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Abstract: 

Modern endoscopic procedures rely on digital technology ranging from high resolution imaging 

sensors and displays through to electronics connecting configurable illumination and actuation 

systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic 

interventions, the digitization of the procedural toolset also enables video data capture of the 

internal human anatomy at unprecedented levels. Interventional video data encapsulates 

functional and structural information about the patients’ anatomy, events, activity as well as   

action log about surgical process. This detailed but difficult to interpret record from endoscopic 

procedures can potentially be linked to pre- and post-operative records or patient imaging 

information.  

Rapid advances in Artificial Intelligence (AI), especially in supervised deep learning, can utilize 

data from endoscopic procedures to develop systems for assisting procedures leading to 

computer assisted interventions (CAI). CAI systems can provide a wide range of enhanced 

capabilities, for example better navigation during procedures, automation of image interpretation 

or even of robotically assisted tool manipulation. In this review, we summarize the state-of-the-

art AI for CAI in gastroenterology and surgery. 

A. Introduction 

Digitization and rapid advances in both hardware and software have been crucial developments 

that have shaped the capabilities and tools at the disposal of the clinical teams within modern 

endoscopy suites and operating rooms1. These have facilitated the paradigm shift towards 

minimally invasive surgery (MIS) and procedures that reduce the collateral trauma of 

interventional care. Camera technologies have been key to allowing visualization of the internal 

anatomy but without a direct access route, and digital cameras in a range of form factors and 

configurations are now used across almost all surgical specialties. 

The signal captured by cameras/imaging devices provides a rich source of information from the 

surgical site and it may be captured in a variety of spectrums depending on the clinical 

specialization ranging from white light images, to narrow band or fluorescence images, all the 

way through to fluoroscopic or angiographic imaging used in endovascular procedures or to 

interventional ultrasound. The information within the surgical image or video irrespective of the 

modality used is akin to a digital record of the intervention and it embeds anatomical 

information, surgical process and event information, data on instrument use and on the 

interaction between the instruments and the tissue2. With the rapid advances seen in artificial 

intelligence (AI) over the past decade and specifically in computer vision, it is likely that the next 



generation of interventional capabilities will be built upon AI modules that can extract the 

information from this rich surgical record and provide computer assisted interventions (CAI) in 

both perioperative and postoperative settings3-5 (see Fig.1). 

While the benefits of MIS over traditional open surgery are well established with shorter hospital 

stays and recovery times, smaller incision and scars, lower risk of complications and trauma, 

lower pain and discomfort, and potentially less expensive care; MIS approaches also suffer from 

inherent practical and clinical limitations: 

i. Perception of the surgical site: the loss of depth perception, the complex topological and 

photometric properties of tissue produce blind spots and significant appearance 

variations and the difficulty to navigate the endoscope make the examination and 

diagnosis of the gastrointestinal tract difficult. Consequently, important lesions may be 

missed or misdiagnosed, and tissue areas may be overlooked.  
ii. Endoscope and surgical tool manipulation: navigating deformable and narrow 

anatomical cavities is complex and requires a high level of expertise and dexterity in 

instrument manipulation.  
iii. Analytics and reporting of endoscopic procedures: endoscopy reports are essential to 

the electronic patient record but limited scope is currently in place for adverse events 

and any quantitative quality indicators of endoscopic procedures. Detailed clinical 

reporting is time-consuming and requires standardization (use of comprehensive 

terminology and evaluation frameworks). 
iv. Multimodality image fusion: procedures relying on the combined use of different imaging 

modalities, such as Ultrasound (US) or pre-operative imaging modalities to enable more 

detailed visualization of the patient anatomy beyond the exposed tissue. 

This review intends to cover the emerging trends in technology to alleviate these four critical 

challenge areas with a predominant focus on AI-based Computer-Assisted Detection and 

Diagnosis6-10 (CADe/CADx), CAI and automation.  

