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Abstract—Statistical methods are of paramount importance in discovering the modes of variation in visual data. The Principal
Component Analysis (PCA) is probably the most prominent method for extracting a single mode of variation in the data. However, in
practice, several factors contribute to the appearance of visual objects including pose, illumination, and deformation, to mention a
few.To extract these modes of variations from visual data, several supervised methods, such as the TensorFaces relying on multilinear
(tensor) decomposition have been developed. The main drawbacks of such methods is that they require both labels regarding the
modes of variations and the same number of samples under all modes of variations (e.g., the same face under different expressions,
poses etc.). Therefore, their applicability is limited to well-organised data, usually captured in well-controlled conditions. In this paper,
we propose a novel general multilinear matrix decomposition method that discovers the multilinear structure of possibly incomplete
sets of visual data in unsupervised setting (i.e., without the presence of labels). We also propose extensions of the method with
sparsity and low-rank constraints in order to handle noisy data, captured in unconstrained conditions. Besides that, a graph-regularised
variant of the method is also developed in order to exploit available geometric or label information for some modes of variations. We
demonstrate the applicability of the proposed method in several computer vision tasks, including Shape from Shading (SfS) (in the wild
and with occlusion removal), expression transfer, and estimation of surface normals from images captured in the wild.

Index Terms—Unsupervised multilinear decomposition, tensor decomposition, shape from shading, expression transfer
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1 INTRODUCTION

S TATISTICAL methods that explain variability among ob-
served measurements (data) in terms of a potentially

lower number of unobserved, latent, variables are corner-
stones in data analysis, image and signal processing, and
computer vision.

Factor analysis [1] and the closely related Principal
Component Analysis (PCA) [2] and Singular Value Decom-
position (SVD) are probably the most popular statistical
methods to find a single mode of variation that explains the
data. Nevertheless, most forms of (visual) data have many
different and possibly independent, modes of variations and
hence methods such as the PCA are not able to identify
them. Consider, for example, a population of faces with
differing identities and expressions observed under differ-
ent views (poses) where the appearance of each face is a
result of some multifactor confluence due to identity, expres-
sion, and pose variation. In order to disentangle multiple
but independent modes of variations, several multilinear
(tensor) decompositions have been employed [3], [4], [5],
[6], [7]. For instance, the High Order SVD (HOSVD) [4] is
able to identify different modes of variation for identities,
expressions, and poses per pixel, from a population of
faces, by decomposing a carefully designed data tensor. This
method is known as TensorFaces [8].

The main limitation of the above multilinear decompo-
sitions in disentangling multiple modes of variation is that
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they require a complete data tensor, which has to be built
using labels for each mode of variation. That is, in the
aforementioned example of faces with varying expression,
identity and pose, one needs facial images for every possible
expression and pose for each and every person in order to
build the required complete tensor1. Clearly, this require-
ment limits the applicability of multilinear decompositions
to data captured in controlled conditions (e.g., PIE [12],
Multi-PIE [13] and BU-3DFE [14]), where all the necessary
data variations along with their labels are available.

In this paper, we investigate the problem of disentan-
gling the modes of variation in unlabelled and possibly in-
complete data. In particular, we focus on sets of data that are
incomplete in the sense that access to samples exhibiting ev-
ery possible type of variation is not guaranteed. To this end,
we propose the first unsupervised multilinear decomposition
which uncovers the potential multilinear structure of incom-
plete sets of data and the corresponding low-dimensional
latent variables (coefficients) explaining different types of
variation. The proposed model is schematically summarised
in Figure 1. In the depicted example, each image xi is
generated as tensor to vector product [6] of a tensor B
capturing the multilinear structure of the data and some
coefficients corresponding to a meaningful variation. Here,
li represents lighting coefficients, ei expression coefficients
and ci identity coefficients. The number of differed types of
variation is assumed to be known and specifies the order of
the multilinear basis B.

The contributions here significantly extend the prelimi-
nary version of the paper [15] and are organized as follows:

1. Methods for completing the tensor have been proposed but they
are only approximate [9], [10], [11].
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Example 3D Data Example 2D Data

Fig. 1. Visualisation of the unsupervised multilinear decomposition and its applications. A sample vector xi is assumed to be generated by a
common multilinear structure B and sample specific weights e.g. li , ei and ci . We assume the weights correspond to variations in the data (li
to lighting, ei to expression and ci to identity). By varying ei only, we expect to see changes in expression but no change in identity or lighting.
Similarly, if we vary ci only we expect the expression and lighting to remain the same but the identities to change. Additionally if we remove the
lighting li , we expect the remaining information to correspond to the 3D shape of the object.

• A novel multilinear decomposition of matrices that
recovers the multilinear structure and hence disen-
tangles an arbitrary number of different modes of
variation from possibly incomplete set of (visual)
data is proposed in Section 4.1.

• To compute the proposed multilinear matrix decom-
position, an efficient alternating least squares type of
algorithm is developed in Section 4.1.

• The proposed method is extended to handle data
contaminated by sparse noise of large magnitude
and outliers in Section 4.2. To this end, a suitable
`1 -norm regularized problem is solved allowing the
estimation of different modes of variation in the
presence of noise.

• A second variant of the proposed decomposition
allowing the estimation of low-rank latent coeffi-
cients is introduced in Section 4.3. Latent coefficients
with low-rank structure naturally appear in applica-
tions such as video analysis where consecutive video
frames are highly correlated

• In practice, partial information regarding labels or
the geometry of a subset of modes of variation
is available. To exploit such information a graph-
regularized extension of the proposed decomposition
is proposed in Section 4.4.

• To demonstrate the generality of the proposed mod-
els, in Section 5 extensive experiments on computer
vision tasks are conducted including facial expres-
sion transfer, Shape from Shading (SfS), and estima-
tion of surface normals directly from “in-the-wild”
images. In the latter task, we demonstrate that by
feeding the estimated normals from the proposed
decomposition into a deep neural network, facial
reconstruction can be achieved using a single non-
aligned image captured in the wild. Furthermore, it
is worth mentioning that the methods for SfS in [16],

[17] are only special cases of the proposed multilinear
decomposition.

