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Abstract—Understanding user behavior patterns and visual analysis strategies is a long-standing challenge. Existing approaches rely

largely on time-consuming manual processes such as interviews and the analysis of observational data. While it is technically possible

to capture a history of user interactions and application states, it remains difficult to extract and describe analysis strategies based on

interaction provenance. In this article, we propose a novel visual approach to the meta-analysis of interaction provenance. We capture

single and multiple user sessions as graphs of high-dimensional application states. Our meta-analysis is based on two different types

of two-dimensional embeddings of these high-dimensional states: layouts based on (i) topology and (ii) attribute similarity. We applied

these visualization approaches to synthetic and real user provenance data captured in two user studies. From our visualizations, we

were able to extract patterns for data types and analytical reasoning strategies.

Index Terms—Visualization techniques, information visualization, visual analytics, interaction provenance, sensemaking

Ç

1 INTRODUCTION

UNDERSTANDING the analytical reasoning process of users
whoworkwith interactive tools in general andwith visu-

alization tools in particular has been an active research topic.
One way to gain more insights into how users workwith such
tools is to record interaction provenance data, which describes
the lineage of data, system states, visualizations used, and
user interactions. It is typically recorded in the form of proto-
cols, such as audio/video recordings [3], usage logs [18], and
user notebooks [52]. In the human-computer interaction (HCI)
community, these are analyzed in an attempt to better under-
stand user behavior and intentions [31].

In recent years, the visualization community has recog-
nized the potential of insights gained from capturing

[11], [34], visualizing [6], [48], and interpreting prove-
nance [5], [46] from user interactions with visualization tools.
According to the distributed cognition approach by Hollan
et al. [24], a close relationship exists between users’ activities
and their thought processes. Pohl et al. [41] argued that visu-
alizations of interaction provenance data can be used to
make sense of users’ reasoning processes. However, there
are few approaches that support effectively the meta-analysis
of analytic provenance as defined by Ragan et al. [43].

The primary contribution of our work is Provectories, an
approach that helps visualization researchers, designers, and
developers to better understand the behavioral patterns and
analytic strategies of users. We transform recorded applica-
tion states into feature vectors and visualize them using two
different types of layouts: (1) a topology-driven layout based on
the connectivity between states and (2) an attribute-driven lay-
out based on similarity (see Fig. 1). Provectories introduces
visual encodings and interactions that enablemeta-analysts to
identify -– by means of interactive exploration -– patterns in
these layouts, which can then be related to user actions. Pro-
vectories allows both detailed analysis of single user sessions
and identification of similarities between multiple user ses-
sions. It can be applied to a broad spectrum of use cases and
tools, ranging from single interactive visualizations to fea-
ture-rich tools such as Tableau andMicrosoft Power BI.

To illustrate the effectiveness of Provectories, we describe
the visual patterns we extracted from visualizations of syn-
thetic user interactions and of real-world user interactions
from two user studies with different underlying visual anal-
ysis tools. Based on our experience with different types of
interaction data, we elaborate on various strategies for vec-
torizing the provenance data. Furthermore, we discuss the
relative strengths and weaknesses of both layouts used in
the Provectoriesworkflow.

We structured the paper as follows. In Section 2we discuss
existing approaches to interaction provenance representation
and analysis. In Section 3 we present application scenarios
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and introduce an illustrative example. In Section 4 we
describe the Provectories workflow conceptually; implemen-
tation details are given in Section 5. In Section 6 we present
the results of applying Provectories to synthetic and real-
world interaction provenance data and discuss the advan-
tages of two different layouts. We then summarize the limita-
tions of our new visual analysis approach in Section 7.
Section 8 concludes the paper.

2 RELATED WORK

In this section, we describe how interaction provenance has
been defined in the literature and discuss why visualization
researchers might study interaction provenance. We then
discuss previous approaches to meta-analysis, in particular
those based on visualizations of provenance data.

2.1 Interaction Provenance

Ragan et al. [43] introduced an organizational framework for
different types of provenance in visualization and data anal-
ysis. They defined interaction provenance as “the history of
user actions and commands with a system” [43, p.35]. There
are various motivations for logging explicit and observable
user interactions, such as selections, clicks, keystrokes, and
mouse movement. Gotz and Zhou [19] introduce an action
taxonomy consisting of three top-level categories that can
be used to gain insights from provenance data, namely
exploration, insight, and meta-actions. Interaction logs can
be used for the purposes of collaboration, reproducibility,
storytelling, and retrieval [21], [47]. More closely related to
our work, interaction provenance can be analyzed to

understand how users interact with a visualization sys-
tem [18] or to measure the effectiveness of a tool [9]. The
process of making sense of such logs is referred to as prove-
nance meta-analysis.

2.2 Provenance Meta-Analysis

Ragan et al. [43] described meta-analysis as one of six pur-
poses for interaction provenance tracking. Xu et al. [53] pro-
vided a spectrum of possible reasons for meta-analysis of
provenance data. Reviewing an analysis process to under-
stand the analytic strategies of users has been identified as
an important task [11], [14], [43], which can be implemented
in various ways.

Wei et al. [51], for instance, employed clickstream data to
analyze purchase patterns. The data is labeled with prede-
fined actions (e.g., selection of a category, setting a price) and
analyzed based on the ordered sequence in sequential order.
Heer et al. [22] described how users interact with a visual
analytics tool by evaluating aggregated collections of history
sessions. Pohl et al. [32] qualitatively analyzed interaction
provenance based on thinking-aloud protocols. They identi-
fied various strategies that users applied to interpret and
understand visualizations: comparing, laddering, explaining
(storytelling), summarizing, eliminating, and verifying. Sim-
ilarly, Madanagopal et al. [30] analyzed interaction prove-
nance from a sociotechnical perspective by conducting
interviews. They elaborated on how analytical provenance
can be captured and used by taking different end-users into
account. However, they pointed out that further research
into this topic is needed, as –- unlike data provenance –- ana-
lytic provenance is still in its infancy. With reVISit, Nobre

Fig. 1. Identifying meta-analysis patterns in interaction provenance through a schematic display of the vector space generation and the influ-
ence of two layouts. shows a single user session visualized using a topology-driven (force-directed) layout, and represents multiple user ses-
sions visualized with an attribute-driven layout based on t-SNE. The circular annotations highlight a loop back within the analysis process, a
chain of numerical value changes, a selection of multiple countries, and sessions alternating the assignment of attributes on the x-axis, y-axis,
and mark size. The colors of the states indicate numerical values from 1800 ( ) in violet to 2015 ( ) in light green.
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et al. [35] analyzed interaction provenance by comparing
event sequences using a node-link diagram and identified
multidrag, sort and select, and select and refine as analysis strate-
gies. Provectories aims to identify such user strategies as
visual patterns. Thus, Provectories is a visualization-based
approach to themeta-analysis of interaction provenance.

2.3 Provenance Visualization

According to a recent survey by Xu et al. [53], interaction
provenance is most commonly encoded as a temporally
ordered sequence. Visualizing interaction provenance in
this way allows step-wise retracing of the individual inter-
actions [5], [11], [14] and can thus convey the users’ thought
processes [29], [54]. However, sequential visualizations are
less suitable for discovering patterns and relationships.
They neither preserve interesting topological structures,
such as loops or branches in a user’s interaction path, nor
convey a potential similarity between application states vis-
ited. These issues are addressed by the topology-based and
attribute-driven visualization techniques in Provectories.

2.3.1 Topology-Driven Layouts

Provenance data can be treated as a graph, with nodes rep-
resenting states of a data item or application and edges rep-
resenting actions of users that lead to transitions between
the states. Graph-based provenance visualization can reveal
patterns, such as branching, cycles, and commonly revisited
states (i.e., nodes with high connectivity).

VisTrails [7] is a graph-based visualization of workflow
provenance. GraphTrails [12] is an exploration tool for net-
work analysis that incorporates interaction provenance on
the fly. VizCept [8] is a collaborative analysis system for tex-
tual data that allows users to keep track of each other’s find-
ings and relationships in a shared topological concept map.
The Knowledge-Transfer Graph by Zhao et al. [55] shows a
node-link visualization that aims to help researchers to
externalize their thought processes in collaborative analy-
ses. reVISit [35] assesses interaction provenance data based
on both qualitative and quantitative data by showing inter-
action patterns and analysis strategies as event sequences.

Similarly, we use a force-directed graph layout to visu-
ally represent interaction provenance. In addition to this
topology-driven layout, we also investigate and employ lay-
outs in which the similarity between states determines the
positions of the nodes using so-called attribute-driven
layouts.

