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Abstract. The primary goal of an engineer is to find the best possible economical design and this goal can be achieved by 

considering multiple trials. A methodology with fast computing ability must be proposed for the optimum design. 

Optimum design of Reinforced Concrete (RC) structural members is the one of the complex engineering problems since 

two different materials which have extremely different prices and behaviors in tension are involved. Structural state limits 

are considered in the optimum design and differently from the superstructure members, RC footings contain geotechnical 

limit states.  This study proposes a metaheuristic based methodology for the cost optimization of RC footings by employing 

several classical and newly developed algorithms which are powerful to deal with non-linear optimization problems. The 

methodology covers the optimization of dimensions of the footing, the orientation of the supported columns and applicable 

reinforcement design.  The employed relatively new metaheuristic algorithms are Harmony Search (HS), Teaching-

Learning Based Optimization algorithm (TLBO) and Flower Pollination Algorithm (FPA) are competitive for the 

optimum design of RC footings.        

 

Keywords: Reinforced concrete footings, Optimization, Metaheuristic algorithms, Harmony search algorithm, 

Teaching-Learning based optimization, Flower pollination algorithm. 

 

 

 

1. Introduction 

 

Reinforced concrete (RC) spread footing is one of the major components of the structures as a type of 

foundation. Since it directs the structural loads to the ground and supports a compressive member (column), 

the failure of the member causes the total collapse of the structure. An economical, safe design under structural 

loads is not sufficient if the stability of footings is not ensured with respect to soil bearing capacity. In 

additional to non-linear behavior of RC members, the footing design is a complicated one since the design 

variables are depending on each other in the consideration of geotechnical and structural state limits. 
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Several optimum design methods of RC spread footings have been previously developed, but new 

methodologies are in need for practical and detailed optimum designs. The cost optimization is the main idea 

of studies about RC spread footings.  Wang and Kulhawy (2008) developed an optimum design methodology 

and considered the ultimate limit state, serviceability limit sate and cost for a spread footing supporting a 

column under axial loading. A reliability-based economic design optimization of RC spread foundations was 

proposed by Wang (2009). Zhang et al. (2011) developed an indirect method for reliability-based optimization 

of geotechnical systems including spread footings and retaining walls. 

Metaheuristic algorithms are suitable for optimization of RC spread footings since these algorithms have been 

employed in several methodologies. A modified particle swarm optimization was employed by Khajehzadeh 

et al. (2011) in order to optimize RC spread footings and retaining walls and differently from the previous 

studies, the biaxial flexural moment of the supported RC column is considered. A gravitational search (GS) is 

employed in the optimization of shallow foundations by Khajehzadeh et al. (2012). Also, a new type of GS 

called global-local gravitational search algorithm was developed for the optimization of RC footings 

considering a multi-objective approaches including CO2 emissions and cost (Khajehzadeh et al. 2014). A 

hybrid Big Bang-Big Crunch (BB-BC) algorithm was employed by Camp and Assadallahi (2013) for multi-

objective optimization of RC footings supporting axial loaded columns. Then, uniaxial flexural moments were 

taken into consideration by using the hybrid BB-BC algorithm (Camp and Assadallahi 2015). Also, 

Khajehzadeh et al. (2013) developed a hybrid firefly algorithm for multi-objective optimization of RC footings 

and uniaxial flexural moment of the column was considered.  