We define AI as computer methods able to automatically extract information and support 

decision making by leveraging sensor data and prior knowledge such as labelled datasets for 

which the expected decision or prediction, called ground truth, is known4. Computer vision, 

aimed at deriving meaningful information from surgical images and videos, is a core component 

of AI-based CAI platforms dedicated to endoscopy. Most state-of-the art AI methods rely on 

machine learning, more recently specifically deep learning and artificial neural network which   

simulate a biological network of interconnected neurons which can be trained to efficiently infer 

a decision or a prediction given an input signal. Deep learning-based vision systems mirror the 

human visual cortex and can be designed in a wide range of architectures and node 

arrangement to be particularly efficient at extracting visual patterns by sequentially applying sets 

of convolutional filters at different scales11. They are the focus of most research in CAI and 

general medical image computing and analysis8.  

The first section of this review paper will focus on CADe and CADx solutions. Section C will 

focus on surgical environment mapping and endoscope navigation. Section D will be dedicated 

to analytics and reporting. Robotically assisted interventions and how AI capabilities can link to 

novel hardware solutions will be addressed in section E. The regulatory aspects of AI-based 

medical devices will be discussed in section F as they constitute major impediments to their 



operational deployment. The final sections will summarize the review and outline the major 

challenges to be overcome for effectively deploying AI-based robotic platforms in the OR. 

B. Computer-Assisted Detection and Diagnosis 

CADe and CADx solutions aim at addressing the challenge of perioperative lesion detection and 

diagnosis3. In endoscopy, they more particularly aim at detecting and classifying areas of 

abnormal tissue by relying on discriminative visual features. Early CADe and CADx solutions 

were based on the detection and classification of handcrafted features satisfying prior 

assumptions on appearance or texture patterns that could be attributed to specific diseases. 

Conversely, deep learning approaches learn features to discriminate between abnormal and 

normal tissue based on the data itself without direct assumptions other than the labelled data 

used to train them, and they classify abnormalities in a much more robust capacity12.  

B.1 CADe: Computer-Assisted Detection 

While colonoscopy significantly reduces colorectal cancer mortality, systematic reviews also 

report that the miss-rate of adenomas could reach 33% for patients at elevated risk of colorectal 

cancer13,14. It has further been established that adenoma miss-rate significantly depends on the 

quality of bowel preparation, the colonic section explored, the type, size and position of 

adenomas and the individual practitioner's performance or expertise15.  

A recent systematic review of learning-based polyp detection and segmentation approaches 

notably reported that AI-based CADe systems significantly alleviate the miss-rate of adenomas 

in classical white-light endoscopy16,17. The most efficient Convolutional Neural Networks (CNNs) 

achieve an accuracy greater than 95% (proportion of true detection) for the detection of 

colorectal polyps18-22. Another recent systematic review, focusing on the efficiency of modern 

endoscopy technique for detecting colorectal adenomas, further draws the conclusion that 

CADe systems overcome new endoscopy imaging technique for the detection of colorectal 

neoplasia23.  

AI-based approaches have also been successfully applied to upper gastrointestinal endoscopy 

and more particularly to the detection of neoplasia in Barrett’s esophagus24. Recent approaches 

report a per-image detection sensitivity (true positive rate) and specificity (true negative rate) 

greater than 90% on the MICCAI (Medical Image Computing and Computer Assisted 

Intervention conference) EndoVis Challenge Dataset12,25. It is notable, however, that the data 

size was limited and therefore much more work is needed in this application to have confidence 

in the true performance numbers. 

Despite such notable efforts there exist no benchmarks allowing detailed and rigorous 

comparisons of CADe methods in gastroenterology. The increasing availability of expert 

annotated datasets allowed the integration of CADe systems within marketed colonoscopy 

devices (e.g., Olympus ENDOAID endoscopy system, Fujifilm CAD Eye, Medtronic GI Genius, 

Odin Vision CADU and CADDIE), but additional meta-analyses are required to estimate the 

impact of CADe on patient care because despite early reports on extremely promising 

improvements26 there are many confounding factors that can influence performance including 

for example human factors and the training time for practitioners to learn to use a system27. 

B.2 CADx: Computer-Assisted Diagnosis 



Endoscopy CADx systems aim at classifying neoplastic lesions (see Fig.2). Most CADx 

approaches rely on enhanced endoscopy imaging capabilities that can interrogate tissue 

beyond the white light imaging spectrum. The earliest learning-based CADx methods allowed to 

discriminate between hyperplastic lesions and adenomas relying, notably, on NBI magnified 

imaging28-30. However, despite promising results, they suffered from high computational times 

which induce latency and impede utility in the clinical setting. 