2 NOTATIONS AND MULTILINEAR ALGEBRA BA-
SICS

Throughout the paper, matrices (vectors) are denoted by up-
percase (lowercase) boldface letters e.g., X, (x). I denotes the
identity matrix of compatible dimensions. The ith column
of X is denoted as xi . Tensors are considered as the mul-
tidimensional equivalent of matrices (second-order tensors)
and vectors (first-order tensors) and denoted by calligraphic
letters, e.g., X. The order of a tensor is the number of indices
needed to address its elements. Consequently, each element
of an Mth-order tensor X is addressed by M indices, i.e.,
(X)i1,i2,...,iM � xi1,i2,...,iM .

The sets of real and integers numbers is denoted by
R and Z, respectively. A set of M real matrices (vectors)
of varying dimensions is denoted by {X(m) ∈ RIn×N }N

m=1
({x(m) ∈ RIm }M

m=1). An Mth-order real-valued tensor X is
defined over the tensor space RI1×I2×···×IM , where Im ∈ Z
for m = 1, 2, . . . , M .

An Mth-order tensor X ∈ RI1×I2×···×IM has rank-1, when
it is decomposed as the outer product of M vectors {x(m) ∈
RIm }M

m=1. That is, X = x(1) ◦ x(2) ◦ · · · ◦ x(M) � ©M
m=1x(m), where

◦ denotes for the vector outer product.
The mode-m matricisation of a tensor X ∈ RI1×I2×···×IM

maps X to a matrix X(m) ∈ RIm×Īm with Īm =
∏M

k=1
k,m

Ik such
that the tensor element xi1,i2,...,iM is mapped to the matrix
element xim, j where j = 1+

∑M
k=1
k,m

(ik −1)Jk with Jk =
∏k−1

n=1
n,m

In.

The mode-m vector product of a tensor X ∈ RI1×I2×...×IM
with a vector x ∈ RIm , denoted by X ×n x ∈
RI1×I2×···×In−1×In+1×···×IN . The result is of order M − 1 and is
defined element-wise as

(X ×m x)i1,...,im−1,im+1,...,iM =

Im∑
im=1

xi1,i2,...,iM xim . (1)
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In order to simplify the notation, we denote X×1 x(1)×2 x(2)×3
· · · ×M x(M) = X∏m

m=1 ×mx(m).
The Khatri-Rao (column-wise Kronecker product) prod-

uct of matrices A ∈ RI×N and B ∈ RJ×N is denoted by A � B
and yields a matrix of dimensions (I J)×N . Furthermore, the
Khatri-Rao of a set of matrices {X(m) ∈ RIm×N }N

m=1 is denoted
by X(1)�X(2)�· · ·�X(M) �

⊙M
m=1 X(m). More details on tensors

and multilinear operators can be found in [18] for example.
Finally, ‖·‖F denotes the Frobenius norm, ‖·‖∗ the nuclear

norm and ‖ · ‖1 the l1-norm.

3 RELATED WORKS

Fig. 2. Visualisation of the Multi-PIE [13] dataset. Collecting data where
every person is present in all the lighting and expression variations is an
expensive process that does not scale well.

For the past fifteen years, the computer vision com-
munity has made considerable efforts to collect databases
in controlled conditions that can capture the variations of
visual objects such as human faces. Arguably, the most com-
prehensive efforts were made in order to collect the so-called
PIE [12] and Multi-PIE [13] databases. These databases con-
tain a number of people (i.e., multiple identities) captured
under different poses and illuminations, displaying a vari-
ety of facial expressions. Thus, this data sets contain many
different modes of variation. These datasets motivated the
use of multilinear decompositions, such as HOSVD [4], in
order to disentangle the different modes of variations. The
TensorFaces [8] is probably the most popular method in this
category.

Concretely, let X be a complete data tensor (see Fig 2),
TensorFaces [8] disentangle the modes of variation by seek-
ing a decomposition of the form;

X = B ×1 A1 ×2 A2 ×3 A3 · · · ×N AN, (2)

where B is the core tensor of the same size as X representing
the interactions between the factors An, for n = 1, . . . , N .
Equation (2) directly corresponds to the HOSVD [4] formu-
lation.

For example, on the Weizmann face dataset of 28 subjects
in 5 viewpoints, 4 illuminations, 3 expressions and 7943
pixels per image, X is a 28 × 5 × 4 × 3 × 7943 tensor. The
aim is then to decompose X as

X = B×1Apeople×2Aviews×3Aillumns×4Aexpres×5Apixels, (3)

where B is the 28 × 5 × 4 × 3 × 7943 core tensor. [8] pro-
poses the following N-mode SVD algorithm to recover this
representation:

1) For n ∈ {people, views, illumns, expres, pixels}, flat-
ten X into the matrix X(n) and compute the SVD:
UΣVT = SV D(X(n)). Then set An = U .

2) Solve for B as: B = X ×1 AT
people

×2 AT
views ×3

AT
illumns

×4 AT
expres ×5 AT

pixels

Even though TensorFaces and related methods e.g., [19]
succeed in recovering the modes of variation, their appli-
cability is rather limited since they not only require the
data to be labelled but also the data tensor must contain
all samples in all different variations. This is the primary
reason that such methods are still mainly applied to tightly
controlled databases such as PIE and Multi-PIE, visualised
in Figure 2, and not to possibly not complete data captured
“in-the-wild” data

A seemingly unrelated area of research that relies heavily
on data decomposition is that of facial SfS [20] and Uncal-
ibrated Photometric Stereo in General Lighting (UPS) [21].
The recovery of 3D shape from images represents an ill-
posed and challenging problem. In its most difficult form,
this involves recovering a representation of shape for an
object from a single image, under arbitrary illumination.
However, for any given image, there are an infinite number
of shape, illumination and reflectance inputs that can repro-
duce the image [22]. Therefore, shape recovery is commonly
performed by relaxing the problem by introducing prior
information or by adding constraints, such as in SfS [20]. In
particular, Class-specific UPS seeks to recover the shape of
the object by exploiting the similarity within the object class.
In the case of faces, there are millions of available images
that can be utilised to build in-the-wild models. However,
recovering shape from these images is incredibly challeng-
ing, as they have been captured in completely unconstrained
conditions. No knowledge of the lighting conditions, the
facial location or the camera geometric properties are pro-
vided with the images.

