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Abstract. In this paper we present an approach towards safe software
composition based on aspect-orientation. Aspects enable the systematic
addition of code into existing programs but often they also introduce er-
rors. In order to provide safe aspects for software composition we address
the verification of the aspect-oriented language paradigm. We construct
a basic calculus for aspects with types and prove formally type safety.
More precisely, this paper presents the following contributions (a) a fully
formalized type system for the Theory of Objects including the proof
of type safety, (b) a theory of aspects based on the Theory of Objects
including a type system for aspects, and (c) the definition of a notion of
type safety for aspects including its proof. The entire theory and proofs
are carried out in the theorem prover Isabelle/HOL.

1 Introduction

Aspect-orientation has enjoyed major attention for years and is supported by
many major programming languages. There are, however, serious problems in
the current implementations of aspect-oriented languages. In [13] we show how
the lack of typing produces unforeseen runtime-errors. Jagadeesan et al. have
more recently shown [11] that there are even contradictions in other seemingly
simple situations. The described problem arises when using conform redefinition
of functions in the base code, which causes a covariance issue at runtime.

But, even without considering inheritance, crashes can be produced. For in-
stance, the predominant aspect-oriented language AspectJ still relies on partially
untyped expressions, resulting in runtime failure. The program depicted in Fig-
ure 1 will compile without issue, but crash with a runtime error. This is obviously

public class Test { public aspect asp {
public Test test() { Object around() : call(* *.test(..)) {
return this; return "oops";
} }
} }

Fig. 1. This code compiles using the current AspectJ compiler. It terminates with a
ClassCastException whenever test is called

* This work was supported by the DFG project Ascot (grant Ja 379/18-1).
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conflicting with the expected behaviour of well-typed programs. In fact, here,
aspects are not typed at all. This essentially removes the ability to view aspects
as compositional modules, as the aspect breaks the base code without any static
hint that it might do so.

Automated formal analysis with proof assistants provides a strong support for
the analysis of safety properties of programming languages [12]. Our approach
to support the verification of systems consists of providing a fully formalized
basis for aspect-oriented programming in Isabelle/HOL [10]. We construct a core
calculus of objects and aspects with types in an object—oriented setting as an
instance of the generic theorem prover Isabelle/HOL. The resulting framework
serves to experiment with language features — like weaving functionality and
pointcut selectors — and properties — like type safety and compositionality. At the
same time, these experiments are on a firm basis. The results have mathematical
precision and are mechanically verified. Moreover, we try to keep the formal
model of the aspect calculus as constructive as possible. Thereby, we can extract
executable protoypes for evaluators and type checkers from the Isabelle/HOL
framework.

The basic idea of our calculus of aspects is similar to the theory of aspects
[14] but we start from the Theory of Objects, unlike the former that is based
on the A-calculus. These models of aspects simply introduce labels in the base
program. The labels represent so-called join-points, i.e. points at which advice
might be woven in. ! Given these labels, we can quite naturally define weaving.
The idea is that advice is given as a function f that can be applied to a labelled
term [(t), replacing the original term ¢ bf f(t). So, given an aspect as a pair (L. f)
of pointcuts L and an advice f that shall be applied at all points specified by
L, weaving can be simply constructed using function application, as illustrated
in the following example, where weaving is represented as an infix downwards
arrow |} and functions and application using A-calculus.

(L. e) U (v1 + 1 (v2) “E5 vy + e[va /2]

Moreover, we can now attach types to join-points by typing labels. Then, a
failure like the one illustrated in Figure 1 would be detected at compile-time.
A major difficulty for the definition of a simple and precise calculus for aspect-
orientation is obliviousness — one of the major criteria of aspect-oriented pro-
gramming languages according to the widely accepted definition of Filman and
Friedman [8]. Obliviousness means that a programmer can adapt a base program
by aspects while being oblivious of the exact details of this base program. This
serves to guarantee maximal freedom and flexibility of adaptation. At first sight,
our concept of placing labels from start into a base program seems to clash with
this idea. There are several answers to this. In our view, even though complete
obliviousness might seem an appealing idea, it cannot be achieved. At least, the

