity
We define an ordering relation on paths, based on the

value of a condition a. Given two paths π, π′ such that
|π| = |π′|,

π va π′ ⇐⇒ π
a↔ π′ ∧ ∀i ≤ |π| · π(i)(a)⇒ π′(i)(a)

where π(i)(a) denotes the value of a in the i-th state of π.
Intuitively, this means that a is true “more often” over π′

than over π, all other conditions remaining the same.
It is easily seen that va is a Boolean lattice over each

equivalence class [π]a, with Boolean operations ∧a,∨a,¬a
defined point-wise, e.g. π′ ∧a π′′ is a new path π where
π(i)(a) = π′(i)(a) ∧ π′′(i)(a). Top and bottom elements of
this lattice are π[a := T] and π[a := F], where π[a := v]
means the a-variant of π where π(i)(a) = v for all indices i.

Definition 3. Given a condition a, a temporal formula ϕ
is covariant (resp. contravariant) in a iff for all π va π′

(resp. π′ va π) we have that if π |= ϕ then π′ |= ϕ. ϕ is
monotonic in a iff it is either covariant or contravariant in
a.

All usual logic operators preserve monotonicity, in the fol-
lowing sense:

1The notation [π]a over paths is not to be confused with
forthcoming notation [ϕ]a for trap formulae.



Definition 4. Given a condition a, a temporal logic oper-
ator θ is covariant (resp. contravariant) in a iff for any ϕ
that is covariant in a, θ(ϕ) is covariant (resp. contravariant)
in a, and vice-versa for ϕ contravariant in a. θ is monotonic
in a iff it is either covariant or contravariant in a.

A composition θ′ ◦ θ is monotonic if θ and θ′ are both
monotonic, where the usual sign rules apply for variance.
As base cases, a and ¬a are obviously covariant and con-
travariant in a. If a does not occur in ϕ′, then • ∧ ϕ′ and
• ∨ ϕ′ are covariant and ¬ is contravariant in a. Note how-
ever that ⊕ and ⇐⇒ are not monotonic. All LTL operators
(X, U, R,F,G) are covariant in a with respect to each of their
arguments, if the other argument is constant in a. This is
because (i) these operators are covariant in their arguments
in the logical sense (if ϕ ⇒ ϕ′ then θ(ϕ) ⇒ θ(ϕ′)) and (ii)
π |= ϕa Uϕ′ (or any other temporal operator) depends only
on π(i :) |= ϕa and π(j :) |= ϕ′ on suffixes of π, and π va π′
implies π(i :) va π′(i :).2 As a result, if a formula ϕ (built
from these operators) is linear in a then it is monotonic in
a.3

3. COVERAGE OF REQUIREMENTS
In this section we present our approach to automatically

generate test cases from a requirement expressed in LTL.
We begin by briefly reviewing MC/DC coverage (Section 3.1
and previous approaches (Section 3.2), and we introduce our
approach in Section 3.3.

3.1 Overview of MC/DC coverage
MC/DC coverage is required for the most critical cate-

gories of avionic software [17] and it is defined in terms of the
Boolean decisions in the program, such as test expressions
in if and while statements, and the elementary conditions
(i.e. Boolean terms) that compose them. A test suite is said
to achieve MC/DC if its execution ensures that:

1. Every basic condition in any decision has taken on all
possible outcomes at least once.

2. Each basic condition has been shown to independently
affect the decision’s outcome.

As an example, the program fragment if (a || b) { ... }

contains the decision c ≡ (a ∨ b) with conditions a and b.
MC/DC is achieved if this decision is exercised with the fol-
lowing three valuations:4

a b a ∨ b
> ⊥ >
⊥ > >
⊥ ⊥ ⊥

Indeed, evaluations 1 and 3 only differ in a, showing cases
where a independently affects the outcome of c, respectively
in a positive and negative way. The same argument applies
to evaluations 2 and 3 for b. In particular, if a = >, then a
affect ϕ positively, and if a = ⊥, then a affect ϕ negatively.

2More generally, π va π′ implies π(i : j) va π′(i : j), so this
would still be true e.g. for past-tense LTL operators.
3More generally, one expects that if ϕ is covariant in all
occurrences of a (i.e. lin(ϕ) is covariant in all ai) then ϕ is
covariant in a, and similarly for contra-variance.
4We use > and ⊥ to denote Boolean true and false.

