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ABSTRACT Gene regulatory networks (GRNs) are underlying networks identified by interactive relation-
ships between genes. Reconstructing GRNs from massive genetic data is important for understanding gene
functions and biological mechanism, and can provide effective service for medical treatment and genetic
research. A series of artificial intelligence based methods have been proposed to infer GRNs from both gene
expression data and genetic perturbations. The accuracy of such algorithms can be better than those models
that just consider gene expression data. A structural equation model (SEM), which provides a systematic
framework integrating both types of gene data conveniently, is a commonly used model for GRN inference.
Considering the sparsity of GRNs, in this paper, we develop a novel sparse Bayesian inference algorithm
based on Normal-Equation-Gamma (NEG) type hierarchical prior (BaNEG) to infer GRNs modeled with
SEMsmore accurately. First, we reparameterize an SEMas a linear typemodel by integrating the endogenous
and exogenous variables; Then, a Bayesian adaptive lasso with a three-level NEG prior is applied to deduce
the corresponding posterior mode and estimate the parameters. Simulations on synthetic data are run to
compare the performance of BaNEG to some state-of-the-art algorithms, the results demonstrate that the
proposed algorithm visibly outperforms the others. What’s more, BaNEG is applied to infer underlying
GRNs from a real data set composed of 47 yeast genes from Saccharomyces cerevisiae to discover potential
relationships between genes.

INDEX TERMS Sparse Bayesian learning, high-dimensional data, gene regulatory network, gene expression
data, structural equation model.

I. INTRODUCTION
A gene is a segment of DNA which is the basic physical
and functional unit of heredity. Genes direct the synthesis of
functional molecules such as proteins and functional RNA,
and thereby determine biological functions and phenotypes.
This regulation is mainly implemented via the process of
gene expression, including transcription and translation [1].
With the development of high throughput technologies such
as DNA microarray and RNA-seq, tons of comprehensive
genomic data such as the genome-wide gene expression data
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and gene variations in biological individuals can be easily
obtained via experimental methods [2]. A large amount of
genomic data have been reported in prior literatures [3]–[5],
and several public repositories (such as the Gene Expression
Omnibus (GEO)) have been built to provide service for gath-
ering genomic data from bacterias, yeasts, plants and humans.

Genes in living organisms usually interact with each other
and act together rather than working in isolation. Gene
expression reflects regulatory relationships among individual
genes, and can be taken full advantages to form underly-
ing GRNs [6]–[8]. Delineating the structure of a GRN is
of significant importance for understanding gene functions,
cell physiologies and biological mechanisms. Additionally,
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in practical applications, while several intelligent approaches
have been developed to implement computer-aided diagno-
sis [9] and treatment [10], and help constructing better health-
care systems [11]–[13], GRNs can provide theoretical basis
for various medical services at the molecular biology level
(such as genetic testing service, genetic diagnosis service and
molecular targeted therapy).

Artificial intelligence is an important technology for big
data analysis and has been applied successfully in many
fields and scenarios [14]–[16]. Since the explosive amount
of genetic data, machine learning is also essential to tractable
GRN inference. Much progress has been made to infer GRN
structures from gene expression data. In early stage, Boolean
networks are popular for GRN inference, in which the state
of a gene is represented by a Boolean variable and the inter-
actions between genes are represented by Boolean functions
determining the state of a gene on the basis of the states
of some other regulatory genes [17]–[19]. Boolean models
are simple but cannot reflect quantitative biochemical details.
Information theoretic methods are used to infer GRNs by
detecting the correlations or mutual information between
genes [20]–[22]. This kind of methods have heavy compu-
tational burden for large data sets and cannot directly infer
GRNs with feedback loops. As for approaches based on
Gaussian graphical models, undirected GRNs can be deter-
mined by the precision matrix [23], [24], and Bayesian net-
works are employed to infer directed acyclic GRNs (DAGs)
[25]–[27]. Differential equations [28], [29] and regression
models [30] have beenwidely used to identify both DAGs and
directed cyclic GRNs (DCGs) by estimating the adjacency
matrices, and a series of related inference algorithms have
been developed in past a few years.

Basu et al. [31] built a computationally efficient iterative
random forest (iRF) algorithm to search for high-order inter-
actions, which can also be used for inferring GRNs from
Boolean gene expression data. The iRF algorithm adopted
a bagging step to assess the stability of recovered interac-
tions, which allows robust identification with respect to small
bootstrap perturbations in the data. However, iRF didn’t con-
sider the genetic perturbations yet, and is not applicable for
continuous gene expression data, the data discretization pro-
cess may cause information loss. Several methods have been
developed to infer GRNs by exploiting genetic perturbations,
including the algorithms based on Bayesian networks [32],
[33], the causal models based on likelihood test [34], [35] and
the approaches based on SEMs. Among them, the approaches
based on SEMs have attracted a lot of research attentions.
Different from iRF, GRNs modeled with SEMs takes genetic
perturbations into considerations explicitly. The gene expres-
sion data are treated as endogenous variables, and the genetic
variations observed at eQTLs are generally viewed as genetic
perturbations, which are treated as exogenous variables. Due
to the character of SEMs, the regulatory effects of both types
of variables on each gene can be analyzed simultaneously.
Besides, SEMs can provide more accurate GRN prediction
than iRF by supporting inference based on continuous gene

expression data. Furthermore, the topological structures of
GRNs are depicted by adjacency matrices, which makes it
possible to directly infer both DAGs and DCGs from SEMs.