The recent advances in AI and specifically in CNNs have significantly contributed to the 

improvement of CADx solutions31. Recent systems can perform real-time classification of 

adenomas and hyperplastic polyps in both white light and NBI endoscopy with a classification 

accuracy reaching 90% for the most effective architectures32-35. Relying on NBI has additionally 

shown that CNN-based CADx approaches can distinguish between 5 different classes of 

colorectal lesions36,37 (MS classification, MSI, MSII, MSII0, MSIIIa, MSIIIb). Similar approaches 

have successfully been applied to endocytoscopy with comparable classification accuracy 

results38,39. The joint integration of CADx and CADe systems within CAI platform has also 

recently become possible with some emerging commercial systems providing this capability 

(Odin Vision CADDIE). 

While state-of-the-art CADx systems' performance compares to human experts for colorectal 

cancer diagnosis, the lack of large-scale datasets that have been annotated by clinicians and 

benchmarks tailored to the different neoplastic classification standards used in 

gastroenterology, make the clinical evaluation of these systems difficult40-42 (e.g., robustness, 

limitations of CADx system in white light endoscopy, ability to classify neoplastic lesions 

according to the Paris classification). The CADx system Endo-Brain, initially developed by 

Cybernet System corporation, was the first system to receive a regulatory approval (approbation 

delivered by the Japan’s Pharmaceuticals and Medical Devices Agency, see section F). 

C. Endoscopic Mapping and Navigation, Anatomical Structures Identification, and Instrument 

Segmentation 

The 3D mapping of the endoscopic scene and the localization of the endoscope within this 

environment are essential to CAI and support for navigation in endoscopy. Combined with the 

semantic analysis of endoscopic scenes, such CAI platforms could improve endoscopic 

procedure safety, allow the development of endoscopy reporting systems43 and even play a 

critical role in the development of multi-modal endoscopy. 

C.1 Endoscopic Mapping and Navigation 

Most Simultaneous Localization And Mapping (SLAM) approaches dedicated to endoscopy rely 

on complex photogrammetry pipelines aiming at simultaneously inferring the geometry of the 

endoscopic scene and the endoscope’s displacements directly from a sequence of images44 

(see Fig.3).  

Conventional SLAM methods assume the scene to be rigid which limits their applicability in 

deformable endoscopic applications. Additionally, detection and tracking of visual features can 

be challenging in endoscopy and MIS where there can be a paucity of salient tissue texture and 

appearance can vary with clinical events like bleeding (See section A, i). ORB-Slam, and its 

variants dedicated to endoscopy, remain the current gold standard SLAM approaches in white 

light endoscopy45-49. Such systems mainly differ in image matching strategies and recent 

approaches can achieve real-time dense reconstruction of endoscopic scenes48,49. Despite the 



development of advanced deformable SLAM pipelines50-53, the reliable tracking of visual 

features remains challenging and prevents the implementation of conventional SLAM 

approaches in robust and stable clinical systems. Active vision techniques, notably relying on 

the use of electro-magnetic tracking devices or structured illumination systems54, only partially 

compensate for visual endoscopy artefacts and the fusion of heterogeneous sources of data 

remains difficult. 

CNN-based SLAM pipelines avoid the need for tracking visual features by directly estimating the 

depth map of the endoscopic scene from a single monocular view (see Fig.3). State-of-the-art 

CNN-based pipelines55,56 favorably compared to45,48, notably by reporting accurate mapping and 

localization results on long duration colonoscopy sequences. They however remain particularly 

sensitive to endoscopic imaging artefacts and their robustness to deformation is limited56. 

Despite noteworthy progress, the lack of large-scale annotated datasets, especially using 

simulation environments57,58, is a major bottleneck to the advance of learning-based visual 

SLAM systems and arguable one of the main reasons why currently there is no reliable solution 

to navigation in gastrointestinal endoscopy. 

