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SUMMARY

"As part of a Research Project into the Cost Effectiveness
of Training, various experiments were held in Telephone Exchanges
in the Midland , Eastern and London Telecommunications Regions.
The purpose of the experiments was to investigate the work load
of telephonists,to see how the amount of time spent on the elements
of the.task done might vary as the training of the telephonists
proceeded and also to attempt to compare two methods of training.
Data from these experiments and from other sources in the litera-
ture was used to cbmpare the efficiency of a selection of models
of learning.

The method of comparison was based on an extension of an
iterative 2-parameter curve fitting algorithm which uses a Taylor
Series approximation to the function of the model of learning .
investigated.

The resulting analysis allowed a tentative choice of what
might be called the "best'" model, which was then used in a more
detailed examination of further data obtained on telephonists.

In the event, the curve fitting analysis was found to be complex, as
was fhe apparently simple task of "telephonist''. Time did not
allow an extension of the study into other tasks performed by

Post Office personnel.



Conclusions Drawn

Part I Studies of Data Available in the Literature

(1) The model which resulted in the best fit most consistently was
the Wiltshire Model. However the Wiltshire Model only gave the
solution in 31 of the 88 studies contained in the first part of the
thesis. The second order model was the most regular method of
obtaining the curve fit working in 87 of the 88 cases.

(2) The de Jong model and Logmathematical Models gave con-
sistently the worst fits.

(3) Little difference could be detected in the remaining models.
(4) The most practical model (because the parameters may be
defined in understandable terms) is the time constant model some-
times known as the Bevis model. This model worked in 77 of the
88 studies. The second order model is a logical extension of the
Bevis model, and may fit the data more accurately, but requires

.a more complex curve fit procedure.

Part II Studies on GPO Data

(5) Despite the apparent advantages of the Bevis model, the
accuracy with which the Bevis Model predicts the parameter values
is not good enough to consider its use for a comparison of different
training methods which might be used by the Post Office and hence
allow an evaluation of the cost effectiveness of training. This may
be due to insufficient or inaccurate data; or the model may not be

a true reflection of the learning process that occurs.



(6) Telephonists learn to dé their work in two ‘stages, a training
stage and an experience gaining stage, which may be defined by

two learning curves.

(7) The method of evaluating t‘he work done >by a trainee
telephonist in the early stages of training is inaccurate. The
inaccuracy is probably due to the high variability in the presenta-
tion of calls to the trainee.

(8) The problem of curve fitting to tasks which are not truly
repetitive but contain elements which are repetitive, is complicated
because of the diffi.culty of establishing an accurate performance
measuring system. The cost of the work needed to do this is likely

to be prohibitive.

xii
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1. INTRODUC TION

1.1. The Training Research Project.

During the summer of 1971, the Post Office approved the
setting up of a Research Project to investigate the Effectiveness
of Training. Two members of Post Office staff were recruited
and commenced academic and experimental work in the following
November at Hendon College of Technology (now part of Middle-
sex Polytechnic). Extracts from the Terms of Reference for
the study are given in Appendix A.

At an early stage of the research it was agreed that although
the researchers would work together on experiments of common
interest, the emphasis and/or interpretations they might place on
the results obtained could. usefully be guided in different directions.
As a result, some of the experiments quoted in this thesis are the
combined efforts of the two researchers, while others are individual
attempts to prove a particular point in question. Most of these
experiments are described in detail in Lamb's thesis1 which deals
with the Evaluation of Telephonist Training. This thesis, which
concentrates on a comparison of learning curve models and the
possible application of one model to the evaluation of training
effectiveness does not go into such detail, to avoid duplication and

also to keep the size of the thesis within reasonable bounds.



1.2. The Nature of the Problem.

Learning, or Progress Curves, have been in use for some
35 years as indicators of the improvement of skill in repetitive
tasks. Originally they were developed to measure Industrial
progress, i.e. the improvement in performance or the reduction
in cycle times in production with passage of time. The develop-
ment of Learning Curve theory was thus due to technologists
and it was only at a later stage that psychologists made attempts
to derive forms of equation which could be used to depict individual
learning.

The pressure on the technologists was an economic one,
they wished to establish reasonable estimates of future manu-
facturing costs so that competitive tendering was possible. In
doing so, they were concerned with a mass learning effect, i.e.
how the works personnel would improve their skill as a group
while manufacturing several thousand or more items over periods
of months, if not years. Consideration of individual performance,
in which learning takes place in days or weeks for a simple
repetitive task, (which would normally be an element of the
complete indus‘trial process), did not enter into their calculations.

Such models that were developed by the technologists were
empirical - no formal theory of the acquisition of skill was used
to assist in the derivation of the learning equations used to depict

the model. Psychologists, on the other hand, used formally



developed theories to derive models for individual learning and
used truly repetitive tasks in their experiments. No mention of
fitting their models to industrial work has been noted, although the
large number of variables which can affect the observations such
as motivation to do well, variation in presentation of the task,
individual differences and observational error have been discussed.

Many learning curve models have therefore been proposed,
and all have some factors in their favour. While the models
developed by the technologists have been used to depict learning
over a long period, and those developed by psychologists have been
used to depict the learning of simple tasks, little &attempt appears
to have been made to fit curves to training data. Can a "best"
model for such a purpose be selected from those available? If
such a selection can be made, can the model then be used to com-
pare methpds of training (and hence allow a cost effectiveness study
to be made) say by examination and analysis of the parameters?

This study attempts an answer to these questions.



2. HISTORY OF PREVIOUS WORK.

2.1, Introduction.

/Very many attempts have been made to fit curves to data
relating to learning. The general approach has been empirical, in
that researchers appear to have made personal judgements on what
curve will fit (usually on the basis of fitting by inspection) and then
tried it out on a mathematical basis.

Formulae have also been developed on a psychological basis.
The discussion which follows will list the equations considered in
this research, in historical sequence, and show that some suggested

formulae are based on different forms of the same equation.

2.1.1. Robertson's Equation.

2
Morecombe states that the first equation proposed as suitable

to fit to learning data was that of Robertson in 1915. The equation

is

10g{ Yy } = k(x; - x) 2.1.1.(a)
a-y,

i
No definition of y,, a, k, xi and xo is given but it is presumed that
i !
. : . .th :
Y is cycle time for the i~ operation
a, k are constants

: th o
x, is the x  repetition of the task

X is the first observation point.



If some algebraic manipulation is done on

the equation, we get:

n) Vi = k(x, -x) 2.1.1.(b)
i
a-y,
/ Vi = ek(xl_xo) 2.1.1.(c)
a-y,
Y, = (a—yi) ek(xi_xo) 2.1.1.(d)
(. - k(s -x
' + y;e (Xi xo) ae (Xi x ) 2.1.1.(e)
v [1 y o K xo)] o R ) 2.1.1.(%)
y, = aeXi~%,) 2.1.1.(g)
W e
TR A k(x,-x )
and dividing the numerator and denominator by e "1 "o
i s
+1
(ek(xi_xo) )
= a = a 2.1.1.(h)
1+ e_k(xi-xo) l+ekxo_kxi
and as kx_ will be a constant (say b)
then Y, © a 2.1.1.(i)
1 + eb-kxi

which is the form of the Pearl and Reed equation suggested in 1925



and can also be shown to be the Bevis equation in a different form

(to be discussed later).

2.1:2% Moore's Equation.

|

3 ;
Morecombe”~ also quotes Moore's equation, suggested in 1932,

This is logy, = a *b. i 2.1.2.(a)
which may be used to define the variation of output or cycle time,
according to the signs of the parameters. However, if we consider

o A x5
the logistic curve y; = a-b.c ! 2.1.2.(b)

(where the parameters are positive and which defines output/time)

and let Yc = (a-b) and Yf =b

Then Y = a-Y
c f

and a=Y 1Y
c

f
x.
= 2 - .ot
R T
=Y +%Y [1_cxi] 2.1.2.(c)
c {
If ¢ is now made equal to e_l/t s cXi = (e—l/ F )xi
-"i/r]
— + - 2.1.2.(d
= LR [ 1 -e (d)

which is the Bevis equation, with X, substituted for t,1 .
Thus Moore's equation when used to define output data is effectively

a Bevis equation plotted to a logarithmic y-scale.



2:1.°3% Wright's Equation.

4
A different form of equation was proposed by Wright in 1936.
5
Morecombe™ quotes this article on factors affecting the cost of

airplanes and shows the equation as

f= tln'm 2.1.3.(a)

where T = the cumulative average direct labour manhours

for any quantity n

t1 = the number of direct labour manhours to manufacture

the first unit produced

= the number of completed units

=]
!

an exponent (typically of value . 322)

m

Now let £ = Yi' n = Xi’ m = n, tl = A (a constant)

= -m
then t = tln is transformed to

Y. = AxX, " ‘ 2.1.3.(b)

so that the curves, if plotted, are to a modified y-scale.

2.1.4. Crawford's Equation.

6
Crawford (quoted by Morecombe) seems to have felt that the

equation

t =t o 2.1.4.(a)



fitted his firm's experience better,

where tn = the unit cost, or the direct labour hours for

unit number n.

o+
!

= direct labour hours for the first unit

1
n = number manufactured
m = an exponent (still typically of value . 322)

Converting Crawford's equation for use on x/y axes by

letting t Sy, t T A, n-= x; ™ =n gives the same form

as before, i.e. ¥; = Ax " v 2.1.4.(b)
i

2.1.5. de Jong's Equation.

It was not until 1957 that de Jong7' Bid proposed a further
modification to Wright's and Crawford's equations. He came to the
conclusion that there existed an "incompressible' component in the
cycle time taken to complete an operation. Conversely, this also
implies a maximum output above which a worker would not be able
to go. In his series of articles, de Jong considered the reduction
in cycle time of experienced workers in many industries and came
to the conclusion that an equation of the form
y, = ;M - t (1-M) x, " 2.1.5.(a)

1 1

best expressed the reduction in cycle time, where

v, © cycle time
& = time required for the first cycle of a batch
M = the factor of incompressibility (0 S M<1)



n = the exponent of reduction.
Now let B = t M ; A=—tl(1—M)

yv. = B +A>-:,_n

2.1.5.(b)
1 3

This /equation is still in a form which expresses the reduction in
cycle time, for when x =1, y = B+ A and when x = © , y = B.
If the sign of A is changed
: -n '
i.e. y = B - Ax 2.1.5.(c)
then when x = 1, y = B-A

and when x =@ , y =B

which form is suitable for expressing output as a function of x.

2.1.6. American Government Equation.

Nadler and Smith10 quote a variation on the same theme.
After extensive study by the Starllford Research Institute it was found
that y. = a (xi % B)n 2.1.6.(a)
appeared to be a more suitable equation to fit to progress functions

or learning curves. In that equation

direct manhours pei‘ unit

x, = the cumulative number accepted

a = the cost of the first unit when B = 0

n = a reduction exponent

B = a constant which could be expressed as the

number of units theoretically produced prior

to the first unit acceptance.



Note again that the equation may be modified to depict output or cycle

times.

i.e. ¥ = aI:xi + B]-n 2.1.6.(b)

for cyclg time data
s a[x_ + B]“ 2.1.6.(c)

for output data.

2.1.7. Glover's Equation.

, 12 :
Glover suggests an equation of the form
m
2y, +c = a Exi) 2.1.7.(a)
and gives an extensive mathematical treatment which shows that given

certain conditions the equation reduces to the same form as Wright's

equation. For the purposes of this analysis let Z ¥ = Yi’

Exi:Xi' m=-n, c=-B, a=-A,
Hence Vir B - Axi'“ 2.1.7.(b)
Y. =B-A X" 2.1.7.(c)
1 1

Therefore this is de Jong's equation to a different scale.

2:.1.'8. Wiltshire's Equation.

Recently, Wiltshirel3 has suggested an equation of the form

y, =ke” it 2.1.8.(a)



where y; © cycle time for ith cycle
x. = mno. of repetitions of cycle and
k, @ , n, ¢ are constants.

He gives a detailed series of results based on the cycle times
of the elements of assembly tasks and also the cycle times for the
complete assembly. This equation is an innovation in that it is
a new form. IT cannot be manipulated algebraically into a form

discussed previously.

2.1.9. Bevis's Equation.

. 14 . . .
Bevis = considered some of the previous models discussed,

but also suggested the model

=1
Yf(l-e X ) t ¢ 2.1.9.(a)

where y; = rate of production
x, = time in days
c = initial rate of production
X, = the time constant for a particular curve

Yf = Difference in the rate of output between the initial

rate of output 'c' and the maximum rate of Yy

i = ) :
Hitchings = investigated the modified form of the above equation

wts /,
= + - 1 T . . .
y; =Y+ Y (l-e ) 2. 1.9.(b)
where Y = c
C
t = x,
3 1

11



It is this form which is of interest, for whereas Bevis

assumed that the initial output obeserved was the 'constant' YC,

Hitchings accepted that that initial value could be in error, and

attempted an iterative curve fitting method to sets of Bevis's

data, based on the variation of the two parameters ‘x’f and T as
Yc was given set values. The iterative technique developed will be
discussed later. Now consider the form of equation
k
y. = : 2.1.9.(¢)
i 1+ ea-f-bx1
(the Pearl and Reed curve mentioned earlier)
BT I ki 2.1.9.(q)
Y, k
=1 + o ebx1 2.1.9.(e)
k k
which is of the form
1 =A+Be™i 2.1.9.(f)
¥
Nowlet A=Y +Y_, B = .Y
C f f
cX;
= * - 2 s 39
then 1 =Y +Y -Ye 2.1.9.(g)
Vi
=Y +Y [1-e°xi] 2.1.9.(h)
C f
which is the Bevis Equation with ¢ = =1/ T , and the inverse of v

Hence the Pearl and Reed equation, when used on cycle time data,

is the inverse of the Bevis Equation.

12



2.2, An Alternative Approach: Psychological Models of Learning.

In the same period that researchers were proposing various
empirical models to account for variations in performance during
learning, qthe'r researchers were attempting to dev elop models,
and hence equations; bz;sed on a psyc.hological approach to the
problem. Restle and GreenoI give a modern analysis of several
models, two of which are of interest from the point of view of this

study.

2.2.1. A model for replacement learning.

Without going into the detailed theory used to develop the
equation, it can be said that the replacement model is based on the
idea that information related to the activity being learnt replaces
information not related to that activity and that "learning'' thus

follows the equation

P =a- (a-b) (1-0)"7" 2.2.1.(a)

where Pn = the probability of success on the nth trial

a = the maximum probability of success

b the initial probability of success

No. of trials

6 a proportion.

1}

Over the series of trials, once the probability of success has reached

its maximum value, we have also reached the maximum possible

13



performance of the subject, i.e. maximum output.

Hence, replacing

probability by performance (or output) will not affect the nature of

the work. Note that the equation relates output (o/p) to cumulative

outp7t ( Zo/p) since n, = total number of trials. Now we have

| i
P, = ofp, =y, =a~(a-b)(1-0)™

: .th .
where o/pi is the output on the i trial.

Let a=Y +Y
c f

and b = Y
c

_ nj-1
Y, YC+Yf-(YC+Yf-YC)(1—6)

=Y_+Y.(1- (1-0)™71)

Let (1 -9) = Rt i

- i-1
v, £Y_+ et/ T it

n: - |

&= + Pt T
. YC Yf (1 ~e )
Compare this equation with equation 2.1.9.(b)

-t/ T
= + -
Y; Yc Yf (1=e )

Thus the replacement model is very similar to that of Bevis.

2.2.2, A model for accumulative learning.

the Bevis Equation

2.2.1.(b)

2.2.1.(c)

2.2.1.(d)

2.2.1.(e)

2.2.1.(f)

17 X ' .
Restle and Greeno also discuss a model for accumulative

learning, in which all information on the activity being learnt is

accumulated. This results in the following equation, which may

be related to performance as well as probability of success at trial n.

14



P =b t+6a(n; - 1) 2: 22 (a)
1+6 (ni - 1)

where P-n , a, b, 6, ni stand for the same as before.

|

' Set (n,l— 1) = Xi

Ba
y; = b+t6aX; = b|—1 4 %—'Xi] 2.2.2.(b)
1 +6 X, 1 +0X,
1 1
8a _
= b(l TOX -0X + b xi) 2.2.2.(c)
1 +6X,
b
=b - beX;+ 60aX;j 2.2.2.(d)
1+ 60X,
1
=b - 60X, [b-a] 2.2.2. (e)
1 + 60X,
1
=b - b-a) 2.2.2.()
1
Lt 5x
1l
2o bt 1 2.2:2.(g)

1+ 6 X
(b-a)  (b-a)

which is of the form y, =b - 1 2.2.2.(h)
c t gXi

(the equationto a mathematical hyperbola). Note again, however,
that as n is the total number of trials, we can also plot o/p against

Zo/p, to obtain our learning curve.



2:2;3: Modification of the above equations to depict learning

to a base of time.

Restle and Greeno18 expand their analysis to show how the above
equations may be modified to account for varying speeds of learning.
The resulting equations may be used to depict the variation of output
with time during the learning process, but need four parameters to

do so. Computer analysis in those two cases was not attempted.

- Other Mathematical Forms of Equations to Fit Learning Data.

Obviously there are an infinite variety of mathematical equations
: h g : it &
which might be used to define learning data. Ezekiel discusses
some forms which are basically geometrical and trigonometrical.
In this study, no attempt has been made to justify the use of the
following equations to depict such learning data, some, in fact, were
not pursued, due to their being so similar in form to other equations

which were studied.

2.3.1. Modification to the equation for the Basic Hyperbola.

This equation is y, = b - 1 2.3.1.(a)
+ .
ctgx,

where b, ¢ and g are constants. It is a modification to the basic
| ' C
form of hyperbola commonly quoted (y; = b - =X ) and is similar
i

in form to the accumulative model discussed earlier.

16



2.3.2. The same modification to a logarithmic scale.

This equation is log ¥~ b - 1 2.3.2.(a)
+ P
C gx :

and may be a better "fit"” to the data. Other forms such as

y. = b - 1 2.3.2.(b)

- T g log x

T RIOR &

log y; = 1 2.3:2:(c)

+ .

c T glogx i

were not pursued.
2.3 35 A mathematical form using hyperbolic expressions.

This form was of interest because it offered the possibility
of curve fitting to data which had previously given problems. The
data related to '""slow'' learners and commonly gave an '"'S" curve
which has been noted previously. Unfortunately, the use of 4
parameters eventually resulted in computing problems, and the

model was not pursued. The equation proposed was :
P8 A + B tanh (Dxi -C) 2.3 3.1a)

where A, B, C and D are constants.

2.3.4. A cubic model.

20
Thomas has quoted Miller's equation

y; = A+ BX 4 c:x‘i2 + Dxi3 2.3.4.(a)

17



where A, B, C and D are constants and
Xi = cumulative number of units produced.

and suggested that a regression analysis might be used to calculate

the parameters.

2.3.5. Gomperti’s Equation. ‘

Morcombe e quotes Stanley's reference to the Gompertz
curve and analyses it in some detail. The form is new to this
discussion, although Wiltshir_e"s .equation has some resemblance
to the form of the equation, which is

X.

1
y; = kab 2.3.5.(a)

where k, a and b are constants.

2.4. A Second Order Model.

As a result of considering the nature of the preceding forms
of equation, the author felt that an attempt to develop a learning curve
equation which would be a second order, rather than a first order

equation, was justified.

2.4.1. Three hypothetical experiments.

The development of the equation may best be explained by con-

sidering the following three hypothetical experiments. In all the

18



experiments, the purpose is the same, to get the subject S to sort
out a deck of playing cards into red and black piles as quickly as
possible. However, S is told before commencing the experiment
to sit down at a table and wait for instructions. When the instructions
are given to him, he is told, he is not allowed to ask any questions
of his instructor.

‘Consider the situation that would occur if E (the experimenter)

then came in and said to S "Ndpe oé mnapaxard thv tednouvla wal
BdAe 1& xeptomalyvia, 8oov téd Suvatdv mid yphyopa, oé &bo

oewpéct N ula oerpd uduxiva nal H EAAn oelpd padpa xopTLd."

Presumably S, unless he understood Greek, would be at a complete
loss on what to do.

Similarly, the situation that might occur if E came in and said
to S, "Please take this pack of cards and sort them out' in English
is that S would perhaps sort them out into suits. E would then say,
in English "That's incorrect, please shuffle the cards and do it
differently!" After shuffling the cards, S would then make a second,
and perhaps several more attempts before sorting out the cards into
the correct categories. At that stage E would say '"That's correct,
please shuffle the cards and do it again, but more quickly'" and S
would then proceed to repeat the process until E was satisfied that
full proficiency had been attained.

In the third experiment, E would say to S ''Please take this
pack of card§ and sort them out into piles of red and black cards as

quickly as possible” in English, whereupon S would proceed to do the

19



experiment (hopefully in the correct manner!), repeating as frequently
as necessary.

. Now what are the differences in the three experiments? Experi-
ments 1 and 3 do not differ in the amount of information given to S,
because the same presentation was used to tell S what to do, yet S would
presumably do far worse in Expt. 1 than in Expt. 3. Experiment 2 had
less information to begin with and then built up to the same content as 1

.and 3, as S‘s understanding of what was required of him increased and,
in the same way, S's performance increased. Because S can do
relatively badly at the commencement of Expt. 2, there is an implication
that there is a lower limit to the amount of information needed before
even a simple task can be done correctly. Yet this is not the complete
explanation, because in experiment 1, S was given all the necessary
information, albeit in a form which S may not have understood (i.e. in
Greek).

ThisT %t ‘seems, is the crucial poirit, that the performance of a
task does not depend solely on the amount of information available, but

also on the understanding of that information.

2.4.2. A possible relationship between Understanding and

Information.
Let us assume, for the moment, that we can measure "under-

standing' on a U-scale - how does U vary with I (information)? What

we can say is that while there can be some understanding if information

z0



related to the operation of the task is being received, if most of that
information is changing from one cycle to another, then only confusion
results. Once a '""pattern'' has been established and the information
received from one cycle to another is relatively constant in content,
then reinforcement learning may take place.

The total amount of understanding measured could therefore be
dependent not only on the amount of information received, but on the

rate of change of that information. Mathematically one might say

U = kI + k'dl - 2.4.2.(a)
dt

2.4.3. A possible relationship between Information and Output

Performance.

How does our subject gain the information from which he attains
: 22 :
understanding? Crossman |, suggests a theory of trial and error
learning based on an earlier theory of Thorndike and also discusses
what an operator measures to account for the acquisition of speed
skill. He comes to the conclusion that the internal measurement of
time by the operator is unlikely, but suggests that the work done by
the operator is a possible suitable alternative.
: : A 23

A study of data from Pickering and MacAulay ~ also suggests
that trial and error learning is taking place.