The dimension of gene expression data is usually high,
it is difficult to process them without any constraints. As dis-
cussed in [36], [37], GRNs or more general biochemical
networks are sparse, meaning that a gene directly regu-
lates or is regulated by a small number of genes relative to
the total number of genes in the network. Motivated by this
fact, the network sparsity constraints need to be incorporated
into the inference of GRNs modeled with SEMs. In 2004,
Xiong et al. [38] proposed to model GRNs with SEMs,
whereafter several related algorithms were put forward suc-
cessively [39]–[41]. Cai et al. [40] proposed a systematic
inference algorithms for sparse SEMs named SML to infer
GRNs by exploiting both gene expression data and eQTL
data, which was proved to significantly outperforms other
previous algorithms [39], [41]. Subsequently, Dong et al. [42]
formulated a linear regression model from an SEM and
developed an iterative Bayesian inference algorithm named
LRBI to infer GRNs. More recently, Chen and Ren [43]
built large systems of SEMs by coming up with a 2SPLS
algorithm. They obtained the consistent estimation via ridge
regression at the first stage, and then employed adaptive lasso
at the second stage to achieve the consistent variable selec-
tion. The simulation results in [42] elucidated that LRBI has
better performance than SML in terms of power of detection
(PD) whereas SML performs better than LRBI in terms of
false discover rate (FDR). And in [43], the simulation results
demonstrated that the 2SPLS algorithm has better PD than
SML and lower FDR than SML when the sample size is
relatively smaller, whereas for bigger sample sizes, the FDR
of 2SPLS is worse than SML.

By reviewing the simulation studies in the above studies,
we found that in general none of the above state-of-the-art
algorithms developed for sparse SEMs has completely better
performance than the others. Motivated by this, in this paper,
we focus on the inference of GRNs modeled with SEMs and
develop a novel algorithm named BaNEG to improve the
performance of existing methods. We first reparameterize the
SEM by merging the exogenous and endogenous variables,
and then develop a Bayesian adaptive lasso inference algo-
rithm with hierarchical NEG prior to solve the reparameter-
ized linear type models. Several simulations are conducted to
compare the performance of our proposed BaNEG algorithm
with three state-of-the-art algorithms: LRBI [42], SML [40]
and 2SPLS [43]. The results demonstrate that BaNEG has
similar performance with LRBI [42] in terms of PD, which
outperforms SML [40] and 2SPLS [43] visibly. In the mean-
time, the FDR of BaNEG generally outperforms all the other
algorithms.

II. METHODS
A. GRNS MODELED WITH SEMS
As in [39], [40], both gene expression data and genetic
perturbations(such as eQTLs) can be integrated into SEMs
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FIGURE 1. PD and FDR of BaNEG, LRBI, SML and 2SPLS for DAGs with 30 genes and 50 genes.

to model corresponding GRNs. We consider an SEM with
p endogenous variables and q exogenous variables sam-
pled from N individuals, the variables here represent gene
expression levels of p genes and genotypes of q variant cis-
eQTLs, respectively. We use cis-eQTLs here mainly because
the empirical evidence proved that local genetic polymor-
phism tends to have larger effects than trans-eQTL [44],
[45]. The expression levels of these p genes can be mea-
sured by technologies such as cDNA microarray and RNA-
seq. Let Y := [y1, y2, · · · , yp] be an N × p matrix, in which
yi := [y1i, y2i, · · · , yNi]T , i = 1, · · · , p denote expres-
sion levels of the ith gene from N individuals. Let
X := [x1, x2, · · · , xq] be an N × q matrix, in which
xj := [x1j, x2j, · · · , xNj]T , j = 1, · · · , q denote genotypes of
the jth cis-eQTL from N individuals. Thus an SEM can be
represented as a set of structural equations, which could be
integrated as follows:

Y = YB+ XF+ E, (1)

where the p × p matrix B denotes the topological structure
of a GRN inferred from N observations. In B, the value of
each entry Bij represents regulatory effect of the ith gene on
the jth gene. It is often assumed that a gene has no effect
on itself, which implies Bii = 0 for i = 1, · · · , p. The
q × p matrix F denotes causal effects of the cis-eQTLs,
in which Fkm represents effect of the kth cis-eQTL on themth

gene. For the uniquely identifiability of the SEMs, as stated
in [40], [42], [43], we assume that each gene in the GRN has a
unique nonempty set of cis-eQTLs, so q is larger than or equal
to p. E is an N × pmatrix capturing the residual error terms.
It is assumed that X and E are independent with each other.