2.3.2 Attribute-Driven Layouts

The application states in a provenance log can be viewed as
a high-dimensional time series rather than a graph. Bach
et al. [2] proposed TimeCurves as a visualization technique
for revealing similarity in high-dimensional time series.
Time curves are trajectories through a two-dimensional
embedding of data points, which give rise to visual patterns
such as clusters, cycles, U-turns, and oscillations. In Time-
Curves, embedding is based on multidimensional scaling
(MDS) for the embedding; similar visualizations can be con-
structed by means of other dimensionality-reduction techni-
ques, such as PCA, t-SNE [50], and UMAP [33]. Time-curve-
like visualizations have been used to visualize high-

dimensional time series in a wide variety of application
domains, for example, dynamic graphs by van den Elzen
et al. [49] and neural networks by Rauber et al. [44].

In previous work [23], we used collections of time curves
to visualize decision-making processes in games and puz-
zles, and described general patterns emerging in such visu-
alizations. In this work, we use the same approach to
visualize interaction provenance in an attribute-driven lay-
out. This makes our approach closely related to ModelSpace
by Brown et al.[6]. ModelSpace is based on the concept of
numerical analytic provenance, which consists of sequences of
vectors that describe the users’ interactions with a system
“via the proxy of changes to their underlying machine
learning models”. The authors also mention a possible
application of ModelSpace to visual analytics systems in
which the users do not interact with such models. However,
from the brief discussion of the example application—a
search interface for the Finding Waldo puzzle [5]—it is not
clear how the feature space in such cases relates to the
insights gained from the ModelSpace visualization. By
applying our similar approach to two visual analytics tools
with fundamentally different choices for the state represen-
tation, we aim to strengthen this connection. Furthermore,
we show that additional visual encoding options and inter-
action techniques, such as tailored single-state and sum-
mary visualizations or a step-wise path analysis, can
facilitate interpretation of the projected provenance data.

3 REQUIREMENTS AND USAGE SCENARIO

We designed Provectories for the purpose of extracting and
understanding user behavior patterns and analysis strate-
gies from interaction provenance. Gleicher [17] enumerated
three ways of comparing sessions: comparison between two
items, between a few items, and between many items at the
same time. With Provectories, we aim to cover all three
aspects, performing meta-analysis to understand (i) a single
user’s analytical process, (ii) similar analysis processes by
single or multiple users, and (iii) similar approaches by and
between multiple users. Thus, Provectories uses two layouts
to enable comparison between unique states from a single
session, between unique states from multiple user sessions
and between contiguous states from multiple user sessions.

Single-session investigation focuses on understanding
behavioral patterns and the overall analysis strategy of a
single user. This type of investigation aims to answer ques-
tions such as whether a user encountered difficulties during
the analysis, or whether the user had a systematic search
strategy or performed a somewhat untargeted exploratory
analysis.

Multi-session investigation builds on the single-session
investigation, but focuses on comparing the interaction
provenance from multiple users working with the same
tool. Here, the goal is to understand the similarities and dif-
ferences in analysis behavior between the users. This type
of investigation aims to answer questions such as whether
many users encounter the same difficulties, or how effective
different analysis strategies are. Multi-session investigation
can be divided into comparing sessions in which users per-
form (i) the same or similar tasks or (ii) different tasks.
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3.1 Requirements

We derive the following requirements for single and multi-
ple sessions from the existing literature [27], [37] and our
prior research experience [13], [23], [53]. To support single-
session investigation, Provectories is designed to:

S1 show the entire analysis sequence from beginning to
end in temporal order;

S2 include the user interaction and/or system state
information, such as the changes between two conse-
cutive steps in the analysis sequence;

S3 facilitate the analysis of data coverage during the
exploratory analysis, for instance, as the data trails that
lead the user from the starting point to the final answer.
Further, we aim to identify whether a user focuses on
specific data attributes and/or on part of the dataset, or
morewidely explores the entire data space;

S4 facilitate the investigation of any analysis tactics or strat-
egies that the user deployed. We therefore aim to iden-
tify whether the user explores the data space randomly
or follows a particular strategy. This also includes iden-
tification of situations such as a user getting stuck at a
certain stage of their analysis, which could be indicated
by them revisiting certain visualization states.

To support multi-session investigation, Provectories
aims to:

M1 provide an overview of all the analysis sessions
including which part of the dataset is investigated
more frequently and where most of the unsuccessful
analyses terminate;

M2 support comparison between analysis sessions for
instance, to determine whether successful analysis
sessions share similar exploration pathways and
whether there is any frequently occurring difference
between successful and unsuccessful sessions;

M3 facilitate the discovery of other sense-making patterns,
for instance, to determinewhethermore efficient analy-
sis sessions can be identified by specific visual patterns
and whether there exists any correlation between the
investigation strategy and data attributes/subspace.

3.2 Usage Scenario

We hereafter use Gapminder [45], [47] as a guiding example
to explain how Provectories works. The Gapminder tool
allows users to explore the development of countries over
time. As outlined in Fig. 2, it consists of a bubble chart in
which each country is represented by a colored mark. Users
can interactively map attributes, such as GDP, life

expectancy, and child mortality, to either one of the axes or
the size of the country marks, and change the year between
1800 and 2015 with a time slider. At any time, the applica-
tion state can be fully described by the following informa-
tion: the timestamp of the interaction; the data attributes
mapped to x-axis, y-axis, mark size, and mark color; the
year selected (between 1800 and 2015); and any countries
selected.

In a simple analysis of the relationship between popula-
tion and fertility among countries in 2015, the user can per-
form the following steps: (1) change the year to 2015 (2)
change the data attribute for the y-axis to population (3) select
the country Qatar (4) add China to the country selection (5)
change the data attribute for the x-axis to fertility This analy-
sis results in the five applications states listed in Table 1.

For the purpose of meta-analysis, we use the sequence of
application states visited by a user and display the interac-
tion provenance in two layouts, see Fig. 3. In both representa-
tions, and indicate the beginning and the end of a
session, respectively. When applying a force-directed (topol-
ogy-driven), a chain of five successive states is visible. In con-
trast, the attribute-driven layout (calculated using t-SNE)
places the states that correspond to country selections (states
3 and 4) closer to each other than the other selected states.
This is the result of an underlying conceptual or analytical dis-
tance, which was defined to be smaller between states 2 to 4
than between the others.

4 PROVECTORIES

The fundamental workflow underlying the Provectories
approach consists of three steps, as illustrated in Fig. 4:

the application states resulting from one user’s ormultiple

Fig. 2. Interface of the Gapminder visual analytics tool [47] with the cur-
rent session history.

TABLE 1
Interaction Provenance for the Gapminder Example

Time x-axis y-axis Size Color Year Countries

t0 x0 y0 s0 c0 Y 0 C0

t1 x0 y0 s0 c0 2015 C0

t2 x0 population s0 c0 2015 C0

t3 x0 population s0 c0 2015 Qatar
t4 x0 population s0 c0 2015 Qatar, China
t5 fertility population s0 c0 2015 Qatar, China

Here, x0, y0, s0, and c0 represent the default data attributes mapped to the
axes, size, and color, respectively; Y 0 and C0 represent the default initial selec-
tions for year and countries. Bold text indicates changes in the application
state resulting from a user interaction.

Fig. 3. Schematic illustration of the Gapminder usage scenario explain-
ing how application states are mapped in the two layout variants.
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users’ interactions with a visual analytics tool are recorded;
the application states are transformed into high-dimen-

sional feature vectors; and for the purpose of meta-analy-
sis, the recorded analysis sessions are interactively
visualized as trajectories through a two-dimensional embed-
ding space based on various layout techniques.

4.1 Logging of Application States

As indicated in Fig. 4 , the first step in the Provectories
workflow consists of creating user interaction logs for a
given visual analytics tool. Each user interaction (of a prede-
fined set of interactions) triggers logging of the updated
application state. The complexity of the visual analytics tool
and the goals of the subsequent meta-analysis determine
the granularity of the application state and which interac-
tions are to be logged. For the subsequent steps in the Pro-
vectories workflow, it is important that each user session is
stored as a temporally ordered list (S1) of potentially
unstructured or heterogeneous data items which can be
transformed into feature vectors.

4.2 Vectorization of Application States

In the second step of the Provectories workflow, the logged
application states are transformed into numerical feature
vectors (see Fig. 4 ). This transformation serves two pur-
poses: First, it provides a structured way to determine
equivalent states for the subsequent topology-driven layout
(see Section 4.3.1). Instead of performing the similarity
check directly on the complete and potentially complex
logged states, this “quantization” introduces an optional
abstraction and/or simplification step. Second, it enables
the calculation of distances between application states (see
Section 4.3.2).