! Representing pointcuts as sets of labels corresponds to the intuition that mathe-
matically a predicate is equivalent to the set of all elements fulfilling that predicate.
Thus the pointcut-selector predicate may as well be denoted by the set of all points
that fulfill the predicate.
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programmer has to be aware that there are points in a program where it is al-
ready syntactically impossible to add an advice, for example, in the middle of
a keyword. Conceptually, we consider our aspect labels as the set of all syntac-
tically possible join-points of a program. That is, all possible points where an
advice might be woven into the base program are marked by a label. Using this
global assumption, we lose no generality. Ligatti et al. [14] take a different line
of argument to justify labels. They construct a core calculus that serves as the
target code for a high-level aspect-oriented language. This high-level language
is oblivious while the core calculus is not. However, type preserving compila-
tion between the two yields property preservation. De Moore et al. produce yet
another justification of the label concept [3] by showing through practical solu-
tion that pointcut descriptors may be statically resolved into labels. Hence, they
practically show that labels do not interfere with obliviousness.

The remainder of the paper is organized as follows. We begin in Section
3 with a short presentation of the Theory of Objects and its formalization in
Isabelle/HOL [18]. Section 4 is dedicated to the type system and proof of type
safety for the ¢-calculus. In Section 5 we introduce our extension of this base
calculus to a calculus for aspects introducing weaving functionality and a type
system for aspects. We present the definition and proof of type safety for aspects.
Finally, we conclude with a comparison to other approaches and an outlook to
future work in Section 6. Before we start delving into the technical presentation
we use Section 2 to provide a proper introduction to the relevant features of the
theorem prover Isabelle/HOL, a brief introduction to the ¢-calculus, and some
basic techniques we had to provide for our aspect theory.

2 Preliminaries

2.1 Isabelle/HOL

Isabelle [15] is an interactive ML-based theorem prover. It was initially developed
by Lawrence Paulson at the University of Cambridge and is today maintained
there and at the TU Munich. Unlike many other interactive provers, Isabelle was
written to serve as a framework for various logics, so-called object-logics. Today,
mostly the object-logic for Higher-Order-Logic (HOL) and — on a smaller scale
— the one for Zermelo-Fraenkel set theory are in widespread use. Isabelle has a
meta-logic serving as a deductive framework for the embedded object-logics. This
meta-logic is itself a fragment of HOL solely consisting of the universal quantifier
and the implication. Isabelle features a powerful simplifier, and automated proof
strategies; moreover, it is supported by the generic ProofGeneral user interface.
For this paper, Isabelle/HOL [18] was used, e.g. Isabelle in its instantiation to
HOL. In Isabelle/HOL automatic code generation is possible for constructive
parts of a formalization, like datatypes and inductive definitions (see below),
but also for constructive proofs.

The following meta-logical formula is an example illustrating the universal
quantification with A, higher order variables P and Q, and implication = of
Isabelle’s meta-logic (the square brackets [] act as a pseudo-conjunction).
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APQx. [Px;Qx] = Px

The embedding of object-logics, like HOL, adds additional types, constants, and
definitions gathered in a so-called theory. This extension of the meta-logic is per-
formed according to a principle of conservative extension: new types and related
constructors are defined on existing types; non-emtpiness of the new types must
be proved; properties of new types are derived from their definition. Thereby,
conservative extension guarantees soundness. Type definition for a restricted
class of inductive types is more specifically supported by the datatype package
in Isabelle/HOL. This feature resembles much an ML-style datatype definition.
It is advisable to use this construction principle whenever possible for one’s
object-logic’s specification because induction principles, distinction and exhaus-
tion properties come along automatically with a structure defined as a datatype.
In addition, functions over a datatype may be defined using primitive recursion
which helps automated simplification in proofs and code generation from spec-
ifications. We will use the datatype feature, for example, to define the type of
¢-terms in Section 3.1.

Isabelle/HOL features an additional inductive definition package enabling
the definition of a minimal set of elements closed under given inductive rules.
We will use inductive definition for the definitions of the type systems in Sections
4 and 5. A very generic parser enables application-specific definition of concrete
syntax (so called mixfix syntax) making Isabelle formulae and proofs almost
identical to pen-and-paper formalizations. We will point out the use of mixfix
syntax in our formalization. In general, any Isabelle/HOL specific syntax that
we will be using throughout the paper is going to be explained when we use it.

2.2 The g-calculus

In a Theory of Objects[1] Abadi and Cardelli developed the ¢-family of calculi to
formally study object-orientation. These calculi are widely accepted as concep-
tual equivalents of the A-calculus for objects, since the objects can be directly
used as a basic construct without having to be simulated through A-expressions.