Recent class-specific UPS techniques [16], [17] proposed
to recover a class-specific spherical harmonic (SH) basis that
exploits the low-rank structure of faces [23], [24]. Spheri-
cal harmonics are ideal for this purpose as they can be
approximated by a low-dimensional linear subspace [23],
[25]. By using the first order SH, 87.5% of the low-frequency
component of the lighting is approximated. The first or-
der SH can then be used to recover 3D shape as their
discrete approximation directly incorporates the normals
of the object. These normals can be integrated to provide
a dense 3D surface [26].The recovered SH basis can be
robustly learnt from automatically aligned, “in-the-wild”
images. [16], [17] attempt to build a subspace that explicitly
separates shape and appearance by performing a rank con-
strained Khatri-Rao (KR) factorization [27]. The first paper
where the decomposition has been proposed and applied in
3D facial shape reconstruction is [16]. The method in [16]
was inspired by the decomposition techniques employed in
the related area of Structure-from-Motion [28]. Recently, [17]
made the link between the KR factorisation and the UPS
and utilised the method by [29] to solve the KR factorisa-
tion. [17] proposed a robust decomposition in place of the
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optical flow [30] based registration used by [16] to remove
outliers from the images. In this paper, we show that the
decompositions proposed in [16], [17] are very special cases
of the proposed unsupervised tensor decomposition.

To alleviate the aforementioned limitations and disen-
tangle an arbitrary number of modes of variation without
having labels and complete data a novel multilinear matrix
decomposition as well as several extensions are presented
in detail next.

4 PROPOSED METHODS

4.1 Basic Model
Let X = [x1, x2, · · · , xN ] ∈ Rd×N be a matrix of observations,
where each of the N columns represent a vectorised image
of d pixels. In order to discover M − 1 different modes of
variation we propose the following decomposition:

xi = B ×2 a(2)i ×3 a(3)i · · · ×m aMi = B
M∏
m=2

×ma(m)i , (4)

where B ∈ Rd×K2×···×KM representing the common multi-
linear basis of X and the set of vectors {a(m)i ∈ RKm }M

m=2
represents the variation coefficients in each mode specific to
the vectorised image xi .

Therefore, for the observation matrix X , and by exploit-
ing the properties of multilinear operators e.g., [18], the
above decomposition is written in matrix form as

X = B(1)(A(2) � A(3) · · · � A(M)) = B(1)
( M⊙
m=2

A(m)
)
, (5)

where B(1)R
d×K2 ·K3 ·KM is the mode-1 matricisation of B and

{A(m)}M
m=2 ∈ R

Km×N gathers the variation coefficients for
all images across M − 1 modes of variation. Clearly, this
formulation is different from the Tucker decomposition [3]
and the HOSVD [4].

To find the unknown multilinear basis B and the varia-
tion coefficients {A(m)}M

m=2, we propose to solve:

arg min
B(1), {A(m) }Mm=2

‖X − B(1)
( M⊙
m=2

A(m)
)
‖2F

s.t. BT
(1)B(1) = I.

(6)

Optimisation problem (6) is non-convex. Therefore, we
propose to solve (6) by employing an Alternating Least
Squares (ALS) scheme, where each variable is updated in an
alternating fashion. Let t denotes the iteration index, given
B(1)[0] and {A(m)[0]}M

m=2, the iteration of the ALS solver
reads as follows:

B(1)[t + 1] = arg min
B(1)

‖X − B(1)
( M⊙
m=2

A(m)[t]
)
‖2F

s.t. BT
(1)B(1) = I.

(7)

{A(m)[t + 1]}Mm=2 =

arg min
{A(m) }M

m=2

‖X − B(1)[t + 1]
( M⊙
m=2

A(m)
)
‖2F

(8)

Solving (7): Problem (7) is an orthogonal Procrustes problem,
whose solution is given by [31]: B(1)[t + 1] = UVT , where
UΣVT = X

(⊙M
m=2 A(m)[t]

)T is the SVD.
Solving (8): Due to the unitary invariance of the Frobe-

nius norm (7) is equivalent to

arg min
{A(m) }M

m=2

‖B(1)[t + 1]TX −
M⊙
m=2

A(m)‖2F, (9)

which is a Khatri-Rao factorisation problem [29]. Let Q =
B(1)[t + 1]TX ∈ RK2 ·K3 · · ·KM×N , then each column of Q is
written as:

qi =
M⊙
m=2

a(m)i (10)

Let us partition qi into a set S = KM−1 ·
KM−2 · · ·K2 vectors {qBb

i ∈ RKM }KM−1 ·KM−2 · · ·K2
b=1 such

that qi = [qB1
i

T
qB2
i

T · · · qBS

i

T ]T . This partitioning en-
ables us to rearranging the elements of qi into
a tensor Qi ∈ RKM×KM−1×···×K2 such that Qi(1) =

[qB1
i , qB2

i , · · · , qBKM−1 ·KM−2 ···K2
i ] ∈ RKM×(KM−1 ·KM−2 · · ·K2). There-

fore, based on (10), Qi is written as
Qi = a(M)i ◦ a(M−1)

i ◦ · · · ◦ a(2)i (11)

Equation (11) indicates that we can recover the set of vectors
{a(m)i }Mm=2 and therefore the set of matrices {A(m)}M

m=2, by
seeking a best (in the least squares sense) rank-1 approxi-
mation of Qi , for i = 1, 2, . . . , N . An efficient way to find the
best rank-1 approximation of Qi is to exploit the truncated
HOSVD [4]. That is,

Qi = s
M−1∏
n=1

×nu(n)i , (12)

where {u(n)i ∈ RKM−n+1 }M−1
n=1 is the the set of the first higher

order singular vector along M − 1 modes of tensor Qi and
s = (S)1,1,...,1 is the first high-order singular value stored
as a first element in the core tensor S. Consequently, the
columns of the variation coefficient matrices {A(m)}M

m=2 can
be estimated by

a(m)i = s
1

M−1 u(M−m+1)
i , (13)

for m = 2, 3, . . . , M . Interestingly, the estimation of the
variation coefficients according to (13) resolves the inherent
scaling ambiguity in (9) by assigning the same Euclidean-
norm to each column of A(m). The procedure of solving (6)
is summarised in Algorithm 1.