In the previously developed studies, RC footings with rectangular cross-sections are optimized. The present 

study proposes a trapezoidal shape in order to save from the volume of the concrete.  Another novelty is the 

consideration of biaxial flexural moments of the column supported by the footing because biaxial flexural 

moments generally occur in the columns as optimized by Nigdeli et al. (2015). An important factor directly 

related to the reduction of internal forces and indirectly related to the optimum cost is the orientation of the 

supported column and the presented approach considers the orientation of the column as two design variables 

in two direction. The other optimized design variables are quantity of reinforcements and the base area of the 

spread footings. The design code developed by American Concrete Institute (ACI 318) is considered in the 

development of the design constraints related to geotechnical and structural limit states. In additional to these 

novelties, several methods are applied to cost optimization of RC footings. Three of the presented 

metaheuristic algorithms are relatively new methods including the Harmony Search (HS) algorithm developed 

by Geem et al. (2001), the Teaching-Learning Based Optimization (TLBO) developed by Rao (2011) and the 

Flower Pollination Algorithm (FPA) developed by Yang (2012). Since the previously documented RC footing 

problems w not optimized in detail, the employed algorithms are compared with well-known classical 

algorithms including Particle Swarm Optimization (PSO) developed by Kennedy and Eberhart (1995) and 

Differential Evolution (DE) developed by Storn and Price (1997) for the computational performance and 

applicability. 

The paper is organized as follows. In Section 2, the general design methodology and design of RC footings 



are explained. The employed metaheuristic algorithms are summarized in Section 3. Then, numerical 

examples with several loading cases are presented in Section 4. Finally, discussions and conclusions are 

presented in Section 5. 

 

2. Design and Optimization Methodology 

 

The design of RC footings involves two different limit states, namely, geotechnical and structural limit 

states. These states are separately considered in order to save from the computational effort.  If the design 

constraints about geotechnical state limits are not provided after the selection of dimensions of the footing, 

the following optimization (optimum reinforcement design ensuring structural state limits) is not conducted 

in order to minimize the computation time. 

In the proposed study, several design variables are randomized in different states of the proposed method. 

Thus, the nonphysical design variables are eliminated. For example, the orientation of the bars must be 

checked. If the number of bars is assigned before, the assigned design variables may not be suitable and to 

continue the design procedure is pointless. 

In metaheuristic algorithms, an iterative random search process is done in two ways and global and local 

searches are carried out.  The global search process is stand to prevent the possibility of being trapped to a 

local optimum value, while the local search increases the effectiveness of the method in finding precise 

optimum solutions.  

The design variables of the proposed study cover dimension parameters including the base (X1 and X2) and 

cross section of the footing (X3), the orientation of the column (X4 and X5) and detailed reinforcement design 

(not only the required area; X6, X7, X8 and X9) as shown in Fig. 1. Cf and Cc are the centers of footing and 

column, respectively. The base dimensions (X1, X2) are also shown as L and B in x and y directions, 

respectively. The height of the footing at the face of the column (H) is the third design variable (X3) and the 

minimum height of the cross section is Hmin. The location of the column is also optimized since the supported 

column is under the effect of the biaxial moments in x (Mx) and y (My) directions in additional to the axial 

force (P). The eccentricity of the column is defined with two distances; ex and ey which are the fourth (X4) and 

fifth (X5) design variables, respectively. The size (diameter) of the reinforcement bar is defined as X6 and X7 

in two dimensions and the distances between bars are X8 and X9.  

In the methodology, the design constants and ranges of design variable are first defined and then an initial 

matrix is generated. This matrix is constructed by merging vectors containing a set of variables. The design 

variables in vectors are randomly assigned and the number of these vectors is defined with a parameter. The 

name of this parameter is different according to the inspiration of the algorithm, but it is generally population. 

The preselected range of design variables are used to reduce the optimization time and to express the 

preferences of the designer in practice.  In the optimum design of RC member, discrete variables must be used 

because a sensitive production cannot be provided during construction and the reinforcements can be supplied 

with fixed sizes in local markets. 



 

 

Fig. 1. The optimization problem with design variables. 

 

The random generation process of design variables is done with a multi-step procedure. The required 

analyses for control of design constraints are carried out between the generations of different design variables.  