In the ¢-calculi, an object is defined as a set of labelled methods. Each method
is a ¢-term in its own right and has a parameter self, in which the enclosing
object is contained. There are three flavors of primitives from which to build
such terms: object definitions, method invocation and field update, which are
presented in Figure 2. Methods not using the self parameter are considered to
be fields. There are various formalizations of the ¢-calculus in interactive theorem

Let o = [li = ¢(x;)bi’S'"] (I; distinct)
o0 is an object with method names I; and methods ¢(z;)b;
0.l; = bj{z; «— o}(j € 1..n) selection / invocation

0l; =s(y)b—[l; =<(y)b,li = g(wi)bi€<1”")7j](j € 1..n) update / override

Fig. 2. The primitive semantics of the ¢-calculus as introduced in [2]

provers, e.g. [7]. However, mechanizing aspects in Isabelle/HOL necessitates the
following steps to accomodate the Theory of Objects.
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2.3 Finite Maps for Isabelle/HOL

For the definition of ¢-terms it is necessary to first introduce a generic type of
finite maps for the representation of objects. Defining a type of finite maps is a
simple enough exercise, but defining it in a generic way is quite tricky.

We define a type constructor fmap for finite maps. For any finite type o and
any 3 our type constructor enables now the definition of the new type a—f of
finite maps from elements of « to elements of 5. Moreover, existing Isabelle/HOL
machinery for (infinite) maps is reused so that we can construct new finite maps
from old ones using the predefined notations, e.g. f(x +—y) to update finite
map f at point x with value y. We omit the technicalities of the Isabelle/HOL
construction of fmap (see the web-page for full details).

We furthermore derive the necessary infrastructure to support the use of finite
maps in proofs. We establish an induction scheme for finite types. Then using a
representation of finite maps as finite sets of pairs that behave like functions, we
derive the following induction scheme for the new generic type fmap from the
induction scheme for finite sets by using a domain isomorphism between fmap
and the set of pairs with function properties.

The type label is a concrete finite type defined to represent a type for field

[ P empty;
A x (F::label — dB) y . [ PF; x ¢ dom F ] = P (F(x — y))
] =PF

Fig. 3. The induction scheme on finite maps. If a predicate is true for the empty finite
map and stays true when adding an element, it holds true for all finite maps.

names of objects in the following definition of ¢-terms.

2.4 Binding with de Bruijn Indices

It is a known difficult problem how to represent binders when formalizing pro-
gramming languages for meta-theoretical reasoning [4]. One very recent way of
dealing with this problem is provided by Nominal Techniques [19]. Here, ba-
sically an implicit factorization over concrete variable names, using a so called
“support” representing all possible permutations of variables, enables to abstract
from concrete names of variables. We have experimented with a recent imple-
mentation of a package for Nominal Techniques in Isabelle/HOL, but had to find
out that neither recursive datatypes nor fancier constructs like our fmap are cur-
rently being supported. We decided to use the classical technique of de Bruijn
indices. De Bruijn indices overcome the problem of concrete variable names,
and thus a-conversion, by simply eliminating them. A variable is replaced by
a natural number that represents the distance — in terms of nesting depth —
of this variable to its binder. Thereby terms contain only numbers, no variable;
a-conversion becomes obsolete. This is a considerable advantage as a-conversion
is a difficult problem both from a practical point of view and for mechanical
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proofs. An example for illustrating the use of de Bruijn indices is given by the
following simple A-term.

Az \y.(Az. x 2)y = Abs(Abs(Abs(Var 2)$(Var0))(Var0))

Note that, different variables may be represented by the same number, e.g., z
and x both are Var 0. De Bruijn indices relieves one from having to deal with
a-conversion: for example both Az.x and its a-equivalent A\y.y are represented by
Abs(Var0). The disadvantage of de Bruijn indices is that substitution, normally
used for the definition of application, is difficult to construct. A term has to be
“lifted”, that is, his “variables” have to be increased by one, when it moves into
the scope of an abstraction in the process of substitution.