There is some flexibility in how “independently affect” is
to be interpreted, see [4, 11, 3]. The original definition in
[17] requires that each occurrence of a Boolean atom be
treated as a distinct condition, and that independent effect
be demonstrated by varying that condition only while keep-
ing all others constant. This makes it difficult or impossible
to achieve MC/DC if there is a coupling between conditions
in the same decision, and in particular if the same atom
occurs several times (e.g. a in (a ∧ b) ∨ (¬a ∧ c)).

Several variants have been proposed and defined to ad-
dress that problem. The original definition is known as
unique cause MC/DC, while [11] defines a weaker version
based on logic gate networks, called masking MC/DC.

3.2 Related work
Coverage metrics for temporal logic have been presented

in the past. In [13], a metric is provided to measure the
degree of coverage of a model. This is fundamentally differ-
ent from what we do in this paper, as our aim is to cover
requirements expressed in LTL.

A metric for specifications is provided in [20] using muta-
tions: intuitively, a “good” test case is a path that can “de-
tect” all mutations of a formula. The authors also define the
notion of vacuous sub-formula, which present an interesting
similarity with our notion of a-variants presented above. In
this approach tests are generated using a model checker, and
thus differ from our work in that we provide a constructive
method starting from formulae directly.

The work presented in [21] shares most of our aims. The
notion of unique first cause is defined in [21] as “a condition
a is the unique first cause (UFC) for ϕ along a path π if,
in the first state along π in which ϕ is satisfied, it is satis-
fied because of a”. This definition is a generalization of the
notion of MC/DC presented above.

A syntactic characterization of UFC is proposed in [21]:
for a formula ϕ and condition a in ϕ, a trap formula ufc(ϕ, a)
can be derived such that ufc(ϕ, a) holds in all suitable execu-
tion paths in which a is the first cause for ϕ. We report here
only a few derivation rules that will be used below and refer
to [21] for further details (ϕa denotes a formula in which a
occurs):

ufc(ϕ, a) = F where a does not occur in ϕ

ufc(a, a) = a

ufc(ϕa ∨ ψ) = ufc(ϕa, a) ∧ ¬ψ
ufc(F ϕa, a) = ¬ϕa U ufc(ϕa, a)

These definitions are further refined in a number of ways
in [21] to deal with finite/truncated execution paths, but no
formal proof is provided that the definition of ufc(ϕ, a) cor-
responds indeed to the fact that“ϕ is true because of a”and,
moreover, the causality link in the definition is not formally
defined and may be subject to ambiguous interpretations.

As a running example, consider the formula ϕ = F (a∨ b).
The derivation rules presented above give

ufc(ϕa, a) = (¬a ∧ ¬b) U (a ∧ ¬b)

The trace π = {} → {a} → {b} does satisfy ufc(ϕ, a). How-
ever, this trace does not guarantee that a is the unique cause
for a. Indeed, it is not possible to flip the value of a in any
way to make F (a ∨ b) false along this trace (cf. the criteria



appearing in MC/DC). In essence, using the definition of
a-variant defined above, there is no a-variant of π such that
ϕ does not hold along this variant.

Other examples can be found for the remaining operators:
the essence is that ufc(ϕ, a) is satisfied along all valid test
cases, but it is also satisfied on execution paths that are not
adequate test cases, i.e., ufc(ϕ, a) is “too generous”. Equiv-
alently, as it will be described below, ufc(ϕ, a) is not sound
with respect to the definition of adequate test cases.

3.3 FLIP
In this section we introduce our definition of “adequate”

test cases and we present a syntactic derivation of trap for-
mulae for adequate test cases. We also prove the soundness
and correctness of our approach.

Definition 5. An execution path π is an adequate test case
for an atom a occurring in a formula ϕ iff π |= ϕ and there
exists an a-variant π′ of π such that π′ 6|= ϕ. We denote
with FLIP(ϕ, a) the set of all such paths.

We denote with [ϕ]a the trap formula characterising ade-
quate test cases (i.e., test cases as defined in Definition 5).
We define [ϕ]a by structural induction on LTL formulae in
negation normal form as follows:

Definition 6. Syntactic characterisation of trap for-
mulae

[ϕ′]a = F where a does not occur in ϕ′

[a]a = a

[¬a]a = ¬a
[ϕa ∧ ϕ′]a = [ϕa]a ∧ ϕ′

[ϕa ∨ ϕ′]a = [ϕa]a ∧ ¬ϕ′

[X ϕa]a = X [ϕa]a

[ϕ′ U ϕa]a = (ϕ′ U ϕa) ∧ (¬ϕ′ R (ϕa ⇒ [ϕa]a))