In our study of related work and while applying Provec-
tories to various use cases, we came across three different
strategies of vectorizing application states:

1) Vectorization via proxy—In some applications, users’
interactions with a visual analytics system transform

an underlying object that may be readily represented

as a vector. The changes to this object can serve as a

proxy to understanding the user’s actions. This type

of vectorization is showcased in ModelSpace by

Brown et al. [6]. If the underlying object is not easily

interpretable in isolation, as is the case with black-

box machine learning models, this approach may

introduce an additional layer of complexity.
2) Direct translation of interactive components—In many

visual analytics applications, each user interaction
changes a variable of a given datatype. For instance,
radio buttons relate to categorical variables, sliders to
numerical variables, and the result of panning in a 2D
plot may be represented by a 2D vector. In such cases,
each variable of interest can be directly encoded and
used as part of a compound vector representation that
identifies the current application state.

3) Hand-crafted, semantic representations—In more com-
plex cases, the effects of user interactions must be
translated to a numerical form by introducing a
representation that conserves the semantics of the
data that the user interacts with. The exact form of
this representation depends strongly on the specific
user interface, the actions tracked, and the tasks per-
formed by the users.

TheGapminder usage scenario outlined in Section 3.2 lends
itself well to using a compound representation constructed
from direct translations of the interactive components. Here,
the individual encodings depend on the data type:

Fig. 4. Provectories workflow. Interaction provenance is captured from a visual analytics tool. Each interaction leads to a system state which is
encoded as a feature vector such as s11( ). The sequence of provenance vectors is then visualized with a topology-driven or an attribute-driven
layout. Such a visualization can help to analyze a single session or to compare multiple sessions (such as Sessions 1 and 2 ) concurrently.
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For categorical attributes, a simple one-hot encod-
ing is the obvious choice.

Boolean attributes can be treated as categorical
attributes with two options or can be represented by a
single integer that is either 0 or 1.

Numerical attributes require no further
encoding.

Set attributes can be encoded by a sequence of
zeros and ones of length l, where l is the cardinality of
the complete set.

These encodings for categorical, Boolean, numerical, and set
attributes introduced above give rise to simple distance met-
rics, as specified in Section 4.3.2. In many cases, however, the
user interactions are too complex to be directly translated, or
the tracked information is too low-level to carry any informa-
tion about the user’s mental model. In such cases, higher-level
features with better semantics must be derived. In Section 6.3,
we describe such a tailored vector representation for the case
of users interactingwith a scatterplot through brushing.

4.3 Visualization of Application States

The final step of the Provectoriesworkflow is the visualization
of the paths that users take through the application-state
space (see Fig. 4 ). The high-dimensional feature vectors are
embedded in two dimensions and visualized as a scatterplot
using either a topology-driven layout, which emphasizes con-
nectivity between identical states, or an attribute-driven layout,
which focuses on the similarity between states. In both cases,
each point represents an application state. The user paths are
visualized as trajectories through these points. Data attributes
or metadata can be mapped to the visual channels of the line
and point marks. We first describe the embedding techniques
and the required pre-processing of the provenance vectors.
We then discuss the visual encoding choices and how meta-
analysts can interact with the Provectories visualization.

4.3.1 Topology-Driven Layout

For the topology-driven layout, we treat the collection of
user sessions as a graph. We first determine a set of unique
nodes, where each node represents a unique application
state. Uniqueness is based on the identity of the high-
dimensional feature vectors. We treat two nodes as con-
nected if one succeeds the other in any of the user sessions
(S2). We lay out the nodes using a force-directed network
spatialization algorithm (ForceAtlas2 [25]; for implementa-
tion details, see Section 5). The nodes are then connected by
drawing a Catmull–Rom spline trajectory through them for
each session (M1; see Section 4.3.3).

In the topology-driven layout, a single user session with
no duplicate states always results in a linear “chain” of
points. Only when states are revisited or shared across mul-
tiple sessions, do patterns, such as loops and branches,
emerge from this layout (S3,M2).

4.3.2 Attribute-Driven Layout

For the attribute-driven layout, we treat the whole collection
of application-state vectors across all user sessions as sam-
ples from a high-dimensional manifold. We embed these
samples based on their similarity (S3, M2, M3), using

various dimensionality reduction techniques. Specifically,
we compare the results for MDS, t-SNE, and UMAP.

As these dimensionality reduction techniques aim to
place similar points close to each other, it is important to
define a meaningful metric for calculating the mutual dis-
tances between the high-dimensional feature vectors. For
compound representations based on simple translations of
interactive components, we suggest defining this distance
metric based on individual distance functions for each attri-
bute type. To this end, let ai and bi be the vectorizations of a
single attribute with type kðiÞ 2 fcat; bool; num; setg for two
different states A and B, as described in Section 4.2.

For one-hot encoded categorical attributes, a
reasonable distance metric can be defined via the inner
product: dcatðA;BÞ ¼ 1� acat � bcat.

For Boolean attributes encoded with a single
number (0 or 1), the result of an exclusive or (XOR)
can be used: dboolðA;BÞ ¼ abool � bbool ¼ aboolþ
bbool ðmod 2Þ.

For one-dimensional numerical attributes in
compound representations, it makes sense to define the
distance as the absolute difference normalized to the
total value range ðnmax � nminÞ of the attribute:
dnumðA;BÞ ¼ janum � bnumj=ðnmax � nminÞ.

Set attributes may be compared using the Jac-
card index. Alternatively, if the encoding described in
Section 4.2 is used, a normalized p-norm of the differ-
ence between two vectors can be used as a distance
function: dsetðA;BÞ ¼ kaset � bsetkp=s1=p, where s is the
cardinality of the complete set. See Section 6.1 for a
short example and discussion of this choice.

Finally, the total distance between two states A
andB in a compound representation can be calculated as
theweighted sumof all individual attribute distances:

dðA;BÞ ¼
X

i

wi � dkðiÞðA;BÞ: (1)

By default, all weights are equal, i.e., wi ¼ 1, but they
can be chosen freely by the meta-analyst depending on
the scenario. The higher the weight of a specific attri-
bute, the greater the likelihood that patterns for the
associated data type will prevail in the embedding.
This compound metric is similar to a weighted version
of Gower’s (dis)similarity [20].

In the case of a hand-crafted vectorization, the distance
function must be chosen/constructed in such a way that the
desired semantics are preserved (see Section 6.3 for an
example). We use the pairwise distances as an input to the
MDS, t-SNE, and UMAP techniques (Section 6.1 and 6.2).
Unlike in our previous work [23], we remove duplicate
high-dimensional vectors prior to the embedding by
default. Otherwise, clusters of identical points can be mis-
taken for specific data-related patterns. In the case of com-
pound representations, this removal of duplicates takes into
account whether any of the weights have been set to zero by
the user. Zero-weighted attributes are treated as duplicates
regardless of their value. We set the perplexity hyperpara-
meter of t-SNE to 50 by default [50] and choose the nearest
neighbor parameter for UMAP accordingly (since perplex-
ity can be understood as a smooth measure of the number
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of nearest neighbors). Details of the implementations used
for the embedding are given in Section 5.

4.3.3 Visual Encoding and Interactivity

As stated above, each layout technique results in a scatter-
plot of embedded application states. We visualize the user
sessions as spline trajectories through these points (S1, M1).
We chose this design over more traditional graph-drawing
techniques (e.g., tree layout) for three reasons: First, draw-
ing an individual trajectory for each session automatically
results in an effective multigraph visualization in which
parallel edges are visible as such. Second, each user session
has its own distinct path, whose visual channels can be
used to encode additional data. Third, in cases in which the
meta-analyst decides not to remove duplicates in the attri-
bute-driven layout, the same drawing algorithm can be
applied.

Meta-analysts can select the visual encoding of the point
and line marks (S3). Point marks can be colored categori-
cally depending on categorical or Boolean values, or using a
sequential color scale for numerical values. An age attribute
which corresponds to the temporal index of each applica-
tion state within its session is also available. Lines can be
colored categorically by meta-attributes such as usernames
and predefined task labels. They can further be switched on
and off by their categorical labels and filtered by length by
using a range slider. These coloring and filtering options
address Explore Dimensions and Explore Items in Enriched Lay-
out tasks and as described by Nonato and Aupetit [36].

To let meta-analysts inspect the underlying high-dimen-
sional data for specific points, the Provectories visualization
features so-called summary visualizations [13] (S3, S4).
Upon hovering over a point, the summary visualization of
the corresponding single application state is shown. When
multiple points are selected (e.g., via a lasso selection), the
summary visualization is adapted to encode the distribution
of values among the application states (M2). The exact
visual encoding of the summary visualization depends on
the number and types of attributes that describe the state of
a given application.

Here, we describe the summary visualization designed
for the Gapminder example (see Fig. 5a). A table lists all

categorical and Boolean attributes with their values, where
the frequency of values within the selection is encoded by
the size of the marker in each cell. A histogram shows the
distribution of year values. The distribution of set selec-
tions is displayed as a list of country flags, with each flag’s
opacity encoding the number of states for which that coun-
try was part of the selection. This list is ordered by fre-
quency, with the most frequently selected countries
appearing first.