For example, in Table I, it can be seen that the cycle time

for the complete operation is showing a general trend downwards, yet

21



the elemental times do not necessarily show this trend. There are
even large increases in some elemental times (over the period of
trials), which nevertheless allow a reduction in the total cycle times
because other elemental times are reduced by a larger total amount.
It is as if the subject is able to make an assessment of his perfor-
mance, as he varies his method of ""grasping'', '"'moving' etc., the

variaton being done by trial and error.

TABLE 1

200 TRIALS ON THE PURDUE PEGBOARD

FOR SUBJECT 6"

Element Element Element Element Cycle Time

Reach Grasp Move Position Total
Trial

1 . 0905 . 5564 . 3691 L7136 1.7295
2 . 0941 .5109 <3795 . 6359 1. 6205
3 . 0727 . 5300 . 3477 .6750 1. 6255
5 . 0687 . 5543 ~ 3538 . 6495 1. 6262
10 | .0700 . 5282 . 3732 . 6023 1.5736
15 . 0532 . 5963 2116 . 6563 1.5774
25 . 0900 . 4873 L3773 | . 7214 1.6759
50 .1132 . 5527 . 3427 . 5782 1. 5868
100 . 0436 . 4441 . 3627 . 6200 1.4705
150 . 0600 . 4195 . 3545 . 4836 1.3177
200 . 9857’ . 3513 . 3474 . 505% 1.2878

22



Morcombe, ¢ as a result of his simulated assembly task experiment,
also came to the conclusion that the incentive to improve on cycle
time resulted in the successive selection of better methods by ''trial
and error'.

So we come to the conclusion that some mechanism is at work
which allows comparison of performance, without being certain what
that mechanism is. Some relationship must exist between the per-
formance (or output) of the subject, and the information he obtains
from his performance of the task.

Once again, if the subject is skilled, he completes many
operations in a given time, and thus generates large amounts of
information. In addition, if he makes a mistake, and so, for a
short period his output is dramatically reduced, he takes particular
note of that mistake, vowing '"not to do that again!'' (don't we all!).
Thus the mathematical connection between output and information

could be : -
" U

I =k ofp+ k dolp 2. 4.3.(a)
dt

i.e. I o output and also o rate of change of output.

BN 1t 2

whence dI = k do/p + k d o/p 2.4.3.(b)
dt dt dt

and from equation 2. 4. 2. (a) [U =kl + k -g%]

. 2
U=k ofptkk' do/p +k'k' do/p +kk  d o/p
dt dt dt

2.4.3.(c)
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' dzo/p

1
U = ofp+ (kk +k k') do/p +kk'
dt e

—

kk kk'' dt kk''

2.4.3.(d)

This equation is a second order differential equation, and a
solution may be found using methods commonly applied in the analysis
of feedback control systems. In this case, we assume learning is
taking place and that the final output will be at a steady value Yf,
having started (at t = 0), at a value = 0.

The experimenter, by asking his subject to do the task "'as
quickly as possible'' may be said to be demanding a step increase in
output from his subject of value Yf.

From equation 2. 4. 3.(d) the characteristic equation can be

written as

p2+9_p+5=0 2.4.3.(e)
J J
where D = kk“ + k' 1;”
J = kk'
k = k k'

The solutions to this equation in this form are given by Chestnut

and Mayer25 as

(a) n>1

y. =Y - Y [ (n +yn“-1) e-(n- .nz-l) woti

an

- (n-Vnt1) o lo tVm -H%ti] | 2.4.3.(1)

-1

which is termed the over-damped condition.



(b) n<l
- w ¢
Y - Yf - Yf e . Oti sin [Vl—n&(‘)ot +®] 2-4-3-(g)
\/ 2
l1-n
where @ = tan~l ___1__—_1_1_2_
n

which is the underdamped condition

and

. o |
y, = Y, - Y (140 t)e o'i 2.4.3.(h)

i f f

which is the critically damped condition.

In all the equations (uo = ’_li and n =D
J 24/kJ

If the initial condition is assumed to have some value, it is only
necessary to include the term +YC in all the equations.

The solutions given are second order equations which connect

output with time. Chestnut and Mayer show the effect on the transient

part of the curve as n is varied, and it appears that, for n>1, the
resulting curve could simulate the S-type learning curve which is
occasionally encountered.

At a later stage in this study, it was decided to concentrate
on only that equation which had 2 parameters, for the addition of a
constant value YC to-the equation then increased the number of
parameters to 3. The model selected thus became the critically

damped model:
© _t.

| = + L} + T oot i
v, =Y, Yf(l (1 (Ooti)e ) 2.4.3.(i)

The similarity with the Bevis model is obvious.



3. WHICH MODEL?

31 A Historical/Computational Review.

4he reader will have observed that Chapter 2 dealt with
learning curve models from a historical viewpoint - the models were
dealt with in rough chronological order. One can also see that the
computiﬁg requirements of the day also had some influence, for
Robertson's, Moore's, and Pearl and Reed's models would be
computationally cumbersome when dealing with large amounts of data
on hand calculating machines.

This, no doubt, led to the genera.l acceptance of Wright's model
when he proposed it in 1936. Based on aircraft production figures,
it was quite a good first order approximation to the learning curve
generated by a large number of people employed on a production.. line.
In addition, by use of log/log scales, straight line fits could be ob-
tained, allowing good prediction for relatively long periods ahead.

de Jong26, however, realised that such an approximation was
not appropriate to shorter term learning curves, because the mathe-
matical implication of the equation y = Ax™" is that as x increases,
so y goes to zero, and one would not expect a production worker to
reduce his cycle time to zero!

Thus de Jong postulated the model

y, = {yyM- tl(l-M)xi-n, equation 2.1.5.(a)

which has been shown to be of the form

26



n

= BS Axi' equation 2.1. 5. (b)

From the computational viewpoint this equation is still difficult
to fit when using hand calculating machines so that it is quite relevant
to note that it is only recently that alternative forms of learning curve,
having the same features as the de Jong model (asymptotic approach
to a finite value) have been proposed.

Modern computors, of course, make rapid calculating facilities
available, so that it seems opportune to discuss the mathematical
requirements of such types of learning curve and attempt to establish

that model which gives the beét fit.

3. 4. The Connection between the Shape of the Learning Curve

and the Parameter Values.

If one considers the information available, it can be secen that
the shape of the learning curves predicted by most of the learning
curve models is hyperbolic and asymptotic. Because of this, it is
possible to define more exactly the nature of the parameter values.

As an example consider the model

1

y. = Yc + Yf (l-e"ti /T ) [equ.ation 2.1.9. (b)]
it can be seen that Yc is a constant value at t, = 0 and that Yf is a

transient value which adds to Y as t, =+ ® | When ti reaches
, c i

© , theny, = YC + Y_ (its maximum value).

f

The shape of the curve is then assumed to be as in diagram 1
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DIAGRAM 1

SHAPE OF BEVIS LEARNING CURVE WITH YC + ve, Yf + ve

AND T + ve

""Assumed' because it has not yet been defined whether Yc and Yf
are positive or negative numbers. If, on completing a curve

fitting programme, it was found that YC was negative, the curve

would be of shape shown in diagram 2.

Y-, = om e e e e e — -

f

o
4

DIAGRAM 2

SHAPE OF BEVIS LEARNING CURVE WITH YC -ve, Yf tve, T tve.

28



and then only if Y, > YC, for if Y_was found to be less than I YC I

f  §

then the curve becomes as in diagram 3

DIAGRAM 3

SHAPE OF BEVIS LEARNING CURVE WITH YC -ve, Yf tve,

+
T+ ve, Yf< IYCI

As a further alternative if Yc were found to be positive,. and

Yf negative, the curve would then be as in diagram 4

oD
¥

DIAGRAM 4

SHAPE OF BEVIS LEARNING CURVE WITH YC tve, Y, -ve, T tve.

f
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and obviously the other alternative of YC negative and Yf negative,
results in similar changes. In this short analysis, no consideration
has been given to a change in sign of T ; it has been assumed
positive. If, as a result of inaccurate data, a curve fitting pro-
gramme hunted to any of the alternatives to the tve YC, tve Yf' tve T
then while the predicted curve might fit the data points well, it is
unlikely that extrapolation outside the range of data points used

would bé accurate.

The possibility of poor extrapolation also results in the rejection
of models such as the cubic model discussed earlier, and similarly,
the possible use of a polynomial of any higher degree as a model,
because such models predict values of 0 ort°° as x — ©
The Wright, Crawford and the American Government model are
also rejected on these grounds, although it is emphasised once again,
that for very long term learning curves, these models may be quite

~good approximations to the initial stages of learning.

3.3, Choice of Models for Investigation.

As a result of these considerations, a short-list of nine models

was selected for assessment. These were: -
. o
1. The Bevis Model y, = Y_+ Y (l-c i/t 2.1.9.(b)
Xj
2. The Gompertz Model y, = ka 2.3.5.(a)
3.  The Mathematical Model y, =b - 1 2.3.1.(a)
1 c *t gx,
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n

4. The Wiltshire Model v, = ¢ - ke B! 2.1.8.(a)
5. The Accumulative Model v, © b + ® a(n;-1) 2.2.2.{a)
4 1+ 8a(ni—l)
6. The Replacement Model y, = a- (a-b)(a- e)ni-l 2.2.1.(a)
7. '{"he de Jong Model yiBow Axi'“ 2.3.5 (b)
8. The Log-mathematical Model log y; = b- 1 2.3.2.(a)
chgx.
' wok;

9. Thg Second Order Model yi = Yc + Yf (1—(1+ woti)e_
24 3.(i)

By the use of a computer to reduce the vast amount of computation, it is
possible to attempt a series of curve-fitting exercises, using the same

data for each model. An assessment can then be made of the most

suitable model.
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4. MEASURING THE "GOODNESS OF FIT'".

4.1. The Nature of the Problem.

How is one to say if one equation, curve=fitted to a set of data
points is a better fit than a second equation? The standard practice
when curve fitting to only one set of data is to use the method of least
squares ‘to obtain the best fit. Then if the sum of errors squared for
one fitted equation is greater than that for an alternative equation,

a choice may be made ~ the alternative equation is considered to
be the better fit. If several models exist, the same argument applies
and a choice may be made.

In the more complicated case where several sets of data exist,
how is one to differentiate between the possible equations? The sets
of data need not necessarily relate to the same operations, and hence
the data may be measured to different orders of scale. For example,
consider the two sets of data relating to cigar rolling27 and hemming
given in Table II.

Now the sum of errors squared for curve fitted models to the
Bevis data is almost certainly going to be greater than that for the
Morcombe data, yet one cannot be sure that one fit is better than the
other. Obviously there is a need to '"normalise' the results in some
way so that a comparison may be made.

An examination of possible methods indicates that this problem

may be solved by using one of three statistics:
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TABLE 1II

OUTPUT DATA FOR TWO TASKS FROM DIFFERENT

SOURCES
Bevis Mean Score 15 Subjects Morcombe Mean Score 23 Subjects
Rolling Hemming

Day Mean Output Day Mean Output Day Mean Output
1.0 1670 2.5 18.5 27.5 62.0
5.0 | 2314 5.0 37.0 30.0 64.0
10.0 2574 T.5 44.0 32.5 65.5
15.0 3314 10.0 51.0 35.0 67.0
20.0 3889 12.5 54.0 37.5 .68.5
25.0 4055 15.0 57.0 40.0 70.0
30.0 4205 7.5 57.5 42.5 70.0
35.0 4243 20.0 58.0 45.0 70.0
22.5 59.0 47.5 70.0
25.0 60.0 50.0 70.0

(a) The Validity statistic
(b) The Chi-square statistic

(c) The 'R' statistic.

4.2. The Validity Statistic.

2
Consider the equation quoted in the TELFIT 1 conputer manual

as a Validity statistic.
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N 2
Validity = | 1 -[2 { Y Ye} x 100
1

(N - 1)

Assume that we attempt to calculate parameters to obtain the

maximum validity, and also calculate that validity (obviously for a

perfect fit, Validity = 100).
Then

Val = x 100 is a maximum

1 - Val = n ( } is a minimum
100 (N-1)
N
2 2 . s
(t-Val ) = & ( ) is a minimum
100 1
(N-1)
2 N
- (1-val )" x(N-1) = B (Ve T Vi)
100 R

is a minimum

Now it will be shown later that it is .possible to develop an algorithm

to ""hunt" for parameters which will give this condition i.e.

Minimum 2 (yé = Y
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4.3, The Chi-square Statistic.

N

. 4.3, (a)

The calculation of XZ from XZ = 3 (yi - ye)

1 ye

is a more accepted method of establishing the "goodness of fit" of

a model to data30. In e;ddition it is p;assible to calculate the proba-
bility that such a value of XZ would be obtained. Later it will be
shown that it is a much more difficult problem to develop an
algorithm to hunt for best parameters to give minimum yx , than
is the problem to hunt to param.eters for maximum validity or

least sum of errors squared.

4. 4., The 'R' Statistic.

31 ‘
Kendal and Yule = discuss the problem of comparison of 'fits'
to data and suggest the use of the statistic 'R'. The relationship

sug‘gested is

R%a2 1« DO 4.4.(a)

where U = sum of squares of residuals (sum of errors squared)

=}
1l

No. of data points

2
a v = Variance of observed values of Y.

R is shown to lie between 0 and 1.0, with good 'fits' having R values
—1.0.

In the example quoted by Kendal and Yule, curve fits to two
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sets of data are compared, using the R value as a criterion, and a

choice is made as to which is the "best'" fit.

4, 5. Choice of Statistic to be used in the Analysis.

As a result of the analysis to be discussed later, it was decided
that the curve~{fitting routines developed would be arranged to cal-
culate not only the sum of errors squared (to allow comparison of
models fitted to one set of data), but also to calculate R. Given
sufficient time it was hoped to analyse the values obtained for R for

all sets of data.

4. 6. Statistical Analysis of the Values Obtained of the Sum of

Errors Squared.

If one‘modcl is consistently a better fit for the sets of déta
examined, then, on average, the value of sum of errors squared
should be lower than that found for other models. If all the values
obtained are ranked, a suitable test for significance is Kendall's
Coefficient of Concordance W.

Siegel32 quotes an example which examines the three inde-
pendent sets of ranks given by executives to six applicants and
tests whether the ranking of the applicants shlows a measure of
agreement among the judges. In this study the 'judges' are the

sets of data, and the 'applicants' are the models for which curve
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fitting has been undertaken. The sum of errors squared for all
models for each set of data is ranked and W computed as follows: -
(i) Calculate the sum of ranks for each model, Rj.
(ii) Calculate the mean value of all the Rj.
Each' of the Rj may be expressed as a deviation from the mean
value, and it can be shown that the greater the deviations, the
greater is the degree of association among the sets of ranks.

(iii) Calculate the sum of squares of the deviations.

Then W = 12s 4.6.(a)
K2 (N° - N)
where s = the sum of squares of the observed deviations
from the mean of Rj
2
Z R,
i.e. s = T (R, - j ) 4.6.(b)
) N
k = No. of sets of data
N = No. of models.

Siegel also shows that for reasonably large N, k then the
expression given above is approximately distributed as ¥

with (N-1) degrees of freedom.

Thus if the value of X & so calculated exceeds the value
quoted in the XZ table for a particular level of significance and
a particular value of degrees of freedom = (N-1), then the null

hypothesis that the k rankings are unrelated may be rejected at

that level of significance.
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Se THE CURVE-FITTING PROGRAM AND

DATA FILE.

L Choice of Bevis, Finnear and Towill algorithm.

During the course of this study, three iterative methods of
dotis : ; g & SR X
curve-fitting were found in the literature. Bevis ~, in his thesis,
discussed the problem with special reference to calculating the
: : 3 34
parameters of the Bevis equation, but later, Bevis, et al.
developed a 2 parameter-algorithm which "hunted" to the best
parameter values. Hitchings:‘}5 used this algorithm extensively
in his study on Dynamic Learning Curve Models, while later,
Sriy:—).nana.da36 discussed the same problem using the Kalman Filter
technique.
41137 ; ; :
Towill™ has also noted the method of Ba Hli and discussed
the calculation of parameter values to the same data (Bevis's).
Unfortunately, the Kalman filter technique, and that of Ba-Hli
appear to be usable only in the case of the Bevis Equation, and not,
for example, if fitting to the Wiltshire or de Jong Equations. For
this reason, the Bevis, Finnear and Towill algorithm was extended
to cover more than 2 parameters, and programmes developed to

calculate "best'" parameters for the various forms of equation

selected for study.

5.2, Derivation of Basic Formulae using the Bevis et al Analysis.
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If the data to be studied has N data points, then the output
rate is represented by the series Y1 v E YN. At each data point,
the corresponding series using a particular control law is given by
Yi eess ¥.. . The total error squared is then

N N .
2
= z EZ = z (Y -Y. )2 5.2. (a)
1 1 1 1 5 1
To seek the values of the parameters which minimise equation 5. 2.(a),
the usual least squares minimisation analysis is unwieldy, and
. 38 . . e

Bevis et al =~ suggested using a Taylor series expansion in an
iterative loop, as the resulting equations are then linear and easily
solved. The method is explained as follows: -

Let the estimated value of 171 at time ti be represented by the
function f(a, b, c, ti)
e ¥ = f(a b, c, t) | 5.2.(b)
where a, b, ¢ are three parameters.
Expanding Equation 5. 2.(b) about the estimated value of '-I"i, using

current best estimates of a, b & ¢ (a, b & ¢ respectively), terms

above first order being ignored, yields

i’,?f(i,E,E,ti)-f 6f ba+ &6f Ab+ 6 f Ac

4 Ea &b &5 ¢ 5.2.(c)
where 6 £, & f and 86f are the partial derivatives of
6 a 6 b 6(:

¢ b S t ) with respect to a, b and ¢ respectively and Aa,
A b and A& are small increments ("correction factors') in

g’ ande.
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After Q iterative loops of the routine, adequate estimates of

a, b and ¢ are obtained and since Aa, Ab and Ac then become

negligible, equation 5.2.(c) reduces to

YiQ > (fla

Q’ EQ’ EQ’ ti) and prediction is complete.
From equations 5.2.(a) and 5.2.(c), an estimate of the sum of error

squared at any time in the iterative process is given by

N
2 A
E = I {Y.—f(a,b,c,t.)— 61 Aa_ - 6f ab_- {SfACr
1 1 r r r 1 aa 6b & ¢
5.2.(d)

where 5.1_, br’ Er are the rth estimates of the parameters
a, b, .
Since Equation 5.2.(d) is linear in A a, Ab and Ac, the usual

mean square error minimisation procedure may now be adopted.

For if 6 E 0, 6 E _0,_86 E _O0
5 A a 5 A b

B 65 A c
and if we let
Y-f- )- :- ) '—'A
( i (ar br cr ti)) Yir

( i. e. the rtlr1 estimate of AYi>= PDY

and let _&f POl ; 6f _ Po2; 6§ f _ P03
Sa : &b 6 c
N
then 2 I [PDY - POl Aa - POZ Ab_- P03ACJ[ POl] =0 5.2.(e)
1
N
2 % ‘[PDY - Pol pa_- P02 Ab_- PO3AcJ[~ P02]= 0 5.2.(f)
1
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N
., [PDY-POlAar-POZAbr-P03Acr] [—P03]=0
1 :

N

(on differentiating to obtain 6 E , & E , &6 E
6 Aa OA b 6A ¢

Equations 5.2.(e), 5.2.(f), 5.2.(g) may now be rearranged to give

= Qa A A 5. 2. h
h1 = , fa + Bl Ab + Y , Ac 5 (h)

= Q A + + 5.2.(i

= + + 5.2.(j

which are 3 simultaneous equations in A a_, Abr and A c. and can

be solved by the usual methods. In the 3 equations 5.2.(h), 5.2.(i),

5.2.(j)
N N N
01 =% pol1.Po1 B . I P02.POl Y, = I P03.Po0l
1 1 1
N N N
az = T P01, P02 B s L P02.P02 ¥ o= L P03. P02
1 1 1
N N N
a = I PQl.P03 B . =2 Po2.P03 Y . = ¥ P03,P03
3 3 3
1 1 1
N
h, = I POl,PDY
1
1
N
b, = Z P02,PDY-
1
N
h3 = Z P03.PDY

1

Solution of the 3 equations 5.2.(h), 5.2.(i), 5.2.(j) give estimates

for the increments Aar, A br and A C which allow the new
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parameter estimates a + A ar, b+ A br and ¢ + A cr to be used
when the iterative process is repeated.

What does this analysis imply? It implies that whatever three
parameter equation is used to define the data points, three simul-
taneous equations may be set up for an iterative procedure, provided
that the equation used may be differentiated with respect to the three
parameters. Logically the analysis could be extended to n para-
meters, but it is likely that the difficulty of estimating the para-
meter values sufficiently accurately to obtain rapid convergence would

be too great.

5. 3. Derivatives required for all programmes used.

All the equations used in this study, and the derivatives
of those equations (with respect to the various parameters) are

given below.

5.3.1. Bevis Equation Derivatives.

- =k
y; =Y tY . (l-e i/1)

=Y_+Y, (1-¢"%%) wherez =1/ 1

|

Bt 5.3. 1. (a)
c

6y. <
i-a -t: Z

Y, = (l-e 17 ) 5.3.1.(b)
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i ~47Z :
= o e 1. (¢
57 t, Y, e 5.3.1.(c)
5.3:2 Wiltshire Equation Derivatives.
S
b Sl ke i
by,
i
- G 3. 2.2
-yl ()
i T chiam Clx-ln . 5.3.2.(b)
&k
6v. n
-g—n—l = a.xin. k. e_axi f ln(xi) 5.3.2.(c)
n
-
for if y; © ke &
1n (Yi) =lnk - @ x.ln 5.3.2.(d)
Now let p = @ xin
Inp = nln(xi) +1ln Q 5.3.2.(e)
1 dp =1ln(x,)dn 5.3.2.(f)
p
dp - pln(x,) =@ xinln(xi) 5.3.2.(g)
dn
From equation 5.3.2.(d)
1 dyoodflnk -, ox )
— 1 = 1
Yi dn
n
= -0Qx; In (xi) dn 5.3.2.(h)

43



/
dy. n - ax .
i wegbrxseinix ) ke i 5.3.2.(i)
L2 1 1
dn
a x ™ a x "
& (- ke i ) _oax.” In(x). k. e i 5.3.2.(j)
& n = * .
n
. = .3.2.(k
and (6} Y; . x.n R ax, 5. 3 (k)
60. S 1

5.3.3. de Jong Equation Derivatives.