Remarks: In the special case of 2 modes and where k2 =

4, (5) becomes:
X = B(1)(L � C), (14)

where L = A2 ∈ R4×n, C = A3 ∈ Rk×n.
Let P = L � C then,

X = B(1)P. (15)

Equation (15) corresponds to the formulation used
by [16]. P = L�C has been implied by [16] but not explicitly
formulated as such. Hence this shows that [16] represents a
special case of our general decomposition.

4.2 Robust Decomposition
Equation (14) corresponds to the formulation used by [17]
with the only difference being the separation of X into a low-
rank part BP and sparse, non-Gaussian error E. [17] used
these to add robustness to the decomposition due to oc-
clusion that is present in images captured in unconstrained
conditions (also referred to as ”in-the-wild”), as well as
to account for the high frequency errors introduced by
the coarse geometric alignment of the images. Generalising
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Algorithm 1 Multilinear Data Decomposition Algorithm

Input: Data Matrix X ∈ Rd×N , dimensions K2, K3, . . . KM

Output: B, A(2) , A(3), . . . A(M)

1: Initialisation: t ← 0,
[U,Σ,V ] ←SVD(X),
B(1)[0] = U

√
Σ, Q[0] =

√
ΣVT

2: while not converged do
3: for all image i = 1 . . . N do
4: construct Qi ∈ RKM×KM−1 · · ·×K2 from qi[t]
5: [Si,Ui] ←HOSVD(Qi)
6: for each mode m = 2 . . . M do
7: a(m)i [t + 1] = (Si)

1
M−1
1 U (M−m+1)

i
8: end for
9: end for

10: [U,Σ,V ] ←SVD(X
(⊙M

m=2 A(m)[t]
)T )

11: B(1)[t + 1] = UVT

12: Q[t + 1] = B(1)[t + 1]TX
13: Check convergence condition:

‖X−B(1)[t+1]Q[t+1] ‖2F
‖X ‖2F

< ε

14: t ← t + 1
15: end while
16: Tensorise B(1) into B ∈ Rd×K2×···×KM

this to the case of arbitrary number of modes, a robust
decomposition can be found by solving:

arg min
B(1), {A(m) }Mm=2

‖P‖∗ + λ‖E‖1

s.t. X = B(1)P + E,

P =
( M⊙
m=2

A(m)
)
,

BT
(1)B(1) = I.

(16)

The nuclear norm and the l1-norm promote low-rank
and sparsity respectively. To solve (16), the Alternating
Directions Method (ADM) [32] is employed. To this end,
the following augmented Lagrangian function should be
minimised:

L(P, E, B(1), {A(m)}Mm=2,Λ1,Λ2) =

‖P‖∗ + λ‖E‖1 +
µ

2
‖X − B(1)P − E +

Λ1

µ
‖2F+

µ

2
‖P −

( M⊙
m=2

A(m)
)
+
Λ2

µ
‖2F,

(17)

with respect to BT
(1)B(1) = I. Λ1 and Λ2 denote the La-

grangian multipliers.
An ADM-Solver for (17) can be found in Algorithm 2,

while its derivation can be found in the supplementary
material.

4.3 Rank-constrained Decomposition
We propose another variation to the problem formulated in
(6) in order to incorporate additional low-rank constraints
so that the methodology is suitable for image analysis. A
sequence of images of a face from a single viewpoint, under
varying illumination, can be nearby completely explained

Algorithm 2 Robust Multilinear Decomposition Algorithm

Input: Data Matrix X ∈ Rd×N , dimensions K2, K3,
. . . KM and parameter λ Output: B, E, P, A(2) , A(3),
. . . A(M)

1: Initialisation:
t ← 0,
P[0] = 0, E[0] = 0, B(1)[0] = 0, {A(m) = 0}M

m=2,
Λ1[0] = 0, Λ2[0] = 0, µ = 10−6, ρ = 1.1, ε = 10−8

2: while not converged do
3: Update P[t + 1] by

P[t + 1] = Dµ−1
[
B(1)[t]TX − P[t] − B(1)[t]TE+

B(1)[t]TΛ1[t]
µ

+ (
M⊙
m=2

A(m)[t]) −
B(1)[t]TΛ2[t]

µ

]
4: Update E[t + 1] by

E[t + 1] = Sλµ−1
[
X − B(1)[t]P[t + 1] + Λ1[t]

µ

]
5: Update B(1)[t + 1] by(

X − E[t + 1] + Λ1[t]
µ

)
P[t + 1]T = UΣVT ,

B(1)[t + 1] = UVT

6: Set Q = P[t + 1] + Λ2[t]
µ

7: for all image i = 1 . . . N do
8: construct Qi ∈ RKM×KM−1 · · ·×K2 from qi[t]
9: [Si,Ui] ←HOSVD(Qi)

10: for each mode m = 2 . . . M do
11: a(m)i [t + 1] = (Si)

1
M−1
1 U (M−m+1)

i
12: end for
13: end for
14: Update Lagrange multipliers by

Λ1[t + 1] = Λ1[t] + µ(X − B(1)[t + 1]P[t + 1] − E[t + 1])

Λ2[t + 1] = Λ2[t] + µ(P[t + 1] − (
M⊙
m=2

A(m)[t + 1]))

15: Update µ by µ = min(ρµ, 10−6)
16: Check convergence condition:

‖X − B(1)[t + 1]P[t + 1] − E[t + 1]‖2F
‖X ‖2F

< ε

‖P[t + 1] − (
⊙M

m=2 A(m)[t + 1])‖2F
‖X ‖2F

< ε

17: t ← t + 1
18: end while
19: Tensorise B(1) into B ∈ Rd×K2×···×KM

by 5 or 6 principal components [33]. This justifies the
addition of an additional low-rank constraint in the case
of specific data such as videos of a single person under
illumination change.
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We propose to solve the following problem:

arg min
B(1), {A(m) }Mm=2

{‖A(m)‖∗}Mm=2 + λ‖E‖1

s.t. X = B(1)
( M⊙
m=2

L(m)
)
+ E,

L(m) = A(m),

BT
(1)B(1) = I.