[ϕa U ϕ′]a = (ϕa U ϕ′) ∧ (¬ϕ′ U ([ϕa]a ∧ ¬ϕ′))
[ϕa R ϕ′]a = (ϕa R ϕ′) ∧ ((ϕa ⇒ [ϕa]a) U ¬ϕ′)
[ϕ′ R ϕa]a = (ϕ′ R ϕa) ∧ (¬ϕ′ U [ϕa]a)

(where R is the standard release operator).
Other cases are obtained by syntactic derivation:

[F ϕa]a = F ϕa ∧ G (ϕa ⇒ [ϕa]a)

[G ϕa]a = G ϕa ∧ F [ϕa]a

[ϕ′W ϕa]a = (ϕ′W ϕa) ∧ ((ϕa ⇒ [ϕa]a)

U (¬ϕ′ ∧ (ϕa ⇒ [ϕa]a)))

[ϕa W ϕ′]a = (ϕa W ϕ′) ∧ (¬ϕ′ U (¬ϕ′ ∧ [ϕa]a))

These derivations for fixed point modalities are all of the
form [ϕ]a = ϕ ∧ ϕ′′, where the recursive step occurs only
in ϕ′′. They can be rewritten into equivalent forms [ϕ]a =
ϕ1 U ([ϕa]a ∧ ϕ2):

[ϕ′ U ϕa]a = (ϕ′ ∧ ¬ϕa) U ([ϕa]a ∧ (¬ϕ′ R (ϕa ⇒ [ϕa]a))

[ϕa U ϕ′]a = (ϕa ∧ ¬ϕ′) U ([ϕa]a ∧ ¬ϕ′ ∧ (ϕa U ϕ′))

[ϕa R ϕ′]a = (¬ϕa ∧ ϕ′) U ([ϕa]a ∧ ϕ′ ∧
(ϕa ⇒ [ϕa]a) U ¬ϕ′))

[ϕ′ R ϕa]a = (¬ϕ′ ∧ ϕa) U ([ϕa]a ∧ (ϕ′ R ϕa))

[F ϕa]a = ¬ϕa U ([ϕa]a ∧ G (ϕa ⇒ [ϕa]a))

[G ϕa]a = ϕa U ([ϕa]a ∧ G ϕa)

Proof of correctness. We now show that π |= [ϕ]a if
and only if π ∈ FLIP(ϕ, a). We prove completeness (only if)
and soundness (if) separately.

We first need the following simple lemma:

Theorem 1 (Extremal a-variants). If ϕ is covari-
ant (resp. contravariant) in a and π ∈ [ϕ]a then π[a :=
F] 6|= ϕ (resp. π[a := T] 6|= ϕ).

Proof. We prove the covariant case; the contravariant
case follows by duality. Since π ∈ [ϕ]a, there is a π′

a↔ π such
that π′ 6|= ϕ. By contra-position of covariance, if π′′ va π′
and π′ 6|= ϕ then π′′ 6|= ϕ. But π[a := F] is minimal in [π]a,
therefore π[a := F] va π′ and π[a := F] 6|= ϕ.

Theorem 2 (Soundness of [ϕ]a). Let ϕ be a formula
in negation-normal form, linear and monotonic in a. If π |=
[ϕ]a, then π |= ϕ and there exists π′

a↔ π such that π 6|= ϕ
(i.e., π ∈ FLIP(ϕ, a)).

Proof. Let π |= [ϕ]a. We have to show that π |= ϕ and

build π′ such that π′
a↔ π and π′ 6|= ϕ. By induction, we

can assume that for any sub-formula ϕ1 of ϕ, if π1 |= [ϕ1]a,

then π1 |= ϕ1 and there is π′1
a↔ π1 such that π′1 6|= ϕ1.

The proof goes by structural induction on ϕ, where ϕa
is the sub-formula where a occurs. We consider the case
where ϕa is covariant in a; the contravariant case follows by
duality.

• [ϕ]a = F, where a does not occur in ϕ:

Trivially, there is no such π.

• [a]a = a:

Obviously, π |= ϕ, which means π(1)(a) = T and π′ =
π[a := F] 6|= ϕ.

• [¬a]a = ¬a:

Dual of the previous case: π(1)(a) = F and π′ =
π[a := T] 6|= ϕ.