C.2 Anatomical Structure Recognition 

Anatomical structure recognition may consist in detecting different sections of the gastrointestinal 

tract but also detecting critical structures or landmarks within these sections. While similar to 

CADx and CADe system, in this section we consider structures and methods that have not 

focused on polyps in colonoscopy. 

Different classifications of the upper gastrointestinal tract are utilized in clinical practice59,60. 

Derived from the British and modified Japanese guideline61-63, a new dataset distinguishing 

between 11 locations of the upper gastrointestinal tract (pharynx, esophagus, squamocolumnar 

junction, middle-upper body of antegrade view, lower body, antrum, duodenal bulb, duodenal 

descending, fundus, middle-upper body of retroflex view, angulus and a 12th class associated to 

unqualified landmark) has been proposed64. This study further demonstrated that conventional 

CNNs architectures perform equally well with an average classification accuracy greater than 

85%. Considering a relatively similar classification, but distinguishing between white light and NBI 

esophagogastroduodenoscopy, a classification accuracy greater than 95% has been reported 

using another conventional CNN architecture60. 

Similar studies have been proposed for anatomical site segmentation in colonoscopy. A 

longitudinal analysis of the performances of reference CNN approaches65 on three reference 

colonoscopy image classification challenges66-68 has recently been performed. The most recent 

challenges68-70 aim at evaluating image classification methods for distinguishing between 

anatomical location (z-line, pylorus, cecum, retroflex rectum, retroflex stomach), abnormalities 

(polyps, ulcerative colitis), polyp removal cases (dyed and lifted polyps, dyed resection margins), 

and surgical context (normal colon mucosa, moderate stool inclusion, significant stool inclusion, 

useless blurry image, surgical instrument detected, out of patient). Most state-of-the-art CNN-

based approaches71 reach an accuracy greater than 90%.  

Despite promising results, the reliability and accuracy of CNN-based anatomical structure 

recognition methods highly depend on the chosen classification criteria as well as its granularity 

and the datasets used to train the models. More particularly, identifying different sections of the 

colon; the terminal ileum, the cecum, the ascending to transverse colon section, the descending 



to sigmoid colon section, the rectum, the anus (and a class associated to indistinguishable parts 

of the colon) remains challenging72. Applications such as automatic endoscopy reporting require 

a consistent level of description to be usable in clinical applications. 

C.3 Surgical Instrument Detection 

Most research focused on surgical tool segmentation has been in laparoscopy rather than 

endoscopy and especially in robotically assisted laparoscopy making progress towards robot 

autonomy. Several open datasets for training AI models have allowed state-of-the-art methods to 

rely on supervised CNN-based semantic segmentation methods73, though notable recent 

progress has also been made using image synthesis and image-translation. The ROBUST-MIS 

2019 challenge74 highlighted the efficiency of such methods for segmenting surgical tools but also 

their lack of robustness in segmenting small tools orientated in the view axis of the camera, rapidly 

moving, overlapping, or crossing instruments74-76. Recent research on the development of 

unsupervised approaches for the segmentation of surgical tools has also been promising showing 

that synthetic images can successfully be used to train CNNs for this application77-81. It has further 

been shown that meta-learning methods can allow their adaptation to diverse types of surgical 

instruments82. 

Surgical tools pose estimation requires segmenting their multiple articulations which remains a 

challenging task74. Several CNN-based approaches aim at jointly estimating the segmentation 

and 2D pose of surgical tools83,84. Despite promising results, notably to predict occluded 

instruments joints, further studies need to be carried out to evaluate their efficiency in real 

endoscopy scenario. Other approaches rely on generalizable models of articulated surgical 

instruments to infer their 3D pose in robotic-assisted surgery85. By efficiently combining a CNN 

jointly detecting, segmenting, and extracting landmark primitives of multi-articulated surgical tools 

with a geometric method allowing the estimation of their 3D poses, it has been shown86 that the 

tip of surgical tools can be located with a mean error of 3 mm albeit in limited circumstances. 

Despite significant advances, multi-part surgical tool segmentation remains challenging and the 

lack of reliability of SLAM approaches limits its relevance. 