(18)

Similarly to (16), Problem (18) is solved by employing
the ADM. That is, the following augmented Lagrangian
function is minimised:

L({A(m)}Mm=2, E, B(1), {Λ(m)}Mm=1) =
{‖A(m)‖∗}Mm=2 + λ‖E‖1+

µ

2
‖X − B(1)

( M⊙
m=2

L(m)
)
− E +

Λ1

µ
‖2F+

M∑
m=2

µ

2
‖L(m) − A(m) +

Λm

µ
‖2F,

(19)

with respect to BT
(1)B(1) = I. Λ(m) are the Lagrangian multi-

pliers. Let t denote the iteration index.
An ADM-Solver for (19) can be found in Algorithm 3,

while its derivation is similar to that of Algorithm 2 in Sec-
tion 4.2 and it can be found in the supplementary material.

4.4 Graph-regularised Decomposition

In practical applications, there might be available side in-
formation about the geometric and topological properties
of some modes of variation or even available labels. A
typical example is a set of facial images with known iden-
tities captured under unknown illuminations conditions.
To capture such geometric or label information, the graph
embedding framework [34] can be employed by defining a
suitable Laplacian graph capturing the available geometric
or discriminant information. Therefore, a graph-regularized
version of the proposed method is as follows:

arg min
B(1), {A(m) }Mm=2

‖X − B(1)
( M⊙
m=2

A(m)
)
‖2F

+
∑

S⊆{2,...,M }
λstr(A(s)L(s)A(s)T )

s.t. BT
(1)B(1) = I.

(20)

L(s) ∈ RN×N corresponds to the Laplacian matrix containing
either the labelled information or other constraints of a
specific mode s. The λs are input weight parameters which
balance the reconstruction error term with the graph con-
straints.

This decomposition can be applied in unsupervised,
semi-supervised and supervised manner. Depending on
the Laplacian matrix, different graph embeddings can be
incorporated [34]. To apply this in a unsupervised manner,
L(s) can be specified to learn a manifold structure that
conserves local structure such as used in Laplacianfaces [35].
In ISOMAP [36] the Laplacian is specified to preserve the
geodesic distances of the data points.

Algorithm 3 Rank-constrained Multilinear Decomposition
Algorithm

Input: Data Matrix X ∈ Rd×N , dimensions K2, K3,
. . . KM and parameter λ Output: B, E, A(2) , A(3),
. . . A(M)

1: Initialisation:
t ← 0,
E[0] = 0, B(1)[0] = 0, {A(m) = 0}M

m=2, {L(m) = 0}M
m=2,

Λ1[0] = 0, {Λm[0] = 0}M
m=2, µ = 10−6, ρ = 1.1, ε = 10−8

2: while not converged do
3: Update {A(m)[t + 1]}M

m=2 by

A(m)[t + 1] = Dµ−1 (L(m)[t] + Λm[t]
µ
)

4: Update E[t + 1] by

E[t + 1] = S λ
µ
(X − B(1)[t]

( M⊙
m=2

L(m)[t]
)
− E[t] + Λ1[t]

µ
)

5: Set {Om = A(m)[t + 1] − Λm[t]
µ }Mm=2

6: for all image i = 1 . . . N do
7: for each mode s = 2 . . . M do
8: B′ = B[t]∏M

m=2,m,s ×ml(m)i [t]
9: l(s)i [t + 1] = (2B′TB′ + µI )−1(2B′T xi + µoi[t])

10: end for
11: end for
12: Update B(1)[t + 1] by(

X − E[t + 1] + Λ1[t]
µ

) ( M⊙
m=2

L(m)[t + 1]
)T
= UΣVT ,

B(1)[t + 1] = UVT

13: Update Lagrange multipliers by

Λ1[t + 1] = Λ1[t] + µ(X − B(1)[t + 1]
( M⊙
m=2

L(m)[t + 1]
)

− E[t + 1]){
Λm[t + 1] = Λm[t] + µ(L(m)[t + 1] −A(m)[t + 1])

}M
m=2

14: Update µ by µ = min(ρµ, 10−6)
15: Check convergence condition:

‖X − B(1)[t + 1]
(⊙M

m=2 L(m)[t + 1]
)
− E[t + 1]‖2F

‖X ‖2F
< ε

{ ‖L(m)[t + 1] −A(m)[t + 1]‖2F
‖X ‖2F

< ε
}M
m=2

16: t ← t + 1
17: Tensorise B(1)[t + 1] into B[t + 1] ∈ Rd×K2×···×KM

18: end while

In the case of semi-supervised learning, we specify L(s)

for specific modes s and include labelled information in L(s)

where available. For the samples where the labels are absent,
we complete their entries in L(s) by adding connections
to their nearest neighbours. This type of semi-supervision
has been previously used in [37]. For supervised learning,
we can use the labels to form L(s). The Laplacian can
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also be specified as the graph embedding corresponding to
LDA [38].

The algorithm and its derivation can be found in the
supplementary material.

5 EXPERIMENTS

In this section, we provide a number of experimental results
in order to demonstrate the ability of the proposed method
in recovering meaningful modes of variations. Unless oth-
erwise stated, all the data used have been aligned to a
reference shape to achieve pixel-wise correspondence.

• We first investigate synthetic 3D facial data that con-
tains both facial expression and identity variations.
As there is no texture variability, we provide a proof
of concept of our methodology on 3D faces disentan-
gling expression and identity.

• Then we consider 2D data captured in controlled
conditions that simultaneously contains lighting, ex-
pression and identity variations. As a proof of con-
cept, we show that the decomposition is able to
disentangle the 3 different modes of variations. These
experiments prove that the model is able to extract
meaningful modes of variations from visual data.