• [ϕa ∧ ϕ′]a = [ϕa]a ∧ ϕ′:

Since π |= [ϕa]a, π |= ϕa and there is π′
a↔ π such

that π′ 6|= ϕa (and a does not occur in ϕ′). Hence
π |= ϕa ∧ ϕ′ and π′ 6|= ϕa ∧ ϕ′.

• [ϕa ∨ ϕ′]a = [ϕa]a ∧ ¬ϕ′:
Similar to ϕa ∧ ϕ′, but in this case π 6|= ϕ′ so π′ 6|= ϕ′.

• [X ϕa]a = X [ϕa]a:

We have π(2 :) |= [ϕa]a so (i) π(2 :) |= ϕa and thus

π |= ϕ and (ii) there is π′2
a↔ π(2 :) such that π′2 6|= ϕa.

Build π′(1) = π(1) and π′(2 :) = π′2, thus π′ 6|= ϕ.

• [ϕ′ U ϕa]a = (ϕ′ U ϕa) ∧ (¬ϕ′ R (ϕa ⇒ [ϕa]a)):

Obviously π |= ϕ. Let n the first index such that
π(n :) |= ¬ϕ′ (n may be infinite). Consider all j ≤ n
such that π(j :) |= ϕa. Because π |= (¬ϕ′ R (ϕa ⇒
[ϕa]a)), we have π(j :) |= [ϕa]a. Let π′ = π[a := F].
By monotonicity of ϕa (theorem 1), π′(j :) 6|= ϕa for
all j ≤ n. Therefore there is no j ≤ n such that
π′(j :) |= ϕa, so π′ 6|= ϕ.



s1 · · · sm−1 sm · · · sj · · · sn−1 sn · · ·
π, π′ : ϕ′ ϕ′ ϕ′ ϕ′ ϕ′ ϕ′ ϕ′ ϕ′ ¬ϕ′ · · ·

π : ¬ϕa ¬ϕa ¬ϕa ϕa · · · ϕa · · · · · · · · · · · ·
π′ : ¬ϕa ¬ϕa ¬ϕa ¬ϕa · · · ¬ϕa · · · · · · · · · · · ·

Figure 1: Execution paths for ϕ′ U ϕa.

• [ϕa R ϕ′]a = (ϕ′ U (ϕ′ ∧ ϕa)) ∧ ((ϕa ⇒ [ϕa]a) U ¬ϕ′):
Obviously π |= ϕ. Since π |= ((ϕa ⇒ [ϕa]a)U¬ϕ′)U¬ϕ′,
there is a minimal finite n such that π(n :) |= ¬ϕ′. The
proof follows similarly as for ϕ′ U ϕa, with the differ-
ence that the finite n guarantees that ϕaRϕ′ is indeed
eventually falsified along π[a := F].

• [ϕa U ϕ′]a = (ϕa U ϕ′) ∧ (¬ϕ′ U ([ϕa]a ∧ ¬ϕ′)):
Obviously π |= ϕ. Let n the first index such that π(n :
) |= ϕ′ (n must be finite). Because π |= ¬ϕ′ U ([ϕa]a ∧
¬ϕ′), there must be k < n such that π(k :) |= [ϕa]a.
Let π′ = π[a := F]. By monotonicity of ϕa, we have
ϕ′(k :) 6|= ϕa, hence π′ 6|= ϕa U ϕ′.

• [ϕ′ R ϕa]a = (ϕ′ R ϕa) ∧ (¬ϕ′ U [ϕa]a):

The proof is similar to that for ϕa U ϕ′, except that n
may be infinite and k may be equal to n.

Theorem 3 (Completeness of [ϕ]a). Let ϕ be a for-
mula in negation-normal form, linear and monotonic in a.
If π |= ϕ and there exists π′

a↔ π such that π 6|= ϕ (i.e., if
π ∈ FLIP(ϕ, a)), then π |= [ϕ]a.

Proof. Let π′
a↔ π such that π |= ϕ and π′ 6|= ϕ. We

have to show that π |= [ϕ]a. By induction, we can assume

that for any sub-formula ϕ1 of ϕ, if there is π′1
a↔ π1 such

that π1 |= ϕ1 and π′1 6|= ϕ1, then π1 |= [ϕ1]a.

• [ϕ′]a = F, where a does not occur in ϕ′:

If a does not occur in ϕ′ and π |= ϕ′, then for all

π′
a↔ π we also have π′ |= ϕ′.

• [a]a = a:

Obviously, π |= a.

• [¬a]a = ¬a:

Obviously, π |= ¬a.