First, the variables about dimensions (X1-X5) are defined. Then, the geotechnical limit states; the bearing 

pressure on the soil and the settlement (δ) are checked. The bearing pressures at four sites of the foundation 

( q1,2,3,4; from 1 to 4) are calculated according to Eq. (1), where Wf is the total weight of the foundation 

including the soil on the top of the foundation. 
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In order to ensure the stability of the foundation, the minimum pressure must be over 0 because soil cannot 

carry tensile forces. Additionally, a factor of safety (FS) is defined for the maximum pressure. These two 

constraints are formulated as Eq. (2) and Eq. (3). 
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The ultimate bearing capacity of soil (qult) for a cohesionless soil with no ground slope is calculated Eq. 

(4);    
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where γ is the unit weight of the soil. The bearing capacity factors (Nq and Nγ) and shape depth factors (Fqs, 

Fγs, Fqd, Fγd) are shown as Eqs. (5-11). The internal friction angle is shown with ϕ. 
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The cohesion has an additional increasing effect to the ultimate bearing capacity. For that reason, the 

numerical example was done for cohesionless soil in order to investigate the most critical case of the bearing 

capacity. The effect of cohesion can be also included in the optimization process.  

The settlement (δ) is calculated according to the elastic solution of Poulus and Davis (1974) as shown in 

Eq. (11) and it must be equal or lower than the maximum allowed settlement (δmax). The elasticity modulus 

and Poisson ratio of soil are defined as E and ν, respectively. 
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The shape factor (βz) given by Whitman and Richart (1967) is calculated as Eq. (12). 
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If one of the constraints given in Eqs (2), (3) and (11) are not satisfied, the total cost is penalized and the 

further processes are not taken into action. The total cost is assigned with a big value (106 $ in numerical 

example). If the geotechnical limit states are satisfied, the process continues by assigning design variables 

about reinforcements and controlling structural state limits. The required flexural moment capacity in the 

critical sections of two directions, shear force capacity of the footing and two way shear capacity (punching) 

of the footing is checked in structural state limits of a spread footing. The total cost is penalized as done in the 

previous stage of geotechnical state limits.  

In control of structural state limits, the axial force and flexural moments are factored with a ϕ value and it 

is taken as 1.2 and 1.6 for dead and live loads, respectively.  

The critical sections for flexural are the sections along the face of the column where the pressure is highest 

in two directions. Tension controlled based design is considered for the maximum reinforcement area in 

flexure and the compressive block of the concrete is taken as an equivalent rectangular stress block.  

For the critical one way shear force, the critical section is at the distance dave away from the face of the 



column and the average (dave) is the average of the effective depth of the foundation in two directions.The 

effective depth is different for two directions because the reinforcements cannot lie in the same plane. Since 

the column tends to punch through the spread footing because of the shear stresses, the two-way shear force 

of the footing must be also controlled. The critical punching perimeter is located dave/2 away from the column 

face and it is defined as 

 )(4 avecolumnperim dbb   (13) 

where bcolumn is the breadth of the column for corresponding direction.  

The capacity of the RC footing for one-way shear (Vn,one-way) and two-way shear (Vn,two-way) are calculated 

as given in Eqs. (14) and (15), respectively. 

 )17.0(75.0 '
, cavewayonen fwdV   (14) 

 





















aveperimc

aveperimc
perim

ave

aveperimc

wayonen

dbf

dbf
b

d

dbf

V

'

'

'

,

33.0

)2
4

(083.0

)
2

1(17.0

min*75.0



 (15) 

The shear capacity is also investigated for two directions and the value of w is equal the length of the 

footing in the corresponding direction. This value is B in x direction and L for y directions. β is the ratio of 

the long side to short side of the column. The compressive strength of concrete is symbolized by '
cf .    

After the structural state limits are checked, the objective function defined as the total cost of the footing is 

calculated and it is formulated in Eq. (16). 

 steelsteelconcreteconcretecos CWCV tf  (16) 

In Eq. (16), the total cost (fcost) is calculated in terms of the volume of concrete (Vconcrete), cost of concrete for 

unit volume (Cconcrete), the weight of the reinforcements (Wsteel) and the cost of reinforcement for unit weight 

(Csteel). The volume of concrete and the weight of the reinforcements are depended to the design variables. 