To facilitate tracing of individual user sessions even in
the presence of potential visual clutter, the history graph
with a list of user actions and the resulting application
states for an individual session can be activated (S1), see
Fig. 5b. In reVISit, Nobre et al. [35] refer to the sequential
analysis of interaction states by a video-like experience
using a playback feature. Selecting states in the history
graph overlays the embedding space with arrows that
indicate the position and direction of the user session.
Analysts can follow the session in a step-wise manner or
via an automated animation.

5 IMPLEMENTATION

The Provectories workflow is implemented as three individ-
ual components which closely correspond to the three steps
of the workflow described in Fig. 4: a system for tracking
the interaction provenance, which must be incorporated
into the visual analytics tool that meta-analysts want to
study; a module that structures, processes, and exports
the recorded provenance data; and the interactive visual-
ization of the user sessions.

For the first user study (Gapminder), we use the Knowl-
edgePearls implementation of Gapminder [47] for prove-
nance tracking. The resulting provenance files were
processed in Python. We provide a Python module1 with
classes for application states, user sessions, and collections
of sessions that can be adapted to interaction data from
different visualizations. For the second user study (User
Intent), we used the experimental data Gadhave et al. [16]
used to predict user intent based on the selection of data
points in a scatterplot employing the Trrack library [10].
We again provide a Python module.2 The processed prove-
nance data can be exported with or without pre-calculated
embedding coordinates. We used the openTSNE imple-
mentation of t-SNE [42], the official UMAP Python imple-
mentation [33], the scikit-learn MDS implementation [38],
and the ForceAtlas2 implementation from the datashader
module [1].

To visualize the exported interaction data, we used an
improved version of the ProjectionPathExplorer tool [23], with
online embedding functionality based on tsnejs[26], umap-
js [39] andGraphology ForceAtlas2 [40]. To increase the com-
prehensiveness of pattern recognition by using both topol-
ogy- and attribute-driven layouts, we added a feature that
displays both layouts simultaneously in a multiple-coordi-
nated view. Additionally, as outlined in Section 4.3.3, we
used summary visualizations as suggested by Eckelt et al.
[13], for which we implemented custom visualizations for

Fig. 5. (a) Provectories summary visualization for multiple selected
application states, encoding the relative frequency of attribute values.
(b) The history graph view for step-wise analysis of a single
session (S2).

1. https://github.com/jku-vds-lab/sensemakingspace/
2. https://github.com/jku-vds-lab/provectories-user-intent/
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both user studies, see Fig. 5a and 9. All sessions described in
this paper can be explored online.3

6 RESULTS

In this section, we describe patterns identified within interac-
tion provenance data from synthetically generated sessions
and discuss detailed patterns observed in two user studies
with real interaction provenance data. The synthetic sessions
illustrate the visual patterns for data types, while the real user
sessions demonstrate the utility of Provectories in studying
actual analysis provenance. The first user study shows the
analysis of user sessions using the socio-economical dataset in
Gapminder. The second user study examines the analysis
provenance of 12 different sessions from the study by Gad-
have et al. [16], with six sessions for outlier tasks (three for out-
liers based on clustered data and three for outliers based on
linear regression) and six sessions for clustering tasks. The
supplementarymaterial,which canbe found on theComputer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2021.3135697, presents figures for all ana-
lyzed projections using different layouts, tasks, datasets, and
sessions. To interactively explore the interaction provenance
data, see our online prototype.

6.1 Patterns for Compound Representations

The goal of the synthetically generated sessions was to
study data-type-specific patterns in embeddings based on
compound vector representations. For the synthetically gen-
erated sessions, we used the Gapminder dataset. We started
by creating sessions in which only a single data type (e.g.,
numerical or set) was changed in a predefined way. We also
created sessions in which two attributes were subjected to
random, but systematic changes. For each type, we sampled
30 sessions to check the validity of the observed patterns.
Additionally, we manually created 15 sessions with mixed
attribute changes to verify the insights gained. Further
information can be retrieved from the supplemental mate-
rial, available online. For the set attribute, we chose the 2-
norm as a distance function to make the average distance
between two random subsets is close to 0.7, but the
between-typical-country selections with few items is close
to 0.5.

As expected, no data type-specific patterns are visible in
the topology-driven layout, while we were able to extract
patterns for Boolean, categorical, numerical, and set attrib-
utes from the attribute-driven layout (see Fig. 6).

Boolean attributes are distinctly separated within
the embedding space. This can be seen in Fig. 6a, where
the Boolean attributes religion and continent occupy
their own separate areas in the embedding. We found
that for the synthetic data, a separation of the embed-
ding into two distinct regions almost always resulted
from a Boolean attribute- if the weighting was kept
equal, see Eq. (1).

Like Boolean changes, categorical attribute
changes can cause the formation of clusters for each cat-
egory in the embedding. Furthermore, certain trajectory
patterns can reveal categorical changes. In Fig. 6b, for
instance, a cluster with the same value for the size attri-
bute population is shown. Within this cluster, categorical
changes in another attribute (here, x-axis) lead to sub-
structures (fertility rate, child mortality, or GDP) that are
connected by crossing, zigzagging lines. This phenome-
non becomes more pronounced when the weight of the
corresponding data type is varied, giving rise to hierar-
chical clustering, as explained further below.

As shown in Fig. 1 , changes in numerical attrib-
utes lead to a chain of states in ascending or descending

order. With regard to interaction provenance, the states

need not be traversed by the user explicitly in this

sequential order, but the states automatically form a

chain based on the definition of the numerical distance.

This chain pattern is consistent for all three attribute-

driven approaches (t-SNE, MDS, and UMAP).
If only single set items are selected in each state,

all of these states have a mutual distance of 1=
ffiffiffi
n

p
,

where n represents the total number of countries
within the embedding space, see Fig. 1 . The obser-
vation of accumulatively selecting a country can be
seen in Fig. 6c. t-SNE, which attempts to preserve
high-dimensional distances, gives circular arrange-
ments for single selected set attributes. Thus, a combi-
nation of single and multiple selected countries leads
to a ring pattern, as outlined in Fig. 6c and . Here,

represents (1) a single selected set attribute as the
inner ring and (2) a second, added country as the outer
ring before (0) both countries are deselected again.

Fig. 6. Patterns identified from synthetically generated single and multiple sessions using an attribute-driven layout. Gapminder data showing (a) a
Boolean distinction between religion ( ) and continent ( ) within the embedding space; (b) categorical changes ( the colors show clus-
ters for x-axis attributes); and (c) single and multiple set selections, where the number of selected states is indicated (0–4).

3. Prototype: https://provectories.jku-vds-lab.at
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This ring structure arises from a distance of 1=
ffiffiffi
n

p
between states with different single-country selections
and a distance of 2=

ffiffiffi
n

p
between states with two differ-

ent countries selected.
Weighting. All patterns described so far were identified

for equally weighted attributes; that is wi ¼ 1 for all i in
Eq. (1). If the weight for an attribute type T is increased
(e.g., wi ¼ 10 for some i with kðiÞ ¼ T ), the patterns related
to this data type become more dominant in the attribute-
driven layout. For instance, increasing the weight of a
numerical attribute causes more states to be placed along a
shared axis representing that numerical attribute.

Hierarchical Clustering. The weighting can be adjusted to
focus on a subset of data types while reducing or completely
removing the effect of the other types. For the attribute-
driven layout shown in Fig. 7, the weight of numerical and
set attributes was reduced to zero (wi ¼ 0 for all i with
kðiÞ ¼ num or kðiÞ ¼ set). This gives rise to a hierarchical
clustering based on the remaining Boolean and categorical
attribute values. Fig. 7 shows a clear separation of the
application states based on whether the color attribute rep-
resents continent or religion; within the religion cluster, a
further division is determined by the size attribute;

within each cluster of equal-size value, the attribute
mapped to the x-axis causes a further sub-clustering. The
values of these attributes are shown in the summary visual-
izations in the lower part of Fig. 7. Consequently, by adapt-
ing the weights, the ordering of attributes within the
hierarchy can be changed.

6.2 Meta-Analysis of Gapminder User Sessions

The goal of the first user study was to confirm the patterns
observed in the synthetic sessions and to discover further

analysis patterns in single and across multiple user sessions.
We conducted a user study with 32 participants (m: 17, f :
15). The participants were students of a master’s program in
data science, as part of which they attended an introductory
course on data visualization. We asked participants to com-
plete four tasks following the Brehmer and Munzner taxon-
omy [4] by using the Gapminder tool.