For convenient calculation, model (1) could be split into p
structural equations, each represents regulatory effects of all
endogenous variables and exogenous variables on one gene.
The ith model can be expressed as follows,

yi = Y−ibi + Xfi + ei, i = 1, · · · , p, (2)

where N × 1 vector yi is expression levels of the ith gene
measured from N individuals. N × (p− 1) matrix Y−i refers
to Y excluding the ith column. (p− 1)× 1 vector bi is the ith
column of matrix B excluding the ith entry whose value has
been already known to be zero. q× 1 vector fi denotes the ith
column of F. ei is an N × 1 error vector, we assume elements
in ei are independent and identical distributed as N (0, σ 2),
that is a normal distribution with 0 means and variance σ 2.

Without any other restrictions, the task of inferring a GRN
from such a model is to estimate the p(p−1) unknown entries
in B and passingly estimate the pq unknown entries in F.
Since the GRNs or more general biochemical networks are
always sparse [22], [30], the adjacency matrix B is sparse.
We assume that the loci of cis-eQTLs have been obtained by
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FIGURE 2. MCC and G-means of BaNEG, LRBI, SML and 2SPLS for DAGs with 30 genes and 50 genes.

applying existing eQTLmappingmethods, whereas the effec-
tive sizes are unknown. As elucidated in [44], most eQTLs
have weak effects on genes expression levels, so matrix F is
usually a sparse matrix having a small number of nonzero
entries whose locations have been determined. Despite both
B and F are sparse, for relatively large p, the inference task is
still challenging.

B. MODEL REPARAMETERIZATION
According to the rule of matrix multiplication, the SEM in (1)
can be rewritten as the following form,

Y =Wβ + E, (3)

where W = [Y,X] is an N × (p + q) design matrix, and
β = [B,F]T is the parameter matrix composed of (p+q)×p
parameters. Thus the original SEM is reparameterized as a
multivariable linear model. In this linear model, the respond-
ing variable matrix Y is the same as that of the original SEM,
the predictive variable matrix W is an N × (p + q) matrix
including both of the exogenous and endogenous variables.
Therefore, our main concern becomes the (p+ q)× p param-
eters in matrix β.

Model (3) can also be easily split into p univariable linear
models as follows,

yi =Wβ i + ei, i = 1, · · · , p, (4)

where β i is the ith column of β, namely a (p+ q)× 1 vector.
As aforementioned, B and F are both sparse. What’s more,
the diagonal elements of B are zeros, and the locations of
nonzero elements in F have been obtained in advance, that
is, the row indices of the unknown parameters need to be
estimated are known before the inference. We adopt a vector
si to denote the row indices of the parameters to be estimated
in β i. By selecting the columns of design matrixW identified
by si, the model (4) can be simplified into

yi =Wsiβsi + ei, i = 1, · · · , p, (5)

where Wsi refers to a reduced form of W that only contains
the columns in accordance with si, and βsi is a reduced
parameter vector that only includes the unknown rows. The
dimensions of βsi for different values of i may be different
because our BaNEG algorithm allows different number of
cis-eQTLs for each gene. We use pi to represent the dimen-
sion of βsi . As such, our task is transformed into p linear
models as shown in (5), in which the coefficients vectors are
known to be sparse.

C. THE BAYESIAN LASSO
The most intuitive approaches to solve a sparse linear
regression model is lasso [46] and its extensions such as
SCAD [47], Elastic net [48], fused lasso [49], adaptive
lasso [50], Bayesian-type lasso [51]–[53].
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FIGURE 3. PD and FDR of BaNEG, LRBI, SML and 2SPLS for DCGs with 30 genes and 50 genes.

In Bayesian frameworks, lasso estimates can be interpreted
as posterior mode estimates with independent and identical
Laplace prior for coefficients [46], [51]. A Laplace prior
for βsi in (5) can be represented as a scaled mixture of
normals [54]:

π
(
βsi |σ

2
)
=

pi∏
j=1

λ

2
√

σ 2
e−λ|βsi,j|/

√

σ 2

=

pi∏
j=1

N(βsi,j|0, σ
2τ 2j )Exp(τ

2
j |
λ2

2
)dτ 2. (6)

In the above Bayesian lasso prior, Exp(τ 2j |
λ2

2 ) represents

exponential distribution with rate parameter λ
2

2 , where λ
2 is

the penalty parameter that encourage the shrinkage of βsi,j.
Any Inverse-Gamma(ν0/2, η0/2) prior for σ 2 can maintain
conjugacy, for convenient calculation, an improper prior den-
sity π (σ 2) = 1/σ 2 can also be used to model the error
variance [51].

