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Abstract: Background: According to observational studies, two polymorphisms in the apolipoprotein
L1 (APOL1) gene have been linked to an increased risk of chronic kidney disease (CKD) in Africans.
One polymorphism involves the substitution of two amino-acid residues (S342G and I384M; known as
G1), while the other involves the deletion of two amino-acid residues in a row (N388 and Y389; termed
G2). Despite the strong link between APOL1 polymorphisms and kidney disease, the molecular
mechanisms via which these APOL1 mutations influence the onset and progression of CKD remain
unknown. Methods: To predict the active site and allosteric site on the APOL1 protein, we used the
Computed Atlas of Surface Topography of Proteins (CASTp) and the Protein Allosteric Sites Server
(PASSer). Using an extended molecular dynamics simulation, we investigated the characteristic
structural perturbations in the 3D structures of APOL1 variants. Results: According to CASTp’s
active site characterization, the topmost predicted site had a surface area of 964.892 Å2 and a pocket
volume of 900.792 Å3. For the top three allosteric pockets, the allostery probability was 52.44%,
46.30%, and 38.50%, respectively. The systems reached equilibrium in about 125 ns. From 0–100 ns,
there was also significant structural instability. When compared to G1 and G2, the wildtype protein
(G0) had overall high stability throughout the simulation. The root-mean-square fluctuation (RMSF)
of wildtype and variant protein backbone Cα fluctuations revealed that the Cα of the variants had
a large structural fluctuation when compared to the wildtype. Conclusion: Using a combination
of different computational techniques, we identified binding sites within the APOL1 protein that
could be an attractive site for potential inhibitors of APOL1. Furthermore, the G1 and G2 mutations
reduced the structural stability of APOL1.
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1. Introduction

Kidney disease affects between 11% and 15% of the world’s population [1]. Every year,
millions of people die prematurely as a result of kidney-related diseases. Damaged kidneys
are unable to filter blood adequately, process toxic wastes, and manage the excess fluid
buildup in the human body [2,3]. Chronic kidney disease (CKD), defined as a gradual loss
in kidney function for more than 3 months, has been found to be most common in people
of African descent, accounting for approximately 15% of the population [4,5].

The apolipoprotein L1 (APOL1) gene has been linked to a fourfold increase in the risk
of developing CKD in African-Americans [6,7].

APOL1 is involved in the innate immunity of trypanosomes and other lysing in-
fecting flagellated parasites [8,9]. Parasite-induced resistance to APOL1 activities, on
the other hand, has resulted in the emergence of two nonsynonymous coding variants
(G1(S342G:I384M) and G2(N388del:Y389del) [10]. Carrying the two risk APOL1 alleles
increases the risk of CKD development, progression, and severity by 70% [11]. This has also
contributed to rapid disease development and end-stage renal disease (ESRD) in people
of recent African descent [11]. As a result, in addition to protecting against trypanosomes,
APOL1 (see Figure 1A) plays a negative role [12]. The two most common treatments for
kidney failure are dialysis and kidney transplantation [13]. Unfortunately, these are expen-
sive and unavailable in resource-constrained environments [14]. Sabins (2020) established
a number of novel chemicals for the treatment of kidney diseases, most notably focal
segmental glomerulosclerosis (FSGS) and/or nondiabetic kidney disease (NDKD) [15]. We
investigated the mechanistic impact of a ligand on the dynamics of the APOL1 protein
using a newly synthesized compound (Compound 1) (see Figure 1B). As a result, this study
was designed to gain insight into the impact of mutations on the 3D architecture of the
APOL1 protein and to posit a possible mechanism of action of a potential APOL1 inhibitor,
in order to gain further insight into the etiology of CKD.
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Figure 1. The 3D structure of APOL1 protein highlighting the point of mutation (A) and 3D structure
of potential APOL1 inhibitor (B). For the G1 mutations, SNPs rs60910145 and rs73885319 correspond
to I384M and S342G respectively, while, for G2, SNP rs1785313 corresponds to N388del: Y389del.

2. Methodology
2.1. Protein and Ligand Preparation

The AlphaFold database was used to obtain the human APOL1 protein structure acces-
sion number O14791 [16]. Molegro molecular viewer was used to refine the structures [17].
The APOL1 G1 variants, rs73885319 and rs60910145, were created by replacing Ser at posi-
tion 342 with Gly (Ser342Gly) and Ile at position 384 with Met (Ile384Met) in CHIMERA
using the “Swapaa” command line [18]. The APOL1 G2 (rs71785313) variant is the result
of a 6 bp deletion; thus, the mutation was introduced in the structure by removing Asn at
position 388 and Tyr at position 389 and using the join command [19]. The steps taken to
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prepare the ligand were as follows: the 2D structure was drawn with Marvin sketch [20],
after which energy minimization was carried out on the ligand using the energy optimiza-
tion tool within Avogadro software [21]. We used the GAFF forcefield and the steepest
descent algorithm to obtain the most stable form and lowest energy of the ligand. The
energy-minimized structure was then used for molecular docking in Chimera [22].