We designed T1 and T2 as directed tasks (identification
tasks), where the answers could be identified within a small

Fig. 7. Hierarchical clustering for synthetic user sessions emerges in the following order: Boolean, categorical, categorical after removing
the effect of numerical and set attributes by setting their weights to zero (wnum,set = 5). The simplified summary visualization shows the relative fre-
quencies of the Boolean and categorical attributes in the corresponding attribute color.

TABLE 2
Overview of the Four Tasks From the User Experiment,
With Average Answer Correctness and Average Number

of Steps Taken to Accomplish a Task

Task Question ? Answer
Correctness

? Number
of Steps

T1 In 2015, select (a) the
country with the highest
GDP, and (b) the country
with the largest
population.

78.0 % � 0.3 % 17.5 � 14.0

T2 In 1843, select the Muslim
country that has (a) the
highest child mortality rate
(b) the highest fertility rate.

87.0 % � 0.3 % 18.7 � 13.7

T3 Select the European
country that had the
largest relative drop in
population between 1939
and 1945.

40.6 % � 0.5 % 27.7 � 23.8

T4 Select any country on the
continent that has the
highest correlation
between any two attributes
in 1945.

0.3 % � 0.1 % 29.8 � 34.0
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number of interactions. In contrast, T3 (comparison task)
and T4 (summarization task) were exploratory, open-ended
tasks, which typically lead to longer sequences, see Table 2.
As described in Section 5, we made use of the Vega-
Gapminder tool, which saves the interaction provenance.
We asked the participants to download the interaction prov-
enance after completing each task so that the starting point
for each session could be identified. We removed the ses-
sions that contained all tasks in one file, which reduced the
total number of sessions to 109.

Data Types.Wewere able to confirm the patterns observed
in the synthetic sessions for all four data types (see Sec-
tion 6.1). As expected, T1 did not reveal any data type-spe-
cific patterns because accomplishing the task required only
the year to be changed once. Since taskT2 involved a Boolean
change, sessions related to this task formed two clusters —
but not as distinctly as in the synthetic sessions. Moreover,
categorical changes became apparent for both single and
multiple sessions. The open-ended taskT3 required categori-
cal changes, numerical variations, and set alternations,
where most participants set the target attribute to population
on the x-axis or mapped it to the size. As anticipated,
T4 consisted mainly of categorical changes, where partici-
pants explored the data-point distribution from the Gap-
minder scatterplot for almost all possible attribute
combinations and selected single countries at the end of the
sessions. The attribute-driven layout using t-SNE can be
seen for T4 in Fig. 1, showing the interaction provenance of
all users. Overall, the data-type observations in all four tasks
match the patterns from the synthetically generated sessions.

Analytical Strategies. T1 was answered correctly by 78.0%
of the participants using an average of 17.52 � 14.01 steps.
In both layouts, it can be seen that most participants had
already found the answers to both subquestions after an
average of four steps (S3), but continued to explore the
data and the tool by using the slider for the numerical
attribute or the drop-down menu for categorical changes.
As these additional steps were not necessary to complete
the task, we call this process a random walk (S4). Addition-
ally, superimposed trajectories pointing from one cluster to
another reveal that most participants chose the same analy-
sis steps to accomplish the task (M1, M2). States visualized
by the attribute-driven layout distinctly show two small
clusters within the embedding for both answers. In con-
trast, in the topology-driven layout, no unique positions
for the answers can be identified. This can be attributed to
the higher number of nonidentical states (e.g., attribute on
x was placed on the y-axis). Thus, answers relatively close
to the actual answer point towards the outer region of the
embedding if no other user selected the same application
state. It is important to note that without the summary
visualization, such sessions cannot be distinguished from
random-walk analysis strategies. For T2, half of the partici-
pants started by changing the year, while the other half
began by changing the Boolean attribute first. This can be
seen by observing directed trajectories for single user ses-
sions in the embedding in combination of the history
graph (M2). Particularly noticeable are the variations in
categorical attributes. Participants confirmed the country
selection several times by changing the assignment of the
target attribute to different categorical positions (e.g.,

x-axis, y-axis, mark size). These changes formed a zigzag
pattern as shown for the synthetic sessions in Fig. 6b.
About one third of the participants (35.38%) completed the
task by identifying both answers (country with the highest
child mortality and fertility rate) in the same application
state with both (T2a) child mortality and (T2b) fertility as
categorical axis options (M3).

We observed that multiple exploration paths led to the
correct answer (M2). For T3, 18 out of 22 sessions first con-
verged on one unique application state before continuing
the analysis in various ways. Participants started by chang-
ing the year to 1940 before selecting different countries and
varying categorical characteristics to determine the largest
relative drop in the population between 1939 and 1945. As
shown in Fig. 8, one user, for instance, started ( ) by assess-
ing the correlation between two attributes by selecting all
y-axis attributes (except for child mortality), and then revis-
ited the initial attribute (S1, S2). This sequence leads to a
visual loop in the topology-driven layout . The user con-
tinued by changing the year and alternating between two
set attributes . Toggling compares the two alternatives
and verifies the final selection. Before terminating the analy-
sis, the participant looked at four other countries and con-
firmed the initial selection ( ). T3 also benefits from using
the attribute-driven layout to visualize the interaction prov-
enance, as participants selected different countries after
changing the year to 1940, and the selected states are posi-
tioned close to each other. Hence, the topology-driven lay-
out treats these states as independent and unique (see
Fig. 8a), and the attribute-driven approach emphasizes the
similarity of the application states for different analysis pro-
cesses (see Fig. 8b). The average answer correctness for T3
was 40.6%, and the average number of steps were taken to
accomplish the task was 27.27 � 23.8.

The last exploration task T4 shows states and overlapping
trajectories within the embedding identical to those in T3 as
the same year—1945—had to be selected to accomplish the
task. In general, both open-ended tasks cover a large area
within the embedding space. T4 showed an average
response accuracy of 0%, while the number of steps to
accomplish the task was higher (29.8 � 34.0) than for the
directed tasks (T1 and T2). Overall, participants tried to find
the highest correlation between any two attributes by vary-
ing all attribute combinations for any categorical combina-
tions for T4. Furthermore, the attribute-driven layout for T4
shows a zigzag pattern, which means that x- and size attrib-
utes are contained within clusters of y-attributes, which con-
firms the hierarchical structure described in Section 6.2.

Fig. 8. Gapminder user study: single user session with 23 steps from T3,
showing alternation between y-axis items, toggling between two
states and a verification loop by screening for incorrect states. The
user session starts at and ends at .
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Layout Applicability. Based on the insights gained from syn-
thetically generated sessions and real user interaction prove-
nance, Table 3. Depending on the layout and the visual
pattern, we introduce an indicator that describes the readabil-
ity and validity of each pattern. The former indicates whether
it is possible to identify this pattern within the embedding
space, and the latter signifies the reliability of the pattern.

Data type-specific patterns emerge only in an attribute-
driven layout. Each Boolean item occupies its own area
within the embedding space, which leads to two distinct
areas for all three techniques (t-SNE, MDS, and UMAP); this
can be accentuated by putting a higher weight on the data
type. When only a single session is embedded by itself, cate-
gorical changes are difficult to extract due to the low number
of states within the embedding space. In contrast, whenmul-
tiple sessions are embedded at the same time, additional
states provide enough context that clusters for each attribute
can emerge. However, the high number of trajectories can
result in visual clutter. In these cases, making use of adapta-
tions in the visual encodings with the Projection Space
Explorer supports the identification of categorical changes
by filtering and therefore visually removing non-relevant
user sessions or applying a color encoding based on a specific
attribute. Further, tracing single sessions using the history

feature highlights the session of interest by outlining differ-
ences between two consecutive states. In contrast, a chain of
states emerging from numerical value changes has high
validity within all three algorithms; cumulatively selected
set items also exhibit this behavior. In addition, single
selected set attributes form a circular state pattern for t-SNE.
MDS and UMAP do not yield a clear pattern, since many
data points converge to almost a single position in the
embedding space. Although t-SNE is known for preserving
local structures better, while UMAP is said to preserve global
structures better, the only clear difference we could identify
between the two approaches was in the attribution of set pat-
terns. We also observed—as expected—that with increasing
perplexity values the t-SNE scatterplots tended to resemble
those constructedwith UMAP.

To trace users’ analysis steps, both topology-driven and
attribute-driven layouts can be applied to identify steps
revisited in single and multiple sessions based on the
removal of duplicates (and, similarly, for loops containing
intermediate states). However, readability and validity are
higher in topology-driven layouts. Thus, confirmation or
verification tasks can be observed for single user sessions.
Due to overlapping and intersecting trajectories, identifying
an analytical reasoning process for a single session becomes
more difficult with increasing number of sessions. We
address this shortcoming with the history graph (see
Fig. 5b), which allows meta-analysts to detect and under-
stand patterns of single user sessions in multiple simulta-
neously displayed sessions by highlighting the session of
interest. Near-identical data points can only be identified in
an attribute-driven layout, where they are positioned closer
to each other. Consequently, overlapping trajectories signify
application states that were also visited by other users in the
same analytical sequence. In MDS and UMAP, however,
data points of set attributes almost overlap in the embed-
ding space, whereas the chain pattern of numerical values
results in a small distance between similar data points. For
UMAP, this may be improved by choosing a different set-
ting of the mindist parameter.