We have shown earlier that this equation is of the form

y. . B - Axi.n
6y.
L = 1 2.3.3.(a
6 B (a)
by T Tt 5.3.3.(b)
v P
5v; . A. In(x) x, " 5.3.3.(c)
= ol
6 n
. = -n
for if i Axi
lnyi =lnA-n1nxi 5.3.3.(d)
1 .dy;=-nx dn ' 5.3.3.(e)
Y3
by. "
Vi _ -—y.Inx = - Ax, n. In x. 5. 3. 3.(f)
& L 1 1 1
n
6Y; _ 6 (B - Axi-n) . TA, xi—n In (xi) 5..3. 3. (g)

&n 5o
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5..3.4, Gompertz Equation Derivatives.

X.
RVETY - pu
yi = ka
Xj
éyi . ab
&k 2]
"
52
X,

R R L 1 R e
5b

p*i

for if y;&F ka

lnyi=1nk+bXi In a

1 .dy,=d(bllna) db

Vi
x.
Now let q =b"'! Ina

Ing = In(lna) * x, Inb

1
y 3 dq-—xl—i) db
q
dai Tt g ® e
db b b
As 1 dy. = d(b*ilna) db
Y
Then _1_ dy1 = xi l : bxi ln‘a . db
Yi b
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d : X .
i x. 1 .b.Ilna.k.a" 5. 3. 4. (j)
db '
: Xj
X, A L 5.3.4. (k)
'5.3. 5. Mathematical Equation Derivatives.
-1
yi=b— 1 =b—(c-!-gxi)
: I
C gxl
°y, 1 5.3.5.(a)
&b N
8y. -2
i o ded gxi) 5. 3.5.(b)
6a
6Y. -2 )
i (e +ogx.) . x 5.3.5.(c)
5 g ' .

Note that these expressions are valid for use in the other mathematical

equations used, e.g.,

Inly,) = b -_1

t g
o} gxi

for all that is required is to substitute In (yi) fory, in all the

necessary equations in the computer programme developed.

5.3.6. Replacement Equation Derivatives.,

= . nj~1
Yy Pn—a-(a—b) (1-0)
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s B ot T e 5. 3. 6.(a)
6 d "
S y; e e)’“i'1 5.3.6.(b)
—~
B Wy 3 N ank) (ool Arp 5.3. 6. (c)
Te i
5.3 s Accumulative Equation Derivatives.
Vi = b + 6a (nj-1)
1 +6 (n,-1)
Gyl 1
b ~ 146 (n-1) 5.3.7.(a)
PR e fled) ‘ 5.3.7. (b)
6 a I + 6(n;-1)
_fz_i . (ni-1) (a-b) 5.3.7.(c)
66 [1 +6(n-1}
o
i Yi [ +e(n;-1)]a(nj-1) - [b + 6a(ni-1)] .(ni-1) 5.3.7.(d)
& 6 {1+6(n;-1)}

_ [n-1] [a + 0a(nj-1) - b - Ba(nj-1)] 5.3.7. (e)
{1 + 0 (nj-1)} °

{ni-1} fa - b} 5. 3. 7. ()
{1 +08 (n;-1)
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5.3.8.

Second Order Equation Derivatives. (3 parameter

form with T=1/w o)

t, -t,
y, =Y +Y (1-(+5/T )e i/7)

=YC+Yf(l—(ljl"tiZ.)e—tiZ)_ ifz=1/%

< S 5.3.8.(a)
-+ -
C
6 Y. -t:Z
i _ 1-(1+¢t2Z)e 1 5.3.8.(b)
8Y, 1 :
f
6v; & 7= w0 "HE 5.3.8.(c)
SRR S i f
67
forif y, = Y +Y(1-(1+tZ)e-tiZ
i c f i
8Yi 4t .Y (1 +t. 2) ML S S e 5.3.8.(d)
- 1 1 f 1
&2
=Y..t.e Y [1+Zt, -1] 5.3.8.(e)
f i i
=Y tiz s At ' 5.3. 8. (f)

=7
5.4. Application to the Validity and the X~ Statistics.

In section 5.1. the application of the Bevis, Finnear, Towill
curve-fitting aigo rithm to the solution of three parameter models

was discussed with special reference to using the criterion of

"least sum of errors squared'". The same considerations discussed
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previously in 5. 2. apply even if the criterion is changed to maximum
validity, or minimum X ~ values (as discussed in Chapter 4).
Naturally there is some modification to the equations derived,

because it is not required to solve for parameters which minimise

N
E"= T (Y —Y-i) (equation 5.2.(a) )
1

but for parameters which minimise

N .
I {Y. -Y 2
{ sl } for the validity statistic (from
1 Y.
i

equation 4. 2. (f) )

or for parameters which minimise

N

B

T(Y.-Y . 2
1. € for the X ° statistic (from equation
g .

4,3.(a))
Because of the different form of these functions it is not necessarily
true that parameters which minimise the sum of errors squared
will also minimise the other statistics, although they may be
approximately the same value.

Consider the function

N N &f - &f -6 f
] - P VIRV
Val = z(Yi‘Ye) g Y& e y)- Ba 5b .

In thisicase we again have a function linear in A a, 4 b and

A ¢ so the usual minimisation procedures apply. However, an
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examination of the analysis in Section 5. 2. shows that while the
equations for the solution of the above function will be very
similar, they are slightly more complex computationally.

In the case of

N
2 Y. - Y 2
x = I i e
1 Y
e
2
N &f 6 f 6 f
s ey — A —_ A = A .
2 Y.-f(a,b, c, t;)- 6a 2_Fp P - & ‘
or % _ % i . - - - 5. 4. (b)
1 = A —_A
ba _ & “P.& "

f(a,b,¢,t) - &
the situation is not solveable by the existing technique because the
expression is not linear in A a, ADband Ac.

It would appear that the only circumstance which would result
in all three possible methods iterating and hunting to the same
parameter values is that in which the data is exactly correct, and
also follows the law defined by the suggested equation to the model.
Small errors in the data could very well result in slightly different
parameters being indicated by the three methods. Thus, the
statistic chosen for this comparitive study was the ''least sum of

errors squared".

5. 5. Setting up the Data File.

To deal with the large number of data-sets involved, it was
found necessary to create a computer data file in the form of card

images (TEDSFILEI). To ensure that each set of data could be

50



called up as required, it was given a TITLE CARD and TITLE
CARD NUMBER. See the example below.

TO137 BLACKBURN AVERAGE SCORE OF S2. OPERATION: -
CROSSING OUT E'S.

The 'T' confirms that the card is a title card, 0137 is the title card
number. The remaining information relates to the source of the
data and what operation was involved.

Eac'h set of data cards also included a card giving the number
of pairs of (X, Y) data points recorded. The (X, Y) data points which
followed were punched 4 pairs to each card. A print-out of some
data sets has been shown in diagram 5 so that the above explanation
can be followed, and so that the explanation of the operation of the

curve~fitting programme can be followed.

5.6. Some Notes on the Estimation of the Parameters.

It was decided in the early stages of the analysis that there
was a need for fair accuracy in the parameter estimates, otherwise
the iterative procedure eventually failed. Erroneous parameter
estimates usually resulted in large changes in those parameter
estimates, which could result in the creation of such large numbers
in the numerical calculations that the computer store became over-
loaded. Because it was fairly easy to estimate the starting point of
the curve by eye, it was decided to include estimates of the 'start'

and 'final' values of the learning curve, and calculate the parameters

5%
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from these values.

This procedure was followed for all 3-

parameter models, unfortunately the procedure did not work well

for the Wiltshire model (4 parameters) and was discontinued.

As an example, consider the Gompertz model

when x =
o

then o

b1

0 (start)
0

kab = ka1

= k. a.

0 < Es thenwhenxi —>

P ka

Thus the 'final' estimate = k

and ‘'start'
"final'

ka o

k

a

(equation 2.3.5.(a) )

(final)

5.6.(a)

5. 6. (b)

Given also one of the data points (xn, yn) where n denotes the

n

th

point

then Y (N)

x(N)
= k.a
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5.6.(c)

5.6.(d)

5.6.(e)

5.6.(f)

5.6.(g)



Thus all three parameters may be estimated from the 'start'

. ; : th : o L
estimate, the 'final' estimate, and the n  data point. Similar
calculations were made for all the 3-parameter programs used
and the formulae included in the programs. The derivations of

other formulae are given in Appendix B.

5. 7. Operation of the Curve-Fitting Routine.

To operate the curve fitting routine, a set of "estimation'
cards was included at the end of the programme which defined the
title number of the data set to be u-sed, estimates of the ''final"
(i. e. the asymptotic value) and the ''start' values, and whether
the data needed to be modified or not. (Some data sets were in-
cluded which recorded cycle-time data, hence if these were going
to be used in the analysis, the cycle-time data needed to be con-
verted to output data).

‘Sample cards are shown below in diagram 6. The first card
which would be read by the card reader is the card reading '2".
This indicates the number of cards which follow containing data
.set requirements. The third card indicates the need to modify
the data (""MOD").

The program thus hunts for the card image relating to title
card TO158 and enters the curve fitting routine once it is
established thaF the correct data set has been found.

In all curve=fitting routines such as this, a test needs to be
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v

0000000C0000066006300000000000090050600000090006000000005000000000000000020000C6¢0

DIAGRAM 6

PUNCHED CARDS TO DEFINE PARAMETER ESTIMATES

AND DATA MODIFICATIONS

included to prevent the iterative procedure from continuing
indefinitely. The limit for this analysis was set at 15 iterations.
Limits also need to be set, either on the change in the estimated
parameter values, or on the change in the sum of errors squared,
from one iteration to another. If this is not done the routine will
continue to iterate 15 times, regardless of any high value of
accuracy attained.

As a further check on the accuracy of the program an arti-
ficial set of data was ‘c reated for each model. On each run of the
program, the test data set was included so that the iterative
calculations and the calculation for R could be checked. The flow
diagram which follows gives the full sequence of the program

developed.
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w
@
.

Computer Program Flow Diagram.

NOTE

At suitable points in this
program, a test was included
to see if arithmetic errors
(caused by poor parameter
estimation), had resulted in
overflow of computer stores
(lines 0064, 0080, 0084, 0088,
0092, 0096, 0099, 0101, 0103,
0105, 0111). If the test con-
firmed that an error had
occurred, the program switched

[PREPARE JOB DESCRIPTION |

PREPARE PROGRAM
DESCRIPTION CARDS

[SET UP COMMON STORE AREA]

DEFINE OTHER SEGMENTS
(EXTERNAL OFLOW)

| __DEFINE REAL VALUES |

| DIMENSION ARRAYS |

[ DEFINE TEXT CONSTANTS |

IMPLEMENT ERROR
TRAP SYSTEM

%

the next set of data. [ CALL DATE ]
o { READ ESTIMATION
: i CARD

YES

STORE ESTIMATION CARD
JI: 5

I

| REWIND 5 ]

READ NO. OF DATA-SETS TO
( BE CURVE FITTED (FROM 5 )

~—
L

T

READ IDENTITY; ESTIMATE

OF FINAL,START; NEED FOR

MODIFICATION OF DATA
(FROM 5 )

( READ TEDSFILE |

A TITLE NO

)—t——————<k———-1

CARD?

[ BACKSPACE TEDSFILE | |

§ READ TEDSFILE | 5

TITLE
CARD NO.

NO

SAME AS
IDENTITY,

|BACKSPACE TEDSFILE | |

READ TITLE FROM
TEDSFILE |

READ NO. OF DATA PAIRS
FROM TEDSFILE !

READ X,Y DATA FROM
EERDSEILE |

CURVE FITTING ROUTINE

i |
« { PRINT X, Y DATA ¥

PRINT DATE AND TITLE Fopj

OF DATA
NECESSARY

MODIFY DATA AS
REQUIRED

?

PRINT MODIFIE
Ktaly

)

%

(PRINT ESTIMATES FINAL, START ]

CALCULATE PARAMETER VALUES
FROM FINAL, START ESTIMATES

CALCULATE SUM OF ERRORS

SQUARED

PRINT CURRENT ESTIMATES OF
ALL PARAMETERS, SUMERRSQ.

]

[ SET ITERATIONS = O i
_.F
[SET H1,H2 ...Al...C3 =O B
SET ITERATIONS =
ITERATIONS + 1
G
YES

EVALUATE PDY, POl, PO2, PO3
VALUES FOR ALL DATA PAIRS

-VALUATE PRODUCTS P01*POl,
ETC FOR ALL DATA PAIRS

EVALUATE SUM HI1, H2,...A2

«..C3 FOR ALL DATA

[FOLVE EQUATIONS FOR aa, Ab, ac|

REVISE ESTIMATED PARAMETERS,

SUMERRSQ.

PRINT NEW ESTIMATES, aa, ab,)
ac, SUMERRSQ. g

1S

)

SPE2 2 SPEZ!

SPE2i

<.000
?

NO

YES

SET NEW PARAMETER ESTIMATES

SUMERRSQ. VALUE

—

LINES

0001-0007

0009

0010

0011

0012, 0013

0014

0015

0016

00 1%

0018-0019

0020

0022

0023-0024

0027-0028

0029-0030

0031-0033

0034

0035-0036

0037

0038

0039-0040

0041-0042

0043-0044

0045-0048

0049-0052

0053-0054

0055-0056

0057-0058

0059-0060

0061-0063

0065

0067-0070

0071

0072

0073

0074

0075-0079

0081-0097

0098-0104

0106-0109

0110

0112-0113

0114-0117



[PRINT ESTIMATES FINAL, START J

CALCULATE PARAMETER VALUES
FROM FINAL, START ESTIMATES

CALCULATE SUM OF ERRORS
SQUARED

PRINT CURRENT ESTIMATES OF
ALL PARAMETERS, SUMERRSQ.

| " SETITERATIONS = O ]
¥
a
s
ISETHL M .. Al . .C3=0 i

]

SET ITERATIONS =
ITERATIONS + 1

YES

EVALUATE .PDY, POl,PO2, PO3
VALUES FOR ALL DATA PAIRS

EVALUATE PRODUCTS P01* P01,
ETC FOR ALL DATA PAIRS

EVALUATE SUM H1,H2,...A2
+..C3 FOR ALL DATA

[SOLVE EQUATIONS FOR aa, ab, ac|

REVISE ESTIMATED PARAMETERS,
SUMERRSQ.

PRINT NEW ESTIMATES, aa, ab,)
| ac, SUMERRSQ. o

1S

SPE2 2 SPE2!

SPEZ!

<.000
2

ino

SET NEW PARAMETER ESTIMATES
SUMERRSQ. VALULE

COMPLETE FLOW DIAGRAM FOR OPER

-
[ CALCULATE R i
. PRINT R g
e
NO ALL DATA
SETS
?
YES

DIAGRAM 7

ATION OF CURVE FITTING ROUTINES

56

0059-0060

0061-0063

0065

0067-0070

0071

0072

0073

0074

0075-0079

0081-0097

0098-0104

0106-0109

0110

0112-0113

0114-0117

0119-0127

0128-0129

0130



5.9. An Example of a Typical Computer Programme Used.

A typical programme with printout of test data and the
itergtions for one data set is included at this point. The reader
will note that the programme requires very little alteration to

make it suitable for a different three parameter curve fitting

problem.
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bl SOURCES OF DATA.,

6.1. Blackburn's Study on the Acquisition of Skill.

In 1936, H.M.S.O. published a long report by Bl.:Lckburn39 dealing
with an analysis of learning curves. In that report Blackburn considered
the various methods then existing for depicting learning, the ""plateau"
effect, (in which performance apparently reaches a maximum, but then
rises to a new maximum), and also the problem of whether there was a
general learning curve equation. While Blackburn confined himself for
the most part to the consideration of other experimenters' work, he also
conducted experiments with his own volunteer subjects and recorded the
results. Five experiments \vére performed: card sorting, maze learning,
code substitution, crossing out E's, and addition. With the exception of
maze learning, it could be said that these were simple learning experi-
ments, in which the subjects would approach their maximum output
reasonably quickly.

In Blackburn's experiments, not all subjects took part in all the
experiments, and similarly not all subjects took the same number of tests.
To évoid biasing any averaged curves because one or two subjects took
more tests than the others, average curves were calculated for which all
sﬁbjects had taken the same number c;f tests e.g. 7 subjects took 20
tests or more on card sorting, therefore an averaged curve was calculated
for the 7 subjects for 20 tests. 4 subjects took 30 tests or more in the
same card sorting experiment; these results were similarly averaged
for 30 tests. In this way averaged results for 4, 6 or 7 subjects were
found for the data. Averaged and individual data is given in Appendix C

and full details of Blackburn's experiments in Appendix D.
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6.2. Morcombe's thesis on Motor Skill Learning Models.

As part of his thesis, Morcombe40 undertook a laboratory experi-
ment in which the learning of a simulated simple assembly task was
studied. Six subjects performed 20 tasks each at one sitting in which 54
square and triangular pieces had to be fitted into the shape of a perfect
rectangle. Cycle time data for each.trial is recorded in Appendix C, as
is an averaged cycle time which was calculated for this study. For the
purposes of the curve fitting exercise, this cycle time data was con-

verted to output data within the computer programme used.

6.3. Blankenship and Taylor's Study of Machine Operators.

In their article, Blankenéhip and Taylor41 examined the learning
curves of operators in 3 machine processes; covering, trimming and
hemming. Data is not given in the article, but Morcombe and Corlett
have interpolated points on the curves given and further discussed the
results. The curves given are the averaged outputs of the workers,

smoothed to reduce variability. The data is recorded in Appendix C.

6.4. Bevis's Thesis on Industrial Learning.

. . . 43 . . . .
In his thesis, Bevis examined several different learning situations

in industry, including tack-welding.of small components (operation 'B'),

jointing short lengths of wire on to components (operation 'C'), making

cigars at two different ractories (rolling and bunching). In addition, data

was quoted relating to one subject who assembled small machined com-
ponent parts. In all cases, averaged data is quoted and is given in

Appendix C.

6.5. Hackett and Lamb's Study of Telephonist Training.

As part’of their study of telephonist training the author and

his associate were given perrnission to examine the training records
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of nearly 100 telephonists employed by the Post Office. The data
obtained indicate s the amount of work done by the trainee in one
hour for a series of tests during the training period of 5 weeks. The
test is held at a switchboard, and the trainee handles live traffic
(which is highly variable in content), so a scoring system has been
developed by the Post Office that weights the score of each call dealt
with according to the difficulty of the call handled. The units used
are calléd ""'valued cells'". The data is thus given in the form of the
number of valued calls handled in one hour on a day of training.
Included in some of the data is an observation made at a much later
stage - this is a full efficiency check. All the data is given in
Appendix E.

The average number of valued calls/hour handled on each day
for all trainees was calculated and the mean data used to establish a
best fit curve using the Bevis model. Predictions for each day of
training were calculated and the individual scores ranked into high,
low or medium categories using a computer programme. This
allowed an estimation to be made of the trainee's overall performance
during training and on the full efficiency test by using ranking scores
of high = 3, medium = 2, low = 1 for all rankings.

The data sets could then be split up into those containing
consistently high, medium or low scores. Such data sets contained
9 or 10'sets of trainees' data which were then averaged and used in
this study. The averaged data found is presented in Appendix C.

At a later stage in the study of telephonist training, a series

of experiments were held in which observations were made on a
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sample of trainee telephonists. Brief details of the experiments are
given here, further information may be found in Lamb44.

Lamb had previously made a series of observations on ex-
perienced telephonists in which he had confirmed that experienced
telephonists performed their work to a common "activity profile'’.
The activity profile was established by using a technique based on
activity sampling. The task to be performed was split into elements
such és Dialling, Operating Keys, Plugging In, Timing, Speaking,
Listening, etc. and a record was taken of each activity in progress
at ten second intervals during an observational period of 1 hour.

An analysis of 6 hours observations made on several telephonists
allowed the derivation of an activity profile'; which can be defined
as ''the way in which an experienced telephonist divides her time
while working at a switchboard'.

Lamb hypothesised that a naive trainece would have an entirely
different activity profile and that that activity profile would change,
over a period of time, to a profile similar to that of experienced
telephonists. To test this hypothesis, an experiment was arranged
in which both researchers observed trainee telephonists at various
exchanges and at a Training School, making frequent half-hourly
and (at a later_stage) hourly periods of observations when the
trainees held their practice periods at the switchboard. After
training was completed, further hourly periods of observations
were taken at less frequent intervals. In all periods of observation

activities were recorded at 6 second intervals, using an audible cue
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generated by a transistorised circuit and fed into earphones used
by the researchers.

The observational requirements in the above experiment were
slightly different to those previously established. In addition to
noting the Dialling, Timing etc. cate_gories of activity, a further
subdivision to account for Procedural Instruction was required to
allow for assistance given to the trainee by her trainer. This
assistance might be relevant to an activity e. g. pointing out that
a key should be operated, or it could be relevant to the whole call
e.g. recapitulation of the procedure to be followed on a particular
type of call. This further breakdown of the activities allows
manipulation of the data to give a 5 day running average of occurrences
of activities, set out to show the amount of work done by the
trainee (Own Initiative) and the amount of Procedural Instruction
received by the trainee. The resulting measures can be regarded
as indicating the performance of the trainee at a particular element
of the task during the period of observation, becausec as the trainece
becomes more expert in her job, so instruction relevant to that
element of the task should go down.

Now the total of Own Initiative + Procedural Instruction gives
the total number of observations of any one element of activity. If

the ratio Own Initiative x 100% is
Own Initiative + Procedural Instruction

calculated for each element in a period of observation, then the
percentage value should rise to 100% over the period of training,

because Procedural Instruction should fall to zero. The percentage
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calculated might then follow a learning curve.

The data gathered in the above experiment was modified in
the above manner for one trainee telephonist to give a 5 day running
average performance on the various elements of the task. Data
is presented in Appendix C as a percentage Own Initiative per-
formance for each day of training, so that the maximum performance
attainable is 100%.

During the observational periods, records of the type of
call, and of the difficulties that occurred were also made, so that
at a later date, a '"'valued calls' total for the work done could be
established. Appendix C includes data made available by Lamb
relating to the performance of one trainee during this period of

intensive observation.
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7. ANALYSIS OF RESULTS

7. 1. Relative Success Rates for Fitting Each Model.

A count of successful curve fitting runs for each model gives

the following table. 88 sets of data were used.