2.2. Molecular Dynamic Simulation

The simulation was carried out using the AMBER force field, FF18SB [23]. We used
the General Amber Force Field (GAFF) and the restrained electrostatic potential (REP)
to describe the atomic charges of APIND. Amber’s Leap module was used to perform
system neutralization and hydrogen atom addition. An orthorhombic box of TIP3P water
molecules surrounding all of the APOL1 atoms at a distance of 9 Å [24] was also used for
system solvation. We performed system minimization in 2000 steps using a restriction
potential of 500 kcal/mol. This was followed by 1000 steps of full minimization with no
constraints. In all, we undertook two minimization process. The first minimization, partial
minimization, was undertaken to relieve bad van der Waals contact in the surrounding
solvent while keeping the solute, i.e., the protein, restrained. The second minimization
process, full minimization, was undertaken to relieve bad contacts in the whole system.
The system was gradually heated from 10 to 273 K at 50 ps using a Langevin thermostat at
a collision frequency of 1.0 ps−1. After equilibration, we heated each system for 50 ps while
maintaining a constant temperature of 300 K and pressure of 1 bar (isobaric-isothermal
ensemble, NPT using Berendsen barostat) with a timestep of 2 fs. We used the SHAKE
algorithm [25] within the AMBER software to constrain (NTC = 2) all bonds involving
hydrogen. This step is important as it removes the highest-frequency oscillation in the
system and that of hydrogen vibrations. The PTRAJ module of Amber 14 was used for
additional analyses such as root-mean-square deviation (RMSD), root-mean-square fluctua-
tion (RMSF), and radius of gyration [26], as in previous publications [27]. We created data
plots with the ORIGIN analytical tool. AMBER’s molecular mechanics/Poisson–Boltzmann
surface area (MM/GBSA) module was used to estimate thermodynamic calculations, as
described below.

Gbind = Gcomplex − (Greceptor + Ginhibitor), (1)

∆Gbind = ∆Ggas + ∆Gsol − T∆S, (2)

∆Ggas = ∆Eint + ∆Eele + ∆EvdW, (3)

∆Gsol = ∆Gele,sol(GB) − ∆Gnp,sol, (4)

∆Gnp,sol = γSASA + β (5)

where ∆Ggas represents the total gas-phase energy calculated by intermolecular energy
(∆Eint), electrostatic energy (∆Eelel), and van der Waals energy (∆EvdW), ∆Gsol represents
the solvation energy, T∆S represents the entropy change, ∆Gele,sol(GB) describes the polar
desolvation energy, ∆Gnp,sol describes the nonpolar desolvation energy, γ is the surface
tension proportionality constant and is set to 0.0072 kcal·mol−1·Å−2, β is a constant equal
to 0, and SASA is the solvent-accessible surface area (Å2).

3. Results
3.1. APOL1 Structural Elucidation

The 3D structure of APOL1 was obtained from the AlphaFold protein structure
database [16], and the active sites were predicted using the Computed Atlas of Surface
Topography of Proteins (CASTp) server [28]. The CASTp server identifies topographic
features, measures area and volume, and computes imprint using the α shape method de-
veloped in computational geometry [29]. According to CASTp’s active site characterization,
the top predicted site had a surface area of 964.892 Å2 and a spatial volume of 900.792 Å3.
We used PASSer (Protein Allosteric Sites Server) to evaluate potential APOL1 allosteric
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pockets. Allostery probabilities for the top three allosteric pockets were 52.44%, 46.30%,
and 38.50%. Other descriptors of these pockets are reported in Table 1.

Table 1. Allosteric site descriptors of APOL1 allosteric sites.

Score Druggability Volume Hydrophobicity Residues

Pocket 1 0.023 0.002 300.261 43.667 N154,L147,L21,K132,L85,C13,V349,S342,Q82,D395,
F265,V254,Q134,H130,V338,L258

Pocket 2 −0.034 0.002 126.023 44.875
N154,V349,Q239,H360,H241,Q237,Y354,R157,V350,
K357,K233,L161,V244,S356,L243,A240,L158,L371,

T236,V353,L352

Pocket 3 −0.037 0.001 3.333 13.167 V350,A5,Y351,E90,C13,G270,L6,L12,T272,R8,E348,
F265,Y354,L266,A269,V9,L347,F344, E92,L86