D. AI for Understanding Surgical Process 

The identification of surgical workflow or activity is key to automated endoscopy reporting and it 

could play a significant role in the automation of surgical procedures (e.g., by notably allowing 

the generation of large annotated datasets). Further such process understanding can be 

associated with surgical skill assessment systems and, it may contribute to the development of 

CAI platforms for training in endoscopy87. 

D.1 Surgical Workflow Recognition 

Most research in recognition of procedural understanding has focused on laparoscopic surgical 

workflow analysis, predominantly through automatic decomposition of surgical procedures into 

actions at different granularity levels such as gestures, activities, or phases (from a low level to 

a high-level decomposition)88-91. State-of-the-art approaches are based on architectures that 

incorporate temporal information with models that can be solely based on image/video data or 

integrate multi-modal data (e.g., sensor information such as robot kinematics).  

Fine grained gesture recognition approaches so far have been heavily reliant on the JIGSAWS 

dataset87 despite it being limited to ex-vivo procedures mimicking robotic surgery suturing tasks 



in silicone training phantoms (see Fig.4). Examples of gestures are “pushing a needle through 

the tissue” or “transferring a needle from left to right”. A systematic review highlighted the 

prevalence of supervised CNNs-based approaches88. Nevertheless, temporal NNs integrating 

multi-modal data91-96 (e.g., video, robot kinematic, surgical tools identification) achieved a per-

image surgical gesture recognition accuracy of approximately 90%. A recent approach notably 

embedded multimodal attention mechanisms within a two-stream temporal network to efficiently 

combine kinematic and video data97. It achieved higher accuracy and better consistency than 

unimodal solutions on both phantom and in-vivo data. 

Activity recognition approaches at a coarser level mainly rely on the availability of laparoscopic 

video from the TUM LapChole, cholec80 and M2CAI datasets which focus on laparoscopic 

cholecystectomy98,99. Examples of activities include “calot triangle dissection” or “clipping and 

cutting”. Unsurprisingly, temporal NNs significantly outperform conventional CNNs methods by 

achieving a recognition accuracy of approximately 90% on the cholec80 dataset100,101. Analysis 

of the MIDL (Medical Imaging and Deep Learning conference) 2020 SARAS-ESAD challenge 

found similar conclusions for activity recognition in robotic-assisted prostatectomy102,103 albeit on 

a fairly small dataset. Laparoscopic colorectal surgery activities recognition has also been 

investigated104 with examples of activities such as “lateral mobilization of colon” (approach to 

mesocolon from lateral side) or “TME (left side)” (approach to mesorectum on the left side for 

dissection). Preliminary analysis using a state-of-the-art CNN-based approach demonstrates 

that a recognition precision of approximately 80% can be achieved. Beyond action recognition, 

action prediction has also been explored by a recent approach, based on a temporal NN, 

achieving a laparoscopic cholecystectomy action prediction accuracy of approximately 60%105. 

With the aim of providing comprehensive fine-grained information on laparoscopic 

cholecystectomy surgical activities, the CholecT50 dataset106,107 (mainly relying on cholec80 

dataset videos) is annotated with triplet information in the form of <instrument, verb, target> 

(i.e., an instrument will be used to perform a specific action on a target organ). The analysis of 

the 19 state-of-the-art approaches competing at the endoscopic vision challenge organized at 

MICCAI 2021 shows that surgical workflow analysis remains unsolved  107 (with a mean average 

precision only ranging from 4.2% to 38.1%). 

The definition of surgical phases and activities is challenging and remains ambiguous and at 

times as shown in laparoscopic cholecystectomy, these terms can be confused97,101. The lack of 

standardized definition of phases is an impediment to the development and evaluation of 

gastrointestinal endoscopy phase recognition approaches but also perhaps reflects that this 

need did not exist previously. To overcome this issue, recent studies focus on the definition of 

standard ontologies for endoscopic procedures91,108,109. More particularly, the Heidelberg 

colorectal dataset (ROBUST-MIS Challenge74) can be used to identify standard phases in three 

different laparoscopic procedures91 (proctocolectomy, rectal resection, sigmoid resection). 

The lack of standardized definition of gestures, activities, and phases of gastrointestinal 

endoscopy procedures as well as the difficulties to generalize surgical workflow approaches to 

different procedures at different granularity levels remain critical open problems. If contextual 

information such as the practitioners’ position within the operating room or the analysis of 

practitioners’ comments could benefit surgical workflow analysis, the integration of multi-modal 

information remains challenging7,110. 