• Thirdly we investigate “in-the-wild” datasets of faces
and ears. Here, the l1 optimisation is required to
provide robustness as it is able to disregard noise
and occlusions in the data. We robustly disentangle
shape and illumination on the“in-the-wild” datasets.
We also show that the robust decomposition is able
to achieve better reconstruction results than the non-
robust version. In a separate experiment, we consider
“in-the-wild” videos of a single person. The use
of the low-rank constraint allows us to disentangle
shape and illumination and reconstruct the face de-
spite synthetic or natural occlusions.

• We also show how our graph-regularised decompo-
sition can be applied to disentangle expression and
identity in a semi-supervised setting. We then test
the resulting expression components for classification
and find that they become more discriminative.

• Finally, we show that the low-rank subspace of shape
we obtained from prior decompositions is extremely
powerful. We create an unsupervised learning nor-
mal estimation pipeline in which we feed the esti-
mated normals from our decomposition method on
an “in-the-wild” dataset of faces as the input data to
a deep neural network. The resulting deep network
is then able to reconstruct faces from a single non-
aligned “in-the-wild” image.

Overall, we demonstrate that our method requires neither
complete well-organised data (e.g. all the objects under the
same number of lighting conditions), nor labels to find the
underlying multilinear structure. We also show that the
extended decomposition methods can be applied to “in-
the-wild” datasets of different objects to achieve superior
performance.

5.1 Disentangling Expression and Identity
In this set of experiments we synthetically generate a dataset
of 3D faces where the only variations are identity and ex-
pression. The dataset has been created using the Large Scale
3D Morphable Model [39] and put in correspondence with
the blendshapes of the FaceWarehouse [40] so that we can
allow for expressions. We used 200 components to describe
identity and 10 components for expression. The dataset with
2000 3D facial meshes consists of 10 facial expressions and
200 identities. We wanted to examine whether our decom-
position is able to find a space of identity variation that did
not contain expressions. To this purpose we ensured that
the facial expressions included in the data did not contain
the neutral expression. A sample of the dataset is shown in
Figure 4.

The decomposition becomes:

X = B(1)(E � C), (21)

where B(1) ∈ Rd×ek is the orthogonal mode-1 matricisation
of tensor B. E ∈ Re×n is the matrix of expression coefficients.
e should be set to the approximate number of differing
expressions in the data. C ∈ Rk×n is assumed to be a matrix
of identity coefficients. Evidently, this is a special case of our
proposed decomposition in (5). The choice of k is subject to
a trade-off between reconstruction detail of the data and
the ability of the decomposition to separate expression and
identity.

Given this setting and an appropriate choice for k, we
performed a number of experiments to show that our de-
composition is able to separate expression from identity.
Setting e = 10 and k = 50, we apply the decomposition
to discover that B ∈ Rd×e×k becomes a basis of expression
and identity. We note that ±B:i: are bases corresponding to
expressions in the dataset. The first 10 components of the
first 3 bases are plotted in Figure 3. We also discover that the
first basis ±B:0:, visualised in Figure 3a, is a basis of neutral
expressions. This is impressive as the neutral expression did
not exist in the original dataset 2.

Thus we can use the neutral expression basis to cre-
ate synthetic neutral faces of people using the following
method. Let B0 denote the neutral expression basis B:0::

x ′i = B0(BT
0 B0)−1BT

0 xi, (22)

where x ′i denotes the resulting neutral face of the person in
xi . The results are visualised in Figure 5.

By decoupling E, the matrix of expression coefficients
and C, the matrix representing identities, the decomposition
allows us to transfer expressions across identities. Facial
expression transfer results are in Figure 6.

5.2 Disentangling Illumination, Expression and Identity
In this experiment, we test our decomposition on data
that simultaneously contains lighting, facial expression vari-
ations as well as multiple identities such as the Multi-
PIE [13] dataset. We select 147 identities, 5 expressions

2. Nevertheless some, e.g. the 5th column of Figure 3 from the left
do show some expression. This is mainly because we applied arbitrary
scaling to the component (we could have normalized the scaling to
the variance associated with this component). The experiments that
can conclusively show that our method indeed decoupled identity and
expression are shown in Figures 5 and 6 (transferring expression by
changing only the components in E).
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(a) Basis of first expression ±B:0:

(b) Basis of second expression ±B:1:

(c) Basis of third expression ±B:2:

Fig. 3. The 3 first expression bases from the decomposition of the synthetic 3D data

Fig. 4. Sample data of the synthetic 3D dataset. Images 1 to 3 from the
left show different identities and images 4 to 6 different expressions.

Person
Neutral

Expression Person
Neutral

Expression

Fig. 5. Neutralising expressions

and 5 illuminations from the overall dataset. Our subset
consists of 3675 images. We rigidly align the data to a mean
shape in order to conserve the facial expression variations.
Frequently, lighting becomes the first mode of variation in

Person Expression
Transferred
Expression Ground Truth

Fig. 6. Expression transfer

visual data.
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We model illumination using first order spherical har-
monics consisting of 4 components [41]. The decomposition
can be adapted in this manner:

X = B(1)(L � E � C), (23)

where L ∈ R4×n is the matrix of first order spherical har-
monic light coefficients, E ∈ Re×n and C ∈ Rk×n represent
expression and identity coefficients respectively.

Setting e = 5 and k = 40, we obtain a resulting tensor
B ∈ Rd×4×e×k . Our model indeed recovers illumination as
the first mode of variation. The recovered basis B(1), subject
to orthogonality constraints, corresponds to a spherical har-
monics basis and can be applied to estimate the normals and
albedo of the object. The estimated normals are then warped
back into the original space of the image and integrated
using the method of [42] to recover the 3D reconstruction,
see Figure 7.