Since ei is assumed to follow a normal distribution with
zero mean and variance σ 2, the likelihood of model (5) can
be expressed as

yi|Wsi ,βsi , σ
2
∼ NN (Wsiβsi , σ

2IN ) (7)

According to Bayes’ theorem, the joint posterior distribu-
tion can be obtained via

π (βsi |yi) ∝ f (yi|βsi )π (βsi |σ
2)π (σ 2). (8)

D. INFER GRNS VIA BAYESIAN ADAPTIVE LASSO WITH
NEG PRIOR
One of the approaches to selecting λ2 is to give λ2 a hyper-
prior of Gamma distribution [51], which motivating the fol-
lowing three-level NEG prior [55]:

βsi |σ
2, τ 21 , · · · , τ

2
pi ∼ Npi (0pi , σ

2Dτ ),

τ 21 , · · · , τ
2
pi |ψj ∼

pi∏
j=1

Exp(ψj),

ψj|a, b ∼ Gamma(a0, b0), a0 > 0, b0 > 0, (9)

whereDτ = diag(τ 21 , · · · , τ
2
pi ), and ψj is the penalty parame-

ter corresponding to λ2 in the Bayesian lasso. Note that in the
Bayesian lasso, the same penalty parameter λ2 for all coeffi-
cients in each iteration. However, generally we tend to put
larger penalty parameters on coefficients corresponding to
less important variables, which can increase shrinkage degree
of such coefficients. So we adopt the Bayesian adaptive lasso
to put different penalty parameters ψj on each coefficient
βsi,j. In the third level of the NEG prior in (9), a conjugate
Gamma prior with a shape parameter a0 and an inverse scale
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FIGURE 4. MCC and G-means of BaNEG, LRBI, SML and 2SPLS for DAGs with 30 genes and 50 genes.

parameter b0 are assigned to ψj, which alleviates the strong
dependence of shrinkage degree on ψj. Actually, we do not
need to pay much attention on the choice of hyper parame-
ters ν0, η0, a0, b0, because the deeper parameters are in the
hierarchical Bayesian model, the less effects they have on the
inference [56]. So appropriate values can be pre-specified for
these hyper parameters.

By assigning σ 2 an Inverse-Gamma prior with shape
parameter ν0/2 and inverse scale parameter η0/2, the full-
conditional posterior distribution of all the parameters
(βsi , σ

2, 1/τ 2j , ψj), j = 1, · · · , pi can be given by

βsi |yi,Wsi , σ
2, τ 21 , · · · , τ

2
pi ∼ Npi (A

−1WT
siyi, σ

2A−1),

σ 2
|yi,Wsi ,βsi , τ

2
1 , · · · , τ

2
pi ∼ Inverse-Gamma(ν/2, η/2),

1

τ 2j
|βsi,j, σ

2, ψj ∼ Inverse-Gauss(µ, λ),

ψj|a0, b0 ∼ Gamma(a, b), (10)

where

A = WT
siWsi + D−1τ ,

Dτ = diag(τ 21 , τ
2
2 , · · · , τ

2
pi ),

ν = n+ pi + ν0,

η = ||yi −Wsiβsi ||
2
2 + βTsiD

−1
τ βsi + η0,

µ =

√
2ψjσ 2

β2si,j
, λ = 2ψj,

a = pi + a0, b = τ 2j + b0. (11)

It has been proved by Parl and Casella [51] and
Leng et al. [52] in their Appendices that by assuming the
above NEG type priors as in (9), the unimodal of posterior
distribution can be guaranteed.

Then we can iteratively draw samples for all unknown
parameters from the above full-conditional posterior distri-
bution to estimate unknown parameters by using a Gibbs
sampler. The convergence of the sampling process for
such hierarchical models has been investigated and proved
to be rapid [57]. To initialize the parameters, we preset
ν0 = N/5, η0 = 1. The hyper parameters a0, b0 are pre-
specified as small values (e.g. a0 = 0.1, b0 = 0.5) to make
the prior forψj essentially noninformative.ψj, τ 2j , σ

2 are ini-
tialized by performing sampling from their prior distributions
respectively. And the starting value of βsi is set as a vector
of 1’s.