After an initial matrix is generated, the iterative optimization is carried out according to the rules of the 

employed metaheuristic algorithm. The iterative optimization process is done for several iterations and the 

optimization process ends at the maximum number of iterations. The iterative process of different algorithms 

is described in the Section 3 and the flowchart of the methodology is shown in Fig. 2. 



 

 

Fig. 2. The flowchart of the optimization methodology. 

3. Brief Description of Metaheuristic Algorithms 

 

In this section, three of the employed algorithms including HS, FPA and TLBO are briefly explained. Since 

the other employed algorithms including DE and PSO are well-known, these methods are not presented in the 

paper.  

 

3.1. Harmony Search Algorithm 

The music inspired metaheuristic algorithm, namely harmony search (HS), has been applied for several 

multidisciplinary applications by demonstrating the effectiveness of the algorithm. Structural engineering is 

one of the application areas of HS. In Bekdaş et al. (2016), the studies related with the optimum design of 

reinforced concrete members are summarized.    

Firstly in HS, an initial harmony memory matrix is constructed and then, this matrix is updated according 

to the algorithm rules. The number of vectors constructing a HM is defined with a parameter called Harmony 

Memory Size (HMS). After the generation of an initial HM matrix, the iterative optimization is started by 

generating a new harmony vector in two ways.  

The global optimization is carried out by using the same way used in the generation of an initial harmony 

matrix according to Eq. (17). Xnew is the newly generated set of design variables while Xmin and Xmax are the 

minimum and maximum bounds of the solution ranges, respectively. The probability of using local 

optimization is defined with an algorithm parameter called harmony memory considering rate (HMCR). A 

random number between 0 and 1 is generated and the generated number is compared with HMCR. In the 
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current study, HMCR is linearly changed from 0 to 1 according to iteration number.  

 )()1,0( minmaxmin XXrandXX new   (17) 

In local optimization, the results of an existing vector (Xj) are used and the random generation is done in a 

smaller range than the previously defined one. This range is generated around the values of the existing design 

variables, but the randomly assigned new design variables must also be in the limits of the user defined range. 

If not, these values are assigned with the limit values. The ratio of a small range and the user defined range is 

determined by the parameter called Pitch Adjusting Rate (PAR). The local optimization of HS can be 

formulized as 

 .)()2/1,2/1( minmax XXPARrandXX jnew   (18) 

After the generation of a new vector, the results are compared with the existing vectors in the HM matrix. 

If the total cost of the new random design is better than the worst one in HM, the new one is replaced with the 

worst one. The newly generated and the worst existing vector may have a penalized cost. In that case, the 

elimination is done according to the violation of geotechnical and structural state limits. The comparison is 

done according to the last violation since the following analyses are not conducted in the methodology.  The 

pseudocode of HS algorithm is given in Fig. 3.  

 

Objective minimize f(cost), X=(X1, X2, X3, X4, X5, X6, X7, X8,X9)T 

Define harmony memory size (HMS), pitch adjusting rate (PAR) and ranges 

Define harmony memory considering rate (HMCR) 

Generate initial harmony matrix 

while ( t<Max number of iterations ) 

 if (rand<HMCR), choose an existing harmonic randomly 

              adjust pitch for a new range around an existing one 

              Generate new harmony vector (Eq. (18)) 

 else generate new harmony vector via randomization (Eq.(17)) 

 end if 

 Accept the new harmony vector if better 

end while 

Fig. 3. Pseudocode of HS algorithm. 