D.2 Surgical Skill Assessment 



Surgical skill assessment efforts have mainly focused on the automatic evaluation of 

practitioners’ expertise in performing specific surgical tasks. Being closely related to surgical 

workflow analysis, the automation of surgical skill assessment has significantly advanced with 

the emergence of temporal NNs. Such networks have notably been trained to distinguish 

between three levels of practitioners’ expertise (novice, intermediate and expert) on the three 

tasks of the JIGSAWS dataset111 and, in a more elaborate way, to jointly recognize surgical 

gestures and evaluate skill scores112 (ranging from 6 to 30). Both methods achieve skill 

assessment accuracy greater than 95% but the lack of real surgical data evaluation is a major 

limitation to the validity and impact of such efforts113. A three-stage temporal NN-based 

approach dedicated to laparoscopic cholecystectomy has also been proposed114. It achieves, on 

a private cholecystectomy dataset, an average classification accuracy of approximately 85% in 

distinguishing good and poor surgical skills. More recently, a unified learning-based approach 

has been presented to exploit and combine distinct aspects of surgical skill such as the 

identification of surgical instrument usage or intraoperative event patterns115. The proposed 

method outperforms the state-of-the-art for estimating skill scores (ranging from 7 to 35) on in-

vivo laparoscopic gastrectomy and lymph node dissection. Nevertheless, large-scale clinical 

datasets are required to provide evidence of the reliability of this approach. 

Beyond the evaluation of practitioners’ expertise, surgical skill assessment methods also 

focused on the derivation of quality metrics in endoscopy116. CNNs have notably been trained to 

automatically evaluate pre-operative bowel preparation quality117, which is important as a means 

of assessing the efficacy of the procedure. Other prospective studies focused on the detection 

of erroneous surgical gestures, such as erroneous motions of surgical instruments, as they 

could significantly contribute to surgical trainees' performance improvement118.  

Despite promising results, the automation of surgical skill assessment remains limited by the 

lack of large-scale expert annotated datasets and suffers from the same bottleneck as surgical 

workflow recognition. Recent efforts in releasing new data, particularly in simulation settings, are 

an important activity that will benefit the community119. 

E. Robotic Assistants and Automation 

The robotic system STAR, “Smart Tissue Autonomous Robot”, was the first robotic system able 

to perform a suturing procedure with a minimum amount of guidance120. It has thereafter been 

significantly improved by integrating specialized suturing tools and advanced imaging systems 

beyond the visible spectrum. Recently, the STAR system has demonstrated feasibility 

performance (on both phantom and animal models) for laparoscopic suturing of bowel 

anastomosis, a complex soft-tissue surgical task requiring a high level of both accuracy and 

consistency to prevent the risk of anastomotic leakage121. 

Despite the growing adoption of minimally-invasive robotically-assisted surgery, it has been 

reported that surgeries performed using the Intuitive surgical system, which is by far the global 

market leader, represent less than 10% of the overall soft tissue surgery in the USA and less 

than 0.5% of all surgery globally122,123. Major impediments to the generalization of robotically 

assisted surgery are the costs, the practitioners’ learning curve, the operative time, the limited 

number of surgical tools and imaging modes, the lack of evidence that robotically assisted 

surgery outperforms conventional and MIS for numerous procedures. 

As presented in the previous sections, AI-based CAI platforms could be a key element in 

overcoming some of the current impediments to more effective and intelligent robotic surgery124-



126 (see Fig.5). Robot feedback systems and kinematic data from the encoders could mitigate 

the limitation of vision-based AI such as computer-assisted navigation platforms by providing an 

additional sensor. Combining sensor data stemming from different sources remains, however, a 

difficult and open challenge. State-of-the-art approaches utilizing data fusion notably investigate 

surgical subtasks automation, such as suturing127, tissue cutting128 or tissue flaps retraction129. 