• [ϕa ∧ ϕ′]a = [ϕa]a ∧ ϕ′:
We have π |= ϕa and π |= ϕ′ so π′ |= ϕ′ because ϕ′

does not depend on a. However π′ 6|= ϕa ∧ ϕ′ so we
must have π′ 6|= ϕa. Hence π |= [ϕa]a ∧ ϕ′.

• [ϕa ∨ ϕ′]a = [ϕa]a ∧ ¬ϕ′:
Similar to ϕa ∧ ϕ′ except π 6|= ϕ′ so π′ 6|= ϕ′.

• [X ϕa]a = X [ϕa]a:

We have π′ 6|= Xϕa. In general, ¬Xϕa = X¬ϕa∨¬XT.

However, π′
a↔ π so π and π′ must have the same

length: since π |= X T, we also have π′ |= X T and
therefore π′ |= X ¬ϕa. Hence π(2 :) |= ϕa and π′(2 :
) |= ¬ϕa, so π(2 :) |= [ϕa]a.

• [ϕ′ U ϕa]a = (ϕ′ U ϕa) ∧ (¬ϕ′ R (ϕa ⇒ [ϕa]a)):

We readily have π |= ϕ′Uϕa. Let m,n the first indices
such that π(m :) |= ϕa and π(n :) |= ¬ϕ′. Because
π |= ϕ′ U ϕa we have that m is finite and m ≤ n (n
may be infinite).

For all i < n we have π′(i :) |= ϕ′, and π′(n :) |= ¬ϕ′,
since a does not occur in ϕ′. Let m ≤ j ≤ n such that
π(j :) |= ϕa. We have that π′(j :) |= ¬ϕa, otherwise
π′ |= ϕ. Hence π(j :) |= [ϕa]a by inductive hypothesis,
and π |= ¬ϕ′ R (ϕa ⇒ [ϕa]a) (see Figure 1 for a visual
representation).

• [ϕa R ϕ′]a = (ϕ′ U (ϕ′ ∧ ϕa)) ∧ ((ϕa ⇒ [ϕa]a) U ¬ϕ′):
This case is similar to ϕ′ U ϕa, except that n must be
finite, for otherwise π′ |= G ϕ′ and thus π′ |= ϕ. Also,
in this case m < n and it is enough to consider all
j < n, since π 6|= ϕa R ϕ′ if m = n.

• [ϕa U ϕ′]a = (ϕa U ϕ′) ∧ (¬ϕ′ U ([ϕa]a ∧ ¬ϕ′)):
We readily have π |= ϕa U ϕ′. Let n the first (finite)
index such that π(n :) |= ϕ′ (and similarly for ϕ′ be-
cause it is independent on a). For all i < n we have
π(i :) |= ϕa. Conversely, there must be j < n such
that π′(j :) 6|= ϕa, for otherwise π′ |= ϕa U ϕ′. Hence
π(j :) |= [ϕa]a and π |= ¬ϕ′ U ([ϕa]a ∧ ¬ϕ′).

• [ϕ′ R ϕa]a = (ϕ′ R ϕa) ∧ (¬ϕ′ U [ϕa]a):

This case is similar to ϕa U ϕ′, except that n may be
infinite and all i ≤ n have to be considered (possibly
infinitely many). On the other hand, j must be finite,
which ensures ¬ϕ′ U [ϕa]a.

Theorems 2 and 3 prove that our syntactic derivation of
trap formulae is sound and complete with respect to our
definition of adequate test cases (Definition 5). As a simple
example, consider again the formula ϕ = F (a ∨ b) intro-
duced in Section 3.2 to illustrate the issues with the notion
of unique first cause of [21]. Following our derivation rules,
the trap formula for atom a is given by:

[F (a ∨ b)]a = F (a ∨ b) ∧ G ((a ∨ b)⇒ [a ∨ b]a)

Given that [a∨ b]a = (a∧¬b) and that (a∨ b)⇒ (a∧¬b) is
equivalent to ¬b, we have that

[F (a ∨ b)]a = F (a) ∧ (G (¬b))