Further, individual analysis steps or steps of a random
walk represent unique data points. Particularly for MDS
and UMAP, Boolean and categorical changes give rise to
visually distant data points. Based on the entropy of the
embedding space, individual data points or even sessions
become distinctive. Moreover, sessions that end at a unique
state composition are positioned at the outer part of the
embedding in the topology-driven layout.

6.3 Meta-Analysis of User Intent Sessions

We demonstrate the general applicability of Provectories
using interaction provenance data from the users’ intent
study by Gadhave et al. [16]. They conducted a crowd-
sourcing user study with 130 participants, where each
participant performed five different tasks. In tasks, partici-
pants were asked to select outliers or data points that
belonged to a cluster in a scatterplot. They analyzed two
conditions: In the first, they were supported computation-
ally in selecting, for instance, their desired outliers by an
auto-complete feature, which became apparent after they
had selected the first data point. In the second condition,

TABLE 3
Visual and Data Patterns Extracted From Various Techniques,
With Indicators for the Levels of Readability ( low, Medium,

high) and Validity ( low, Medium, High)
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users had to accomplish the tasks manually without any
computational assistance. In total, 12 different datasets
were used for outlier tasks (cluster and linear) and six for
cluster tasks, each with three difficulty levels (easy,
medium, hard).

To analyze the user behavior, we extracted the set of
selected data points after each interaction. Unlike in the
Gapminder example, we chose not to use this information
as a simple set attribute, but instead calculated a more
meaningful feature vector that concisely describes both the
number and the positions of all selected points. We first nor-
malized the coordinates of all data points from the different
datasets that users interacted with. We then constructed a
10-by-10 grid and counted the number of selected points
within each grid cell. The resulting 2D histogram was flat-
tened into a vector and the vectors were compared using
the cosine similarity. This encoding ensures that point selec-
tions in similar regions of the scatterplots are close together
even if the sets of selected points do not match exactly. This
encoding is an example of point (3) in Section 4.2, which
enables a meaningful comparison of user selections across
different datasets. For the summary visualizations, we sim-
ply show scatterplots of the selected points, with opacity
encoding the number of the analyzed states in which a
given point is part of the selection.

We additionally enrich the Provectories visualization
with meta-attributes to understand the embeddings in
more detail, following a tailored summary visualization
to understand the data point selection for each dataset
and the high-dimensional data summary visualization
from Eckelt et al. [13]. The meta-attributes in this user
study were the user ID, the task ID, the accuracy per task
at the user level, the task difficulty level, the Boolean
attribute of auto-complete used, and the selected rank of
the prediction used by a user.

Analytical Strategies. We can confirm the observed select
and refine analysis strategy identified by Nobre et al. [35], for
single user sessions by means of the playback function in
the history graph. Further, when performing single-session
investigations of the outlier tasks, a top-to-bottom approach
becomes visible (S3 and S4). Participants primarily started
to select the outliers at the top of the scatterplot before
selecting outliers towards the center or bottom(see sum-
mary visualizations in Fig. 9 S1). This analysis strategy can
also be observed for multiple users, where outlier selections
form distinct clusters within the embedding (M3, see
cluster A–H in Fig. 10). In contrast, Cluster I is located away

from these clusters. Here, the summary visualization
reveals that the most prominent of all outliers, the data
point in the upper left corner of the scatterplot, was not
selected. Hence, the summary visualization for all states
in the embedding is almost identical to the original scat-
terplot of the dataset, while the summary visualization of
only the visually identifiable clusters in the embedding,
provides information about the outlier coordinates/posi-
tions. In addition, from both the transparency of trajecto-
ries and the direction in which the trajectories are
pointing, it can be seen that the selection of outliers was
performed by multiple users in the same/a similar
sequence (M2).

Dataset Complexity. Further, in line with the performance
measures from Gadhave et al. [16], Provectories shows differ-
ent patterns in the embeddings for the different levels of
dataset complexity. Easy tasks exhibit numerous superim-
posed trajectories pointing from one state to another, indi-
cating states with the same data point selections (see dataset
cluster easy 1 in Fig. 11a). In contrast, hard tasks show a
higher number of unique states in the embedding and
hardly any overlapping trajectories (see dataset cluster hard
1 in Fig. 11b) (M1). Also, as outlined in Fig. 11, the orange
ground truth state was identified exactly for the easy task,
while no participant reached 100% answer correctness for
the cluster hard 1 dataset. Gadhave et al. also assumed a con-
fidence interval of 95% to analyze answer correctness.
When looking at clusters close to the ground truth state, we
can visually determine distinct cluster positions in the
embedding for the easy tasks, whereas the auto-complete
prediction in the user intent study for hard tasks does not
exhibit any distinct clusters (see supplementary material,
available online). We deem this observation useful for
developing an approach to system for usability testing not
only assessing the number of click events a user needs to
accomplish a task, but additionally checking whether multi-
ple users follow the same path to navigate through a tool.
This could help meta-analysts to identify aspects of the tool
that might distract the user.

Prediction. After consultation with the authors, it remain-
ed unclear, whether the computational auto-complete sug-
gestion led the users directly to the final answer or whether
they continued their analysis process. Thus, we investigated
the supported condition in more detail. Using color and
shape encodings in addition to the summary visualizations,
we observed that 38.7% of the participants who used the
prediction feature for outlier tasks ended their sessions at

Fig. 9. Far left: summary visualization of all interaction provenance states within the embedding for the dataset outlier (linear) easy 1. show
the summary visualizations using the storytelling feature (playback features as in Nobre et al. [35]) for analyzing a single user session. Outliers were
first selected at the top of the scatterplot, then at the bottom finally at the top again.
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the ground truth state—52.5% in the outlier (cluster) and
25.5% in the outlier (linear) task. The descriptive values were
extracted from the summary visualization. In the cluster
tasks, only 21.8% of the users selected the correct one of
three suggested predictions and therefore terminated their
session at the ground truth state. Hardly any participant
performing a task on one of the hard datasets (outlier and
cluster) reached the ground truth state–except in the case of
the outlier (cluster) hard 2 dataset. Further, Provectories
enabled the identification of sessions in which users selected
incorrect predictions and consequently refined the data
point selection for the scatterplot (M1).

Analysis of the interaction provenance of the second user
study revealed analysis strategies such as top-to-bottom and
select and refine, and also identification of dead ends, which
were resolved by the auto-complete feature, was observed.
Again, dead ends or looping behaviors were best observed in

the topology-driven layout. By comparing multiple users
performing the same task on a dataset, it was possible to
identify clusters in the attribute-driven layouts which indi-
cate the same or similar state constitutions. Taking superim-
posed trajectories and the direction of the trajectories into
account allows solution strategies to be observed and
determined.

7 DISCUSSION

Vector Representations. In a few visual analytics applications,
users manipulate an object for which a vector representation
is readily available (e.g., an underlying machine learning
model). We thus see the compound representation explained
in Section 4.2—and showcasedwith the Gapminder user ses-
sions—as a potential starting point for provenance meta-
analysis. For many applications it may be possible to encode
each interactive visual component based on the data type of
its underlying variable. We have shown that the resulting
compound representations lead to certain type-specific pat-
terns in the Provectories visualization, which may be accentu-
ated by weighting. However, care must be taken to correctly
interpret patterns under the influence of hierarchical cluster-
ing (see Section 6.2). In our meta-analysis of the user intent
study data [16] presented in Section 6.3, we have shown the
potential of a semantic state representation that is not
directly based on low-level variables. However, it is difficult
to make general statements about such representations, as
they need to be constructed on a case-by-case basis, with
careful consideration of the artifacts manipulated by the
users and the tasks performed.

Fig. 11. Projections for an easy and a hard cluster task. Easy tasks show
superimposed trajectories and few states. The hard task shows numer-
ous unique states and trajectories pointing in all directions. The ground
truth is indicated in orange ( ).