Image-guided endoscope navigation is also the object of much research130 (see also section 

C.1). An increasing number of studies further address the challenge of autonomous soft tissue 

manipulation by predicting soft tissue deformations to enable planification of surgical instrument 

motion131. Preliminary evaluations of these methods, carried out on synthetic data and animal 

models, demonstrate promising results but further investigations are needed to provide 

evidence of their robustness. Even though these methods were applied to laparoscopy, most of 

them could be adapted to flexible and robotically-assisted endoscopy132. 

Beyond the automation of conventional endoscopy, AI could also contribute to the development 

of new robotic platforms and paradigms. Magnetic endoscopy is notably presented as a 

promising alternative to colonoscopy although human-machine interfaces are needed for 

providing practitioners with spatial and contextual information. Prospective studies aim at 

integrating robot feedback systems and computer vision to design magnetic endoscopy 

platforms133. Evaluation of such systems carried out on animal models demonstrates the 

feasibility of the proposed approach and opens new perspectives towards the development of 

autonomous colonoscopy systems. 

The lack of appropriate regulatory frameworks and evaluation standards prevent a thorough 

assessment of the resilience, robustness, accuracy, and reliability of AI-driven surgical robotic 

platforms125. They are essential to demonstrate the effective benefit of autonomous minimally 

invasive surgery over minimally invasive surgery134-136. Further work is also needed to 

understand the clinical value and healthcare economics of such autonomous capabilities. 

F. Regulatory Approval and Reimbursement Schemes 

Beyond technical restrictions, the operational implementation of AI-based CAI platforms 

requires regulatory and ethical guidance, legal responsibility frameworks and appropriate 

reimbursement schemes. Regulatory approval pathways are globally evolving but countries 

differ in their approach to regulation136,137. As of 2022, 13 AI devices have cleared regulatory 

approvals in Europe, China and Japan138,139. These AI devices are mainly dedicated to the 

detection of polyps in colonoscopy (e.g., Olympus ENDO-AID, Odin Vision CADDIE). The 

approbation of AI-based platforms notably depends on their relative impact. A decisional system 

that could cause irreversible or serious deterioration of a patient’s state of health or a surgical 

intervention will fall in the higher class of risks for software as a medical device (SaMD). The 

level of certification associated with each class of risk depends on local regulatory 

organizations. CADe platforms fall in class II in Europe and in the USA (over 3 classes) but, a 

third-party certification is required in Europe (clinical validation based on scientific validity, 

analytical validation and clinical validation and a CE certification to access the access the 

European market) while an FDA approval is required in the USA (mainly based on estimates for 

detection through a premarket Notification 510(k) process140). The CADx system Endo-Brain 

has been approved by the Japan’s Pharmaceuticals and Medical Devices Agency as a Class III 

device141. As highlighted in previous surveys136, even though regulation policies are evolving, 

the uncertainty around requirements is a major impediment to the implementation of AI devices 

in gastroenterology. 



Together with the adaptation of regulatory approval procedures for AI-based medical devices, 

legal frameworks must be defined to address critical liability issues139 and establish appropriate 

reimbursement schemes. Currently, the lack of evidence regarding AI-based devices cost-

saving prevents any refund charges by public health organizations or health insurance 

systems142,143. Despite recent studies demonstrating the cost-efficiency of AI-based devices in 

MIS, additional evidence is required to reach a clinical consensus142. Consequently, AI-based 

devices are currently used as assistive systems and the implementation of autonomous 

decisional or interventional system remains hypothetical. 

G. Discussion, Challenges and Focus of Development 

If AI-based CAI platforms could enhance precision, link to robotic instrumentation, and allow 

augmented visualization of the surgical site, a range of clinical and technical bottlenecks yet 

remain to be overcome for CAI platforms to demonstrate impact on improving patient care. 