With the initialization of each parameter, the Gibbs
sampler can be performed iteratively, all parameters
(βsi , σ

2, 1/τ 2j , ψj) are updated in turn by drawing samples
from their conditional posterior distributions given current
values of other parameters until sufficient effective samples
of βsi are obtained.We introduce the potential scale reduction
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FIGURE 5. PD, FDR, MCC and G-means of BaNEG, LRBI, SML and 2SPLS for large DAGs with 300 genes.

factor R̂ [58] to monitor convergence of our Gibbs sampler.
Two parallel chains with starting points set above are run,
we calculate R̂ for all pi entries of βsi to compare between-
and within- sequence variance. According to the description
in [58], the convergence condition is set as R̂ < 1.1. Once R̂
for the pi entries of βsi all meet the condition, the simulations
can be identified convergent. The subsequent iterations gen-
erate effective samples. Two stopping conditions have been
used in our simulation as well to avoid excessive number
of iterations. First, a maximum number of iterations is set
(usually is set as 50 in the following). Second, after each
effective iteration, we compare our interested parameters
βsi with that of last iteration, once the sum of all square
differences is small enough, we think the iteration has reached
a stable state and can be stopped. For example, when k
is smaller than the preset maximum number of iterations,
in the (k + 1)th iteration, we calculate and test if the value
of
∑p

j=1(β
(k+1)
si,j − β

(k)
si,j)

2 is small than a pre-specified small
threshold like 0.01, if so, we deem enough iterations have
been simulated; otherwise, the sampling iterations need to
be performed continuously. Then we discard half of the
convergent posterior samples by only extracting every 2nd
simulation drawn from each sequence to avoid dependence
between two adjacent iterations. From the simulations in next
section, we find that with this sampling strategy, the Gibbs
sampler can achieve convergence fast.

Different from non-Bayesian lasso, the penalized analysis
in Bayesian frameworks do not shrink the insignificant coef-
ficients to zero automatically. They just shrink coefficients
corresponding to insignificant variables to very small values.
The simplest way for variable selection is to apply a threshold
thr , more specifically, if an estimated coefficient βsi,j is larger
than the pre-specified threshold thr , it remains unchanged;
otherwise, it is shrunken to zero. The smaller thr is, the per-
formance in terms of PDwould be better, meanwhile the FDR
would be accordingly worse; conversely, a larger thr produce
better FDR but worse PD.

III. RESULTS
A. SIMULATION STUDIES
The performance of a GRN inference algorithm is often mea-
sured by PD and FDR. PD is equivalent to the true positive
rate, which measures the proportion of true edges that are
correctly identified in all true edges. FDR measures the pro-
portion of false positive edges in all detected edges. Assum-
ing a positive edge and a negative edge indicate an edge
exists or not respectively. Let Ntp denote the number of true
positive edges detected by an inference algorithm, Nfp stand
for the number of false positive edges, Ntn represent the num-
ber of true negative edges, andNfn characterize the number of
false negative edges. Then PD can be obtained by Ntp/(Ntp+
Nfn), the FDR can be calculated from Nfp/(Nfp + Ntp).
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FIGURE 6. Performance of BaNEG and LRBI for DAGs and DCGs with different values of thr .

In the following simulations, we mainly evaluate the perfor-
mance of the GRN inference algorithms by comparing their
PD and FDR. Our main goal is to result in higher PD and
lower FDR, the ideal situation is PD = 1 and FDR = 0.
In addition, several other measures are also taken into con-
siderations to further compare other performance of the algo-
rithms, including Matthews Correlation Coefficient (MCC)
and G-mean. MCC is a correlation coefficient (ranging from
−1 to 1) evaluating the correlation between a detected GRN
and the corresponding true GRN, and G-mean (ranging from
0 to 1) is usually used to evaluate performance for imbal-
anced data. The bigger the values of these two measures are,
the better performance an algorithm has (the best situation is
MCC = 1 and G-mean = 1).
To benchmark the performance of our BaNEG algorithm,

we compare its performance with some other similar algo-
rithms that infer GRNs modeled with SEMs incorporating
genetic perturbations into models. A series of algorithms
have been proposed to solve such problem, such as the PC-
algorithm [59], the QDG algorithm [34], the QTLnet algo-
rithm [35], the NEO algorithm [60], the AL-based algo-
rithm [39], the SML algorithm [40], the LRBI algorithm
[42] and the 2SPLS algorithm [43]. Logsdon et al. have
compared the performance of their AL-based algorithm with
that of the NEO algorithm, the QDG algorithm, the QTLnet

algorithm and the PC-algorithm, the simulation results in [39]
demonstrate that AL generally outperforms the other four
algorithms. Later, Cai et al. compared their SML algorithm
with the QDG algorithm and the AL-based algorithm in [40],
the results showed that SML has significantly better per-
formance than these two algorithms. Combined with the
further comparative simulations in [42], [43], we can draw
a conclusion that SML and 2SPLS outperform all other
algorithms listed above in terms of FDR, while LRBI and
2SPLS perform the best in terms of PD. Therefore, in this
section, we run simulations on synthetic data to compare the
performance of BaNEGwith LRBI, SML and 2SPLS to prove
the superiority of BaNEG.