3 The Theory of Objects in Isabelle/HOL

3.1 Formalizing ¢-Terms

The type dB of ¢-terms in Isabelle/HOL is given by the following datatype decla-
ration. Note, that there are two types of labels: 1label represents the method de-
scriptors in an object while Label is the type of aspect labels. Both actual types
are just type synonyms for nat, the type of natural numbers in Isabelle/HOL.

datatype dB = Var nat

| 0Obj (label — dB) type
| Call dB label

| Upd dB label dB

|

Asp Label dB (¢ _Hmm

The constructor Var builds-up a new term dB from a nat representing the de
Bruijn index of the variable. In the constructor 0bj for objects we see now our
fmap constructor being used: an object is recursively defined by a finite map from
label, the predefined types of “field names”, to arbitrary terms of type dB. The
second argument of type type to the dB-constructor 0bj is the Object’s type. It
will be formally introduced in Section 4. We insert the type with an object in
order to render the typing relation unique (see Section 4). The cases Call and
Update similarly represent, field selection and update of an object’s field. The
field constructor Asp enables the insertion of aspect labels into object terms. We
do not assign any semantics to labels until we define weaving in Section 5. The
annotation behind the constructor in quotation marks defines the mixfix syntax:
we can use the notation 1(t) as abbreviation for Asp 1 t.

Next, we need to define lifting and substitution in order to arrive at a re-
duction relation for our object-terms. These definitions are very technical, so we
skip them here. For a full account see the Isabelle/HOL sources at the authors’
web page [10]. The Isabelle/HOL mixfix syntax enables a definition of substitu-
tion for ¢-terms as t[s/n] meaning replace n by s in t. We define a small step
operational semantics by a relation — g using an inductive definition.
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inductive —g
intros
beta: 1 € dom f f = Call (Obj f) 1 —p the(f 1) [(Obj £)/0]
upd : 1 € dom f = Upd (Obj £ T) 1 a —g 0Obj (£ (1L — a) T)
sel : s 53t = Call s 1 —pg Call t 1
updlL: s w3t =—= Upd s 1 u —»g Upd t 1 u
updR: s wg t = Upduls —g Updult
obj : [ s =g t; 1 € dom £ |
= 0bj (£ 1 +— 8) T) —p5 O0bj (£ (L — t) T)
asp: s 53t =1 (s ) —g1(t)

The rules sel, updL, and updR merely encode that reduction can be performed
in contexts. The others represent quite closely the original semantics of ¢ (cf.
Figure 2). The substitution [(0bj f T)/0] in the rule beta replaces the self
parameter for the outermost variable in the object’s lth field £ 1. The operator
the selects an a-element in an option datatype when it is defined, i.e. unequal
to None. The cases upd and obj just replace inside objects. Additionally in some
cases, the additional proviso 1 € dom f assures that there is no call out of range
of an object. The case asp enables, similar to the rules sel, updL, and updL, to
evaluate in a labelled context. There is no other case for labels corresponding to
the fact that no semantics is attached to labels until later.

This is the basic machinery for ¢-terms in Isabelle/HOL with which we can
represent any object term and evaluate it. The original notation used by Abadi
and Cardelli (see Section 2.2) does not differ very much from our notation in
Isabelle/HOL. The object [I = ¢(x)z.l,n = ¢(z)x] is, for example, represented
as 0bj (@ (1 —Call(Var 0) 1) (n —(Var 0))) T for some suitable T where &
represents the empty map. It would be easy to add more syntactic sugar by
defining additional mixfix syntax to achieve even closer resemblance.

The next important property to examine is determinacy of the evaluation.

3.2 Confluence

Confluence means that the reduction relation is deterministic. That is, whenever
the reduction of an expression x of the language can return differing results y
and z there are further reductions possible to a term u such that x and y can be
further reduced to u. Formally, this property is based on the diamond property
of a relation ~.

diamond(~) =4 Vxy. x~y —Vz. x~2z2 — Ju y~uAz~u

Confluence of a relation ~ is defined as diamond(~*) where % denotes the re-
flexive, transitive closure of a relation. We proved confluence of the reduction
— g in Isabelle/HOL.

Theorem 1 (Confluence of —3).

diamond (—3)
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We were able to re-use the existing structure of the confluence proof from our
earlier experiment [9], which used Nipkow’s framework for the classical Church-
Rosser proof as described by Barendregt in [5]. The classical trick already used
in the application for the A-calculus is to use a so-called parallel reduction — for
which the diamond property is true. Indeed, in general, the original reduction
relation —3 does not verify diamond —g, and proving diamond —7 directly
is very difficult. Thanks to the following theorem, we only have to show the
inclusion of the parallel reduction relation in between the original reduction
relation — g and its transitive, reflexive closure.