TABLE III

RELATIVE SUCCESS RATES FOR EACH CURVE FITTING

ROUTINE

MODEL " NO. OF SUCCESSFUL RUNS
BEVIS 77
GOMPERTZ 84
MATHEMATICAL 69
WILTSHIRE 31
ACCUMULATIVE 75
REPLACEMENT 81
DE JONG 37
LOG
MATHEMATICAL 76
SECOND ORDER
MODEL 87

From the table, it can be seen that there was little success
in fitting the Wiltshire and de Jong models, but relatively high

success rates for the other models. The failure of the Wiltshire
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model is probably due to the difficulty of estimating reliable para-
meter values. It was found in practice that unless the paramecters
were reasonably close to their 'best' values, the program over-
loaded, resulting in obviously incorrect parameter values, or
error messages.

The relative failure of the de Jong model does not appear
to have an explanation, unless the accuracy and quantity of data

was insufficient to allow easy curve fitting.

s 2 Calculation of the Ccef{ficient of Concordance.

Because of the poor success rates in fitting the Wiltshire and
de Jong models, there were only 10 sets of data for which all models
were curve fitted. The values of the sum of errors squared were
ranked and a computer program written to calculate W and X .

For 9 modéls and 10 sets of data, ¥ . was significant (p<.001).

To establish which model was causing the effect, the computer
program was extended to eliminate each of the models in turn from
the rankings, correct the rankings affected by the elimination,
and to recalculate W and xz.

The first printout for the 9 model/10 data sets case is
repeated on the following pages. The integer values shown under
each model heading are the ranks of that model for each set of
data. Columns of zeros indicate that that particular model is

excluded from the calculation.
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The values calculated for W and ¥

are given in Table IV below.

It can be seen that in the first test, where no model was omitted, ¥

is significant at < . 001, and that when models are omitted one by one,

removal of the Wiltshire model causes the largest reduction in W and

2
X . Examination of the rankings indicates that the Wiltshire model

consistently gives the best fit.

2

VALUES OF W AND X

TABLE IV

FOUND FOR 10 DATA-SETS, 9 MODELS,

WITH ONE MODEL DELETED FROM RANKINGS

Model w XZ Degrees Significance
Omitted of Freedom <
NONE 0.408 32.64 8 . 001
BEVIS 0.394 27.60 7 .001
GOMPERTZ 0.427 29.90 7 . 001
MATHEMATICAL 0.428 29.97 7 . 001
WILTSHIRE 0.280 19, 57. 7, .01
ACCUMULATIVE 0.467 32.67 7 . 001
REPLACEMENT 0.460 32. 20 7 . 001
DE JONG 0.336 23.50 7 . 005
LOGMATHEMATICAL 0.429  30.00 7 . 001
SECOND ORDER MODEL 0.430 30.13 7 . 001
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Even so, the value of ¥ 2

remains significant at < .01, suggesting

that a further test could be done on the remaining 8 models by once

again removing a model and establishing if this caused a large change

in W and XZ.

The test was repeated using the same 10 data sets, and the

results are set out in Table V.

Computer printout has not been

included as the resulting text would become too bulky. In this

case removal of the de Jong model causes the greatest reduction in

the X2 value.

TABLE V

VALUES OF W AND X g FOUND FOR 10 DATA SETS, 8 MODELS,

WITH ONE MODEL DELETED FROM RANKINGS

Model W XZ Degrees  Significance
Omitted of Freedam <
NONE 0.280 19.57 7 .01
BEVIS 0.246 14.74 6 . 025
GOMPERTZ 0.301 18.04 6 « D1
MATHEMATICAL 0.287 17.23 6 .01
ACCUMULATIVE 0.311 18.64 6 . 005
REPLACEMENT. 0.329 19.71 6 . 005
DE JONG 0.183 10.97 6 .10
LOGMATI“IEMATICAL 0.287 17.23 6 .01
SECOND lORDER MODEL 0.281 16.89 6 .01
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Once the effect of the Wiltshire model had been established,

it was possible to extend the scope of the test by examining 23 sets

of data. (As only 8 models were being considered, more sets of

data/had been curve fitted by those 8 models). Results are tabulated

/
below in Table VI. As can be seen, the de Jong model still causes

the greatest reduction in X

values.

In this case, examination of

the rankings shows that the de Jong model consistently gave the

worst fits.

TABLE VI

/
VALUES OF W AND X

2

FOUND FOR 23 DATA SETS, 8 MODELS,

WITH ONE MODEL DELETED FROM RANKINGS

Model W X . Degrees of Significance
Omitted Freedom P
NONE 0.107 17.23 7 _ .02
BEVIS 0.108 14.91 6 . 025
GOM PERTZ 0.123 16.94 6 .01
MATHEMATICAL 0.0884 12.20 6 .10
ACCUMULATIVE 0.134 18.56 6 . 005
REPLACEMENT 0.139 19.16 6 . 005
DE JONG 0.0485 6.69 6 .50
LOGMATHEMATICAL 0.0870 12.00 6 .10
SECOND ORDER MODEL 0.135 18,58 6 . 005
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Removal of the de Jong model reduced the number of models

to be considered to 7, but also increased the data-sets available
to be ranked to 54. The calculation was repeated, values of W
and xz being shown in Table VII below. In this instance, the re-
moval of the logmathematical model causes the greatest reduction
in ¥ 2. Again, this model consistently gave the worst fits when

the rankings were examined.

TABLE VII

VALUES OF W AND XZ FOUND FOR 54 DATA SETS, 7 MODELS,

WITH ONE MODEL DELETED FROM RANKINGS

Model w x 2 Degree of Significance
Omitted Freddom "
NONE 0.0684 22.17 6 . 005
BEVIS 0.0714 19.28 5 . 005
GOMPERTZ 0.0743 20.05 5 . 005
MATHEMATICAL 0.0627 16.94 5 .005
ACCUMULATIVE 0.0664 17.92 5 . 005
REPLACEMENT 0.0967 26.11 5 . 001
LOGMATHEMATICAL 0.0287 7. 76 5 .20
SECOND ORDER MODEL 0.0840 22.69 5 . 001

The analysis was extended to one more case - six models and
61 data sets. Results are shown in Table VIII. While the elimination

of the second order model would cause the greatest reduction in X,
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no further analysis could be attempted due to the unsuccessful curve
fit attempts. The second order model was consistently giving the

worst fits for this set of rankings.
TABLE VIII

VALUES OF W AND XZ- FOUND FOR 61 DATA SETS, 6 MODELS,

WITH ONE MODEL DELETED FROM RANKINGS

Model W XZ Deg\rees Significance
Omitted of Freedom z :
NONE 0.0386 11.78 5 .05
BEVIS 0.0475 11.58 4 . 025
GOMPERTZ 0.383 9.35 4 .10
MATHEMATICAL 0.051 12.44 4 . 02
ACCUMULATIVE 0.0278 6.78 4 .20
REPLACEMENT 0.0419 10.23 4 .05
SECOND ORDER MODEL 0.0265 6.47 4 .20

7.3. Comparison of '""Best Fit'" Start and Final Values.

A further comparative assessment of the models investigated
may be made by stu‘dying the 'start' and 'final'values. This method
if obviously better than comparing the parameter values, because
the parameters do not necessarily have similar meanings from one
model to anolther. In this section, only a selection of data sets, with

their'start'and'final' values, are compared. A complete list of
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parameter, 'start' and 'final' values is given in Appendix F, and a

comparison of 'start' and 'final' values on a Model basis is given in

Appendix G.

Consider the best fit 'start' and 'final' values obtained for the

curve fitting of data set No. 106 (Mean score of 4 subjects taken

from Blackburn's 45

below.

TABLE IX

data Operation: - Addition) given in Table 9

A TYPICAL DATA-SET, WITH A COMPARISON OF 'START

AND 'FINAL' VALUES FOUND FOR EACH MODEL

Model

BEVIS

GOMPERTZ

MATHEMATICAL

WILTSHIRE

ACCUMULATIVE

REPLACEMENT

DE JONG

LOGMATHE-
MATICAL

SECOND ORDER
MODEL

Final

134,

133.

150.

139.

145,

133.

422.

150.

132.

91

92

22

29

02

40

88

29

32

Start

61/
64.
52.
45.
57.
66.

67.

54.

72.

00

34

21

88

57

57

75

78

86

p—

— et e et
[ O N
©O O O O O O O O o o o o o©o o
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>

Data

102.
109.
113.
117.
114.
118.
120.
121.
128.
123,
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- -

15.
16.
17.
18.
19.
20.
21.
22.
23,
24,
25,
26.
27.

o O O O O O O O O o o o o

Data

124.
125.
127.
130.
130.
130.
131.
134.
135
134.
135,
130.
139.9
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It is immediately obvious that the de Jong prediction of the final
value is very much higher than the other predictions. The 'start'
values, as is to be expected, are reasonably the same. However,
this feature of the de Jong model predicting much higher final values
is fairly general, as 25 of the predicted final values obtained for
the de Jong model (out of 37) were the highest values obtained from
the successful curve fitting runs.

Other examples may be found in Appendix G where the pre-
dictions of final values were not sensibly the same (as in the above

46
example). Consider the results for data set No. 0116 (BEVIS

/
/

Mean Score of 15 subjects Operation: - Bunching (Plant A) ) given

in Table X below.

TABLE X

A SECOND EXAMPLE OF A DATA SET, WITH "FINAL"

VALUES FOUND FOR EACH MODEL

Data
Model Final X Y
BEVIS 7338.01 1.0 1800.0
GOMPERTZ 5733.79 2:0 2015.0
MATHEMATICAL 11607.18 4.0 2321.0
WILTSHIRE 4857.07 6.0 2829.0
ACCUMULATIVE 7591. 04 . 8.0 3085.0
REPLACEMENT 5484.52 10.0 3703.0
DE JONG - 12.0 40°4.0
14.0 4225.0
LOGMATHEMA . ’
E TICAL 11788.0 16. 0 4515. 0
SECOND ORDER MODEL 5230.15 18.0 4617.0
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If one wishes to set a standard for output on this operation, what
value does one choose? In this case it is suggested that the mean
value might well be a reasonable choice, but the range of values
founyd emphasises the danger of selecting any one learning curve
model and slavishly applying the results to calculate work study

standards.

7.4. Discussion and Conclusions

/ In this comparitive study of the fits of various models to
a s‘,’election of learning data, it has been shown that the Wiltshire
Model is most consistently the best fit. This is, perhaps, obvious,
when one realises that the Wiltshire model has four parameters,
and the remaining models only three. Mathematically, one would
expect a four parameter model to be a better {it than a three para-
meter model, unless the three parameter model was an exact
representation of the learning data. It suggests that a useful
further study might be one in which various four paramecter models
were compared.

Rather more surprising is the discovery that the de Jong
model gave consistently the worst results. Not only was the
difficulty in establishing the parameters more evident than for
the other three parameter models, but those results that were
obtained also predicted "final' values which were, in general,

much higher than the "final' values predicted by the other models.



As such, this result throws doubt on the usefulness of the de Jong
model (in comparison with the other models) when individual
leafnixlg curves are to be analysed. Further work appears necessary
to confirm both the above results.

It was not unexpected that the mathematical model was not
rejected by the analysis, because it has been shown that that mecdel
is very similar to the Accumulative Model. The logarithmic form
of the same model was shown to be the worst of the remaining
models, however, and this suggests that manipulation of the x, y
scales is not an improvement. It would be of interest to study the
results of fitting the selected models to logarithmic scales and
comparing them on that basis.

In the final table, the second order model appeared to be the
worst of the 6 remaining models, indicating that perhaps the
general shape of the critically damped meodel is not the most suitable
choice. Further investigations on four parameter models would
allow the overdamped and underdamped solutions of the second
order equations to be compared with other four parameter models
and previous results. A further experiment of interest would be
to compare the damping factors found for individuals learning of
different tasks. Might . they be the same?

A "best'" model cannot be selected from those remaining
(Bevis, Gompertz, Accumulative, Replacement, Mathematical),
purely on the basis of the statistical test done. Given very much
larger quantities of learning data this might be possible, but in

this instance it seems best policy to chcose a model which has
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parameters which may be defined in understandable terms. This
criterion indicates the Bevis model as the most suitable choice
because the three parameters Yc’ Yf and T may be easily

defined in terms which are acceptable.
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8. AN EXAMINATION OF THE LEARNING DATA

FOR INDIVIDUAL TELEPHONISTS

8.1 / Introduction.
/

In the earlier chapters of this thesis it has been shown that
there is little to choose between several learning curve models.
The Bevis model was suggested as the most suitable model, but
not directly as a result of the objective assessment attempted.
To finvestigate the use of the Bevis model as applied to data related

/
to skills acquired by Post Office employees, it was decided to
attempt to fit the Bevis model té all the individual data-sets
obtained from Oxford and North West Telephone Areas mentioned

earlier in Section 6.5, and also to examine in rather more detail

the fitting of the model to data obtained by personal observation.

8. 2. Fitting the Bevis Model to Recorded Data.

The attempt to fit the Bevis model to the data sets was made
in two ways. In the first curve fitting attempt, all available data
was used. In the second,‘the last data point was eliminated from
those data sots which included a full efficiency check and curve-
fitting again attempted. A comparison of the two sets of results
showed that there was little correspondence between them.

A total of 87 data sets were used in the nvestigation. 73

data-sets included the full efficiency check. 44 pairs of results
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were obtained for the complete and one-data-point-omitted data
sets. Only 9 of those pairs resulted in parameters which were
all positive, and only 5 pairs gave parameters which were equal
... T e
to within - 25% for each curve fitting attempt.
15 pairs of results included negative Yf and negative T

values for that data set with less data. 7 further pairs of results

included values for YC or Yf which were unlikely to be accurate.

e.g. Set 249 Y = -5837
¢
Yf =‘ 6020
T = 1.10
Set 282 Yc = '=33.73
Yf = 593.5
T = 46.8

A complete set of all results obtained is included in Appendix H.

8. 3. Discussion.

Why were these results so poor? The first possibility is
to suggest that not enough data was available accurately to predict
the true parameter values and also that observational error might
cause this result. In addition, the effect of a data point at some
time in the far future with very few observations in the intervening
period wou{ld force the curve fitting routine to hunt to parameters
which would predict that value. Consider data set 231 given in

Table XI below.
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TABLE XI

DATA SET 231 - VALUED CALLS FOR T3], EXCHANGE A
Day Valued Calls
r/ 5.0 98.0
7.0 108.0
10.0 155..0
13.0 165.0
15.0 168.0
/ 18.0 205.0
156.0 225.0

The above data is typical of the data investigated. The results

for the two curve fitting runs were: -

Y Y T Final
c f

ALL DATA POINTS 1.50 225.34 9.64 226. 84

LESS DAY 156 41. 54 321.62 26.68 363.16

In the first run, the effect of the observation on day 156
is to cause the prediction of parameter values YC and Yf which
total 226. 84, very close to the observed value of 225.0. If the
last data point is removed the prediction then becomes
YC + Yf = final = 363.16. The predicted t values, 9.64 and
26.68 are not reasonably similar, thus the two predictions do not

agree.

A further examination of data set 231, however, shows that
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the subject was learning well up to day 18, and that the predicted
values of Yc and Yf may well be reasonably accurate for the data

to day 18. What happened in the period day 18 - day 1567

8. 4. An Examination of More Detailed Learning Data.

We can investigate the question posed in the previous section
by considering the results when the data obtained by intensive’
observation of trainees (mentioned in Section 6. 5) is curve-fitted.
The data obtained was made ﬁp ;1nto data sets which covered

(i) The first 3 weeks of.training

(ii) To the end of training (5 weeks)

(iii) All observations.

(iv) Experience data only (all observations less training data),

and is given in the above form in Appendix I.
Now if the learning curve follows the one equation during the
observational period for a telephonist, then as long as sufficient
and accurate data is available, the parameter values formed by a
curve~fitting approach will be similar. If the values are not
reasonably the same then the implication is that there has been a
change in the learning process, and that the learner is on a new
learning curve. All the results obtained are given in Table XII,

blank spaces indicating failure to curve fit successfully.
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TABLE XII

ALL PARAMETER VALUES FOUND FOR BEVIS MODEL CURVE-

FITTED TO DATA OBTAINED BY DIRECT OBSERVATIONS

Trainee Set oy Y T
: c : f

JJ 301

JJ 302 86.79 102.13 15. 60
: 303 92.50 164.71 36.23
JJ 304

KF 305 44,65 288. 06 47.46
KF 306 21.12 112.16 7.11
KF 307 60.90 157,11 39. 60
KF 308 144,12 72. 67 24.98
LS 309 -27.75 133. 25 1. 64
LS 310 76.97 89.79 34,02
LS 311 79. 68 130.03 61.11
LS 312 135,09 73. 46 56.57
SJ 313 54.93 128,33 5.91
SJ 314 60. 32 125.12 6.53
SJ 315 95. 60 159.23 25.05
SJ 316

EB 317 ~0.87 129.26 3.01
EB 318 72. 66 325. 65 73. 41
EB 319 67.15 156. 94 26.48
EB 320 175. 34 52.47 33, 86
KN 321

KN 322 67.66 138.37 24.76
KN 323 63.26 123.00 18.23
KN 324

JC 325 -106. 81 205. 79 2.29
JC 326 68. 66 123,19 8.48
JC 327 41,22 192, 58 42.85
JC 3

* JC resigned at an early date and only 2 observations
were made after completion of training. Curvefitting is
thus pointless in this case.
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Comparison of the results shows that the considerations
discussed previously still apply. Curve fits to data for only
the early stages of training predict '"final'" values which are not
consistent with what eventually occurs, and curve=~fits for data
covering longer time periods do not agree with previous estimates.
Some of the results are shown in graphical form in diagrams

8-19 following: -
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8. 5. Discussion

The learning curves shown emphasise the comments made
prev/iously. Up to the end of the first 3 weeks of training, the
learning curves (Diagrams 8, 12, 16) bear little resemblance to
those learning curves obtained for the other data sets for the same
subject. Examination of the parameter values given in Table XII
for the learning curves confirms this point.

However, the learning curves for all observational data
(Didgrams 10, 14, 18) do appear similar to those obtained for
experience data (Diagrams 11, 15, 19) for the same subject.

The similarity is emphasised by a comparison made possible by

the use of transparencies (see overleaf) from which it can be seen
that the shape of the learning curve appears very dependent on the
last few observations, and not so dependent on the early observations
made during training.

The comparison tends to confirm the earlier suggestion that
there are two learning.curves for the period being examined. One
for the period extending to the end of training, and another for the
period after training, when the telephonist is gaining experience
without intensive instructinn. On reflection, it can be seen that
a major change occurs between the two periods - once training
is over, the trainee gets a better idea of the output required of
her, because she works alongside experienced operators. Previously,

she had had no indication of the output required, other than in terms
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of "valued calls'". Unfortunately, while "valued calls' are a useful

yardstick for the trainer to assess progress, the trainees have

no concept of the scoring system and hence, during tests, work

flat out. Under such pressures the trainee will make mistakes,

but more importantly from the learning curve aspect, is likely to

attain much higher scores than might reasonably be expected when

compared with the normal workrate of 200 valued calls/hour expected

of expérience telephonists. However, it should not be forgotten

that the 200 valued calls/hour standard is that work rate which

has been estimated to be reasonable for an experienced operator to
/

wo;Lk at for an 8 hour day, not the possible performance when

working flat out.

The conclusion is drawn that the best fit parameter estimates
which predict "final' performance figures of up to 400 valued calls/
hour are not unreliable, and that the data presented contains two
learning curves related to (i) the training period and (ii) the
experience gaining period.

Lamb47, using a method based on activity sampling, has shown
that trainee telephonists require between 4 and 6 months before
they perform the elements of the task in sensibly the same time as
that observed in experienced operators, thus the experience gaining
period is the major part of the trainee telephonist’s training.

The presence of two learning stages, however, pases problems
when it comes to comparing different methods of training, because

the implication is that only the training period should be considered,
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rather than including information relevant to the post training period.
Given successful curve fitting it might then be possible to compare
the times taken by a control group of trainees to reach a suitable
performance standard with those times taken by an experimental
group to reach the same standard. Such learning times could be
calculated from the best fit curves for each trainee's performance
figure.

A suitable statistical test appears to be the Mann-Whitney

48 . i : :
U-test ', which could be used to do this comparison. During the tape

. 49 |

recorded tests described by Lamb " further records of the control
and experimental groups performance were taken and used in an
attempt to confirm the possibility of using this test, but curve-fitting
was successful in only a small number of cases, too small to be
used in the statistical tests with any reliability.

The method obviously demands accurate data, and an accurate

50 .

measurement system. Hackett has shown that while valued calls
may be used within any one exchange to provide a useful guide to
trainee performance, inter-exchange comparisons of trainee per-
formance are not valid because of high variability between exchanges.
The use of the scoring system of '"valued calls' thus causes problems

if training methods are compared.

8. 6. Alternative Reasons for the Inaccuracy of the Data Obtained

From Post Office Sources.

At this point it should be noted that other data obtained by
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direct observation was not successfully curve fitted. Data relating
to.the first three weeks of training for JJ and KN, when curve-
fitted, resulted in negative Y. and T values. Was the data in-
accurate ?

It is possible that inaccurate data is caused by the inherent
variability in the method of giving practice to and testing the trainees.
Traineg telephonists practise and take their progress checks at the
switchboard, handling live traffic generated by the public. Calls
are received at random, and the type of call received by the trainee
may vary from a simple long distance connecﬁon to a personal call.
Calls may go 'wrong' at any time, not only for reasons within the
control of the telephonist. For example, the telephonist may mis-
dial - a fair mistake to make at an early stage in training. But
the equipment she uses may also be faulty, so that she gets fault
indications at some stage in the call (number unobtainable tone, say).
Alternatively, the switching equipment Ljhe call is routed through may
develop faults. What it amounts to is that the task is not repetitive
in the absolute sense. It is true that over a very long period, a
telephonist will repeat the various t‘ypes of call she may handle until
she becomes fully versed in the necessary operating techniques,
but in the training period, the trainee is only starting to build up
this experience, and all calls are likely to be regarded as different
rather than'the same. Comparison between trainees using learning
curves then becomes difficult because the weighting system developed

to score the performance of the trainee relies on a large quantity
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of the types of call being handled. The poor results obtained for
data sets relating to training in the Oxford and North West Areas
-which were discussed earlier, and also the failure to curve fit the
more detailed observations could very well have been caused by
this effect. Reference to Appendix H will show that only about 20

of the 87 data sets were successfully curve fitted.