The GRNs and corresponding synthetic data used in this
section are simulated following the way as recommended
in [39], [40], [42]. The structure of a simulated GRN can
be represented by a p × p adjacency matrix B, if there is an
edge from node i to node j, the regulation effects Bij are ran-
domly generated from a uniform distribution over the interval
(−1,−0.5)

⋃
(0.5, 1). Other elements and all diagonal terms

of B are set to 0. For convenient calculation, without loss
of generality, we assume F a p × p identify matrix, that is
each gene has and only has one cis-eQTL. So the genotype
matrix X is an N × p matrix. The genotype of each eQTL
Xij is randomly generated following the setting of F2 cross,
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FIGURE 7. Performance of BaNEG algorithms for DAGs and DCGs with different Ne and σ2.

that is, takes value of 1, 2, 3 with probabilities 0.25, 0.5,
0.25, respectively. Each error term Eij is simulated from a
Gaussian distribution with zero mean and variance σ 2 and
intercept term is set to zero. Then Y can be obtained from
Y = (XF+ E)(I− B)−1.
Firstly, we conduct simulation studies to compare perfor-

mance of our BaNEG algorithm with LRBI [42], SML [40]
and 2SPLS [43]. DAGs and DCGs composed of 30 genes
and 50 genes are simulated with σ 2

= 0.01. Each node is
simulated to have Ne = 3 regulatory edges on average. The
sample size N ranges from 30 to 500. The variable selection
threshold thr for BaNEG and LRBI are set to 0.1. For each
type of GRN with 30 genes, We simulate 100 replicates, and
for larger GRNs with 50 genes, 50 replicates are generated.
Performance of each algorithm is obtained by averaging the
PD and FDR of all replicates in the same setup. Simulation
results of DAGs with 30 genes and 50 genes are presented
in Fig. 1 and Fig. 2, and the results of DCGs are shown
in Fig.3 and Fig.4. From Fig. 1 (a) (c), we can see for DAGs,
the PD of BaNEG and LRBI are close to or equal to 1 for
sample sizes from 50 to 500, BaNEG has very slightly better
PD than LRBI when N = 30 and 50. Whereas the PD of
SML and 2SPLS are obviously lower than that of BaNEG.
As shown in Fig. 1 (b) (d), for DAGs, the FDR of BaNEG
stays at 0 for sample sizes from 150 to 500, and is lower than

that of other three algorithms for almost all sample sizes. The
only exception case is when N = 30, the FDR of BaNEG is
larger than 2SPLS, but at the same time, the PD of 2SPLS is
much lower than BaNEG. As for MCC and G-means shown
in Fig. 2, BaNEG performs better than all of the other three
algorithms visibly. Fig. 3 and Fig. 4 present PD, FDR, MCC
and G-means of the four algorithms for DCGs, where we can
find that the performance of BaNEG and LRBI are similar
with that for DAGs, but SML and 2SPLS perform obviously
worse than that for DAGs, meaning that the superiority of
BaNEG over SML and 2SPLS are more remarkable.

Secondly, we continue to evaluate and compare the perfor-
mance of the above four algorithms for larger sparse DAGs
with 300 genes, here we set Ne = 1. The noise variances
σ 2 are still set to 0.01, the sample sizes are from 100 to
1000 and 10 replicates are simulated for each sample size.
The performance of BaNEG, LRBI, SML and 2SPLS are
shown in Fig. 5. From Fig. 5 (a) (b), the PD of BaNEG are
euqal to 1 except for the case when sample size N = 100,
which outperforms that of LRBI, SML and 2SPLS for almost
all sample sizes; the FDR of BaNEG are exactly equal to 0 for
sample sizes from 400 to 1000, which also performs better
than all the other three algorithms. As shown in Fig. 5 (c) (d),
the MCC and G-means of BaNEG are equal to 1 except very
few cases, whereas other three algorithms all perform weaker
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TABLE 1. The running time (in seconds) of BaNEG, LRBI, SML and 2SPLS
for DAGs and DCGs with 30, 50, 100 and 300 genes at sample size
N = 500.

than BaNEG. Note that LRBI shows rather poor performance
for small sample sizes (like N < 400).
Then, we run simulations on synthetic data sets with

p = 50,Ne = 3, σ 2
= 0.01 to study the impact of

different variable selection threshold thr on BaNEG. DAGs
and DCGs are simulated with thr ranging in {0.08, 0.1, 0.2},
and the sample sizes are from 30 to 500. Aside from BaNEG
based on Bayesian adaptive lasso with NEG prior, the other
Bayesian basedmethod LRBI is also applied on the simulated
data sets. The simulation results are presented in Fig. 6.
From Fig. 6 (a) (c), we can find that the PD of the two
algorithms are all equal to 1 for sample sizes from 100 to
500 with all different values of thr , nevertheless, when
N = 30 or 50, the PD of BaNEG slightly exceeds that of
LRBI with the same thr . The difference of FDR as shown
in Fig. 6 (b) (d) is relatively more distinct. In an overall view,
the FDR of BaNEG outperforms that of LRBI, especially for
small sample sizes, and the FDR of each algorithm with a
larger thr is better than that with a lower thr .
Moreover, we run simulations on DAGs and DCGs with