3.2. Mutation-Structural Perturbation of APOL1

Molecular docking was carried out using AutoDock vina tools in-built in Chimera.
A grid box with coordinate (center: x = 12.622, y = 45.876, z = 24.735; size: x = 21, y = 29,
z = 30) was set around the binding sites of APOL1 wildtype and mutant proteins pre-
dicted by CASTp to accommodate the ligand (APIND). The binding affinity of the wild-
type and mutant proteins upon binding to APIND was as follows: G0, −7.9 kcal/mol;
G1, −8.4 kcal/mol; G2, −9.1 kcal/mol. Because mutations within a protein can potentially
alter its 3D structure, we investigated the molecular behavior of the Cα of the wild, G1, and
G2 variants using an extended molecular dynamics simulation. The metrics RMSD, RoG,
RMSF, and PCA were used to evaluate the MD trajectories [29]. RMSD analysis provides
information about the protein’s conformational change and overall stability during the MD
simulation. While all of the systems reached equilibration around 125 ns, there was signifi-
cant structural instability from 0–100 ns (Figure 2A). The G0 protein had an overall high
stability throughout the simulation, with an average RMSD value of 5.79 Å, as expected,
while the G1 and G2 proteins had average RMSD values of 6.96 Å and 9.09 Å, respectively.
The RMSF is a measure of individual residue displacement during the simulation. Back-
bone Cα fluctuations expressed as the RMSF of wildtype and variant proteins revealed that
the Cα of the variants had a high structural fluctuation when compared to the wildtype.
The G0, G1, and G2 average Cα fluctuations were 2.27 Å, 2.63 Å, and 2.76 Å, respectively
(Figure 2B). Importantly, high fluctuation was observed in regions other than the mutation
point, leading us to believe that the mutation has a “distant effect” on the structure of
APOL1 (Figure 2F). The radius of gyration, which is a measure of the RMS average of
the distance of the atoms from the protein’s center, supported the RMSD analysis, as the
wildtype protein had less atomic gyration than the G1 and G2 variants (Figure 2C).

PCA is a parameter used in unraveling a protein’s conformational changes and mo-
bility during simulation. The PCA highlighted the disparate motions of the wildtype and
variant proteins along two major components, as observed in the RMSD and RMSF analyses
(PC1 and PC2). The variants showed greater dispersion along these principal components
(G0: −48.15, 9.75; G1: −47.81, 18.21; G2: 40.57, 2.68) (Figure 2D). We used ORIGIN to ex-
trapolate these coordinates by identifying the minimum and maximum data points in each
principal components of the systems. Furthermore, the system’s intermolecular distance
supported the structural instability caused by the variants (Figure 2E). This intermolecular
distance was calculated for the whole system by using the center of mass.



Genes 2022, 13, 1460 5 of 9Genes 2022, 13, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 2. Backbone RMSDs depicted as a function of time for G0 (red), G1 (green), and G2 (black) 
(A). Cα fluctuation of G0 (red), G1 (green), and G2 (black) (B). RoG plot of G0 (red), G1 (green), and 
G2 (black) (C). PCA scatter plots depicting a distinct separation of motions between G0 (red), G1 
(green), and G2 (black) (D). Intermolecular distance plot of G0 (red), G1 (green), and G2 (black) (E). 
The 3D structures of highly fluctuating region in the system (F). 

PCA is a parameter used in unraveling a protein’s conformational changes and mo-
bility during simulation. The PCA highlighted the disparate motions of the wildtype and 
variant proteins along two major components, as observed in the RMSD and RMSF anal-
yses (PC1 and PC2). The variants showed greater dispersion along these principal com-
ponents (G0: −48.15, 9.75; G1: −47.81, 18.21; G2: 40.57, 2.68) (Figure 2D). We used ORIGIN 
to extrapolate these coordinates by identifying the minimum and maximum data points 
in each principal components of the systems. Furthermore, the system’s intermolecular 
distance supported the structural instability caused by the variants (Figure 2E). This in-
termolecular distance was calculated for the whole system by using the center of mass. 

APIND Alters the Structure of Apol1 
Distinctive from Figure 2, where we explored the structural changes in the variants 

without ligand binding, we undertook a protein–ligand simulation to investigate the po-
tential of APIND to mitigate the effect of the structural distortion in APOL1 caused by 
mutation (Figure 3). Our findings show that APIND binding reduced the structural aver-
age RMSD of G1 and G2 variants, lowering the structural average RMSD from 6.96 Å to 
6.83 Å for G1 and from 9.09 Å to 5.780 Å for G2 variants (Figure 3A). The Cα fluctuation 
followed a similar trend. However, some regions demonstrated high flexibility, presum-
ably due to the presence of loops (Figure 3B). The RMSD trend was observed in the PCA 
analysis of G1 and G2 (Figure 3C). 