8.7. Repetitive and Quasi-Repetitive Tasks.

Lamb51 has coined the term ''quasi~repetitive task" as
descriptive of a telephonist's work. This seems a most apt des-
cription of the type of work load received by the telephonist, for
over a long period, it is repetitive, yet it is not repetitive in the
short term (in the sense that the assembly of components would
be regarded as repetitive in the short term). In such a situation,
where a learning curve approach is to be attempted, either a
scoring system must be developed which allows for the varying
difficulty of the type of call received, or, during tests, standardised
calls must be presented to the trainee. For the first case, it seems
that the scoring system developed would need to be very complex,
as the 'difﬁcu.lty' of a Fersonal call would be great for a first day
trainee, not so great for a second week trainee, and less difficult
still once the trainee had received the necessary tuition to allow
her to handle the call in the correct manner. To apply such a

scoring system in the correct manner might very well imply a
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complete record of all calls handled and is regarded at this stage
as too complex and costly to apply. It is probable that all quasi-
repetitive tasks encounter this difficulty in scoring.

The simpler method which allows an extra score for difficult
calls and difficulties encountered but does not vary the score according
to the point in training the call is received, has been shown to be
inaccurate, e thus the conclusion is drawn that an entirely different
approach is needed. For example, the use of tape recorded telephone
calls to present problems to each trainee in the same manner might
allow comparison of training methods, but would be unlikely to

53

provide data suitable for a learning curve approach. Lamb

discusses this approach in detail.

8. 8. Possible Application of Learning Curves to other Tasks

within the Post Office.

The previous discussion has suggested that scoring the task
performed is a difficulty where quasi-repetitive tasks are en-
countered. Certainly the work of a telephonist poses this problem.
Some other examples may also be suggested, such as fault-finding,
because there is the obvious difficulty of deciding whether one fault
is twice or fou‘r times more difficult to solve than a second (different)
fault, and also the installation of telephones, because no two instal-
lations will be the same.

Other tasks within the Post Office are more representative
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of repetitive tasks. The use of the Machine Jointing No. 4 demands
a manipulative skill to successfully joint two wires at a reasonable
pace, and there is a knack to the older method of hand twist jointing
which is gained with repetition. Such skills could probably be
measured and depicted quite well by the Learning Curve models
discussed previously.

In other tasks not related to Engineering such as Clerical
work, 'it is also likely that a repetitive rather than quasi-repetitive
nature will be found.

On the other hand, sk’illvs required in the Research, Development
and Managerial fields are much more difficult to define and also to
measure, so that it is unlikely that learning curve theory could be
applied to those fields in the near future. A much more promising
approach is that of Lamb, using tape-recorded tests as discussed
previously. This, at least, allows for the presentation of the same
problem to each of the trainees, without the possible bias that might
be introduced, say, by the variations in tone of voice that could be
found when several questioners were used.

Further researcin into the use of four parameter models could
also be useful, for if a model could be defined which was rather
more successful than those tried to date, statistical tests might then
be possible which would allow an objective comparison of training

methods to be made.
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APPENDIX A

PO STUDY ON CRITERIA FOR THE EVALUATION OF TRAINING.

Investigation Objectives

We propose to determine procedures to provide measures of the
effectiveness of training and of field performance against the costs
involved. We would also endeavour to state the costs associated
with subsequent performance, to define appropriate criteria to measure
the progress of Post Office trainees, initially those undergoing training;
to specify ranges of acceptable performance on their training courses,
using the criteria developed and to develop some adequate measures
of the effectiveness of current and future training procedures. Two
Post Office men are working on the project, initially studying the
training of telephonists in both Rodwell House and exchanges and then
engineering training in a Maintenance Area.

The proposal requires 2 years of investigation, divided approxi-
mately into 15 months for preparation-of the measurement scheme and
9 months for validation in both training centre and work area training
situations. During t}'le first 3 to 4 months data is being gathered,
either from existing records, by observation or via special records in
the training centres. This data will be subjected to trial analyses to
identify the most appropriate factors for subsequent study. The

following year will be devoted to analyzing material for the chosen models
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of learning performance to be developed and dimensioned. In the
final 9 months' period, models will be subjected to pilot and full-
scale testing, both in the training centre and with appropriate training
groups in work areas.

[

Probable Methods

Several approaches are possible to provide scales against
which training performance may be judged. These could include

studies of the current activities of operators in the exchanges chosen
/
/

for Study, to establish some validity for the criteria proposed.
These studies may take the form of analysis of activities and de-
cisions of operators for various types of call, of determination from
questionnaires, of the operators' view of job difficulty both as a
trainee and as an experienced operator.

In vie'w of the telephonists' training objectives involving .their
development of '""accuracy, courtesy and speed', it may be appropriate
to introduce into the testing situation a taped sequence of calls with
known difficulties run at a traffic rate which would be experienced
during the busy period.

Comparable approaches would be adopted in the engineering

field.

124



APPENDIX B

"FORMULAE FOR THE ESTIMATION OF THE PARAMETER

VALUES FOR THREE PARAMETER LEARNING CURVE MODELS

(a) The Bevis Model. y, = Y_+Y, (1-¢7%%) (wherez = 1/t ).

Wh t. =0 =Y
erxl ; (start) Yo .

When t, =« (final) Vo =Y _ 4 Y,

Given estimates of the.”fi‘nal“ and "'start' values

Final = Y +Y ' B. (a).
e f
Start =Y
c
Yf = Final - Start. B. (a).
Given value t , y
n’ ’n
- J .
Then Y(N) = Y_+ Y (l-e ez B. (a).
£ ! -t(N). z
= Start + (final - start) (1-e ) B.(a):
~t(N).
(b 2 ehastp T e~ %) B. (a).
(final-start)
e—t(N). z Y(N) - start

= 1:a Bl B.(a).
final - start ( )

_ (final-start - Y(N) + start) B.(a).
(final - start)
. (final - Y(N) ) B.(a).
(final -~ start)
g 3 _ (final - start) B.(a).

, : final - Y(N)
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t(N). Z = In [ final - start B.a.(10)
final - Y(N)

1 final - start I
Z = == . In B.a. (11
t(N) (final - Y(N) a-(11)

(b) The Gompertz Model has been analysed previously in

Section 5. 8.
(c) The Mathematical Model y, = b - S — B.c. (1)
i c t gx,
when x, =0 (start) y; = b- (l:- B.c.{(2)
when X, = 1(final) y, =b B.c.(3)
Given estimates of '"final" and "'start" values
final = b
start = b -1
c
- b - start = final - start B.c.(4)
& s 1 R B.c.(S)
final-start
And given value X(N), Y(N)
1
S h - —— B.c.(6
YN =b - Sam c-(6)
1
- ——— B.c. (7
b -T(N) = o) ST
1
+ . T eee—— B. . 8
1
g X(N) = o—5my— - © B. c.(9)
1 1
— - , —— B.c 10
¢ (7w ) st o
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- 1 1 1
! ((final-Y(N)) ) (ﬁnal-start))' X(N)

(d) The Accumulative Model

y; - bt86. a (N,-1)
T+ 6 (N, -1)

final = a

b

start

and given a value N(N), Y(N)

Y(N) (1 + 6 (N(N)-1) ) = b + 0a (N(N) -1)
Y(N) + Y(N).6.(N(N) -1) = b + 6a N(N) -~ 0a
Y(N) - b = 8a (N(N) -1) = Y(N). 6. (N(N)-1)
= 6 (N(N) -1) (a - Y(N))

0 = Y(N)-b
(a-Y(N))(N(N)-1)

= (Y(N) - start)
(final - Y(N)) (N(N)-1)

Nij-1
(e) The Replacement Model y, =a- (a-b)(1-8)"

final = a
start = b
And given a value N(N), Y(N)

Y(N) = a-= (a_b) (1_6)N(N)—1
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(a - y(N)) (1-8)° g B.e.(3)
. (a-b)
- ‘\I
Do N)l‘/ Gyt be.(a)
- (a-y(N)) B.e.(5
0 = 1o (n)-pf (o) -
. | (final-Y(N)) B.e. (6)
B (N(N)'dr(final-start)
(f) The de Jong Model y, =t M-t (1.M)xi"n
It has been shown previously that this equation is the equivalent
of y, =B - Axi‘“ ' B. 1. (1)
At xi=1, yi=B-A = start
at x, = « Vo '= B = final

final = B

start = B - A
A = final - start. B. f.(2)

And given a value X(N), Y(N)

Y (N) = B - A. [X(N)] o B. f.(3)
A(X(N))" = B-Y(N) B.f.(4)
x(N) ™" = (B 'X(N B.f.(5)

n A
X (N T e B.f. (6)
) (B - Y(N))
n 1n<X(N)> = 1n = B.f.(7)
(B -Y(N))
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A
n = ln [——————] B.f.(8
(5= Y(N) i
In (X (N))
(final - start)
= In [(final - Y(N)) B.1.(9)
/
In \X (N)/
(g) The Logmathematical Model, logy. = b - NS B.g.(1)
i c T+ gx,

This model is dealt with in the same way as the mathematical model,

which means that (using log (yi) values)

final = b
start = b - l
c
1
R e S— B.g.(2)

final-start

B 1 1 1
€ ")(final -Y(N) ~ (final-start)}  X(N)

B.g.(3)

However, to ensure a fair comparison of the sum of errors squared
for this model with that of the other models, once b, ¢ and g have
been calculated for best fit, the sum of error squared should be

calculated for the fit of the equation

1
y. = e(b T e+ g.xi) B.g.(4)

which ensures that a comparison is made for the same scale of

output.

(h) The Second Order Model ¥; = Yc + Yf <1_(1 + mti)e- wti)
B.h.(1)
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Now consider the values for two points, (tl, Y, ) and (tn, yn)

y, =Y +Y_(1-(1 +lw)e-lm) B. h.(2)
1 c {
o =Y +Y,.(1-(1 +0t)e” “in) B. h. (3)
N c f n
/ - 0
From'B.h.(2) X1 Ye Sl e(ltw)e B.h. (4)
Ly
- -
From B.h.(3) 'n e _1-(1+o tn)c 'n B. h.(5)
- - + -
and from B.h.(4) 1 - 71 g _ Ty Y _ final -Y =(1+®@)e
, Yy L B. h. (6)
(/
/ - v +Y - wt
and from B.h.(5) 1 - Yn Yc: Yf Y Xc =fina1-—Yn=(1+ﬂ)tn)e ®'n
Yy Yy
B.h.(7)
Dividing B.h.(7) by B.h.(6)
(1 +ot) - o (t-1) ,
n/ e _  final - Y, B.h.(8)
(1+o ) final - ¥
14 w
Now if t is large b ~ by B.h.(9)
N 1 + o -
- -
s &2 Ul final - Y, B.h. (10)
n o~ i 0 &
final - 11
@ (tn-1) (final - Y, ) B.h.(11)
= 'n°  (final -Y )
n
. t. (final - Yll}
w(tn-—l) ~ In { {final - Y ) B.h.(lZ)
n
1 t, (final - YJ_)} /
[O)] ~ ———— 11 B.h. 13
(t_-1) e { (final - Y ) (3
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And as

found."

w =

1

T

an approximate value of
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APPENDIX C

LEARNING CURVE DATA FROM VARIOUS SOURCES

TU100 BLACKBUKN MEAN SCORE OF ¢ SUBJECTS.
. UPEKATION:= CARD SORTING

7“,

1,0 26,4 2.0 26,2 3,0 28,2 4,0 50.4

5,0 36,5 6,0 55,9 7.0 36.6 8.0 40.5
Y. 43,5 10,0 43,0 11.0 46,1 12.0 46,9
15,0 67,5 14,0 52.5 15.0 52.2 16,0 51,6
17,0 55.4 16.0 57.3 19.0 56.9 20,0 59,0

TU101 BLACKBURN MEAN SCORE OF 4 SUBJECTS,
UOPERATION = CARD SORTING
30

T.0 5.8 2.0 26,64 3,0 28,0 4,0 29.3

S0 32,7 6,0 34,8 (.0 34,0 8,0 3%.1

Y0 38,8 10,V 56,9 11.0 41,6 1.0 40,8
[15.0 6ULU 14,0 46,4 15,0 48,3 16,0 45,0
[ 17,0 46,9 16,0 50,3 19,0 47,1 20,0 dU,7

1.0 48,2 22.0 52.0 25,0 53,4 24,0 57,9

€5.0 59,2 26,0 52.8 ¢7,U 56,6 28,0 55,8

29,0 58,5 30,0 62,7 :

TUTUCZ BLACKBUKN MEAN SCORE OF & SUBJECTS,
OPERATION:= CROSSING UUT '€'S
¢s

1.0 128,464 2,0 137.0 3,0 151.9 4.0 1635.0

5.0 166,¢ 6,0 164,6 7,0 168,55 8,0 1711

9.0 179,35 10,0 181.,9 11.0 1/768.7 12,0 180,2
13,0 160,0 14.0 1¥7,.2 19.0 100,77 16.0 164,4
17,0 190,55 18,0 186.7 19,0 183,3 20,V 190.9Y
21,0 191,8 22,0 186,71 23,0 166,1

TUTUS BLACKBUKN MEAN SCORE OF 7 SUBJECTS,
OPERATION:= CUDE SUBSTITUTION
23

T.0 18,8 2,U 22,0 3,0 24,8 6,0 ¢r.8

Y, 0 8,6 6,0 30,64 7,0 35,6 8,0 55,06

.U 35,5 10,V 30,7 11,0 41,1 12.0 4.1
18,0 42,2 14,0 40,7 15,0 45,1 16,0 40.5
17,0 50.¢ 18.0 68,4 19,0 48,6 20,0 ab.1
1.0 92,9 22,0 54,2 23,0 54,8

TUlv4 BLACKBURN MEAN SCORE OF & SUBJECTS,
UPERATION:= CUDE SUBSTITUTIUN
5¢

T.0 17,5 2,0 <21.1 3.0 22.4 4,0 24,4

5,0 25,y 6,0 26,6 7,0 30,5 8,0 50,3

Yoll 50,5290 6V 31 .4 510 34,3 12.,0.35.2
15,0 35,0 14.0 37,1 15,0 38.6 16,8 39.0
10,0 60,0 18,0 39,0 19.9 3v,> 20,0 39,8
1.0 43,5 2.0 47,0 5,0 &7,2 24,0 47,5
25,0 66,9 20, U 47,4 27,0 52,1 28,0 52,4
Sy 9T.f0 50,0 56,4 51,0 52.8 32,0 55,2
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TUlUS BLACKBURN MEAN SCORE OF 6 SUBJECTS,
OPERATION:;= ADDITION

18

T.0 71,0 2,0 67,4 3,0 84,0 4,0 94,9

5.0 98,5 6,0 100,7 7,0 101,8 8,0 114,464

.0 110,99 10,0 115.3 1.0 119,171 12,0 117,606
15,0 118,9 16,0 120,6 15,0 121,68 16,0 123.5
17,0 1235,9 18,0 127,64

TUlUG6 BLACKBURN MEAN SCORE OF 4 SUBJECTS,
UPERATION:= ADDITION
47

T.0 73,5 2,0 74,2 3,0 90.7 4,0 97,8

5,0 10,7 6,0 109,99 7.0 113.2 8.0 117.9

Y.0 114,7 10,0 118,46 11,0 120.9 12,0 121.8
15,0 126,71 14,0 123,7 15,0 126,7 16,0 1¢5.6
17,0 127,99 16,0 130.9 19,0 130,9 20.0 130.2
1,40 131,2 22,0 134.3 25,0-135,6 24,0 156.9
¢5,0 135,33 26.0 430.,7 27,0 139.,9

TOTG/7 BLACKBURN MEAN SCORE OF 6 SUBJECTS,
UPEKATION:= MAZE LEARNING
¢35

1.0 5.6 2,0 6.6 3,0 10,5 4,0 12.5

5,0 15,8 6,0 ¢0,5 7,0 20,2 8,0 52,3

Y,0 27,17 10,0 22,5 11.0 34,7 1¢.U0 35,5
15,0 91,1 14,0 47,6 15,0 48,0 16,0 53,1
1,0 67,70 18,0 65,6 19,0 68,0 20,0 81,6
1.0 74,0 22.0 59,1 23.0 67.9

Tulusg BLACKBYRN MEAN SCORE OF &4 SUBJECTS,
OPERATIUN:;= MAZE LEARNING
3¢

1.0 5,6 £,0 6,2 3,0 7,9 4,0 11,6

5.0 18,5 6,0 18,9y 7.0 16,1 5,0 20.4

Y.0 ¢6,6 10,V ¢3,6 11,0 35,1 12.0 35.3
13,0 47,4 14,0 41,1 15,0 38,35 16,0 4e,/
1.0 57,35 18,0 58,0 19,0 53,0 20,0 (¢, 0
€1,0 63,1 ¢2.0 02,8 25.U 58.64 ¢4,V (4,0
€2,0 62,1 26,0 (1,3 27,0 82,6 28,0 64,6
€9.0 67,1 30,0 77,7 31.0 86.35 32.0 65.¢

TU109 - MORCUMBE MEAN SCORE OF S$7 SUBJECTS,
UPERATIUN:= COVERING
<V

€D N6,0 5, 0:20,0 7,5 30,5 10,0 41,0

1¢.5 44,0 15,0 47,0 17.5 49,5 20,0 52,5
22,5 55,9 25,0 57,5 2/7.5 59.5 30,0 01,0
52,5 62,5 55,0 63,0 37,5 63.5 40,0 63,8
42,5 64,0 45,0 64,0 47,5 64,U 50,0 04,0
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Tut10 MORCUMBE MEAN SCORE OF 27 SUBJECTS,
OPERATION:= TRIMMING

16

€,5 20,5 5,0 36,0 7,5 47,5 10.0 52,5

2.5 57,5 15,0 60,0 17,5 62.5 20,0 63,5

2e.H 66,5 25,0 €5,3 27,5 66,0 50,0 60,5

5.5 67,0 35,0 67,0 37,5 6/.0 40,0 67,0

Tutt MORCUMBE MEAN SCORE QF 235 SUBJECTS.
OPFRATION:= HEMMING
U

2,5 18,5 5,0 37,0 7,5 44,0 10,0 51,0

12¢5 54,0 15,0 57.0 17,5 57.> 20,0 58,0
2,5 59,0 25,0 60,0 27,5 62.0 30,0 64,0
52,5 65,5 35,0 67,0 37,5 68.5 40,0 70,0
42,5 70,0 45,0 (0,0 47,5 70,0 50,0 /7u,0

TU1I12 MORCUMBE MEAN SCORE OF 6 SUBJECTS,
OPERATION:~ SIMULATED ASSEMBLY
o
1.0 2,8 ¢,0 5,8 3,0 7.0 6,0 7.5
.0 .3, ¢ 9,2 7,0 8,3 8,0 8,4
9.0 8.4 10,0 8,5 11,0 &,1 12,0 8,4
15,0 8,4 14,0 8,8 15,0 8,8 16.0 8,8
1,0 8,7 18,0 9,0 19,0 ¥,0 20,0 9.3
TU11 5 BEVIS MEAN SCORE OF & SUBJECTS,
OPERATION:= "B"
8

1.0 28,0 2,0 43,1 3.0 54,5 4,0 67,5
5.0 81.1 6,0 86,1 7.u 88,0 8,0 94,0

TUll 4 BEVIS MEAN SCORE OF 8 SUBJECTS,
OPERATIONE~ "C"
1

1.0 34,4 2,0 48,0 3,0 54,4 4,0 61,0
5,0 0Y.¢ 6,0 (3.2 7.0 75.3 8,0 82,7
9.0 86,1 10,0 86,2 11.0 91,06

TUI15 BEVIS MEAN SCURE OF 15 SUBJECTS,
OPERATION:= ROULLING, (PLANT A)

B

1.0 1670,0 5,0 2314,0 10,0 2574.0 15,0 5314,0
CULU 3839,0 25,0 4055,0 30,0 42U5,0 35,0 64245,0

Tullo BEVIS MEAN SCURE OF 15 SUBJECTS,
OPERATIONS= BUNCHING, (PLANT A)
Y

1.0 1800,0 2,0 2015.0 4,0 2321,0 6,0 282v,0
,0 3085,0 10,0 3703.0 1¢,0 4084,0 16,0 4225,0
16,0 455,00 18,0 461/7,0
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TONY /7 BEVIS MEAN SCURF OF 6 SUBJECTS,
OPEKATION:= RULLING, (PLANT B)

11

1.0 1450,0 5,0 1642,0 10,0 1950.0 15,0 211/7.,0
¢V, U 2383,0 25,0 2950,0 30,0 3525.0 35,0 35535.0
40,0 420U,V 45,U 4375,0 50,0 4700,0

TUT18 BEVIS iEAN SCOKE OF 6 SUBJECTS,
UPERATION:~ BUNCHING, (PLANT B)
8

1,0 1400,0 5,0 1560,0 10,0 2120,0 15,0 2360,0
0,0 282u,0 ¢5,U 3400,0 S0,0 4960,0 55,0 4430,0

TUTTY BEVIS MEAN SCORE OF 1 SUBJECT,
UPERATION:= INDUSTRIAL STUDY 3
44

1.0 16,00 6,0 19,61 11,00 22,63 16,00 $0,08
21,0 32,27 26,0 32.63 31,0 357,59 36.00 57,59
41,0 37,59 46,0 37,50 51,0 30,09 56,00 359,46
61,0 36,11 66,V 36,90 71,0 57,61 76,00 41,75
81,0 45,00 86,0 41,51 91,0 42,14 96,00 43,99
101.0 46,25 106,0 46,72 111.0 47,50 116,0 49,00
121.0 47,50 126,0 48,05 131,0 50,0

TU120 HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS,
OPERATION:= TELEPHONIST
19
%, 0 143,5 7,0 168.5 9.0 180,525 10,0 194,353
13,0 188, 8 15,0 1992,0 16,0 1¥5,vu 17,0 197,90
18.00 19/7,.0 20,0 265,.5 22,0 249.5 T06,0 259,0
112,0 310,0 118,0 10,0 121,00 265,0 155.,0 2484.,0
T83,0 248,00 196,0 241,0 288,00 257.0

TU1T21 HACKETT AND (AMB MEAN SCORE OF 9 SUBJECTS.
OPERATION:= TELEPHONIST

u

5.0 111,35 7,0 136,64 8,0 188,00 9,0 1¢7,2

10,0 172.3 13,0 156,64 15,0 181,58 16,0 240,y

1,0 195,6 16.0 205,0 20,0 2%4,U0 22.U 2859

82,0 224,00 100,00 215,0 104,00 267,0 107,00 249,0
10,0 218,00 156,00 2¢5,0 158,0 €6Z.0 198,00 ¢220.0

Tulédd HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS.
OPERATION:= TELEPHONIST