 

3.2. Teaching-Learning Based Optimization 

TLBO is a newly generated metaheuristic algorithm and it imitates the teaching and learning process of a 

class. In structural engineering, TLBO is employed in optimization of truss structures (Camp and Farshchin 

2014; Dede and Ayaz 2013; Degertekin and Hayalioglu 2013), RC retaining walls (Temur and Bekdaş 2016) 

and tuned mass dampers (Nigdeli and Bekdaş 2015). The global and local optimizations are consequently 

conducted in TLBO. In global optimization called teacher phase, the newly generated design variables (Xnew,i) 

are generated according to the best existing solution marked as a teacher (Xteacher) and mean of the all solutions 

(Xmean). Thus, a good convergence is obtained. This phase is formulated as Eq. (19) and all old solutions (Xold,i) 

in the class with a population of n are updated. 

 n1)()1,0(,, toiforXTXrandXX meanFteacherioldinew  , (19) 



The main parameter is TF in the algorithm. It is also a random number which can be 1 or 2 as an integer 

number. After the teacher phase, the student phase is started and all existing design variables are updated 

according to Eq. (20). 
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The comparison between the newly generated result and existing results is done by the same methodology 

described for HS algorithm. Differently from HS, the whole set of design variables in the matrix (class) are 

updated. Since the two phases are also considered, the number of analyses is 2n times of iteration numbers. 

The pseudocode of TLBO is shown in Fig. 4.       

 

Objective minimize f(cost), X=(X1, X2, X3, X4, X5, X6, X7, X8,X9)T 

Define class population and ranges 

Randomly generate the initial students 

while ( t<Max number of iterations ) 

(Teacher Phase) 

Calculate the mean of each design variable 

Identify the best student as teacher 

              Generate new solutions (Eq.19) 

Accept the new solution if better 

(Learner Phase) 

               Select any two solution randomly [ j, k] 

              Generate new solutions (Eq.20) 

 Accept the new solution if better 

end while 

Fig. 4. Pseudocode of TLBO. 

3.3. Flower Pollination Algorithm 

 

Flower pollination algorithm is a newly developed algorithm, based on the pollination characteristics of 

flowering plants (Yang 2012), and the effectiveness of FPA on structural optimization has been shown for the 

weight optimization of truss structures (Bekdaş et al 2015) and optimization several structural elements 

(Nigdeli et al. 2016). After the initial values of the design variables are generated in FPA, global and local 

optimization stages are used. Global optimization is inspired from biotic (or cross) pollination and pollinators 

obey the rule of Lévy flights. As given in Eq. (21), a new design variable is found according to a Lévy 

distribution (LD) and the best existing solution (Xbest). The Lévy distribution is defined by Eq. (22) where ᴦ(λ) 

is the standard gamma function. The Lévy distribution is valid for large steps s > 0. λ is taken as 1.5 in the 

simulations.  
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Here, the notation ~ means that the step size LD should be drawn from a distribution governed by the right-

hand side. A switch probability (p) is used to choose the optimization type in the iterative search. This switch 



probability is taken between 0 and 1. 

In local optimization, abiotic (or self) pollination is the inspiration. Abiotic pollination is the self-

fertilization of a flower. In this type of optimization, two solutions are chosen and a new solution is found 

according to Eq. (23). 

 ))(1,0(,, kjioldinew XXrandXX   (23) 

The updating and comparison of the design variables are done according to the same way with other 

algorithms. The optimization process is summarized in the pseudocode of FPA (Fig. 5).      

 

 

Objective minimize f(cost), X=(X1, X2, X3, X4, X5, X6, X7, X8,X9)T 

Define ranges, flower population and a switch probability (p) 

Initialize population of n flowers  with random number 

Find the best solution (g*) of the initial population 

while ( t<Max number of iterations ) 

 if (rand<p), global pollination 

              Generate new solutions (Eq.21) 

               else local pollination 

               Select any two solution randomly [ j, k] 

              Generate new solutions (Eq.23) 

 end if 

   Find the current best solution (Xbest)  

end while 

Fig. 5. Pseudocode of FPA. 