Figure 2. Backbone RMSDs depicted as a function of time for G0 (red), G1 (green), and G2 (black) (A).
Cα fluctuation of G0 (red), G1 (green), and G2 (black) (B). RoG plot of G0 (red), G1 (green), and G2
(black) (C). PCA scatter plots depicting a distinct separation of motions between G0 (red), G1 (green),
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APIND Alters the Structure of Apol1

Distinctive from Figure 2, where we explored the structural changes in the variants
without ligand binding, we undertook a protein–ligand simulation to investigate the
potential of APIND to mitigate the effect of the structural distortion in APOL1 caused by
mutation (Figure 3). Our findings show that APIND binding reduced the structural average
RMSD of G1 and G2 variants, lowering the structural average RMSD from 6.96 Å to 6.83 Å
for G1 and from 9.09 Å to 5.780 Å for G2 variants (Figure 3A). The Cα fluctuation followed
a similar trend. However, some regions demonstrated high flexibility, presumably due to
the presence of loops (Figure 3B). The RMSD trend was observed in the PCA analysis of G1
and G2 (Figure 3C).
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We elucidated the mechanistic interaction of APIND within the predicted active site
of APOL1 protein using the rs71785313 variant as a model to posit a possible mechanism
of action of the potential APOL1 inhibitor (APIND). We discovered that, in the wildtype
protein (G0), APIND forms a strong hydrogen bond with ASN388 (red circle; Figure 4A);
however, when ASN388 is deleted in G2, this interaction is lost. This is likely one of
the mechanisms via which APIND stabilizes the 3D structure of APOL1 and inhibits
the protein.
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The MM/GBSA technique for calculating free binding energy could provide insight
into protein–ligand interaction systems. As a result, we looked into the time-dependent
bond interactions between critical residues in the active sites of APOL1 variants and APIND.
The total binding energies of G1 and G2 upon APIND binding were −10.65 kcal/mol and
−20.876 kcal/mol, respectively, according to thermodynamic calculations (Table 2).

Table 2. Thermodynamic calculations of G1 and G2 variants upon APIND binding.

Energy Component G1_APIND G2_APIND

∆EvdW (kcal/mol) −10.23 −19.084
∆Eele (kcal/mol) 20.78 −40.092
∆GGB (kcal/mol) 4.65 65.1435

ESURF (kcal/mol) −3.89 −5.086
∆Ggas (kcal/mol) 6.44 −99.98
∆Gsol (kcal/mol) 4.41 60.846

∆Gbind (kcal/mol) −10.65 −20.876

Figure 4 depicts how this energy contributed to the thermodynamic process.

4. Discussion

APOL1 variants have been linked to an increased risk of developing CKD, particularly
in African-Americans [30]. Understanding how a protein works and the functional effects
of its modification, such as through site-directed mutations, can be aided by studying its
structure [31]. Knowledge of protein structure also allows us to understand molecules
that bind to proteins, decipher disease pathophysiology, and identify potential treatment
targets [27]. A single amino-acid change in a protein’s structure can have disastrous func-
tional consequences [32]. As in previous studies [33], using a combination of computational
techniques such as computational modeling, molecular docking, and molecular dynam-
ics (MD) simulations, we identified binding sites within the APOL1 protein that could
be an attractive site for potential APOL1 inhibitors [34]. These approaches aided in our
understanding of the structure of APOL1-G0, as well as the effect of G1 and G2 variations
on protein structure and dynamics. As a result, we investigated the distinctive structural
perturbations in the 3D structures of APOL1 variants. The introduction of the G1 and
G2 mutations reduced the structural stability of APOL1. The findings of this study are
supported by other experimental studies that have alluded to structural instability in G1
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and G2 variants of APOL1, affecting APOL1 interactions with other proteins within the
cell [35]. Protein residues are implicated in various activities, including protein structure
and function [36]. Mutations can cause decreased structure stability, resulting in misfolding
and a loss of protein function [37]. Changes in protein conformation and stability provide
information about the deviation of backbone atoms from their starting structure during MD
simulation. The APOL1 protein–ligand interaction improved structural stability, according
to our findings. This could be because protein interactions with small ligands frequently
result in an increase in protein thermostability due to the coupling of binding and unfold-
ing equilibrium [38]. Although kidney diseases are ostensibly a global health issue, renal
replacement is prohibitively expensive and difficult to obtain [38]. In the quest for more
treatment options, we discovered that variation-mediated protein conformational changes
may impair APOL1 variants’ ability to regulate or interact with other downstream proteins
such as VAMP8 and SNARE. As a result, this may lead to the development and progression
of CKD. This is a computer-based study in which we looked at only one compound as
a potential drug. As a result, in silico, in vivo, and in vitro studies are needed to screen
various compounds for their potential as drug candidates for kidney-related diseases [33].
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