Z5

4,0 85,0 5,0 116,¢2 6,0 110,00 7,0 136,06

0,0 115,00 9,0 149,22 10,0 143,8 11.0 125.0

12,0 171,00 13,0 146,171 16,0 1063.5 15,0 154 ¢

16,0 176,0 17,0 185,¢ 18,0 179,33 19,0 175,90

20,0 151,00 22,0 204,00 10Y,0 250,00 143,0 ¢55,5
127,0 21746,0 156,0 279,0 169,0 250,0 305,0 254,
318,0 226,0
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TU125 HACKETT AND LAMB MEAN SCORE OF 9 SUBJECTS.,
OPERATION:= TELEPHONIST

b

4,0 96,0 5,0 10/7,9 7,0 154,44 8.0 145,0

9.0 156,8 10,0 136,3 12,0 157,0 13,0 151,46

14,0 161,0 19.0 160,8 16,0 140,0 17,0 106, ¢

18,0 208,0 20,0 169,0 22,0 187,5 770 ¢7Y.0
108, 0 232.0 115,0 2u7,.u 122,V 2/0,0 126.0 210.0
133.0 ¢16,0 121,00 ¢51,0 172.0 ¢47,0 U,V 237.0

TU1T24 HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS,
OPERATION:= TELEPHONIST

24

4,0 109,0 5,0 108,64 7.0 112,06 8,0 88,0

9.0 160,00 10,0 19,3 12.0 144,060 15,0 135,4

14,0 161,0 15,0 153.0 10,0 194,00 17,0 153,33

18,0 164,8 19,0 157,55 ¢v,U 171.5 21,0 189 .0

22,0 170,5 106,00 ¢288,0 112,0 212.0 122.0 2¢9.0
1564,0 257,00 157.0 204,00 154.0 2¢V,0 ¢02,0 1b4,0

TUTZ¢S HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS.
OPERATION:= TELEPHONIST
xn
5,0 69,5 7.0 107,22 8,0 122,0 9.0 1T40,5
10,0 11¢,0 11,0 123,0 12,0 1356,0 13,0 124,99
15,0 144,595 16,0 147,00 17,0 164,535 18,0 1506.8
19,0 176.5 21.0 152.0 2¢,0 158.0 5.0 15%5.0
111.0 214,0 115,0 277.,0 14,0 34,0 121,00 ¢10,0
126,0 257,00 151,0 26,0 158,00 2649,0 180,00 242,00

TU126 HACKETT AND LAMB MEAN SCORE OF 10 SUBJECTS,
OPERATIUN:= TELEPHONIST

20

5,0 69,1 7,0 97,9 9.0 115.8 10,0 117,0

11,0 125.,5 13,0 117,99 15,0 136,66 17,0 165,90

18,0 138,6 19.0 156,353 20,0 150,6 21,0 170,90

2.0 157,00 109,00 265,00 1146,0 254,0 16,0 218,

155,0 29,0 140,00 221,0 150,0 200,00 €24,0 260,0

TU127 HACKETT AND LAMB MEAN SCORE OF Y SUBJECTS.,
OPERATION:= TELEPHONIST

b

5,0 59,0 /7,0 76,1 8.0 88,0 Y,0 91.4

10,0 111.3 11,0 90,0 12.0 110,0 13,0 115,0

15,0 119,86 10.0 151,00 17,0 146,00 18,0 164 0

19,0 159,7 20.0 157,606 21.0 185,00 22.0 1648.,5

¢5,0 194,0 20,0 195,0 102,00 335,00 106,0 ¢31,0
107,00 255.5 1¢0,0 ¢11,0 1¢1,0 ¢31,0 134,00 20,0
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TO128 HACKETT AND LAMB MEAN SCORE OF 9 SUBJECTS.,
UPERATION:= TELEFPHONIST

2

5,0 60,0 7.0 82,6 9,0 92.6 10,0 T04,¢

1,0 71,0 13,0 87.4 15,0 91,1 17,0 105,06

18,0 148,35 19,0 116,00 20,0 147,11 21,0 160,38
2,0 166,00 30,0 199,00 32,0 257,00 109,0 214,40
12,0 209 ,0 128,00 306,0 19,0 25,0 131,00 2¢0,0
155,0 324,35

TUT¢Y BLACKBURN AVERAGE SCORE OF S1
OPERATIUNET= CARD SORTING

55

1,0 57,8 2,0 35,0 3,0 40,0 4,0 42,4

2,0 48,8 6,0 4«/.7 7,0 49,4 8,0 47,4
9¢0 52.5 10,0 H6.8 11.0 64,6 12,0 60.Y
15,0 57,5 14,0 6¢,7 15,0 68,9 16,0 66,7
1,0 71,2 18,0 80,8 19,0 76,4 20,0 76,6
21,0 68,9 22,0 (7,8 23,0 84,0 24,0 87,5
€9,0 84,0 20,0 64,6 27,0 (9,Z 268.0 84,0
29,0 85,7 30,0 87,5 31,0 85,7 32.0 91,3
35,0 95,5 34,0 10u2.5 35,0 105,0

TOT30 BLACKBURN AVERAGE SCORE OF S§¢
OPERATION:= CARD SORTING

55

1,0 15,6 ¢,0 17.8 3.0 18,5 4.0 16,9

5,0 21,6 6,0 ¢5,8 (¢,0 22,86 8,0 26,¢
Y.,0 26,2 10,0 18,3 11,0 ¢€5,1 12.0 ¢5,1
15,0 21.1 14,9 25,4 15,0 27.5 16,0 ¢6,7¢
17,0 28,8 18,0 35,0 19.0 30,2 20,0 29,46
1,0 32,6 22,0 55,9 25,0 37,2 24,0 35,6
25,0 36,¢ 26,0 55,3 27,0 35,1 ¢8.,0 37,8
29.U 364,64 30,0 31,6 31.0 40,4 32.0 42,0
35,0 42,46 34,0 42,0 35,0 43,7

TU131 BLACKBURN AVERAGE SCORE OF S$3
OPERATICQN:I= CARD SORTING

32

T.0 23,9 2.0 25.Y 3,0 26,8 4,0 28,4

5.0 25,1 6,0 29.6 7.0 50,0 8,0 37,2
9 0 35,0 10.0 34,1 11,0 50,7 12.0 31,5
135.0 38,9 14,0 57,5 15,0 41,6 16,0 32,3
17.0 40.0 18,0 35,9 19.0 39,5 20.0 41,6
1.0 60,4 22,0 4,4 25,0 42,4 24,0 52,9
25,0 51.Y 26,0 44,7 27,0 51,2 26,0 48,8
29.0 564.5 30,0 55,3 31.0 50,0 32.0 49,4
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TU13¢ BLACKBURN AVERAGE SCORE OF S4

UPERATION: =

25

CARD SORTING

1,0 28,2 ¢,0 26,1 3.0 cl.5 4,0 27,1
2.0 33,1 0,0 6.6 7,0 33,9 8.0 29.4
Y,U 40,4 10,0
15,0 45,7 14,0
10,0 47,7 16,0
21,0 54,5 22.0

TUT335 BLACKBURN

OPERATION: -

30

57,5 11

U6, 70 12,0 44,2
47,2 15,0 44,2 16,0 48,8
41,2 19.0 51,2 20,0 48,53
41,6 ¢3.0 48,8

AVERAGE SCORE OF S5

CARD SORTING

Te0 25,8 ¢,U 28.¢ 3,0 26,8 4.0 27,5
2,0 35,3 6,V 35,9 7,0 33,6 8,0 43,¢

2,0 41,6 10,0

13,0
17,0
1,0
25,0
Z9y.,u

L2,y
46, (
50,06
64,06
59.2

T4.0
18,0
2¢ .0
26,0
30.0

38,5 ‘¥, 0

40,

(12,0 45,/

51,9 15.U 55,3 16,0 46,7
49,4 19,0 42,4 20,0 55,3
51,9 23,0 50,0 24,0 56,0
66,7 27.0 62,7 28,0 52,5

76,4

TUT354 BLACKBURN AVERAGE SCORE OF S6
OPERATION:=CARD

l¥4

SORTING

1,0 30,46 2,0 28,0 3,0 32.3 4,0 37,8
2,0 41,6 6,0 42,4 7,0 47,2 8,0 47,2

7.0 50,6 10,0 6U.0 11,0 59,2 12,0 58,5

15,0
7,0
Z1.u

04,0
68,y
84, U

25.0 91.5%

TUTSS BLACKBUKN AVERAGE
UPERATION: -

v

14,9
18.0
2.4
26,0

1.3

08,9 15.0 00,9 16.U 65,6
82,4 19,0 76,4 20,0 85,7

63,6 ¢5.0 (7,8 24,0
27,0 105,00

CARD SORTING

SCUORE OF §¢

1,0 22,8 2,0 25,8 3,0 25,9 4,0 30,7
2,0 34,4 6,0 29,4 f.0 39,35 8.0 50,6
Y.0 53.8 10,0 56.0 11.
15,0 62.7 14,0 (3,7 15,0 66,7 16,0 (5,0
10,0 86,0 18,0 (6,4 19,0 82,5 20,0 76,4

0 4y, 4 12,0 62.7

TO136 BLACKBURN AVERAGE SCORE GF S1

UPERATIONG: =

35

CROSSING QUT

I-Eq.'s

97,

4

1,0°135:3 2.0 156,464 3,0 172,22 4,0 195,6
2,0 202,00 6,0 197,2 7.0 ¢01,7 8.0 2PV 7

Yy0 217,06 10,0 2211

15,0
17,0
1.0
25,0
¢y . v
55,V

Zt3.:3
250,6
257,64
b2,y
268,Y
271 ,¢

14,0
15,0
Z€:0
26,0
50,0
34,0

222,35
cée. Y
256 .1
253.,8
v, 7
25,0

138

15,0
T &0
25,u
27.0
5150
55,0

225,0 16,0
255.3 20, v
218.9 <4,V
2h7.8 28,0
26U,1 52,0
279 .0

1.0 205,9 12,0 212,48

219,38
2eo 4
250, 4
70,1
00,1



TUTS5/ BLACKBURN AVERAGE SCORE OF S2
OPEKATION:= CROSSING OQUT"E"™'S

55

1,0 101,11 .2.,0 111,17 3,0 124,4 4,0 134,4

5,0 130,0 6.0 135,6 7,0 140,00 8,0 137.4
9,0 157.8 10,0 1535.3 11.0 148,353 12,0 148,95
15,0 149,64 16,0 160,.0 15,0 156.7¢ 16,0 157,86
16,0 157,2 18,0 156,171 19.0 145,06 20,0 162,88
21,0 155,6 22,0 150,00 23,0 151.7 <4,0 149,54
2595.0 199,46 20,0 145,6 27,0 150.0 8,V 145,0
29,0 38,9 30.,0-.%42,2 31.0124,8 32,0 150,0
55,0 1bb, b 36,0 153,99 35,0158,9

TU138 BLACKBURN AVERAGE SCORE OF $3
UPEKATION:= CROSSING OGUT "g"'S

s¢

1.0 127.0 2.0 127,06 3,0 141,0 4,0 148,0

5,V 153,0 6,0 145,0 ¢,0 152,0 8,0 150,0
9,0 151.0 10,0 1535.0 11,0 164,0 12,0 166,0
13,0 163.,0 14,0 167,0 15.0 155.0 16,0 1062,0
16,0 163,0 18,0 158,0 19,0 150.0 20,0 157,0
1.0 166,0 22,0 164,0 25,0 101.0 24,0 172,0
25,0 150,0 2040 168,0 27.0 172.0 £58,U 165,0
29,0 191,U 30,0 177,0 31,0 167,0 32,0 180,0

TU139Y BLACKBURN AVERAGE SCORE OF S4
OPERATIONS= CROSSING QUT "E"'S

25

1.0 192:0-2,0 155,6:3,0 1¢0,0°4,0 176,353

5.0 179.6 6,0 18u, 4 7,0 180,22 8,0 185.1
9,0 190.5 10,0 200,0 11,0 198.7 14.0 195,5
13,0 194,¢2 16,0 199,3 15,0 188,00 16,0 198,10
17,0 211,¢ 18,0 ¢0Y,6 19,0 204,1 €0,U 214,°
210 410,.U0 2.0 196,%:23,0:202.,7

TU140 BLACKBURN AVERAGE SCORE OF S1
OPERATION:= CODE SUBSTITUTION

kT

Vo 0 2202 &l £900 3,0 300 4 U 28,9

9.0 3.6 06,0 3.8 7,0 40,6 8.0 40,6
Y,0 41.7 10,0 41.7 11.0 48,3 12.0 48,9
15.0 49,6 14,0 50,0 15,0 51,7 16,0 55,6
10,0 53.3 18,0 56,9 19.0 51.7 20.0 5.8
1.0 60,0 22.0 6,2 23.0 62,8 24,V 00,1
25,0 65,0 26,0 63,9 27,0 71,¢ 2.0 71,/
Y. 0 70.6 30,0 (35,3 51,0 (3,5 3.0 74,8
35,0 (3,9 36,0 (/7,2 35.0 (8,9
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Tul41 BLACKBURN AVERAGE SCORE OF S§2
"UPERATION:= COUDE SUBSTITUTION
55

1,0 1.2 2.0 17,2 3,0 16.1 4,0 20,6
5,0 18.9 6,0 20,6 7,0 Z22.8 8.0 2¢.¢
V:0.23.9, 10,40 25,5 11,0 ¢2.8 12,0 22,8
15,0 25,0 14,0 26,1 15,0 ¢8,3 16.0 31,1
17,0 31,1 18,0 do6,7 19.0 32,8 20.0 3¢.8
1,0 36,1 22,0 40,0 23.0 37,2 24.0 34,4
22,0 34,4 26,0 42,2 27,0 40,6 28,0 42,2
2Y.,0 42,8 30,0 46,7 31,0 37,8 32.0 42,2
35,0 42,08 34,0 45,0 35,0 47,2

TUT4Z BLACKBURN AVERAGE SCORE OF S35
UPERATION:= CUDE SUBSTITUTION

32

1,0 20,0 2,0 ¢5.5 3,0 23.3 4,0 26,1

5,0 50,0 6,0 9.4 72,0 31.17 B,U 30,6
9,0 9.4 10,0 28,9 11,0 52,2 12,0 32.¢
15,0 36,1 14,0 33,9 15,0 37,2 16,0 30,1
17,0 33,5 18,0 36,1 1¥Y.,0 40,0 20,0 44,4
1.0 42,0 22.0 45,6 25,0 50,0 26,0 49,4
25,0 51,7 26,0 49 .4 27,0 51,1 28.0 50,0
9,0 50,0 30,0 57,2 31.0 56,7 32.0 56,1

TU143 BLACKBURN AVERAGE SCORE OF Sé
UPERATIUN:= CODE SUBSTITUTION
3
1.0 28,3 2.0 24.6 3,0 29,6 4,0 55,3
5,0 26,7 6,0 35,8 7,0 36,6 8,0 29,6
9,0 46,7 10,0 45,5 11,0 a/,1 12,0 42,7
15,0 52.6 16,0 49,0 15,0 52,0 16.0 51,0
17,0 58,6 18,0 51,5 19,0 47,7 20.0 58,4
1,0 68,4 2.0 61,2 25,0 69,3

TU144 BLACKBURN AVERAGE SCORE OF S5
OPERATIUN:= CUDE SUBSTITUTION

55

1,0 15.6 ¢.0 18.3 5,0 20.2 4.0 21.8

5,0 21.9 6,0 24,35 7.0 27.5 8.0 ¢7.8
9,0 ¢/.1 10,0 51.8 11,0 53,7 12.0 30,2
15,0 29.5 14,0 $8,2 15.0 37,0 16,0 35,5
10,0 42,2 18,0 34,3 19,0 33,35 20,0 29,3
1,0 35.,¢ 22,0 39,4 23,0 38,8 24,0 39,1
25,0 28,6 26,0 34,2 27.0 46,8 28,0 46,8
¢Y .U 45,5 30,0 48,2 31.0 43,5 32.0 50,0
55,0 55,1
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TU145 BLACKBURN AVERAGE SCORE OF S6
OPERATION:= CODE SUBSTITUTION

30

1,0 21,1 ¢,0 ¢9,8 3,0 36.0 4,0 36,4

5,0 38,1 6,0 35,5 7,0 40,4 B,V 40,4
9.0 46.3 10,0 45.2 11,0 47,5 12,0 50./
15,0 47,06 14,0 46,3 15,0 54,3 16,0 57,6
10,0 67,9 18,0 60,3 19.0 64,4 20.0 61,3
21.0 63,5 22.0 68,5 23,0 60,9 24,V 70,4
5.0 (1.7 26,0 56,7 27,0 62,0 28,0 65,5
2Y.0 74,5 30,0 (4,5

TU146 BLACKBURN AVERAGE SCORE OF S7
OPERATION:= CODE SUBSTITUTION

50

1,0 12.2 2.0 15.1 3.0 18,6 4,0 27,5

5,0 31.7 6,0 34.7 7,0 36,1 8,0 44,5
9,0 33,7 10,0 42.6 11,0 56,2 12,0 67.5
15,0 55.1 16.0 41,5 15.0 55,1 16.0 58,7
17,0 65,0 18,0 71,0 19,0 69,2 20.0 57,8
21.0 64,5 22,0 62,8 23.0 06,3 26,0 79,6
29,0 Bh 4 26,0 9,4 27,0 46,5 28,0 65,9
29.0 /1.0 30,0 71,0

TUT4¢ BLACKBURN AVERAGE SCORE OF $1
OPERATION:= ADDITION

55

1,0 53,3 2,0 82.8 3,0 100,6 4,0 107,

5,0 112.8 6,0 114,46 7,0 113,9 8,0 121,7
9,0 112.8 10,0 121.7 11,0 125,0 12,0 126,/
15,0 127,2 14,0 1¢5.3 15,0 135,9 16,0 137,2
17,0 130,06 18,0 132,8 19,0 140,6 20,0 166,1
21.0 141,01 2¢.0 150,06 23,0 148,3 24,0 1633
25,0 1646,1 26,0 137,2 27,0 151,1 ¢8,0 151,7
29,0 160,0 30,0 167,8 31,0 154,6 32,0 156,464
$5.U 155,5 34,0 146,1 35,0 1356,1

TU148 BLACKBURN AVERAGE SCORE OF SZ2
OPERATION:= ADDITION

55 3

1,0 50.6 2.0 54,4 3,0 58,9 4.0 61,7

5,0 2.2 6,0 72,8 7,0 (6.1 8.0 76,1
9,0 81.1 10,0 /9.6 11,0 83,9 12,V 89,4
15,0 94,4 16,0 ¥1,1 15,0 83,9 16,0 91,1
17,0 93,5 18,0 Y6,1 19,0 93,9 20,0 9,2
21,0 99.4 22,0 94,64 23,0 106,71 ¢4,V 100,6
25.0 97.¢ 26,0 Y8,3 27,0 109.4 28,0 103.9
2Y.0 100,00 30,0 1017 31,0 101,77 32,0 91,/
35.0 100,6 34,0 105,606 35,0 107,¢
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TUT4Y BLACKBURN AVERAGE SCORE OF S3

OPERATION: -

L4

Te0 102.3 2,0 (5.3 3,0 115,0 4.0 125.0
5,0 1¢5,6 6,0 127,8

ADDITION

9,0 155,00 10.0 136,77 11.0 136.1

15.0
1.0
21,
25.0
29,0

138,35 14,0
138,9 18,0
162,2 ¢2.0
145,6 26,0
147,8 30,0

‘TUT50 BLACKBURN

UPERATION: =

18

135.3
136 ,1
1335,9
138,35
14,8

AVERA

ADDITION

1.0 84,4 ¢,0 60,0 3,0
5,0 115,64 6,0 85,9 7.0 85,9 8.0
9,0 128.8 10,0 135.7 11.0 132.2 12.0 136,79
15.0 136,9 14.0 143.6 15,0 149.0 16,0 155,1
17,0 162,71 16,0 149,0

TU151

OPERATION: -

x4

BLACKBURN

15940 13535.9
19.0 15¢.8
23,0 141.1
27.0 140,0
57,0 140,606

GE SCORE OF

16,0
Zu.u
24 U
28,0
3¢,9

S4

81.7 4,0 114.3

156,Y

AVERAGE SCORE OF S5

ADDITION

1,0 8.1 2,0 86,7 3,0
5,0 100,00 6,0 1¢4,5 7,0 129.8 8,0 137.1

9,0 129,.8 10,0 135,6 11,0 138,6 14,0 137,17
15,0 152,59 14,0 147,0 15,0 147,0 16,0 155,56
10,0 148,86 18,0 158,64 19,0 156,4 20,0 146/7,0
21,0 141,Y 2.0 158,64 23,0 147,00 ¢6,0 148,9
25,0 152,¢ 26,V 148,9 27,0 1591

TU152 BLACKBURN

OPERATION: =

£0

8.4 4,0 96,1

AVERAGE SCORE OF
ADDITION

S6

1,0 52,2 2.0 47,6 3,0 59.3 4,0 63,6
Y,0 66,7 0,V (8.7 (.0

9.0 (7.8 10,0 84,4 11,0 98,6 12,0 81,4

15,0
1.0
21,0
5,0

(. 8,0 (7,8

.0 132,88 8.0 136,7

12.0 155,79

135,6
135.6
146,7
134, 4
47,2

64,¢ 16,0 85,4 15,0 83,5 16.0 85,3
89.7 18,V 92,1 19,0 94,6 20,0 100,0

97,¢ 22,V 89,7 23,0 120,7 24,0

116, ¢

TU1535 BLACKBURN AVERAGE SCORE OF $§1

OPERATION:=

35

1,0 5.6 2,0 5.6 3,0 6,9 4.0 14.1

5,0 18.5 6.0 26,5 7.0

9.0 63,5 10,0 5865.,5 11,0
52,6 14,0 47,6 15,0 57,0

15,0
7.0
¢1.0
¢d,u
Y.
35,0

90,9 18,0 15,0

11,1 30,0

Too,0

MAZE LEAKNING

57.¢ 8.0 40,0

50,0 12,0

62.5
16.0 76,9

109, 4

19.0 111.,1 20,0 125,00
14,9 22,0 90,9 23,0 100,0 24,0 142,9Y
9U,9Y 26,V T00,0 27,0 125,00 8.0 71,4
51,0 14¢.,9Y 32,0 90,9
f6,9Y 34,0 25,6 35,0 125,v
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TUT24 BLACKBURN AVERAGE SCORE OF §2
UOPERATION:= MAZE LEARNING