[ diamond —; —3 C —; — € —5 | = confluent —g

Naturally, there were numerous adjustments to be made to the proofs in [9].
These were partly due to the — compared to plain lists — relative lack of pre-
pared lemmas for finite maps. Especially the automatically generated induction
schemas for datatypes using finite maps were not readily usable and had to be
replaced by manually proved counterparts.

4 Type Safety for Objects

Generally, types in programming languages are a means to ensure statically
as much soundness as possible. A type system defining types in an inductive
style encodes therefore a decidable portion of the semantics of the language in
question. Type safety entails that, whenever a program can be typed according
to the type system, it fulfils the semantic property that is encoded in the type
system. Classically, type systems encode the properties progress and preservation
[20]. Progress describes the property that a well typed term is either a value or
can be reduced further according to the evaluation relation. Preservation states
that reduction does not change the type of a term, thereby ensuring that the
evaluation does not endanger the semantic properties. When encoding a type
system in Isabelle/HOL we implicitly prove the decidability of this type system
by expressing the rules of the type system as rules of an inductive definition.
This is a nice by-product of using a theorem prover.

The type system we define is derived from the original simple type system
that Abadi and Cardelli presented in their work [2]. However, we could simplify
it by omitting their “outcome” function which they use to describe definedness.
Instead we use the explicitness readily available in our model: since finite maps
are functions we can use the notion of “domain” to describe that a call is within
the range of an object. Since the ¢-calculus does not contain values, we consider
that a value is reached whenever a term is an object even though inside the object
further reduction might be possible. This is as much as we can get because in
the ¢-calculus non-terminating objects may well be defined. For example, the
¢-term [l = ¢(x)x.l] enters a non-terminating reduction, and — what is more
important for safety — reproduces itself. Hence, there is generally no progress
unless we refrain from evaluation inside objects — as we will prove shortly.

In the ¢-calculus every term is an object. Hence, the following recursive Is-
abelle/HOL datatype defines the possible types.
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datatype type = Object (label — type)
To access the actual type at a given label we define the following projection.
(Object 1)!'n = the (1 n)

The type system for ¢-term is defined by an inductive typing relation. This
relation typing is given as a set of triples containing the type environment, the
term, and its type.

typing :: (type list X dB X type) set

We use Isabelle’s mixfix possibilities to define the syntax env - x : T conve-
niently annotating that term x has type T in environment env, or, more formally,
(env,x,T) € typing. Type environments, like env, are defined such that they
can be simply extended using a stack operator that we defined for this purpose.
For example, env(0:A) denotes the environment env extended with the type
assumption that the outermost variable has type A.

Now, the inductive definition for the typing relation consists of the following
rules.

inductive typing
intros
T_Var : [ x < length env; (env ! x) =T] = env bk Var x : T
T_Obj : [ dom b = dom B; V 1 € dom B. env(0:B) - the(b 1) : B!l ]
—> env - 0bj bB : B
T Call: [ envhk a : A; 1 € dom A | = env F Call a 1 : A!l
TUpd : [envhk a: A; 1 € dom A ; env(0:A) - n : A!l ]
—> env ik Updaln:A

The variables A and B range over types. The variable env represents a type
environment containing type assumptions for variables. A type environment is
a mapping from variables to types, its extension by a new assumption of “x
has type A” is annotated as env(x:A) (where x is a natural number in our de
Bruijn representation). The operator ! is used for selecting the nth element of
a type environment. It is already provided in Isabelle/HOL for selecting the
nth element of a list. Note, that we also use it in an overloaded fashion as the
projection for object types. The rule T_Var accesses the type environment env to
ensure variable types. The rule T_Obj describes how an object’s type is derived
from its constituents. An object of type B is formed from bodies the(b 1) of
types B!1 that may use the self parameter fixed as 0 in the type environment.
When a method 1 is invoked on an object a of type A the result Call a 1
has type A!1l (T_Call). Similarly an update of a method may take place in a
position 1 of an object that has the right body type under the assumption of
the self parameter (T_Upd).

Given this type system we prove type safety first for the ¢-calculus in Is-
abelle/HOL. We prove the following two theorems.

Theorem 2 (Progress).
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[OFt:A Ac.t=0jc] = 3t’.t—pgt’

The second theorem is the preservation theorem, sometimes also called subject
reduction.