Intuitively, this formula says that an adequate test case for
F (a∨ b) because of atom a is a path where eventually (a∨ b)
holds, but nowhere b holds. Indeed, if b were true any-
where in the path, then it would not be possible to flip
the value of the original formula because of a. Notice how



op [_]_ : Formula Atom -> Formula [prec 10] .
vars C C’ C’’ : Atom .
vars X Y Z : Formula .
eq [C]C = C .
eq [C’]C = False [otherwise] .
eq [~ C]C = ~ C .
eq [~ C’]C = False [otherwise] .
ceq [X /\ Y]C = ([X]C /\ Y)

if C in X .
ceq [X \/ Y]C = ([X]C /\ ~ Y)

if C in X .
eq [O X]C = O [X]C .
ceq [X U Y]C = (X U Y) /\ (~ Y U ([X]C /\ ~ Y))

if C in X .
ceq [X U Y]C = (X U Y) /\ (~ X R (Y -> [Y]C))

if C in Y .
ceq [X R Y]C = (X R Y) /\ ((X -> [X]C) U ~ Y)

if C in X .
ceq [X R Y]C = (X R Y) /\ (~ X U [Y]C)

if C in Y .
ceq [X]C = False

if not (C in X) .

Figure 2: Maude definition of FLIP.

our characterisation does not allow for the problematic path
π = {} → {a} → {b} presented in Section 3.2.

We present further examples in the next section to illus-
trate the applicability of our approach.

4. EXAMPLES
We have implemented the rules of Definition 6 in a Maude

module (Maude is an automated reasoning engine based on
rewriting logic [7]). The module extends the temporal model
checking module available in the standard Maude distribu-
tion. Our extension defines a new operation “square brack-
ets”:

op [_]_ : Formula Atom -> Formula

which takes a formula ϕ and an atom, and returns a new
formula ψ representing the trap formula for the atom in the
original formula ϕ. An extract from the module definition
is reported in Figure 2. The module, together with all the
examples reported below, is available from http:/www.cs.

ucl.ac.uk/staff/f.raimondi/flip/.
As an example, consider the following requirement from [8]:

REQUIREMENT: All messages incoming from
the POP server should be marked as unread.
REFINEMENT: MarkasUnread will occur af-
ter PlacedinMailboxes5.

This is encoded by the following LTL formula:

G (PlacedinMailboxes⇒ F (MarkasUnread))

Suppose we want to derive a test in which the formula
is true because of MarkasUnread. The output of Maude is
reported in Figure 3 (where PM corresponds to Placedin-

Mailboxes and MU to MarkasUnread).
The resulting formula inf Figure 3 can be simplified to

F (¬PlacedinMailboxes ∧ G (¬MarkasUnread))∧
G (PlacedinMailboxes⇒ F (MarkasUnread))

5See http://patterns.projects.cis.ksu.edu/
documentation/specifications/ALL.raw.

\||||||||||||||||||/
--- Welcome to Maude ---

/||||||||||||||||||\
Maude 2.4 built: Nov 6 2008 16:49:57
Copyright 1997-2008 SRI International

Mon Jan 5 10:13:41 2009
Maude> load model-checker.maude
Maude> load ufc.maude
Maude> Maude> red [ []( ’PM -> <> ( ’MU ) ) ] ’PM .
result Formula: (True U (~ ’PM /\ (False R ~ ’MU))) /\

(False R (~ ’PM \/ (True U ’MU)))

Figure 3: Maude screen shot

This formula characterises all the paths in which ¬ Mark-

asUnread occurs at least once: this is guaranteed by the first
part of the formula, in which it is required that Placedin-

Mailboxes must be false at some point in the future, followed
by globally ¬MarkasUnread. Thus, this formula rules out
the possibility that MarkedasUnread is always true: indeed,
in this case it would be impossible to flip the value of the
original formula because of MarkasUnread.

The Maude module can be used to produce the trap for-
mula for the other atom PlacedinMailboxes as well. Each
of these two trap formulae encode a set of execution paths.
The coverage of the original requirement is achieved by veri-
fying that the system allows for execution paths that belong
into each of these sets. The actual verification of these in-
clusions is performed in different ways, depending on the
kind of model under investigation. In the following section
we present an application to a NuSMV model.

4.1 An example with a model and interpreta-
tion of the results

Consider the standard NuSMV [5] example of mutual ex-
clusion of two asynchronous processes by means of a sema-
phore (see the code in Figure 4).

A property of this protocol is the following:

ϕME = G ((p1e ∨ p2e)⇒ F (p1c ∨ p2c))

where p1e is a short-hand for proc1.state=entering, and
similarly for the remaining atoms.