50 genes to analyze the performance of BaNEG for different
Ne and σ 2. We continue to set thr = 0.1 for all simulations.
DAGs and DCGs are simulated with Ne equaling to 2 or 5
and σ 2 ranging in {0.01, 0.05, 0.1}. The simulation results
for sample sizes from 50 to 1000 are depicted in Fig. 7.
As shown in Fig. 5, when we keep Ne constant and increase
σ 2 from 0.01 to 0.05 and 0.1, the PD of both DAGs and DCGs
suffer little affection, only reduced a little bit for sample
size N = 50, whereas the performance in terms of FDR are
negatively impacted evidently. When we keep σ 2 constant
and increase Ne from 2 to 5, both of the PD and FDR become
slightly worse.

Finally, to compare the computational expenses of the
above four algorithms, we record the running time of each
algorithm when infer DAGs and DCGs with 30, 50, 100,
300 genes from the same data sets. All the algorithms
were conducted by using a laptop with Intel(R) Core(TM)
i7-6700HQ CPU 2.60GHz and 16G RAM. Reported
in Table 1 are the running times of all algorithms on different
GRNs at sample size N = 500. As shown in Table 1, while
maintaining the performance advantage of BaNEG over the
other three algorithms, BaNEG is much faster than SML and
2SPLS. However, it is slower than LRBI visibly because its
more complicated hierarchical posterior model and conver-
gence monitor strategy. According to the previous compar-
isons in various of performance measures, such moderate

sacrifice in computational cost brought obvious advantages
in network accuracy.

B. REAL DATA ANALYSIS
In this section, we apply the BaNEG algorithm to a real
data set composed of 47 yeast genes from 112 segregates
of Saccharomyces cerevisiae to explore the corresponding
underlying GRNs. To further verify the simulation results in
last section, we also run the other three algorithms: LRBI,
SML, 2SPLS on the real data set.

Brem and Kruglyak [44] measured expression levels
of 5727 genes and genotypes of 2957 genetic markers from
112 segregates of a cross between a lab strain BY4716 and
a wild strain RM11-1a of Saccharomyces cerevisiae. The
sample size is too small compared with the number of genes.
Chen and Ren [43] filtered the data set and yielded a data set
with 112 observations of 722 genes and 732 genotypes of cis-
eQTLs. The 2SPLS algorithm was applied to infer this big
GRN and generates a GRN with 323 edges, which formed
a few subnetworks. The three largest subnetworks consist
of 47 genes and 60 regulatory edges in total. We apply our
proposed BaNEG algorithm to the yeast data set including
gene expression levels and genotypes of cis-eQTLs of the
47 genes from 112 samples to infer the underlying yeast
GRN. In the data set, the gene expression matrix is corre-
sponding to the matrix Y in model (1) and the cis-eQTLs
data represents the matrix X, the BaNEG algorithm can be
directly applied to the data sets to infer the adjacency matrix
B, thereby construct the underlying GRN of the 47 yeast
genes.

As shown in Fig. 6, when we increase thr from 0.1 or
0.2, the FDR of BaNEG can be greatly improved, the PD
became slightly lower but did not suffered too much influ-
ences. So when we make real data analysis on the yeast data
set of 47 genes with 112 observations, we set thr = 0.2
to lower the FDR as far as possible and maintain good-
enough PD in the meanwhile. In this setting, 324 regulatory
edges were detected when BaNEG was applied. To improve
the reliability of the inferred GRN, 100 bootstrap data sets
with 112 samples were generated by random re-sampling
the original 112 observations with replacement. Then the
BaNEG algorithm was run on each bootstrap data set and a
frequency matrix was constructed by counting the frequency
of each edges in the 100 inferred networks. By eliminating
the edges whose corresponding frequency were less than 80,
we obtained a GRN of 45 genes and 90 edges, including
69 positive effects and 21 negative effects. The inferred GRN
is shown in Fig. 8, each node stands for a gene and a directed
edge from nodeA to node B indicates the source geneA has
a regulatory effect on the target gene B, a positive effect in
the adjacency matrix denotes an activating effect (depicted
as →) and a negative effect stands for an inhibiting effect
(depicted as a). Most genes were detected at least one reg-
ulatory or regulated edge. Only 2 genes, namely YJL140W,
YPL031C, were excluded from the inferred GRN. There are
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FIGURE 8. The GRN of 47 yeast genes inferred from gene expression data and eQTL data by applying the BaNEG algorithm.

11 pairs of genes have mutual regulatory effects and all of
them are activating effects.