Theorem 3 (Subject Reduction).
[envEt: A t —5gt’] = envhikt”:A

For the proofs of these Theorems, we could gather some initial inspiration from
the type safety proof for the typed A-calculus that has been performed by Nip-
kow [16]. Although the preservation theorem for the A-calculus has a lot in
common with our case, the progress theorem differs already in its formulation
(for the simply typed A-calculus strong normalization is proved which includes
termination). Consequently the proof for progress is quite different in the two
formalizations.
We were also able to show the uniqueness of the types.

Theorem 4 (Uniqueness).
[envkFt :T; envkt: T ] =T-=T

This property would not hold true without the type annotation introduced in the
initial datatype declaration. For example, the object [l = ¢(z)x] would have types
Object (empty (1 +— T)) for any type T, if we had not fixed the type inside
the object. Accidentally, we would have introduced some kind of polymorphic
functions.

5 Aspects, Weaving, and Types for Aspects

The ingredients of an aspect-oriented program are a base program written in an
object-oriented language, and a set of aspects. The aspects consist of a selection
of pointcuts and an advice that shall be applied at those points. The process of
actually plugging in the advice at the specified pointcuts is called weaving. In
this section we present these features in Isabelle/HOL for the ¢-calculus together
with a type system for aspects.

5.1 Aspects

An aspect can be simply defined as a selection of pointcuts and an advice. Since
our model is in Higher Order Logic, where sets are isomorphic to predicates,
we can assume that our selection of pointcuts is a set of labels. The advice is
a ¢-term with a free variable thereby mimicking a function over subexpressions
of a ¢-program marked by labels. Hence, in Isabelle/HOL aspects can be simply
defined as follows.

datatype aspect = Aspect (Label list) dB M(_._)

The first element is the pointcut set and the second element the advice to be
applied to all points matching the pointcut description, i.e. being member of this
set. The mixfix syntax at the righthandside enables the annotation of an aspect
as (L.a).
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5.2 Weaving

Given a base program in the ¢-calculus readily labelled with aspect labels and
given some aspects, the weaving function now only has to step through the
term while applying the aspect. We consider this approach to resemble static
weaving, but given the functional nature of our calculus, we consider the result
to be valid for dynamic approaches as well. Therefore, we define a function
“weave”, represented as |}, that takes a ¢-program and an aspect and returns a
¢-program. The second operator weave_option is an auxiliary function that is
needed to “map” the weaving function over the finite maps representing objects.

weave :: [ dB, aspect ] = dB (QNIAD)]
weave_option :: [ dB option, aspect ] = dB option ("{opt")

We define the weaving function for the simple case of applying one aspect to a
program. The general case is later derived by repeated application. The definition
of the simple case is given below in a mutual recursive definition defining the
semantics of weave and weave_option by simple equations. In case of weaving
an aspect onto a variable Var n the advice has no effect. The case 1(t) is the
interesting one because now the ¢-term for aspects, Asp, is finally equipped
with semantics. In case that the label is in the pointcut specified by the first
component of the aspect, the aspect matches. Consequently, the advice part
of the aspect a is applied to the current term t. Otherwise the aspect has no
effect. The label is not eliminated during the weaving process to enable repeated
weaving.

primrec
(Var n) || (L.a) = Var n
1(t){ (L.a) =if 1 € set(L) then 1 ( al(t | (L.a))/0] )
else 1 (t | (L.a) )

The Isabelle/HOL projection set transforms a list (here, of labels) into the set
of all elements contained in the list. Note, that the functional application of the
advice a to the term t is realized using substitution for 0 using the same idea
as in the rule beta of the reduction relation.

The next two equalities for Call and Upd simply define that the weave process
is to be passed through to the corresponding sub-terms.

(Call s 1) | A =cCall (s | A) 1
(Upd s 1 t) J A=Upd (s 4 A) 1 (¢ | A

The primitive recursive equations defining the semantics for 0bj is now the
point where the recursion changes to the auxiliary operator weave_option. The
auxiliary operator enables the pointwise definition of advice on the fields of the
object by lifting the weaving function over the A to argument position. In the
defining equations for weave_option ({opt) We see the benefit gained by using
the option type: we can explicitly use pattern matching to distinguish the case
for unused field labels (None) and actual object fields matching out the field
value with Some.
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(Obj £T) § A=0bj (A1, ((£1) Jopt D) T
None {ops A = None
(Some t) {opt A = Some (t | A)

The generalization of the weaving function to lists of aspects is simply defined
using the predefined functor foldl. This realizes the application of a function
repeatedly to an argument taking second arguments from a list. This is exactly
what we need: iterated application of weaving to a ¢-term t using advice from a
list of advice 1.