Fig. 7. 3D Reconstruction on Multi-PIE [13] dataset

As the decomposition also decouples expression and
identity variations into E and C, we can use this to trans-
fer facial expressions from one person to another person.
Adapting the equation (4) to this decomposition (23), we
specify for images xi and x j where the two images are of
different people and expressions:

xi = B ×2 li ×3 ei ×4 ci, x j = B ×2 l j ×3 e j ×4 c j (24)

By swapping ci with c j , the identity coefficients, we can
create a synthetic image xi j containing the expression of
person i and identity of person j.

xi j = B ×2 li ×3 ei ×4 c j . (25)

In this way, a synthetic dataset of people with new expres-
sions are created. Sample results of the expression transfer
experiment are shown in Figure 8. Some of the examples
are challenging ones such as transferring expressions across
gender. The Multi-PIE [13] dataset contains a number of
people wearing glasses which lead to artefacts in the area
around the eyes in the synthetic images.

We test this synthetic data via an expression classification
experiment to verify that the new synthetic expressions are
recognisable. Specifically, we trained a linear SVM model
with the original dataset and respective expression labels
and used the synthetic dataset as test data. The prediction
results are listed in Table 1. The high accuracy of 85.1%
shows that the synthetic data manages to model the expres-
sions contained in the original data.

5.3 Robust Disentanglement of Illumination and Shape
Using the robust decomposition method from Section 4.2,
we show on two different dataset that the method is able to

Person Expression
Transferred
Expression

Reconstruc-
tion Ground Truth

Fig. 8. Expression transfer on Multi-PIE. As our decomposition reduces
the dimensionality of the images in the dataset, we show the images with
the transferred expression next to the reconstructed image of the ground
truth from the dataset. Given the decomposition, the reconstruction
represents the result of a plausible expression transfer.

Data Prediction accuracy
Synthetic expressions data 0.851

TABLE 1
Prediction accuracy on synthetic dataset

robustly reconstruct objects “in-the-wild”. As “in-the-wild”
data often contain noise and natural occlusions, a robust
decomposition seems to be ideal in this case to separate the
noise from the actual shape.

The decomposition applied in the below experiments is:

X = B(1)(L � C) + E, (26)

where L ∈ R4×n is the the matrix of first order spherical
harmonic light coefficients, C ∈ Rk×n is a matrix of shape
and identity coefficients and E ∈ Rd×n represents the matrix
of sparse errors. A sparsity constraint has been put on E
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Input Robust Non-robust Robust Non-robust

Fig. 9. Comparison of the robust and non-robust decomposition. Images from the HELEN [43] dataset.

Ear Robust Non-robust Ear Robust Non-robust

Fig. 10. Ear reconstructions. Images from the Ear dataset.

in the problem formulation. This is a special case of our
proposed decomposition in (16).

In order to validate the usefulness of the robust de-
composition, we have added 1% salt&pepper noise on the
Photoface dataset. We then compare the estimated nor-
mals of our robust and non-robust decompositions on this
noisy Photoface dataset. The “ground truth” normals were
obtained from the clean Photoface dataset using PS [20].
Figure 12 shows the sample reconstructions from this ex-
periment. From the 3D shape, we observe that the non-
robust reconstruction also reconstructs the noise. The robust
reconstruction obtains a smooth shape without the noise.
The result of the quantitative evaluation can be found in
Table 2. This clearly demonstrates that the robust decompo-
sition outperforms the non-robust decomposition on noisy
data.

We then show on two different “in-the-wild” datasets
that the robust method outperforms the non-robust version.

Method Mean±Std <30◦ <35◦
Ours- Non-Robust 39.81◦± 12.36◦ 0.7% 42.7%
Ours- Robust 33.86◦± 4.84◦ 16.4% 71.5%

TABLE 2
Angular error for our method with and without robustness on Photoface

containing 1% salt&pepper noise.

5.3.1 Faces “In-the-wild”
In this experiment, we show that our method is able to
robustly reconstruct a large number of “in-the-wild” images.
We use the HELEN [43] dataset containing 2000 identities
with 1 image per person. We used the 68 facial landmarks
from [44] for the warping to/from the mean reference shape.
Figure 9 shows the results on a number of challenging
images for k = 200. Clearly the robust method is able to
separate illumination and appearance better than the non-
robust method.

5.3.2 Ears “In-the-wild”
In this experiment, we show that our method works on
other objects apart from faces. We collected 605 “in-the-
wild” images of ears and annotated them with 55 land-
marks. The landmarks were used for the warping to/from
the mean reference shape. Setting k = 100, we apply our
decomposition and show the results in Figure 10. The results
indicate that the robust decomposition method outperforms
the non-robust method.

5.4 Disentanglement of Illumination and Shape with
Low-rank Constraints

Videos of a single person can specifically profit from the
rank-constrained decomposition method from Section 4.3.
As the rank-constrained decomposition also incorporates
the l1 norm, we can apply this method on noisy data.

We show this using two experiments: In the first ex-
periment, we synthetically occlude part of a video with
baboon patches. 20% of the frames in the video has been
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Occluded Frame Result Result
Natural Occluded

Frame Result Result

Fig. 11. Face reconstructions from occluded video frames using the rank-constrained decomposition.

Image Noisy Input Non-robust Robust

Fig. 12. Sample reconstruction from the Photoface dataset with 1%
salt&pepper noise using non-robust and robust decomposition.

occluded by baboon patches. For each of those occluded
frames, the baboon patch covers 10% of the frame. In the
second experiment, we run the same method on videos
where some frames have been naturally occluded by hands
or hair.

Figure 11 shows the qualitative result of the two exper-
iments. In both situations, we were able to reconstruct the
faces quite well despite the occlusions. We can see how the
reconstruction strongly resembles the person in the video.

Table 3 shows the quantitative result in the case of syn-
thetic occlusion. The ground truth are the normals estimated
without low-rank constraints on videos without occlusion
(k = 20). We compare our methods with and without
low-rank constraints (k = 20) on the videos containing
occlusions. Clearly, our method with low-rank constraints is
robust to occlusions and outperforms our method without

Method Mean±Std <5◦ <10◦
Ours-Without Low-rank Constraints 8.97◦± 2.02◦ 0% 88.5%
Ours-With Low-rank Constraints 6.10◦± 1.74◦ 55.5% 100%

TABLE 3
Angular error for our method with and without low-rank constraints on

videos containing baboon patch occlusions.

low-rank constraints.