39

1,0 5,6 2,0 7.9 3,0 5,6 4,0 14,1

5,0 16,6 6,0 10,2 7,0 18,2 8,0 35,7
Pel 41,7 10,0 31,2 11,0 62,5 12,0 41,7
15,0 71,4 14,0 56,8 15,0 62,5 16,0 6£,5
17,0 83,5 18,0 50,8 19.0 66,7 20,0 111
1.0 45,5 22,0 2U,8 ¢35,0 55,6 24,0 85,53

Ay

25,0 100,00 6,0 /1.4 27,0 90,9 28,0 100,
9.0 21,4 30,0 15,0 31,0 100,0 32,0 40,0

55,0 125,0 $4,0 15,0 35,0 111.,1

TUTSS BLACKBURN AVERAGE SCORE OF S3
OPERATION:= MAZE LEARNING

S5

T¢ 5,6 ¢,0 5.6 3,0 13.5 4,0 11,8

S0 34,5 6,0.55,3 7.0 9.5 8.0 24,4
9.0 15,4 10,0 19,2 11.0 2¢.2 12,0 23,5
15.0 55,6 16,0 43,5 15,0 65,5 16,0 18,2
V.0 45,9 18,9, 37,0 19,0 ¢1.35.20.0 41,7
1.0 37,0 22,0 52,6 25,0 47,06 24,0 41,7
92,0 26,5 26,0 (06,9 27.0 55,0 28,0 50,0
<Y,V 52,6 30,0 52,6 31,0 o6,/ 32,0 83,3

TUT56 BLACKBURN AVERAGE SCORE OF S4
OPERATION:;= MAZE LEARNING

)

1,0 5,6 ¢,0 9,1 3,0 18,5 4,0 18,9

5,0 9.6 6,0 5,6 7,0 6,8 5,0 ¢5.6
9.0 16.1 10,0 10.4 11,0 17.9 12,0 20,8
15,0 45,5 14,0 50,3 15,0 25.5 16,0 47,6
17,0 79,9 16,0 66,7 19,0 26,5 20.0 90,9
1.0 66,7 22,0 66,70 23,0 62,5

TUT5¢ BLACKBURN AVERAGE SCORE OF S5
OPERATIUN:= MAZE LFARNING

55 :
100 5.6 2,0 9.6 3,0 5.6 4.0 6.4

5.0 9.6 6,0 5,6 7,0 5,6 8,0 5,6
9,0 5,6 10,0 5.6 11,0 5.6 12.0 5.6
15,0 9.8 14,0 14,5 15,0 10,1 16,0 13,3
1,0 9.3 18,0 11,0 19,0 12.7 20,0 10,1

21,0 £/ U 22,V 23,0 23,0 30,5 24,0 50,3
¢2%,.0 31.¢ 26,0 57,0 7.0 58,8 2b.0 37,0
Y, U 33,5 30,0 33,3 31.0 35,7 32,0 36,5
35,V ¢2.¢
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TU158 BLACKBURN AVERAGE SCORE OF So
OPERATION:= MAZE LEARNING

30

1,0 5.6 2,0 5,6 3,0 11.4 4,0 9.4

5,0 14,35 6,0 61,7 7,0 50,0 8,0 62,5

9,0 40,0 10,u 30,3 11.0 50,0 12,0 58,8
15,0 71,6 14,0 90,9 15,0 111,171 16,0 100,0
17,0 100,0 18,0 85,3 19,0 50.0 20,0 111.,1
21,0 111,1 22,0 100,00 ¢23,v 111,11 <4,V 1111
¢9.0 142,% ¢6.0 142,7 27,0 62,5 ¢8.0 111
9.0 835.5 30,0 90,9

TU15Y MURCOMBE CYCLE TIME (SECONDS)/TRIAL FUR GA,
OPERATION;= SIMULATED ASSEMBLY

0 MOD

1.0 175,00 2.0 155,00 3,0 165,00 4,0 145,0

5,0 135.0 6,0 130,0 7,0 127,00 8,0 148,0

9,0 127,00 10,0 1272,0 11,0 127,0 12,0 17,0

15.0 128,0 14,0 1¢6,0 15,0 14/7,.0 16,0 127,0

1.0 128,0 18,0 1¢6,0 19,0 17,0 20,0 17,0

TUT6U MORCOMBE CYCLE TIME (SECONDS)/TRIAL FQR/MS.
OPERATION:;= SIMULATED ASSEMBLY
40 MOD
1,0 228.0 2,0 156,0 3,0 158,00 4,0 154,0
5,0 127,00 6,0 130, 0 7,0 128,00 8,0 111,0
9,0 122,0 10,0 1235,0 11,0 151,00 1.0 1643,0
15,0 120,0 14,0 119,0 15,0 100.0 16,0 115,0
17,6 122,0 18,0 111.0 19.0 125.0 20,0 115,40

TU161 MORCOMBE CYCLE TIME (SECONDS)/TKIAL FUR PD,
OPERATION:= SIMULATED ASSEMBLY ‘
20 mMOD

U 295502 2:,0°958305340 315,0.4,0 1425.0

5,0 120,00 6,0 113,06 7,0 112,V 8.0 115,90

9,0 111.0 10,0 Tud,0 11,0 118,0 14,0 103.0

15.0 106,0 14,0 95,0 15,0 96,0 16,0 Y¥.0V

17,0 107,00 18,0 107,060 19,0 100,V 0,0 10,0

TU16¢ MORCOMBE CYCLE TIME (SECONDS)/TRIAL FUR BC.
OPERATION:= SIMULATED ASSEMBLY
0 MOD
1,0 1945,0 2,0 ¢93,0 5,0 200,V 4,0 15¢.,0
5,0 152,0 6,0 166,00 7,0 152,V 8,V 145,0
9,0 142,00 10,0 143,00 11,0 145,00 12,0 1357.0
15,0 146,00 14,0 47,0 15,0 164,0 16,0 156,0
17,0 138,00 18,0 126,0 19,0 124,00 20,0 145,0

TUT63 MORCOMBE CYCLE 1TIME (SECONDS)/TKIAL FOR GG,
OPERATIUN:~ SIMULATED ASSEMBLY
0 MUD
1,0 190.0 2,0 167,00 3,0 121,0 4,0 1MY.0
5,0 101.0 6,0 102,0 7,0 112,0 8,0 119 ,0
Y,0 118.0 10,0 119.0 11,0 107,V 1.V 109.0
15,0 111,0 14,0 95,0 15,0 108,0 16,0 100,00
1.0 100,0 18,0 110,00 19,0 99,0 20,0 Y2,V
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TUiT64 MORCOMBE CYCLE TIME (SECONDS)/TRIAL FOR JS,
UPERATIONG:= SIMULATED ASSEMBLY
¢V 10D
1,0 118.0 2.0 114,0 3.0 111.0 4.0 105.0
5,0 94,0 6,0 91,0 7,0 93,0 8,0 10,0
9.0 Y4,0 10,0 101,0 11.0 92,0 12.0 95,0
15,0 101.0 14,0 97,0 15,0 101.0 16,0 09,0
17.0 94,0 18,0 67,0 19,0 92,0 20.0 86,0

TUT65 HACKETT PERCENT OwN INITIATIVE,S>=DAY SUM FOK EB,
OPERATIUN:= PLUGGING IN :
18
Tel 84,00 2.0 90,42 3.0 93,206 4,0 94,59
5.0 96,56 6,0 Y85,11 (.0 97,50 8,0 97,65
9,0 99,11 10,0 99,06 11,0 99,19 1¢,0 100,0
15,0 100,0 14,0 100,00 15,0 100,0 16,0 00,0
17,0 100,0 18,0 100,0

TU166 HACKETT PEKCENT OwWN INITIATIVE.S=DAY SuUM FOR EE,
OPERATION:= OPERATING KEYS

18

1.0 86,81 2,0 93,05 3.0 97,36 4.u 98,59

5,0 95.65 6,0 98,70 7,0 98,76 8,0 98,76

Y,0 98,70 10,0 986.92 11.0 99,06 12,0 99,14
13,0 99,45 14,0 99,31 15,0 100,0 16,0 100,0
17,0 100,0 16.0 100,0

TU16¢ HACKETT PERCENT OWN INITIATTIVE,5=DAY SUM FUR EB,
OPERATION:= DIALLING

18

1.0 90,65 2.0 95,20 3.0 99,¢5 4.U 99,25

95,0 98,50 6,0 Y8,52 7,0 95,42 8,0 98,56

.0 97,91 10,0 96.83 11.0 99,08 12,0 99.¢4

15,0 99,31 14,0 100,0 15,0 10,0 16,0 10v,v

17,0 100,0 18.0 100,0

TU168 HACKETT PEKCENT OWN CINITIATIVE 5-DAY SUM FOR EB,
OPERATIUNS= USE V,I.F,
18
1,0 872,35 2,0 89Y.34 3,0 95,16 4,0 95,16
5,0 94,44 6,0 95,85 7,0 95,56 8,0 96,08
9,0 96,42 10,9 98,01 11,0 99,43 12,0 ¥Y9.0¢
15,0 99,57 14,0 99,63 15,0 100,uv 16,0 100.0
17,0 100,0 18,0 100,0

TU169Y HACKETT PERCENT OWN INITIATIVE 5=DAY SUM FOR EB.
UPERATION:= TICKET WORK

18

1.0 86,71 2.0 91,03 3,0 95,67 4,0 97,40

5.0 98,U9 6,0 96,24 7,0 96,97 8.0 9,79

Y.0 92.2¢ 10.0 90.96 11,0 95,86 14,0 95,47

15,0 97,03 14,0 95,15 15,0 ¥9.56 16,uU 99,48

17,0 10U,0 18,0 100,0 .
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TUAFU HACKETT PERCENT OwN INITIATIVE 5-DAY SUM FOR EG..
OPERATION:~ SPEAKING

19

1,0 40,21 2,0 50,52 3,0 60,21 4.0 65,00

5.0 86,064 6,0 88,5 7.0 69,13 8,0 85,71

9.0 85,71 10,0 80,95 11.0 86,0 12.0 59,83

15,0 96,90 14,0 96,98 15,0 96.27 16,0 96,73

17,0 96,76 18,0 96,64 19,0 Y6,93

TOT/71 HACKETT PERCENT OwN INITIATIVE 5-DAY SUM FOR EB,
OPERATIOn:= LISTENING

19

1,0.681,69 2,0 83,53 3.0 69,77 4.0 90,3¢

5,0 935,15 6,0 94,5 7,0 95,5¢ 8,0 96.11

Y. 0 96,135 10,0 96,62 11,00 100,0 12,00 100,0

15,0 100,00 14,0 100,00 15,0 99,77 16,0 99,77

17,0 99,76 18,0 99,73 19,0 99,74

TUT7¢ HACKETT PEKCENT OWN INITIATIVE 5-DAY SUM FOR EB,
OPERATION:= FILING

15

1.0 83,87 2.0 96,29 3,0 92,30 4.0 95,10

5,0 93,55 6,0 89,28 7.0 88,88 8,0 96,15

9,0 92,85 10,0 87,50 11,V 95,56 12,0 95,74

13,0 96,61 16,0 96,36 15,0 100,0 16,0 100,0

17,0 100,0 18,V 100,0

Y0175 HACKETT PERCENT OWN INITIATIVE 5=DAY SUM FOR EB.
OPERATION:= TIMING

18

1.0 65,46 2.0 (9,56 3,0 81,39 4,0 79,48

S0 26,9¢ 6,0 (5,57 7,0 86,95 8,0 84,061
9,0 835,35 10,0 65,71 11,0 96,15 12.0 96,66

13,0 100,0 14,0 100,0 15,0 100,0 16,0 100.0

17,0 00,0 16.0 100,0

TO174 HACKETT PERCENT OWN INITIATIVE 5=DAY SUM FOR EU,
UPERATION:= CLEARING DUWN

18

1.0 85,0 2,0 86,04 35,0 86,95 4,0 93,75
5,0 94,35 6,0 95,91 7,0 Y6,00 8,00 97,91

Y,0 97,87 10.0 97,82 11.0 96,18 12.0 98,46

15,0 98,04 16,0 98,75 15,0 1Tv0,0 16,0 100,0

1,0 100,0 16,0 100,V .

TUT/?S LAMB  VALUED CALLS COUNT FUR J DURING TKAINING,
OPERATION:= TELEPHONIST

18

Z,0 101,5 3,0 100,0 4,0 18,5 5.0 10,5

8,0 117,00 9,0 155,5 10,0 131,00 11,0 147,00

12,0 15,0 15,0 150,75 16,0 177.0 17,0 180,45

18,0 154,0 19,0 99,5 22,0 152,75 ¢3,0 165,5

25,0 180,0 26,0 169,0
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TUI/6 LAMB VALUED CALLS COUNT FOR J,ALL OBSERVATIUNS
OPERATION:= TELEPHONIST

ra

2.0 10175 5.0 100.,0 4,V 118.5 5,0 MTv2.5

8.0 117,00 9,0 135,5 10,0 131,00 11,0 V47,0

1,0 15,0 15,0 150,75 16,0 177,0 17,0 180,25

18,0 156,0 19,0 99,5 22,0 152,75 23,0 165.5

25,0 180,0 26,0 169,0 30,0 168,65 33,0 10687,25

40,0 264,5 S0,0 165,55 56,0 214,00 75,0 2890

TUB, 0 239,75 129.0 261,25 165,00 £54,¢5

TUT7¢ LAMB TEST SCORES FUK J.
OPERATIUNS= TELEPHONIST

5
5,0 100,0 9,0 139,0 17,0 163,5 19,0 186,0
121,00 264,0

TU1/78 LAMB VALUED CALLS COUNT FUR K, DURING TRATINING
OPERATION:~ TELEPHONIST
19
.0 49,5 3,0 68,5 4,0 56,0 5.0 87,25
8,0 95,0 Y.,0 115.75 10,0 85,5 11.0 105,75
12,0 109,0 15,0 98,25 16,0 128,25 17,0 136,25
18,0 1435,0 19.0 147,5 22.0 144,0 23,0 132,75
24,0 114,5 25,0 1¢27.5 26,0 117,0

TU1/79 LAMB VALUED CALLS COUNT FOR KsALL OBSERVATIUNS
OPERATION:= TELEPHONIST

el

2,0 49,5 3,0 68,5 4,0 56,0 5,u 81,25

8,0 95,0 9,0 115,75 10,0 85,5 11,0 105,75

14,0 109,0 15,0 98,25 16,0 128,25 17.0 150,355

18,0 143,00 19,0 147,5 22.0 144,00 23,0 132,75

26,0 114,55 ¢5,0 1¢7,5 ¢6,0 117,00 ¢9,0 152,0

33,0 104,¢5 37,0 1461,5 47,0 190,5 56,0 162,5

115,0 21Y,5 1356.0 214,75 165,0 215,45

TUT80 LAMB TEST SCORES FOR K,
OPERATIUONS= TELEPHONIST

6
9,0 134,00 9,0 95.5 17.0 136,25 19,0 157,5
€e,0 187,75 121,0 215.5

TU181 LAME VALUED CALLS COUNT FOR L, DURING TKAINING
OPERATION:=TELEPHON]ST
19
2,0 59,0 5,0 112,00 4,0 65,5 5,0 (6,5
8,0 18,0 9,0 104,0 10,0 112,00 11,0 58,25
12,0 68,0 15,0 96,0 16,0 130,75 17,0 105,V
18,0 127,75 19,0 101,.5 22,0 139,0 23,0 128,75
26,0 104,65 25,0 105,75 ¢6,0 146,5
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TUT82 LAMB VALUED CALLS COUNT FOR L,ALL UBSERVATIONS
OPERATION:= TELEPHONIST
e
2,0 590 3¢0/' 172,040 65,5 5,0'78,5
B,0 128.,0 9.0 104,0 10,0 112,90 11,0 58,25
12.0 65,0 15,0 96,0 16,0 130,75 17.0 105.0
18,0 127,05 19.0 101.5 2.0 139,0 23,0 128.75
26,0 104,75 25.0 105,75 20,0 146,5 29,0 110,5
35,0 143,0 S7.0 133,0 40,0 158,75 54,0 147,05
115.0 174,5 136,0 222.5 165,00 19¥0,0

TU1T835 LAMB TEST SCORES FUR L,
OPERATION:= TELEPHONIST

6
S,0 127.0 9.0 80.5 17,0 151,75 19,0 157,5
24,0 187,75 120,0 281,75

Tul8¢4 LAMB VALUED CALLS COUNT FOR S,DURING TRAINING
OPERATION:= TELEPHONIST
10
2,0 96,0 3,0 126.0 4.0 95,0 5.0 125.0
By0 140,¢5 9.0 117,0 10,0 192,5 11,0 175.0
12,0 205,5 15,0 166,75 16,0 181.5 17,0 154,0
16,0 167,5 2.0 109,25 25.0 182,0 25,0 161.5
26,0 155,0

TO18S LAMB VALUED CALLS CUUNT FOR S,ALL OUBSERVATIONS
OPERATION:= TELEPHOUNIST
26
2.0 94,0 5,0 126,0 4,0 95,0 5,0 125,V
8,0 140,25 9,0 117,00 10,0 192,5 11,0 175.0
12,0 €05,5 15,0 166,75 16,0 181,5 17,0 154,V
18,0 167,5 22.0 179.¢5 25,0 162,0 25,0 161.5
20,0 155,0 29.0 191,25 35,0 ¢¢2,5 40,V 2870
4,0 222,95 54,0 228,25 (5,0 ¢89,0 108,00 250,5
1¢8,0 236,0 158,0 263,

TU186 LAMB TEST SCORES FOR S
OPERATION:= TELEPHONIST

5
95,0 97,0 9.0 151,00 17,0 128,5 19,0 1/3.5
1¢¢.0 215,0

TOT87 MINTER (CORRESPUNDENCE)

15

V.0 30,0 4,0 49,69 8,0 55,55 12,0 68,41

16,0 (7,90 2U.0 84,68 24,0 89,38 ¢8,00 92,27
52,0 88,12 $0,0 98,65 40,0 105,51 44,0 103,11
48,0 101,5¢

«
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APPENDIX D

- DETAILS CONCERNING BLACKBURN'S EXPERIMENTS,

/ !

In order to illustrate points in the arguments developed in the

preceding pages frequent reference has been made to the experi-
ments performed by me. Details of these experiments are pre-
sented here in order that the statements can be verified, if
necessary, by reference to the actual figures.

/[The nature of the Experiments.

/

j Five experiments were performed : - Card sorting, Maze

learning, Code substitution, Crossing out e's and Addition.
(1) In the card-sorting experiment the observer had to sort

a pack of 42 cards into their appropriate compartments on a table
in front of him. The compartments were marked in random order
and the pack of cards was also arranged in a random order for the
first trial, although the same order was used in successive trials
and with all observers. The observer was given the pack face up-
wards, and one sorting constituted a trial, his time being noted.
The arrangement of the compartments is shown in Fig. 25, and the
order of the cards was as follows: 4d, As, 5h, 2c, Qs, Js, Kc, 6d,
Ah, Ks, 4s, 3c, 10s, 2s, Kh, 5d, 7c, Jc, Jh, 7h, Qd, 6h, 8d, Qh,
10c, 3d, Qc, 4h, 7d, 8h, 5s, 9s, 3h, 2d, 6¢c, 9c, 10h, 8s, 9d, Ac,

7s, Ad (where d, s, ¢, h, stand for diamonds, spades, clubs and

hearts respectively).
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FIG. 25

ARRANGEMENT OF COMPARTMENTS IN CARD SORTING

EXPERIMENT; H, HEARTS; S, SPADES; C, CLUBS;

D, DIAMONDS.

(2) In the maze-learning experiment the observer had to
learn a stylus maze which was placed on the far side of a black
cloth screen through which he put his hand. The observer was thus
unable to see what he was doing, and he had to learn the maze by
means of either visual images or kinaesthetic sensations, or a
combination of both. The score was the time taken to get the pencil
from the entrance to the exit. One run through the maze constituted
a trial. The design of the maze is shown in Fig. 26.

(3) In the code-substitution experiment a rather complicated
code was used in which the letters of the alphabet were represented
by different combinations of the figures "1 and "2", and the figures

"1" and '"2" had to be represented by a stroke to the left (for '1'")
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PLAN OF THE MAZE,

or to the right (for '"2") of a series of vertical lines on the form
provided for the purpose. The arrangement of the code is shown

in Fig. 27. This key was kept constantly in front of the observer

CODE SUBSTITUTION

1 = One mark to the LEFT. 2 = One mark to the RIGHT.

A =11 H =12 0 =21 VvV =22

B = 1311 thy e3:12] P =211 w =221
C =112 J ="122 Q =212 = 222
D=1111 K =1211 R =2111 Y =2211

E =:1¥12 gte 1212 S . =2112 Z =2212

F =112 M=1221 T =212l

G =122 ' f=1222 U =2122
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1 = One mark to the LEFT. == One mark to the NIGIIT.

A=1]1 H =12 0O =21 V=22
B =111 y I =121 P =211 W= 221
C =112 T =120 O = 212 X = 220
D=:1111 K = 1211 R = 2111 Y = 2211
E = 1112 L =212 S =212 Z = 2212
= 1121 M =1221 T =212
G = 1122 N = 1222 U = 2122
» ; ]
; The moon was 't E,‘-LTJ.JF:]L]-{ l I
/ shining brightly % f:l: } 3. 3 :1- :f- _-;!:
| and the sky 1 z '}‘ZL ro| l
, LP171Try0
was clear. .r '}- T3 9 4 | l
rtal A [
FIG. 27

CODE SUBSTITUTION

at every trial so that immediate reference could be made to it if
requﬁired. The same passage containing about 100 words of prose
was ‘put before the observers on every trial, but only a portion of
this was translated each time. Details concerning the practice
periods will be found in the next section.

(4) In the addition experiment a page of Kraepelin's

Rechenhefte was put before the observers, and they had to add

successive pairs of the figures. The first two figures were added

and the unit figure of the sum (if the result were greater than 9) was

written at the side of the second figure, then the second and third figures

were added and the unit figure of the sum was written by the side of the

third figure, and so on, until the observer reached the bottom of the

first column, after which he proceeded to the second column, and so on.

Details concerning the practice periods will be found in the next section.
(5) Crossing out e's. This consisted of crossing out all the

e's in a page of French words arranged in an order not making sense

(see Fig. 28). There were 10 e's on each line - although this was
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not noticed by any of the observers - and the position in which they
occurred differed in every line. Details concerning the practice
periods will be found in the next section.

bservers and the Arrangement of the Conditions of Learning.

'7 observers were used. They were all university students,
two being research workers, and the others working for their final
degree is psychology.