Weave t 1 =4 delabel(foldl (op {) t 1)

The function delabel is a simple recursive function that deletes all labels from
the weaving result thereby producing a “label-free” ¢-calculus term. This final
step is necessary to arrive at an unambiguous term at the end of weaving. Oth-
erwise we would have to consider equivalence classes of labelled terms.

5.3 Type System

We next present a type system for aspects. We have succeeded in designing
this type system for aspects and proved type safety completely in the theorem
prover Isabelle/HOL. Here, we introduce the major definitions and the proved
theorems. The entire proof development in Isabelle/HOL is available on the
authors’ web-page [10].

The basic idea of the type system is that we attach types to aspect labels.
Any advice that may be woven in at a particular point has to be conform to the
type attached to this point’s label. For type safety, we found an elegant way of
proving that aspect weaving respects types. This general results grants to recover
type safety for weaving from the previous type safety results for the typed ¢-
calculus (see Section 4). We extend this basic type system of our Isabelle/HOL
formalization for objects of the ¢-calculus. We use a second environment L —
besides the basic type environment — to keep track of label types during the
process of typing.

Compared to the rules dealing with the existing, pure, ¢-constructors in the
dB datatype (cf. Section 4) the only notable change is that the environments now
are complemented by a label environment L. Hence, the new inductive relation
typing has four parameters. The additional label environment L maps labels to
types. It enforces that a given label has the same type at all occurrences.

For instance, the Var case features now an additional environment L of label

types.

T_Var : [ x < length env; (env ! x) =T] = env, LF Var x : T

Similarly, the other three rules are identical to the rules for the pure ¢-calculus
(see Section 4), except for the additional parameter L as the label type environ-
ment in all typing judgements.

Finally, we add one new rule for the typing of labels. It states that a label
has the type assigned in the environment and that a labelled term’s type has to
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be conform to the label type. Given a term a of type A we can insert a label 1
in front of a if we are in the same environment.

T_lab : [ 1!i = A; i < length L; env, LFa : A = env, L F 1(a) : A

The introduction of the second parameter has little impact on the proofs pre-
sented in the previous section. These are all additions we made to the type
system. Still, one decisive information for a meaningful static analysis is miss-
ing. We know how to type aspect labels now and we know how to type labelled
programs. However, in aspect-orientation, the process of weaving plays a role in
the semantics. So, we need to lift the typing to the weaving operation. Since we
added weaving not as a term constructor of the actual term language of labelled
¢-terms dB, the typing for the weaving function is not part of the type system
seen above.

But, as we are in HOL weaving is a function of the meta-level, i.e. Is-
abelle/HOL, and we can introduce the well-formedness of weaving also at the
meta-level. Therefore, our expressivity is not lessened. First, we define a predi-
cate that ensures that a set of pointcuts and an advice are compatible.

wf_adv L (L. a) =q¢f V 1 € set(L). 3 A. L!1 = A A [1(0: 4), Lk a : A
This predicate enforces that there must be one environment (empty base-types
and some appropriate label-types) such that all labels in the pointcut set of the
aspect can be typed according to the advice. Note, that an advice is thereby
constrained to have identical input and output type. Further loosening of this
constraint towards some kind of conform subtyping here is future work (see
Section 6.3).

Given this internal well-formedness of aspects, we can lift it up to define
well-formedness between an aspect and a base program.

wf_at Lt a=g 3T. wf_,advL aA T[], LEF¢t:T
This predicate can again be lifted to sets of aspects.
wfLtA=4Vacset(d) . wfatL ta

With all these preparations we are now able to identify a theorem that encodes
the preservation of typing through weaving.

Theorem 5 (Weaving Preservation).
[wtLtA; O,LFt:T]= 0O,LFtJA:T

This theorem is the central theorem for type safety for aspects in our setting
because the usual type safety theorems, progress and preservation, are simply
implied by it.
Corollary 1 (Aspect Progress).

[wtLtA; [0, LFtA:T; AcB.tl A=0bjcB]

= 3Jt’. t A —gt’

Corollary 2 (Aspect Preservation).

[wELtA; O, LFEt:T;t|A—gt>’] = env, LFEt’> : T
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6 Conclusions

In this paper we have presented a formalization of our theory of aspects in the
theorem prover Isabelle/HOL. It consists of the ¢-calculus with an extension by
so-called labels for the representation of join-points and definitions of weaving
functions. We have proved the confluence and type-safety of the basic language
of ¢-objects and for the extension to aspects.