 

4. Test problems and optimization results  

 

As numerical examples, a footing with the design constants and solution ranges shown in Table 1 are 

optimized for four different cases of the loading conditions. The dead and live loads of the cases are given in 

Table 2. The dead and live loads are denoted by subscripts G and Q, respectively. The applicable production 

in the construction yard is provided by assigning discrete design variables with 5cm differences for 

dimensions. Cases 2 and 3 are similar cases which must have the same optimum results. These cases are 

investigated for validation of the developed methodology and checking the robustness of the optimum results.  

For one million analyses, the optimum design variables and costs are presented in Table 3 for Cases 1-4. All 

algorithms are effective to find the same results in these cases. For that reason, the methods will be compared 

for a fixed number of analyses and fixed accuracy. Thus, the only difference can be seen in standard deviation 

values and computation time, because the same results are not found for 50 independent runs. Also, the 

algorithms reach the optimum values before one million analyses.  Also, the number of analyses for obtaining 

optimum results are also presented in order to compare the computational effort. All analyses are conducted 

by using Matlab (2010) and a computer with 32 GB Ram and 8 core 3.6 GHz processor. The time for 1000 

iterations is between 16.8 s and 128.11 s for different cases. The number of vectors is taken as 50.        

Table 1 Design constants and ranges of design variables. 



Definition Symbol Unit Value 

Yield strength of steel fy MPa 420 

Compressive strength of concrete f΄c MPa 25 

Concrete cover cc mm 100 

Max. aggregate diameter  Dmax mm 16 

Elasticity modulus of steel Es GPa 200 

Specific gravity of steel γs t/m3 7.86 

Specific gravity of concrete γc kN/m3 23.5 

Cost of concrete per m3 Cc $/m3 40 

Cost of steel per ton Cs $/t 400 

Internal friction angle of soil ϕ' ° 35 

Unit weight of base soil γB kN/m3 18.5 

Poisson ratio of soil ν - 0.3 

Modulus of elasticity of soil E MPa 50 

Maximum allowable settlement δmax mm 25 

Factor of safety FS - 3.0 

Minimum footing thickness  hmin m 0.25 

Column breadth in two direction b/h mm/mm 500/500 

Range of width of footing B m 2.0-5.0 

Range of length of footing L m 2.0-5.0 

Range of height of footing  H m hmin-1.0 

Range of diameter of reinforcement bars of two 

direction 

ϕ mm 
16-24 

Range of distance between reinforcement bars  s mm 5ϕ-250 
 

Table 2 The loading cases for the optimization example. 

 P (kN) Mx (kNm) My (kNm) 

 PG PQ MxG MxQ MyG MyQ 

Case 1 750 500 300 200 300 200 

Case 2 750 500 300 200 400 300 

Case 3 750 500 400 300 300 200 

Case 4 750 500 400 300 400 300 

Case 5 1000 750 600 400 600 400 

 

    

Table 3 The optimum results and comparison of different algorithm (Case 1-4) 

Case Number 

  1 2 3 4 

O
p
ti

m
u
m

 d
es

ig
n
  

v
ar

ia
b
le

s 

B (m) 2.75 2.60 3.20 3.05 

L (m) 2.65 3.20 2.60 3.05 

H (m) 1.00 1.00 1.00 1.00 

ex (m) 0.75 0.75 0.75 0.90 

ey (m) 0.55 0.75 0.75 0.80 

ϕx (mm) 16 16 20 16 

Sx (mm) 150 140 230 140 

ϕy (mm) 16 20 16 20 

Sy (mm) 160 230 140 210 

Best Cost ($) 217.3235 252.2302 252.2302 285.4123 

D E
 

Av. Cost ($) 218.5794 253.3985 253.3545 287.1336 



Sta. Dev. ($) 0.3229 0.3268 0.4763 0.9942 

Analyses for 

optimum 
223700 118500 110300 93200 

P
S

O
 

Av. Cost ($) 220.8968 254.2458 254.4545 288.1056 

Sta. Dev. ($) 1.9426 1.5769 1.5691 1.5778 

Analyses for 

optimum 
358600 345750 152600 658400 

H
S

 