This property encodes the fact that if both processes are
trying to enter the critical section, at least one of them will
eventually enter it, and NuSMV can be used to show that
ϕME holds. We can use our Maude module to derive the
trap formula encoding an adequate test case for p1c (i.e.,
for process 1 in the critical state, see Figure 5). The trap
formula can be simplified to:

F (F (p1c ∨ p2c) ∧ G (¬p2c) ∧ (p1e ∧ p2e))

∧G ((p1e ∨ p2e)⇒ F (p1c ∨ p2c))

This formula is satisfied along a path that (1) satisfies
the original requirement and (2) has a state where both
processes are trying to enter the critical section, and (3)
nowhere along the path does the second process enter the
critical section (in this way it is possible to flip the truth
value of the formula because of the first process entering the
critical section).

By taking the negation of the formula above we can use
NuSMV to check whether an execution of the system (i.e.,
the model of Figure 4) exists such that the atom p1c can flip
the value of the formula. Indeed, if such an execution exists,



MODULE user(semaphore)
VAR
state : {idle, entering, critical, exiting};

ASSIGN
init(state) := idle;
next(state) :=
case
state = idle : {idle, entering};
state = entering & !semaphore : critical;
state = critical : {critical, exiting};
state = exiting : idle;
1 : state;

esac;
next(semaphore) :=
case
state = entering : 1;
state = exiting : 0;
1 : semaphore;

esac;

MODULE main
VAR

semaphore : boolean;
proc1 : process user(semaphore);
proc2 : process user(semaphore);

ASSIGN
init(semaphore) := 0;

FAIRNESS
running

Figure 4: NuSMV code for mutual exclusion

then the negation of the trap formula should be false, and a
counterexample should be produced describing the required
path. This is the case with the trap formula reported above;
a screen-shot from NuSMV is reported in Figure 6 describing
the first state of the required execution path.

Full coverage of ϕME is achieved by computing the re-
maining three trap formulae (one for each of the Boolean
atoms) and by repeating their verification with NuSMV.

Notice that there are four possible outcomes for the ver-
ification using a model checker of (the negation of) a trap
formula [ϕ]a encoding a adequate test cases for an atom a in
a formula ϕ. Consider Figure 7, where M denotes the set of
paths enabled by the original model, and the sets (a) to (d)
describe sets of execution paths encoded by a trap formula.
The four cases are as follows:

• The formula ϕ is a desired (“positive”) property, and
¬[ϕ]a is false in the model (and a counterexample is
produced by NuSMV): this is case (a), where the nega-
tion of the trap formula is false in the intersection of
M and (a), and it is possible to guarantee that ϕ has
been covered with respect to a by using one of the
paths in this intersection. This is the case for the ex-
ample formula presented above for the mutual exclu-
sion protocol and NuSMV produces one of the paths
as a counter-example.

• The formula ϕ is a desired (“positive”) property, and
¬[ϕ]a is true in the model (case (b) in the figure: no-
tice that the set depicted is the trap formula, thus its
negation includes all the possible executions M of the
model). This means that the test for a in ϕ fails (i.e.,
it is not possible to cover a in ϕ using the model). The
trap formula might not be exercised for a number of
reasons, e.g., the trap formula may impose constraints
on the model that are inconsistent with the original
model. One possibility is that an atom a in a formula

\||||||||||||||||||/
--- Welcome to Maude ---

/||||||||||||||||||\
Maude 2.4 built: Nov 6 2008 16:49:57
Copyright 1997-2008 SRI International

Mon Jan 5 10:13:41 2009
Maude> load model-checker.maude
Maude> load ufc.maude
Maude> red [ []((’p1e /\ ’p2e) -> <> (’p1c \/ ’p2c)) ] ’p1c .
reduce in KSU6 : [[](’p1e /\ ’p2e -> <> (’p1c \/ ’p2c))]’p1c .
rewrites: 299 in 7ms cpu (7ms real) (41447 rewrites/second)
result Formula: (True U ’p1e /\ ’p2e /\ ((True U ’p1c \/ ’p2c)

/\ (False R ~ ’p2c))) /\ (False R ~ ’p1e \/ ~ ’p2e \/
(True U ’p1c \/ ’p2c))

Figure 5: Maude screen-shot for the mutual exclu-
sion example

could be coupled to another atom b so that it is not
possible to change the value of a without affecting b.
As an example consider a to encode the proposition
x ≤ 0 and b to encode x > 0: in this case a change in
the truth value of a causes a change in b. In general,
if a “positive” test case fails, further investigations are
needed and the result does not imply a system failure
(in fact, couplings such as a and b above may well be
required).

• The formula ϕ is a property that should be false (“neg-
ative” property), and ¬[ϕ]a is true in the model: this
is the expected outcome and the test succeeds (case
(d) in the Figure).