Some of the major technical challenges are: 

i. Most practical AI-based methods for CAI rely on the supervised training of CNN models 

using large-scale annotated datasets. Despite the increasing availability of endoscopic 

video, labelling physiologically meaningful structures requires expertise. Also, for some 

perception problems such as surgical environment navigation, it is difficult, if not 

impossible, to collect labelled data (e.g., 3D spatial labels).  
ii. Unsupervised training of CNN models is a challenging computer vision problem. AI-

based CAI approaches mainly rely on weakly-supervised learning strategies. Synthetic 

data and transfer learning, allowing a network train on a source domain to adapt to a 

target domain, are independently or jointly used. It remains, however, difficult to 

generalize learning-based approaches to various endoscopic scenarios. 
iii. Generalizing AI methods and designing scalable CAI solutions able to adapt to the 

peculiar anatomical and physiological characteristics of a patient, the broad range of 

anatomical abnormalities appearances and physiological manifestations of diseases, as 

well as different endoscope imaging system properties is complex. This problem 

implicitly extends to the ability of a CAI platform to adapt to singular environment and 

scenarios seldom or never represented within the training dataset. 
iv. Efficiently combining heterogeneous multimodal data remains an open computer vision 

problem. Heterogeneous data such as endoscopic images and kinematic data stemming 

from a robotic platform lie in different domains. Meanwhile, multimodal images, collected 

pre and per-operatively, display significantly different and seldom overlapping features. 

Clinical challenges for the deployment of AI-based CAI solutions can be summarized as: 

v. While CNN inference is fast, the inference of deep neural network models does not 

always satisfy real-time constraints. Efficiently integrating multiple functionalities within a 

CAI platform, and more particularly efficiently combining learning-based and physics-

based models, remains a critical problem that is often overlooked. It imposes a trade-off 

between the tractability and the robustness and accuracy of the proposed CAI solution. 

Promising efforts, for example by NVIDIA and the Clara AGX, could provide platform 

technologies for addressing the computational needs for systems144. 

vi. Various levels of regulation are needed for integrating medical devices and software 

within the OR. AI-based solutions rely on complex models that are difficult to interpret. 

As such, assessing the clinical limitations and capabilities of such models is difficult, 



particularly for problems in which human supervision cannot be used to validate their 

precision such as surgical navigation. Additionally, regulators may ask for data to be 

representative of different population demographics, which needs to be considered from 

the early stage of the AI model development. 

vii. For deploying AI-based CAI platforms within the OR, it is critical to provide the surgical 

team with simple human-machine interface that will provide them with clinically relevant 

information while allowing them to effectively communicate with these platforms. This 

notably involves integrating contextual information such as the recognition of surgical 

phase being performed. The robustness of system performance needs to be valid across 

heterogeneous aspects of the clinical environment, such as the surgical approach, 

patient specific information, different instrumentation or devices that might be utilized. 

In this review paper, we have tried to succinctly summarize current progress in AI systems for 

endoscopic video analysis and some perspectives on how these may impact endoscopic 

robotics. The constant advances of AI and the increasing availability of expert annotated 

datasets notably allowed the recent integration of AI CADe and CADx devices in 

gastroenterology. Nevertheless, critical technical and clinical challenges significantly hinder the 

implementation of autonomous decisional and interventional AI-devices. Despite promising 

perspectives, intrinsic limitations of current learning-based approaches will need to be overcome 

for AI-devices to become key components of modern surgical capabilities. 
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Figure legends: 

Figure 1: AI-based CAI in gastrointestinal MIS. AI has become a key component to the 

development of computer-assisted intervention in gastrointestinal endoscopy. 

Figure 2: AI-based CADe and CADx systems. CNNs can efficiently detect and diagnose 

gastrointestinal lesions perioperatively. CADe systems significantly alleviate the miss-rate of 

adenomas in gastrointestinal endoscopy. 

Figure 3: AI-based computer-assisted navigation. CNN-based SLAM pipelines avoid the need 

for tracking visual features by directly estimating the depth map of the endoscopic scene from a 

single view. Despite noteworthy progress, Computer-assisted surgical navigation remains 

challenging in gastrointestinal endoscopy. 

Figure 4: AI-based surgical workflow recognition. Surgical workflow recognition is a key to the 

automation of endoscopy reporting and surgical procedures. Temporal NNs demonstrated 

promising results for recognizing surgical activities in gastrointestinal endoscopy. 

Figure 5: AI-based robotically-assisted surgery. The combined advances of surgical robotics 

and AI opened up promising perspectives for the development of robotically-assisted surgery. 

Nevertheless, efficiently combining heterogeneous sensor data remains a major impediment to 

the automation of MIS procedures in gastroenterology. 