Av. Cost ($) 218.3516 253.2736 253.4752 287.3481 

Sta. Dev. ($) 0.4723 0.4146 0.4812 1.0326 

Analyses for 

optimum 
901100 301005 545795 602117 

F
P
A

 

Av. Cost ($) 218.2720 253.1640 253.1547 286.5305 

Sta. Dev. ($) 0.4852 0.6284 0.5691 1.1384 

Analyses for 

optimum 
221800 116850 145150 98150 

T
L

B
O

 

Av. Cost ($) 219.1628 253.7319 253.4578 286.6425 

Sta. Dev. ($) 1.4007 0.8896 0.9886 1.6982 

Analyses for 

optimum 
242200 276400 381700 126100 

 

In order to adjust the minimum and maximum pressure, a non-symmetric design for Cases 1 and 4 are 

found as optima. In Cases 2 and 3, the optimum values are the same in opposite directions as expected. Because 

of the difference of the flexural moment in two directions, a significant difference in dimension and 

reinforcements in a direction is clearly seen. 

The number of analyses for finding the optimum values are very different for cases and algorithms. DE and 

FPA are the fastest algorithms.           

For different runs of the optimization process, the optimum results of Case 1-4 are always the same for one 

million analyses. It means that all these algorithms are able to obtain the optimal results for small external 

forces. Thus, the standard deviation values are given and the standard deviation values are generally low for 

the HS algorithm, because the worst result is always eliminated in HS. The others use a population based 

strategy in updating all design variables and the corresponding results are only updated. Thus, the worst results 

are only updated according to global or local optimization in FPA. In TLBO, teacher and student phases are 

consequently applied and the worst one can be updated for two times. As seen in Table 3, FPA has better 

standard deviation results than TLBO. DE is the algorithm with the best standard derivative results while PSO 

is the worst one. Also, t-test analyses were done by taking PSO approach results as the reference. In Table 4, 

the tstat values define as Eq. (24) are shown for α=5% significance level and 49 degree of freedom. In that case, 

t critical value (tcr) is -1.6765. 

 
ns

x
t stat


  (24) 



x  is the average value of the reference method (PSO), s is the standard deviation and n is the number of 

observation. According to the results given in Table 4, the average values (μ) of the methods are generally 

better than PSO approach with 95% confidence level.   

 

 

Table 4 tstat values for the algorithms and cases 

Case No 

 1 2 3 4 

DE -50.7478 -18.3332 -16.3304 -6.9131 

HS -38.1056 -16.5810 -14.3904 -5.1872 

FPA -38.2525 -12.1729 -16.1500 -9.7835 

TLBO -8.75364 -4.08478 -7.12900 -6.0921 

 

The optimum results of Case 5 are different for the algorithms and the results are presented in Table 5.  

FPA, TLBO and PSO are effective to find the best results, but PSO has a big standard deviation value. Since 

the loading case 5 is symmetrical, the inverse optimum solutions of x and y directions are both optimums as 

seen in the results of FPA and TLBO. Also, the optimum solution of PSO in reinforcements is quite different 

with equal amount of reinforcement.                 

Table 5 The optimum results and comparison of different algorithm (Case 5) 

Optimum design  

variables 

DE PSO HS FPA TLBO 

B (m) 4.15 4.15 4.20 4.15 4.15 

B (m) 4.15 4.15 4.15 4.15 4.15 

H (m) 1.00 1.00 1.00 1.00 1.00 

ex (m) 1.00 1.00 1.10 0.95 1.00 

ey (m) 0.95 0.95 0.85 1.00 0.95 

ϕx (mm) 16 22 18 18 22 

Sx (mm) 110 210 140 150 210 

ϕy (mm) 20 18 18 22 18 

Sy (mm) 180 150 150 210 150 

Best Cost ($) 549.7689 549.2428 554.2151 549.2428 549.2428 

Av. Cost ($) 554.0413 602.9062 556.9158 553.6568 554.7540 

Sta. Dev. ($) 0.8603 69.08 2.33 2.5674 13.29 

Analyses for optimum 474800 935900 846801 712050 394700 

 

5. Discussions and Conclusions 

 

The same results are found for the cases 1-4 of the optimization problem. For that reason, the comparison 



of the metaheuristic algorithms are done according to results of 50 runs.  