• The formula ϕ is a property that should be false (“neg-
ative” property) property, and ¬[ϕ]a is false in the
model (thus producing a counterexample): this re-
sult implies a design error (a bug): this is case (c)
in the Figure, where execution paths exist for [ϕ]a in
M . Notice that ¬[ϕ]a false implies that the original
requirement is violated, too, as the trap formula can
be rewritten as a conjunction of the original formula
with additional constraints.

In this section we have presented an example using a
NuSMV model and thus the original requirement could have
been verified directly. However, this would have not guar-
anteed the coverage of all the atoms in the requirement.

A similar methodology can be applied to other kinds of
models that cannot be verified in full. For instance, in the
case of a planning model in PDDL [10], trap formulae gener-
ated with Maude can be translated into new planning goals
and added to the original model as additional constraints,
therefore forcing the generation of plans that satisfy the trap
formulae. This kind of application is presented in more de-
tails in [2].

5. DISCUSSION AND CONCLUSION
In this paper we have presented a method to generate

test cases from requirements expressed in LTL, extending
the notion of MC/DC to temporal formulas in a formal set-
ting. However, care must be taken when comparing the
two metrics. Although a strong similarity can be drawn be-
tween MC/DC coverage for decisions in programs and FLIP
coverage for requirements in temporal logic, the context of
application, and hence the interpretation of the results, are
quite different. In MC/DC coverage for a condition F , both



-- specification !( G ((proc1.state = entering
& proc2.state = entering) -> F (proc1.state =
critical | proc2.state = critical)) &
F (((proc1.state = entering & proc2.state
= entering) & F (proc1.state = critical |
proc2.state = critical)) &
G !(proc2.state = critical))) is false

-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 2.1 <-
semaphore = 0
proc1.state = idle
proc2.state = idle

-> Input: 2.2 <-
[...]

Figure 6: NuSMV counterexample for a trap for-
mula.

F = T and F = F correspond to alternate paths in the pro-
gram, that one is a priori equally interested in covering. In
FLIP coverage of a requirement ϕ, however, the situation is
strongly asymmetrical: the case where π |= ϕ corresponds to
functional coverage, for which one expects to find executable
test cases, whereas π |= ¬ϕ corresponds to requirement vi-
olations, for which executions will exist only if the system
fails to meet those specifications. Additionally, [ϕ]a charac-
terizes all the adequate test cases for a in ϕ, independently
of the system. It does not say whether such a test case ex-
ists within the system’s valid executions or not (see Figure 7
and the discussion at the end of the previous section).

The definition for [ϕ]a applies to both finite and finite
paths. If the system at stake features only finite executions,
then [ϕ]a is sufficient in itself. If the system has infinite ex-
ecutions (and finite tests are required), or executions whose
length is beyond that of the test cases one is willing to con-
sider, then [ϕ]a has to be refined with a notion of test prefix,
based on weak and strong semantic variants [9], along the
lines of [21]. We leave this issue open for future investiga-
tion.

Our restriction to linear formulae may seem quite con-
straining. The situation, however, is not as bad as it seems,
and is similar to masking vs. unique-cause MC/DC. More-
over, the issue of linearity (i.e., multiple occurrences of the
same atom) is essentially the same issue occurring with stron-
gly coupled atoms (see above the example with x ≤ 0 and
x > 0). Solutions may be found for special cases (and we
leave these for future work), but a general approach seems
problematic.

On a different level, our work presents some similarities
with the notion of vacuous formulae [16, 1]. A formula ϕ
passes vacuously in a given model M if there exists a sub-
formula ϕ′ of ϕ such that the truth value of ϕ in M is the
same when ϕ′ is replaced by F. Thus, in order to have an
adequate test case for an atom in a formula, the formula
must not be vacuous for that atom. However, the definition
of vacuosity involves explicitly a model, while in our case
the trap formulae we derive are independent of the model.
We leave for future work a detailed investigation of the re-
lationships between trap formulae and vacuosity detection.

In parallel with the verification of models for model check-
ers, we are currently in the process of applying our metric
to the verification of planning domains. In particular, we
are developing an application to generate test cases auto-
matically from flight rules for PDDL domains. Preliminary

Figure 7: Possible outcomes of the verification of a
trap formula with a model checker

results are reported in [2] and our aim for the future is to de-
liver a testing platform that integrates our formal approach
with the design and development environments currently in
use.
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