6.1 Related work

There are some, partly still ongoing, strands of research concerning theoretical
work for the support of aspects. The approach which is probably closest to ours is
the work by Ligatti et al. [14]. We differ from their approach in that we use the
¢-calculus as a basis, thus being object-oriented in the core-calculus, whereas
they start from some A-like functional language. Clifton and Leavens devised
their MiniMao language [6] which is a typed aspect-oriented language based on
a small imperative Java-subset. Another approach taken by Jagadeesan et al [11]
concentrates on generics and uses a FeatherweightJava based calculus.

However, none of the above mentioned theoretical accounts provides a mech-
anization in a theorem prover or similar tool. We are not aware that there are any
attempts to formalize a theory of aspects inside a theorem prover. In particular,
in the field of language semantics and type systems we consider definitions and
proofs sufficiently complex to render automated proofs an imperative condition
for high quality developments.

6.2 Compositionality and Run-Time Weaving

An important question for aspects and their practical usability is the composi-
tionality of weaving. A similar question is whether run-time weaving is possible.
Figure 4 illustrates this question graphically: when does this diagram commute?
(index sc stands for source, be for bytecode, p for program, and ptc and adv for
pointcut and advice.)

weave.scC

’
(pscyptcsa ad'Usc) Psec
¢/ (comp,ptccomp,comp) i/comp

weave_bc /
(Pvc, pteve, advyc) Dbe

Fig. 4. do compile-time and run-time weaving commute?

An immediate success of our formalization is that we have made one step
towards identifying the conditions for a precise analysis for this question. In the
aspect-calculus that we have presented in this paper we can state the corre-
sponding compositionality proposition as follows.
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[t —=pt;a—pa ] =t (L a)—gt> | (La)

Essentially the condition states that advice can be reduced prior to weaving with-
out changing the semantics compared to reduction after weaving. Compilation
is here replaced by interpretation because our calculus is functional.

6.3 Future Work

As we have seen in Section 5.3 the type system for aspects is constrained to
have identical input and output types. We are considering the extension of our
simple type system with sub-types. This would, in principle, give the means
to relax the constraints on aspect types. However, neither a contravariant nor
a covariant type refinement is possible for aspects in general: counterexamples
may be constructed (see Jagadeesan et al. [11]).

As noted earlier (2.4), we have used the classical technique of DeBruijn indices
to avoid a—conversion. Our experiments with the more elegant nominal approach
[19] revealed that the datatype support is not yet sufficient for our purposes. We
are in the process of evaluating the use of a locally—nameless solution [4].

6.4 Discussion

We did not embed weaving as a first-class function into our term language. This
might at first sight seem odd, but we do not need to make weaving first-class.
As we are in Higher Order Logic, we can reason about a meta-level function
over ¢-terms also in the object-logic. It has proved to be, on the contrary, an
advantage to formalize weaving as a meta-logical HOL-function because we did
succeed, in addition, to express its semantics using primitive recursion. The fact
that weaving is a HOL-function implicitly grants us many useful properties —
function properties combined with a primitive recursive definition save us a lot
of explicit proof work because they are well supported in Isabelle/HOL.

One part of any aspect-oriented language is an object-oriented language for
writing the base program and the advice. Therefore we chose the Theory of Ob-
jects by Abadi and Cardelli [1] as a basis for our mechanized theory of aspects.
Although this base language is fairly small, it does — similar to the A-calculus —
enable the construction of all object-oriented features. On the other hand, this
choice preserves generality of our approach: we stay independent of any partic-
ular implementation language, say Java, when we consider features and their
related properties. Certainly, it must be shown that a small core language like
the ¢-calculus and our extension to aspects are equivalent to realistic program-
ming language. Therefore, we intend to follow the approach taken in [14], where
a type-preserving compilation is finally added from a real-world aspect-oriented
language to the core-calculus.

Apart from providing a theoretical calculus for aspect-orientation, that is
moreover mechanically verified, we believe our work to contribute to the safe
use of this paradigm for the adaptable systems of the future. Our formalisation
is a tool to experiment with different language constructs using the mechanical
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proof support to verify gradually type-safety and other more advanced properties
like non-interference. In addition, a formalization as constructive as ours enables
extraction of executable programs.
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