The non-classical methods are also tested for different number of population. Table 6 shows the values of 

best costs, average costs and standard deviations for different harmony memory size, pollen or population. 

The results are given for the second case and the optimum results are found as the same for all solutions. By 

the increase of HMS, HS is generally effective to find the optimum results immediately. For TLBO, the 

increase of population has a small side effect. FPA is not generally affected by the change of pollen number. 

The effectiveness of using a truncated pyramid shaped footing and optimizing the position of the footing 

were evaluated by investigating different states of the problem. The optimum costs for all cases are presented 

in Fig. 6.  

Table 6 Optimization results for different vector numbers. 

  HMS (for HS), Pollen (for FPA), Population (for TLBO) No 

  10 20 30 40 50 

H
S

 

Best Cost ($) 285.4123 285.4123 285.4123 285.4123 285.4123 

Av. Cost ($) 288.2548 288.1456 287.8542 287.6451 287.3481 

Sta. Dev. ($) 1.2658 1.2178 1.2458 1.1447 1.0326 

Analyses for optimum 858231 754525 657845 622254 602117 

F
P
A

 

Best Cost ($) 285.4123 285.4123 285.4123 285.4123 285.4123 

Av. Cost ($) 286.8156 286.6954 286.7545 286.6858 286.5305 

Sta. Dev. ($) 1.1522 1.1489 1.1512 1.1456 1.1384 

Analyses for optimum 119800 109500 103550 110200 98150 

T
L

B
O

 

Best Cost ($) 285.4123 285.4123 285.4123 285.4123 285.4123 

Av. Cost ($) 287.1025 286.8925 287.2654 286.9254 286.6425 

Sta. Dev. ($) 1.7248 1.7056 1.7452 1.7254 1.6982 

Analyses for optimum 172800 158400 168600 145200 126100 

 

 

Fig. 6. The optimum costs for different states.  

The first state is for the presented design in the numerical example section. For the second state, the column 
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is mounted on the middle of the footing. By the increase of the flexural moments, the difference of the optimum 

cost increases in state 2. In state 3, a rectangular prism shaped footing was investigated and the height of the 

footing is taken as 1 m. In this state, a significant increase of the optimum cost is seen and the increase is 

constant for the internal force cases.  In the last state, both position optimization and proposed shape were not 

considered. It is clearly seen that the optimum costs are too much comparing to the state 1. As a conclusion, 

the detailed optimization using a truncated pyramid shape and position optimization are effective on reducing 

of the optimum cost. 

For cases 1-4, FPA is the best algorithm in finding the best average cost. DE has a little higher average cost 

value than FPA and DE is the robust algorithm on finding similar results in all runs because of the low standard 

deviation value. For the first two cases, FPA is a little faster than DE, while DE is better in Cases 3-4. The 

number of analyses values of FPA and DE are close, so both algorithms are the fastest ones. In case 5, TLBO 

is also effective in finding the best solution rapidly, but FPA has more positive standard deviation value. DE 

is the best on the standard deviation but it is weak on finding the best solution.    

Though the results are promising, it can be expected that further studies are need to investigate if these 

methods can be applied to the large-scale problems of structural systems with more design variables and 

members. Parametric studies will also be useful to see if the computational times can be further reduced so 

that good solutions can be obtained with the minimum computational efforts. In addition, it can be fruitful to 

extend these methods to solve multi-objective footing optimization problems in a more realistic context with 

multiple design objectives.   
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