Fig. 10. Cluster-based analysis using t-SNE on the example of the outlier (cluster) medium 2 dataset performing a multiple-user investigation. Dis-
tinct clusters (Cluster A–H) can be observed for outlier selections and superimposed trajectories, which indicates that data points were selected per-
formed in the same a similar sequence by multiple users. The ground truth is indicated in orange ( ).
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One aspect that is not considered in the layout calcula-
tion—a side from the sequential order for drawing the
lines—is the time users took between states. We refrained
from adding timestamps or time differences to the state rep-
resentations, as this would introduce differences between
otherwise equivalent states, which could, in turn, obfuscate
the patterns we identified. However, it would be interesting
to explore the information contained in the time data. We
see two potential ways to proceed: (1) adding additional
encoding options for line segments, which could be used to
identify slow and fast stages of the user sessions; and
(2) incorporating the dimension of time separately, similarly
to how we process connectivity information in our hybrid
layout approach proposed below.

We found it especially challenging to find suitable state
representations in cases where users can create unlimited
visual components themselves (e.g., new views in dash-
boards). We hypothesize that for such tools a representation
similar to Fock states in quantum mechanics [15] could be
used to describe the components in the infinitely large con-
figuration space. In such a representation, rather than listing
all views with their attributes, the possible attribute combi-
nations are listed along with associated “counts” of views
that share these attributes.

Motifs. With our novel visual analysis approach, we
extracted patterns based on the connectivity and similarity
of application states. To increase the knowledge about
analysis sequences and to reduce visual complexity, we
suggest using a motif-based aggregation for both layout
approaches [48]. The detection of motifs allows us to aggre-
gate the provenance graph or parts thereof while preserving
the high-level structure. This adds the potential to “chunk”
interaction sequences for a more compact display. Further-
more, identified patterns could be rendered as a sequence
of actions and compared across multiple sessions. In line
with the idea of using a motif-based approach, edge bun-
dling could be applied to reduce visual clutter. This could
be of particular benefit when visualizing multiple user ses-
sions in the same embedding space, as clutter emerges due
to overlapping trajectories.

Hybrid Layout Approach. To combine the advantages of
both the topology and the attribute-driven layouts, we
have started to develop a hybrid layout approach. In the
purely attribute-driven layout used in our work, the dis-
tance matrix for t-SNE or UMAP is calculated directly
from the attribute values (see Section 4.2), while the
topology-driven layout is based on the connectivity of
states. Our hybrid approach builds on tsNET [28], which
creates a topology-driven layout by transforming the
adjacency matrix of a graph into a distance matrix which
is then used for t-SNE. We combine this topology-driven
distance matrix with the attribute-driven one and use
their weighted sum for a hybrid embedding. For the ses-
sions from the user intent data, we found that a hybrid
embedding with low weight on the attribute-based dis-
tances reveals similar patterns as the purely attribute-
driven one while avoiding the shortcoming of degenerate
distances for empty selections. We believe that the appli-
cability of such hybrid layouts exceeds the scope of Pro-
vectories, and we plan to further refine and study this
technique as part of future work.

8 CONCLUSION

In this paper, we have presented a novel visual analysis
approach to extracting patterns from interaction provenance
data. Our Provectories approach consists of three steps:
(1) the acquisition of interaction provenance data in the
form of logged application states, (2) the construction of fea-
ture vectors representing these states, and (3) the visualiza-
tion of provenance using topology- and attribute-driven
layouts. By interactively exploring such visualizations for
compound representations and real user sessions, patterns
based on data types and analytical reasoning processes can
be revealed. We have demonstrated our approach in two
user studies, and were able, using Provectories, to increase
the comprehension of interaction logs. However, interaction
provenance from other applications, in particular, feature-
rich tools such as Tableau and Power BI remain to be
explored. We strongly believe that Provectories can fill a gap
in the field of provenance and sense-making to improve the
understanding of similarities between analysis processes
and user-specific behaviors.

ACKNOWLEDGMENTS

The authors would like to thank Kiran Gadhave and Alexan-
der Lex for providing us with interaction provenance data
for the second use case and for answering our questions.

REFERENCES

[1] Anaconda Inc. Datashader. Accurately render even the largest
data, 2016. [Online]. Available: https://datashader.org/

[2] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and
P. Dragicevic, “Time curves: Folding time to visualize patterns of
temporal evolution in data,” IEEE Trans. Vis. Comput. Graph.,
vol. 22, no. 1, pp. 559–568, Jan. 2016.

[3] T. Blascheck, F. Beck, S. Baltes, T. Ertl, and D. Weiskopf, “Visual
analysis and coding of data-rich user behavior,” in Proc. IEEE
Conf. Vis. Anal. Sci. Technol., 2016, pp. 141–150.

[4] M. Brehmer and T. Munzner, “A multi-level typology of abstract
visualization tasks,” IEEE Trans. Vis. Comput. Graph., vol. 19,
no. 12, pp. 2376–2385, Dec. 2013.

[5] E. T. Brown et al., “Finding waldo: Learning about users from
their Interactions,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12,
pp. 1663–1672, Dec. 2014.

[6] E. T. Brown, S. Yarlagadda, K. A. Cook, A. Endert, and R. Chang,
“ModelSpace: Visualizing the trails of data models in visual ana-
lytics systems,” in Proc. Mach. Learn. User Int. Vis. Anal. Workshop,
2018.

[7] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, “VisTrails: Visualization meets data management,”
in Proc. Int. Conf. Manage. Data, 2006, pp. 745–747.

[8] H. Chung, S. Yang, N. Massjouni, C. Andrews, R. Kanna, and
C. North, “VizCept: Supporting synchronous collaboration for
constructing visualizations in intelligence analysis,” in Proc. IEEE
Symp. Vis. Anal. Sci. Technol., 2010, pp. 107–114.

[9] P. Cowley, L. Nowell, and J. Scholtz, “Glass box: An instrumented
infrastructure for supporting human interaction with information,”
inProc. Conf. Sys. Sci., p. 296c, 2005.

[10] Z. T. Cutler, K. Gadhave, and A. Lex, “Trrack: A library for prove-
nance tracking in web-based visualizations,” in Proc. IEEE Vis.
Conf., 2020, pp. 116–120.

[11] W. Dou, D. H. Jeong, F. Stukes, W. Ribarsky, H. R. Lipford, and
R. Chang, “Recovering reasoning process from user interactions,”
IEEE Comput. Graph. Appl., vol. 29, no. 3, pp. 52–61, May/Jun.
2009.

[12] C. Dunne, N. Henry Riche, B. Lee, R. Metoyer, and G. Robertson,
“GraphTrail: Analyzing large multivariate, heterogeneous net-
works while supporting exploration history,” in Proc. SIGCHI
Conf. Hum. Factors Comput. Syst., 2012, pp. 1663–1672.

WALCHSHOFER ETAL.: PROVECTORIES: EMBEDDING-BASEDANALYSIS OF INTERACTION PROVENANCE DATA 4829

https://datashader.org/


[13] K. Eckelt et al., “Visual exploration of relationships and struc-
ture in low-dimensional embeddings,” Open Sci. Framework,
Apr. 2021.

[14] M. Feng, E. Peck, and L. Harrison, “Patterns and pace: Quantify-
ing diverse exploration behavior with visualizations on the web,”
IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 501–511, Jan.
2019.

[15] V. A. Fock, “Konfigurationsraum und zweite quantelung,” Zeits-
chrift Physik, vol. 75, no. 9–10, pp. 622–647, Sep. 1932.

[16] K. Gadhave et al., “Predicting intent behind selections in scatter-
plot visualizations,” Inf. Vis., vol. 20, no. 4, pp. 207–228, Oct. 2021.

[17] M. Gleicher, “Considerations for visualizing comparison,” IEEE
Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 413–423, Aug. 2018.

[18] S. Gomez and D. Laidlaw, “Modeling task performance for a
crowd of users from interaction histories,” in Proc. SIGCHI Conf.
Hum. Factors Comput. Syst., 2012, pp. 2465–2468.

[19] D. Gotz and M. X. Zhou, “Characterizing Users’ visual analytic
activity for insight provenance,” Inf. Vis., vol. 8, no. 1, pp. 42–55,
2009.

[20] J. C. Gower, “A general coefficient of similarity and some of its
properties,” Biometrics, vol. 27, no. 4, pp. 857–871, 1971.

[21] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit,
“From visual exploration to storytelling and back again,” Comput.
Graph. Forum, vol. 35, no. 3, pp. 491–500, 2016.

[22] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical his-
tories visualization: Supporting analysis, communication, and
evaluation,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 6,
pp. 1189–1196, Nov./Dec. 2008.

[23] A. Hinterreiter, C. Steinparz, M. Sch€ofl, H. Stitz, and M. Streit,
“Projection path explorer: Exploring visual patterns in projected
decision-making paths,” ACM Trans. Int. Intell. Syst., vol. 11,
no. 3–4, 2021, Art. no. 22.

[24] J. Hollan, E. Hutchins, and D. Kirsh, “Distributed cognition:
Toward a new foundation for human-computer interaction
research,”ACMTrans. Comput.-Hum. Int., vol. 7, no. 2, pp. 174–196,
2000.