5.5 Semi-Supervised Disentanglement of Expression
and Identity

We have collected a new 3D database of people displaying
6 different expressions (happiness, disgust, anger, surprise,
sadness and fear). We used NICP [45] to bring them in
correspondence with the basel face model. In total we col-
lect samples from 200 people, each sample was annotated
with the expression label of the 6 different expressions.
We applied the unsupervised version of the decomposition
without graph-regularisation using the 6 labels. Keeping the
identity parameters fixed to the ones of the mean face, we
randomly sample values for E. Figure 13 shows how we can
generate 3D faces corresponding to each of the 6 expressions
using this approach.

Then we split our dataset into 5 random splits, each time
keeping 1000 samples for training and 200 for testing. We
apply both the unsupervised and graph-regularised semi-
supervised decomposition on the data and use a nearest
neighbour classifier on E to predict the expressions of
the test set. Table 4 shows how incorporating supervision
via graph-regularisation strongly improves the expression
classification accuracy.
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Method Accuracy
Unsupervised Decomposition 84.5%
Graph-regularised Semi-supervised Decomposition 96.0%

TABLE 4
Expression classification results using unsupervised and

semi-supervised decomposition.

Anger Disgust Fear

Happiness Sadness Surprise

Fig. 13. 3D faces generated by keeping the identity component C fixed
and randomly sampling the expression component E.

Input Image Result Input Image Result

Fig. 14. Face reconstructions from single “in-the-wild” images using the
deep unsupervised model trained on HELEN.

5.6 Unsupervised Normal Estimation using Deep
Learning

Fig. 15. Comparison of our two proposed methods with person-specific
photometric stereo in general lighting of [21] and a generic state-of-the-
art network [46]. The error has been calculated against the estimated
normals from photometric stereo [20].

In this experiment, we use the normals estimated on the
HELEN dataset [43] using the proposed method to train

Method Mean±Std against [20] <35◦ <40◦
[21] 38.35◦± 15.63◦ 46.4% 46.8%
[46] 38.77◦± 3.27◦ 4.5% 73.0%
Ours-Decomposition Method 33.37◦± 3.29◦ 75.3% 96.3%
Ours-Unsupervised Deep Model 28.53◦± 4.23◦ 93.6% 97.8%

TABLE 5
Angular error for the various surface normal estimation methods on the

Photoface [49] dataset

Input Image Result - Frontal Result - Profile

Fig. 16. Face reconstructions from single “in-the-wild” cats images using
the deep unsupervised model trained on human faces and ears.

a ’fully convolutional’ network to perform normal estima-
tion on faces. This fully unsupervised pipeline consists of
obtaining normals estimated using our decomposition and
then feeding them as input data to a deep network. We
use the network based on ResNet-50 [47] and the UberNet
architecture [48]. UberNet used a Deep Convolutional Neu-
ral Network (DCNN) for surface normal estimation among
a series of other tasks. The network architecture is in the
supplementary material.

In order to quantitatively estimate the performance of
the learned deep model, we require some level of ground
truth data. Photoface [49] is a photometric stereo dataset
containing single-view images of people taken under 4
different illumination conditions. We annotated 68 facial
landmarks on 57 people from the dataset. The landmarks
are used for the warping of the images into/from the
mean reference shape for our proposed decomposition from
Section 4.1. In the absence of ground truth depth or normal
data, we use normals recovered from Photometric Stereo
(PS) [20] as our ground truth. However, the normals from
PS may be biased by outliers so these normals serve as a
weak ground truth.

By testing our learned deep model on a previously un-
seen dataset such as Photoface is challenging as the images
have been taken under different conditions to the ones in the
HELEN training dataset. We plotted the mean angular error
between our decomposition method (Section 4.1) results and
the “ground truth” ones from PS [20] in Figure 15 and
compare against our learned deep model.

Our decomposition method uses 2 randomly selected
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images of a person under different lighting conditions.
The method in [21] requires 4 images of a person under
different lighting conditions. [46] is a generic state-of-the-
art network which reconstructs from one image. Our deep
model similarly only requires one image per person. From
the quantitative results in Table 5, our deep model obtains
a mean angular error of 28.53◦across 273 people against
38.77◦using [46]. It clearly shows that the deep model works
very well on the Photoface test data and performs com-
parably and even slightly better than our decomposition
method. The deep model obtains a mean angular error of
28.53◦against 33.37◦using the decomposition method. The
reason for the strong performance is the variation of k. As
the decomposition method is restricted by the number of
annotated images in the Photoface dataset, the k used is
40. The deep model is trained on the larger HELEN dataset
with k = 400. This suggests that the deep model may be able
to extract more reconstruction details from the Photoface
images than the decomposition method.

The results are extremely encouraging as they indicate
that we can apply this unsupervised deep model directly to
“in-the-wild” internet images of faces. Unlike the proposed
decomposition method, the deep model does not require
any warping of the images to/from the reference frame. This
also is very beneficial for “in-the-wild” images. Figure 14
shows the reconstruction results of our deep model on
internet images. The reconstructions nicely mirrors the facial
expressions contained in the images.

In addition, we trained a separate network with the
images from the HELEN and Ear datasets. The ground truth
normals used were again the result of our decomposition
method. We tested the model on human faces and found
that it reconstructs more details. Then we tested this addi-
tionally on internet images of cats and found that due to the
similar facial structure (eyes and nose), the model is able
to reconstruct cat faces. The reconstructions can be seen in
Figure 16. The model even manages to reconstruct the fur
details, which is impressive.

6 CONCLUSION

We have proposed an unsupervised method able to discover
the multilinear structure in visual data. To this end an
alternating least squares algorithm has been developed.
We extended this method to incorporate robustness and
rank constraints. Our experiments show that the method
is able to discover the multilinear structure of “in-the-wild”
visual data without the presence of labels or well-organised
input data. Additional experiments using an unsupervised
deep learning pipeline show the application of the method
directly on internet images of human as well as cat faces.
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