According to the simulation results in last section,
the BaNEG algorithm has similar PD with LRBI, larger PD
than SML and 2SPLS, and has lower FDR than all of the other
three algorithms. So we expect that for the same real data set,
the BaNEG algorithm can detect more true edges than SML
and 2SPLS, and may detect less false edges than the LRBI
algorithm. Then LRBI, SML and 2SPLS were also run with
100 bootstraps, and only the edges whose frequencies were
not less than 80 were retained in the inferred GRNs. As a
result, the LRBI algorithm detected 46 genes and 155 edges,
the only eliminated gene is YPL031C, which was also not
included in the GRN inferred by BaNEG. Besides, almost all
edges detected by BaNEG are included in the GRN identified
by LRBI (only 5 edges were not in). The SML algorithm only
found 30 genes and 37 edges, in which 27 edges were also
in the BaNEG GRN. And the GRN inferred by the 2SPLS
algorithm included 42 genes and 58 edges, 26 edges were
in the BaNEG GRN. By comparing the results of the four
algorithms inferred from the yeast data set, we found that our
BaNEG algorithm detected less edges than LRBI and more
edges than SML and 2SPLS due to its lower FDR and higher
PD, which is in accordance with our expectation based on the
simulation studies.

IV. DISCUSSION
Since the development of high-throughput sequencing tech-
nologies, considerable efforts were made to infer GRNs from
gene expression data [17], [20], [23], [25], [30]. While most
of these traditional methods were developed to deal with
only the gene expression data. Another type of approaches
were developed in recent years to integrated genetic pertur-
bations with gene expression data to together infer GRNs,

by exploiting additional genetic information, the accuracy
of inference can be improved. SEMs provide a system-
atic framework that can directly integrate both types of
gene data and offer flexibility to model both DAGs and
DCGs by adjacency matrices [40]. Motivated by this, in this
paper, we develop a more efficient novel approach based on
Bayesian learning named BaNEG to infer GRNs modeled
with SEMs.

In BaNEG, we combine the three level NEG type prior
with Bayesian lasso to form an adaptive hierarchical posterior
model for sparse linear models, then apply it to SEMs to infer
GRNs from both gene expression data and gene perturbations
for the first time. It is realized by two stages: First, the original
SEM is reparameterized as a linear type model by merg-
ing the endogenous variables and the exogenous variables;
then we propose to use Bayesian adaptive lasso with NEG
prior and Gibbs sampling to infer the reparameterized linear
type model. This proposed algorithm mainly has the follow-
ing advantages: First, the reparameterization stage transfers
SEMs to linear models. This linear model exploits the whole
structure of SEM by integrating gene expression level and
cis-eQTL loci into one designmatrix, whichmakes it possible
to infer the parameters together. Second, the simplified form
as in model (5) reduces the dimension of the re-parameterized
models, this significantly improves the inference efficiency,
and would be more applicable for large GRNs (such as
whole-genome GRNs). Finally, BaNEG adopts NEG type
prior to achieve sparsity of GRNs. In another Bayesian based
algorithm LRBI, an NG-type prior was chosen, which may
have an infinite spike at zero and flatness for large values
of coefficients, as a consequence, does not penalize such
large values. Therefore, with the NG-type prior, the spike
at zero has strong consequences for the model behavior of
the posterior, not all of which are welcome. While the NEG
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distribution incorporates as limiting cases of the Laplace
prior and has the advantage of a finite limit at zero for all
parameter values in its range [55]. The simulations have
confirmed that BaNEG maintains the high PD of LRBI
(even be slightly better), and meanwhile receives much
lower FDR.

For the analysis of a real data set including a yeast data
set with 47 genes from 112 samples, BaNEG discovered
more potential edges than the SML and the 2SPLS but less
edges than LRBI. Combined with the simulation studies on
synthetic data, there are good reasons to believe that BaNEG
discovered less false edges than LRBI, and detectedmore true
edges than SML and 2SPLS. Hence, we believe that the GRN
constructed by BaNEG is more reliable than other algorithms
and is of great reference value for inference of GRNs, which
is meaningful for discovering gene functions and gene-gene
interactions.

V. CONCLUSION
The inference of GRNs is of significant and profound impor-
tance for better understanding the inherent biological mech-
anisms and precision medicine. In this study, we develop
and present a method to infer the topology structures of
GRNs from both gene expression data and cis-eQTL data.
Systematic simulation studies demonstrate that the BaNEG
algorithm outperforms three state-of-the-art algorithms
(LRBI, SML and 2SPLS). The results inferred from a real
data set supports the simulation results and therefore can
be considered reasonable and meaningful in a biological
sense. In conclusion, the BaNEG algorithm is considered
to be an effective and efficient approach that can be used
to infer underlying GRNs from gene expression data and
genetic perturbations, and would be a useful tool for medical
treatment and genetic research in practical.
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