[25] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian,
“ForceAtlas2, a continuous graph layout algorithm for handy net-
work visualization designed for the Gephi software,” PLoS One,
vol. 9, no. 6, 2014, Art. no. e98679.

[26] A. Karpathy, “tSNEJS”, 2014. [Online]. Available: https://github.
com/karpathy/tsnejs/

[27] N. Kerracher, J. Kennedy, and K. Chalmers, “A task taxonomy for
temporal graph visualisation,” IEEE Trans. Vis. Comput. Graph.,
p. 1, 2015.

[28] J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren, S. Kobourov,
and A. C. Telea, “Graph layouts by t-SNE,” Comput. Graph. Forum,
vol. 36, no. 3, pp. 283–294, 2017.

[29] Z. Liu and J. Stasko, “Mental models, visual reasoning and inter-
action in information visualization: A top-down perspective,”
IEEE Trans. Vis. Comput. Graph., vol. 16, no. 6, pp. 999–1008,
Nov./Dec. 2010.

[30] K. Madanagopal, E. D. Ragan, and P. Benjamin, “Analytic prove-
nance in practice: The role of provenance in real-world visualiza-
tion and data analysis environments,” IEEE Comput. Graph. Appl.,
vol. 39, no. 6, pp. 30–45, Nov. 2019.

[31] W. C. Mankowski, P. Bogunovich, A. Shokoufandeh, and
D. D. Salvucci, “Finding canonical behaviors in user protocols,” in
Proc. Conf. Hum. Factors Comput. Syst., 2009, pp. 1323–1326.

[32] M. Pohl and J. D. Haider, “Sense-making strategies for the inter-
pretation of visualizations—bridging the gap between theory and
empirical research,” Multimodal Technol. Int., vol. 1, no. 3, 2017,
Art. no. 16.

[33] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold
approximation and projection for dimension reduction,” 2018,
arXiv: 1802.03426.

[34] P. H. Nguyen, K. Xu, A. Wheat, B. L. W. Wong, S. Attfield, and
B. Fields, “SensePath: Understanding the sensemaking process
through analytic provenance,” IEEE Trans. Vis. Comput. Graph.,
vol. 22, no. 1, pp. 41–50, Jan. 2016.

[35] C. Nobre, D. Wootton, Z. Cutler, L. Harrison, H. Pfister, and
A. Lex, “reVISit: Looking under the hood of interactive visualiza-
tion studies, “in Proc. CHI Conf. Hum. Factors Comput. Syst., 2021,
pp. 1–13.

[36] L. G. Nonato and M. Aupetit, “Multidimensional projection for
visual analytics: Linking techniques with distortions, tasks, and
layout enrichment,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 8,
pp. 2650–2673, Aug. 2019.

[37] A. Pandey,U. Syeda, andM. Borkin, “Towards identification andmit-
igation of task-based challenges in comparative visualization studies,”
in Proc. IEEE Workshop Eval. Beyond Methodological Approaches Vis.,
2020, pp. 55–64.

[38] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J.
Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[39] People+AI Research (PAIR) Initiative, UMAP-JS, 2019. [Online].
Available: https://github.com/PAIR-code/umap-js/

[40] G. Plique, “Graphology ForceAtlas2, 2016. [Online]. Available:
https://github.com/graphology/graphology-layout-forceatlas2

[41] M. Pohl, M. Smuc, and E. Mayr, “The user puzzle - explaining the
interaction with visual analytics systems,” IEEE Trans. Vis. Com-
put. Graph., vol. 18, no. 12, pp. 2908–2916, Dec. 2012.

[42] P. G. Poli�car, M. Stra�zar, and B. Zupan, “openTSNE: A modular
python library for t-SNE dimensionality reduction and
embedding,” 2019, bioRxiv.

[43] E. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing prove-
nance in visualization and data analysis: An organizational frame-
work of provenance types and purposes,” IEEE Trans. Vis.
Comput. Graph., vol. 22, no. 1, pp. 31–40, Jan. 2016.

[44] P. E. Rauber, S. G. Fadel, A. X. Falc~ao, and A. C. Telea,
“Visualizing the hidden activity of artificial neural networks,”
IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 101–110, Jan.
2017.

[45] H. Rosling and Z. Zhang, “Health advocacy with Gapminder ani-
mated statistics,” J. Epidemiol. Glob. Health, vol. 1, no. 1, pp. 11–14,
2011.

[46] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang,
“Eviza: A natural language interface for visual analysis,” in Proc.
Symp. User Interface Softw. Technol., 2016, pp. 365–377.

[47] H. Stitz, S. Gratzl, H. Piringer, T. Zichner, and M. Streit,
“KnowledgePearls: Provenance-based visualization retrieval,” IEEE
Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 120–130, Jan. 2019.

[48] H. Stitz, S. Luger, M. Streit, and N. Gehlenborg, “AVOCADO:
Visualization of Workflow–Derived data provenance for repro-
ducible biomedical research,” Comput. Graph. Forum, vol. 35, no. 3,
pp. 481–490, 2016.

[49] S. van den Elzen, D. Holten, J. Blaas, and J. van Wijk, “Reducing
snapshots to points: A visual analytics approach to dynamic net-
work exploration,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1,
pp. 1–10, Jan. 2016.

[50] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008.

[51] J. Wei, Z. Shen, N. Sundaresan, and K.-L. Ma, “Visual cluster
exploration of web clickstream data,” in Proc. IEEE Conf. Vis. Anal.
Sci. Technol., 2012, pp. 3–12.

[52] J. Wood, A. Kachkaev, and J. Dykes, “Design exposition with liter-
ate visualization,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1,
pp. 759–768, Jan. 2019.

[53] K. Xu, A. Ottley, C. Walchshofer, M. Streit, R. Chang, and J. Wen-
skovitch, “Survey on the analysis of user interactions and visuali-
zation provenance,” Comput. Graph. Forum, vol. 39, no. 3,
pp. 757–783, Jun. 2020.

[54] Yang Chen, Jing Yang, andW. Ribarsky, “Toward effective insight
management in visual analytics systems,” in Proc. IEEE Pacific Vis.
Symp., 2009, pp. 49–56.

[55] J. Zhao, M. Glueck, P. Isenberg, F. Chevalier, and A. Khan,
“Supporting handoff in asynchronous collaborative sensemaking
using knowledge-transfer graphs,” IEEE Trans. Vis. Comput.
Graph., vol. 24, no. 1, pp. 340–350, Jan. 2018.

Conny Walchshofer is currently working toward
the PhD degree with the Institute of Computer
Graphics, Johannes Kepler University Linz, Austria.
She applies an interdisciplinary approach to judge
cognitive load during the interpretation of visual rep-
resentations by using physiological measurement
methods, including eye-tracking and heart rate vari-
ability. Her research focuses on perception and
handling of mutlidimensional visualizations.

4830 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023

https://github.com/karpathy/tsnejs/
https://github.com/karpathy/tsnejs/
https://github.com/PAIR-code/umap-js/
https://github.com/graphology/graphology-layout-forceatlas2


Andreas Hinterreiter received theMSc degree in
technical physics from Johannes Kepler University
(JKU). He is currently working toward the PhD
degree with the Institute of Computer Graphics,
JKU Linz. He was with Biomedical Image Analysis
Group, Imperial College London for a year. His
research interests include dimensionality reduc-
tion and explainable AI.

Kai Xu is currently an associate professor in
data analytics with Middlesex University, Lon-
don, U.K. He has more than 15 year experience
in data visualization and analytics research in
academic and industry context. He is currently
with the U.K. Government Departments leading
defence companies on using visual analytics to
address the sensemaking challenges they face
in Big Data analysis. His research interests
include data visualization, provenance, sense-
making, and machine learning, with a focus on

integrating human and machine intelligence. He was the recipient of a
few international data visualization awards.

Holger Stitz received the PhD degree from the
Johannes Kepler University Linz in 2019. He is
currently a lead scientist and a senior software
engineer with Datavisyn. His research interests
include biomedical data visualization, prove-
nance, and sensemaking.

Marc Streit received the PhD degree from the
Graz University of Technology in 2011. He is
currently a full professor of visual data science
with Johannes Kepler University Linz, Austria.
His research interests include visualization,
visual analytics, and biological data visualiza-
tion. He was the recipient of multiple best paper
and runner-up awards at InfoVis, EuroVis, Bio-
Vis, and CHI. He is the co-founder and the
CEO of Datavisyn, a spin-off company that
develops data visualization solutions for phar-
maceutical and biomedical R&D.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WALCHSHOFER ETAL.: PROVECTORIES: EMBEDDING-BASEDANALYSIS OF INTERACTION PROVENANCE DATA 4831



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