Ot.)server 1 did one trial a day on each of the tests for 6 days
a week, and the order in which he did the tests remained the same
on successive days. This order was - Card sorting, Addition,
Code/ substitution, Crossing out e's, and Maze learning. Each trial
in card sorting and maze learning consisted of one distribution of
the cards or of one run through the maze each day. Each practice

period in the addition, code substitution, and crossing out e's

experiments_ consisted of three minutes work. This remaineq the
same throughout the whole experiment, with the exception that in
the e's test this observer managed to complete the whole page in
under three minutes after the 14th trial. After this trial his record
was scored by the time he took to do the page of e's.

Observer 2 did the experiments under exactly the same con-
ditions, and with exactly the same arrangement, as Observer 1,
except that in the e's test he never managed to complete the page
in the three minutes allotted.

Observer 3 also did the experiment under the same conditions,

with the exception that the order in which he did the tests varied from
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routes voir premier pas micux dire et le mouchoir emmener
sovleil de maricr le demeurer de bonnes des froid front

lui de se cing le lendemain trouver minutes retard cellier
la virile de moyens jamais rarement sauvage perte les bleu
laissa le splendeur les or magnificences reve de sa beaux
nulle sur collier de cette rois certainement resistance on la
ces charmants plantureuse au prix de querelle est large ne
sans une des sires les plus de vegetation reporter esprit
passee son rivages de chart retour des la capricicuses ses
peur montrent des paysages faits des yeux etre nulle arret
part dans premiere rois les yeux la lumiere matelots meme
pour le aux dernieres implorent comme tant de terre pieux
souriait cruel beau rue ce des aspects ce radieux priere
pPlus grandirent avec et de pres de viendrait pelerinages la

de trois parvenait a cette la precieuse mirage que appelait

FIG. 28

R MATERIAT USED INTTHE EFS EXPERIMENT,

day to day.

Observer 4 did the same as Observers 1 and 2 in regard
to the maze and'the card distributing tests, except that his trials

were not quite so regular - one or two days being occasionally

missed between trials (this, however, had no discernible effect on

his results).

conditions were different for this observer. His record was scored

=)
2l
R=N

In the addition, code substitution, and e's tests the



by the time in successive trials that he took to do a fixed quantity
of the work - this fixed quantity being the amount he did in three

rninutes on his first trial.

Observers 5, 6, and 7 did all their trials of one task on one

afternoon, i.e., their trials were massed. They performed one
test on the same day each week, and bétween each trial they gave
their introspections before proceeding to the next trial. One longer
interval of about 10 minutes was permitted after about the 14th trial.
Apart from the fact that their trials were massed the constitution

of the trials in the different te‘sts was the same for them as for
Observer 4, that is to say, one frial in the maze consisted of one
run, and one trial in the card sorting test of one distribution of the
cards: in the addition, crossing out e's, and code substitution tests
their trials consisted of doing exactly the same amount in subsequent
trials as they did in their first three minute trial, their scores be-
ing the time they took to do it.

The conditions and arrangements of the trials were deliberately
altered for the different observers by me because I was primarily
interested in discovering whether the different processes could be
represented by typical learning curves. Consequently as many of
the different factors as possible were altered, so that if the par-
ticular process did have any predominant characteristics they would

become apparent.

The scores of the different observers in the tests are given
|

below in Tables 1-V. The observers were not specially penalised

155



if they made errors. The fact that they had made an error was
regarded as sufficient penalty, hindering, as it did, the for-
mation of the final adjustments required for a perfect knowledge

of the problem. The scores are all given in the achievement
form, this being tne form on which the curves given in the preceding
chapters have been basea. In the ma~ze test this has been obtained
by simply taking the reciprocals of the original times: while the
scores in the other tests are based on the average performance in
the arbitrary time of 100 seconds. In order to check the figures
given below with the figures give‘n in the graphs it must also be
remembered that in some casesAthe graphs have been based on a
""moving average' in order to eliminate the day to day fluctuations.
This moving average had a base of three trials, i.e. the first point
was obtained by summing the performance scores in trials 1-3, the
second by summing the performance scores in trials 2-4, the third
in trials 3-5, etc. In every case it has been stated on the graphs

when the moving average system was used.

NOTE: - The tables mentioned in the text are not included as the
relevant data is in Appendix C.
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APPENDIX E

TELEPHONIST TRAINING DATA OBTAINED FROM

RECORDS IN OXFORD AND NORTH WEST TELEPHONE AREA

-AU:.

70201 TELEPHONIST TRAINING DATA  T1, EXCHANGE
7

5.0 58,0 7,0 84,0 10,0 105,0 13,0 106,0

18,0 133,0 20,0 147,0 21, 163,09

Y0202 VELEPHONIST TRAINING DATA T2 EXCHANGE
7

5,0 118,0 7,0 122,0 10,0 128,0 13,0 V47,0

15,0 166,00 17,0 216,0 169,00 25¢,0

T0203 TELEPHUNTIST TRAINING DATA T3, EXCHANGE
4

5.0 916,0 7,0 153, 0 10,0 137,0 15.u 17¢,0

15,0 144,0 1( 0 165,0 18,0 1b1

10204 YELEPHUNIST TRAINIVb DATA T4y EXCHANGE

5,0 76,0 7,0 167,00 10,0 14u,0 15,0 116,0

15,0 124,0 17,0 15/,0 20,0 174,0

T0205 TFLEPHUNI ST TRAlNlhb DATA TS, EXCHANGE
4

5,0 85,0 8,0 88,0 12,0 110,0 15,0 126,v

17,0 155 U 18,0 157,0 19,V 151,0

Y0206 TELEPHONIQT TRAININb CATA Toe EXCHANGE
[+]
0 106,00 ¢,0 904,00 10,0 104,0 15,0 13,0

v 0 134,0 16,0 156,0
207 TFLFPHUNIST TRAINING DATA 17y EXCHANGE
7
5,0 65,0 7,0 92,0 10,0 133,0 15,u 74,0
15,0 108,V 18,0 111,0 20,v 160,
Y0208 TFLLPHUN!ST TRAININu OATA TRy EXCHANGE
5
5,0 125,0 /,U 147,0 10,0 170,00 13,u 176,0
15,0 212,
Y0209 TELEPNONIST TRAINING DATA 19, EXCHANGE
8
S,0 28,0 7,0 44,0 10,0 B7,0 15,0 118,09
19,0 130,0 17,0 179,00 19,0 175,0 20,0 159,0
Y0210 TELEPHONISY TRAINING DATA T16G, EXCHANGE
6
5,0 93,0 86,0 122,0 12,0 156,0 15,0 1035,0
17,0 152,0 19,0 102,0
Y0211 TFLtpuowlqr TRAINTRNG DATA Y91, EXCHANGE
4
5,0 140,0 7,0 113,0 10,0 113,0 15,0 150,0
15,0 126,0 18,0 144,00 19,0 155,0
Y0212 TELEPHONIST TRAINING DATA T1¢+ EXCHANGE
6
5,0 56,0 7,0 90,0 10,0 120,0 13,0 146,0
15|0 159.0 1(.(? 1()8.()
Y0213 TELEPHONIST TRAINING DATA T13) EXCHANGE
6
5,0 97,0 7,0 131,0 10,0 13,0 13,0 161,0
15,0 157,0 17,0 163,0
Y0294 TELEPHONISY TRAINING DATA T14r FXCHANGE
7
WV 55,0 7,0 1119,0 10,0 90,0 13,0 1606,0
5.0 154,00 18,0 963.0 151.0 ¢Z€o.u._
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T0219 TELEPHONIST TRAINING DATA  T19, EXCHANGE
7

5,0 49,0 7,0 78,0 10,0 143,0 15,0 140,0

18,0 162,0 22,0 165,0 180,U 2%¢,u

Y0229 TELEPHONIST TRAINING DATA T21¢ EXCHANGE

6

0 42,0 7,0 B0,0 10,0 104,0 18,0 145,0

W0 164,0 226,0 260,0

N2 TELEPHONIST TRAINING DATA T72) FACHANGE

¢

5,0 1642,0 7,0 134,0 10,0 89,0 13,0 136,0

15,0 139,0 97,0 1061,0 72,0 2&f,0

T0E23 TELEPHUNIST TRAINING DATA T3¢ EXCHANGE
8

6,0 94,0 8,0 143,0 12,0 157,0 14,0 141,0

16,0 140,U 17,0 136,90 18,0 208,00 133,0 216,0

Y0224 TELEPRUNIST TRAINING DATA T24r EXCHANGE
6

5,0 111,00 7,0 1648,0 9,0 156,06 13,0 1206,0

15,0 170,00 127,00 ¢€14,0

Y0225 TELEPHONISY TRAINING DATA T25¢ FXCHANGE
6

5,0 230,0 7,0 235,0 10,0 ¢58,0 13,0 <¢6¢,0

15,0 230,0 198,00 ¢41,0

TG226 YELEPHONIST TRAINING DATA Trer EXCHANGE
4

5,0 95,0 7,0 119,00 10,0 130,0 12,0 14<,0

15,0 171,V 17,0 1067,0 154,V 220 ¢

10227 TELEPHUNIST TRAINING DATA 127t EXCHANGE
9

5,0 32,0 7,0 122,00 10,0 63,0 15,0 135,v

15,0 145,0 16,0 105,0 17,0 158,0 19, U €06,V

186,0 ¢3¢2,0

T0229 TELEPHONIST TRAINING DATA Te9r EXCHANGE

10
3,0 58,0 7,0 85,0 10,6 121,09 13,0 121,0
15,0 129,V 16,0 151,0 17,0 15¢,0 18,0 159,V
19,0 159,00 120,40 ¢11,0
TOZ30 TFLEPKHONIST TRAINING DATA T30r EXCHANGE
4

35,0 126,0 8,0 188,0 10,0 209,0 15,0 1461,0

15,0 203%3,0 16,0 240,0 154,u 20¢,0

TOR3Y TELEPHONIST TRAINING DATA T35%¢ EXCHANGE
/

5,0 98,0, .7,0.1098,0 10,0.193,0.13,0 165,0

15,0 168, 18,0 05,0 156,v 2¢5,0

T0232 TELEPHOUNIST TRAINING DATA 142, EXCHANGE
4

5,0 87,0 7,06 192,00 10,0 157,00 13,0 16€,0

15,0 142,0 17,0 212,0 1749,V 251,0

TOR33 TELEPHUNIST TRAINING DATA T33, EXCHANGS
4

6,0 85,0 6,0 109,0 9,0 119,0 1<,0 171,0

16,0 183,0 16,0 2064,0 134,00 27Y,0
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‘Y0234 TELEPHUONIST TRAINTNG DATA T34, EXCHANGE

6

6,0 111,00 8,0 195,0 10,0 143,00 14,0 146,09

17,0 180,0 3ud,0 £54,0

T0235 TELEPHUNRIST TRAINTNG DATA Y25+ EXCHAWNGE
2

5,0 101,0 7,0 16,0 10,0 15,0 13,4 153,0

16|0 154.‘) 16.“ 1‘*6.“ 2”.‘.! 166") aU?.U 10[‘0“

T0L36 TFLEPHQWIST TRAININuU DATA (56, EXUCHANGE
8 3

4,0 109,0 8,0 B8R, 0O 12,0 146,00 14,0 161,0

16,0 154,00 97,0 1642,0 18,6 176,0 157,00 2035,0

T0OZ38 TELEPHUNIST TRAINIKO DATA T36r EXCHANCGE
8

5,0 129,0 7,0 105,0 10,0 143,00 13,0 146,0

15,0 140,0 17,0 156,0 14,0.195,0 137,0 205,0

T0L39 TELEPHONIST TRAINING DATA 139, EXCHANGE
7 _

5,0 93,0 7,0 116,00 10,0 176,0 13,0 168,0

15,0 156,06 17,0 188,00 12%,0 cod,u

Y0240 TELEPHOUNIST TRAINTNG DATA T40r FACHANGE
8

5,0 67,0 7,0 100,00 10,0 146,06 13,u 9b,4u

5,0 120,0 19,0 17,0 20,0 179,00 154,00 2¢0,0

Y0249 TELEPHONISY TRAINING DATA Ty EXCHANGE
/

5,0 128,0 7,0 161,0 10,0 153,00 13,6 1<6,0

15,0 1492,0 17,0 2uB 0 1968,V ¢du,0

T0242 TELEPHONIST TRAINING DATA T6¢21r FACHANGE
8

5,0 36,0 7,0 115,00 10,0 85,0 95,0 103,0

15,0 98,0 17,0 110,0 19,0 169,v 139,00 ¢26,0

Y0243 TELEPHOUNIST TRAINING DATA Y43, EXCHANGE

&4

5,0 942,0 7,0 126,0 10,0 153,0 13,0 191,90

TOC44 TELEPHUNIST TRAINING DATA Th4r EACHANGE
10

5.0 31,0 7,0 109,090 10,0 126,06 1%,0 100,0

15,0 153,0 16,0 141,0 17 v 166,0 18,V 166,40

1940 162,90 141,0 216,0

TOR46 TELEPHUNIST TRAINING DATA T46, EACHANGE
8

5,0 106,0 7,0 140,0 10,0 160,0 13,0 110,

15,0 128,0 7,0 154,0 19,0 156,0 126,0 29/7,0

T0247 TELEPHONIST TRAININGL DATA Taly EXCHANGE
6

5,0 94,0 7,0 139,0 10,0 175,0 13,0 156,0

15,0 201,0 85,0 2¢4,0

T0248 TELEPRUNIST TRAINING DATA T8, EXCHANGE
5

5,0 146,0 7,0 128,0 10,0 128,0 16,0 146,0

18,0 192,0

T0249 TELEPHONIST TRAINING DATA TaYe EXCHANGE

3

5,0 47,0 7,0170,0 10,0 1960 ¥5,0 171,0
288 .0 237,0
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10259 TELEPHONISY TRAINING DATA T51¢ EXCHANGE
7

5,0:19450. 7,0 122;0, 9,0-133,0.15,0:137,0

15,0 143,00 17,0 189,0 318,u 20,0

10252 TELEPHORIST TRAINING DATA T52¢ FAKCHANGE
4

§5,0.137.0 7,0 913,0-9,0.457,0:13,0.1106,0

20,0 165,V 22,0 107,0 122,v é7Y,u

710253 TELEPHUNIST TRAINING DATA 153, EXCHANGE
10

5,0 60,0 4,0 90,0 92,0 106,00 11,0 110,0

13,0 143,00 15,0 153, 0: 47,0 137,0 19,0 161,90

21,0 170,00 10y, 0 £65,0

T0254 TELEPHONIST TRAINING DATA TS4¢ EXCHANGE

/

5,0 115,00 7,0 113,0 9,0 120,0 15,0 13¢,0

15,0 153,0 17,0 170,00 122,u 27V, 0

T0255 TELEPHONIST TRAINING DATA 155, EXCHANGE
7

5,0 88,0 ¢,0 121,0 9,0 177,0 13,0 106,0

15,0 102,V 17,0 201,0 113,00 27¢,0

T0256 TELEPHONIST TRAINING DATA 156¢ EXCHANGE
/

5,0 195,00 7,0 169,0 9,0 17b,0 15,0 196,0

20,0 347,0 22,0 256,0 118,V 210,u

10257 TELEPHUNIST TRAINING .DATA T57+ FACHANGE
8

5,0 62,0 7,0 88,0 9,0 163,00 13,0 137 0

15,0 171,0 17,0 131,0 20,9 195,00 V06,0 2388,¢

T0258 VELEPHONIST TRAINING DATA 158, FXCHANGE
9

5,0 54,0 7,0 (3,0 9,0 79,0 11,V 20,06

13,0 82,0 15,0 91,0 17,0 120,0 18,0 £u1,0

135,0 347,V

10259 TELEPHONIST TRAINING DATA 159, EXCHANGE
/

5,0 $43,0 7,0 137,00 9,0 %68,0 13,0 113,0

15,0 126,V 17,0 1%9,0 126,u ¢2u,u

Y0260 TELEPHUNIST TRAINING DATA T6Ur EXCHANGE
’ :

5.0 75,0 7,0 95,0 9,0 135,0 15,0 116,0

15,0 170,0 17,0 193,0 158,0 26Y,u

Y0269 TELELPHONIST TRAINING DATA Y610 EXCHANGE
4

5,0 95,0 7,0 123,0 9,0 1735,0 15,0 97,0

20,0 256,V 22,0 285,0 1064,0 2ef

T0¢62 TELEPHONIST TRAINING DATA 162+ EXCHANGE
9

5,0 62,0 7,0 101,U 9,0 A7,0 13,0 140,

15,0 105,0 17,0 81,0 22,0 166,00 ¢7,0 1¥5,0
129.0 231.0

160
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10263 TELEPHUNIST TRAINING DATA  T63, EXCHANGE
4 .

5,0 115,0 7,0 138,0 9,0 200,00 15,0 1/3,0

15,0 192,6 17,0 190,0 107,u 49,0

Y0264 VTELEPHONIST TRAINING DATA 164, EXCHANGE
/ —

5,0 105,0 10,9 134,0 12,0 146,00 1/,0 161,9

19,0 162,0 21,0 199,0 136,00 297,0

T0265 TtLEPnUhIQT TRAINIAG DATA TéSs EXCHANGE
7

5,0 50,0 7,0 80,0 9,0 90,0 17,0 153,0

18,0 161,00 19,0 160,0 107,0 263,v

Y0266 TELEPHONTIST TRAINING DATA Y66 EXCHANGE

10

5,0 56,0 7,0 62,0 10,0 73,0 13,0 75,0

15,0 90,0 17,0 97,0 19,0 107,60 20,0 1355,0

22,0 185,V 1¢8,0 506,0

[T0267 TELEPHONIST TRAINTRG DATA Ta?s FXCHANGE

7

5,0 80,0 7,0 95,0 9,0 133,0 15,0 127,40

20,0 144,V 22,0 171,0 106,0 231,V
10268 TELEPHUNIST TRAINING DATA (68, EXCHANGE
8
5,0 123,0 7,0 17,0 9,0 156,0 13,0 165,0
16 0 195 0 17 0 1&9 0o 18,V 19/ U 11/ g 310.0
TO£69 TELEPHONI%T TRA!N!Nb rATA T69: EXCHANGE
7
5,0 75,0 7,0 82,0 9,0 136,0 13,0 126,0
15 0 166 v 1( 0 166,0 111,u 216,V
T0270 TEL&PHUNIGT TRAIU!NG DATA T70, EXCHANGE
10
5,0 61,0 7,0 72,0 9,0 89,0 11,0 74,0
13 0 106 v 15 0 109, 0 17 Uo155,0 18,0 179,90
19,0 188,00 10&,0 335,
702?1 TELtPHUN!ST TRAlNlNu DATA 171+ EXCHANGE
/
5.0 113,0 7,0 112,0 92,0 124,0 13,9 1v0,0
15 0 113,0 11,0 159,0 126,0 ¢106,0
Tuzzz TELEPHONISY TRATNING DATA 17¢¢1 EXCHANGE
/
5,0 110,0 7,0 138,0 9,0 152,0 15,0 137,0
15,0 192,V 17,0 2ue,0 107,u 24Y,V
10273 TELEPHONIST TRAINING DATA T75) EXCHANGE
4
5,0 1646,0 7,0 232,0 9,0 256,0 15,0 203,0
15 0 197,0 Ve 0 217,0 183,0 40,0
T0274 TELLPHONIST TRAINING DATA 1 74r EXCHANGE
10
5,0 74,0 ¢,0 89,0 9,0 117,v 11,0 76,0
13,0 86,0 15,V 104,0 17,0 137,0 19,0 116,0
20,0 144 WU Sd n 237,0
Toers 1FLtPHu~xsr TRAINING DATA T75¢ EXCHANGE
(
$,0 82,0 7,0 170,0 9,0 195,0 13,0 156,0
20,0 17R,0 22,0 192,0 108,0 234,V

161
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Y6276 TELEPHONIST TRAINING DATA Y76, EXCHANGE
190

5.0 59.0 7,0 /9,0 9.0 110,40 110 1417,0

§3,0 123,0 15,0 106,0 17,0 166,0 19,0 153,0

2040 154,00 1164,0 €54,0

T0277 TELEPHUNIST TRAINING DATA Y7¢s EXCHAANGE
/

5,0 204,0 7,0 214,06 9,0 218,0 15,4 187,0

15 0 1/ﬂ U 1? 0 169,0 121,V €620

TO¢78 TELtPHONIQT TRAININU nATA T78s EXCHANGE
9

, 5,0 45,0 7,0 137,0 9,0 13u,u 13,V 106 ,u

15,0 137,0 17,0 1¢2,0 18,0 3115,0 119,0 1647,0

40,0 221,V

Y0279 TELEPHONIST TRAINING DATA T799 EACHANGE
4

5,0 78,6 (,0 87,0 9,0 120,v 15,0 87,0

20 0 135 U 2¢,0 137,00 133,V zJV U

Toz&u YFLEPHUNIQT TRAININU DATA TRO» EXCHANGE
/

5.0 85,0 7,0 82,0 9,0 117,v 13,0 106,90

20 0 144 U 22,0 191,0 109,V €14,4

roea1 T&LEPNUNIST TRAINING CATA TA1¢ EACHANGE

7
§,0 75,0 7,0 161,90 9,0 156,0 15,0 129,

15 0 53,0 11 0 169 0 207 ,u €57,V

Yoeaz TELLPHONXQT TQAleNu CATA Tsee EXCHANGE
Y

§5.0 40,0 7,0 32,0 2,0 58,40 11,0 104,V

17,0 155,0 19,0 153,0 21,0 183,0 ¢3,0 1964,0

07,0 ¢62.90

Y0283 TELEPHONIST TRAINING DATA T83, FACHANGE
’

5,0 990,0 /7,0 117,V 10,0 159,0 15,0 155,V

20 0 162 U Zé 0 176,0 114,V Z1£ U

Tozsa TstPHUNIGT TRnlleh DATA T84+ EXCHANGE
9

5,0 43,0 7,0 57,0 13,0 70,0 150 39,0

17 0 88,0 10 0 115 0 20,0 131,u 21,0 174,00

129 0 ZSZ U

T0285 TFL&PHONIST TRAINING DATA T85) EXCHANGE
4

3, U 132,0 (,0 155,0 9,0 157,0 15,0 11¢,0

15 132 U 1/.0 1oo 0 /7 0 a/v,n

Tol“b T&LrPHUNlﬂT TRAINTNG DATA TA6r EXCHANGE
/

5.0 60,0 7,0 95,0 9,0 107,0 13,0 111,0

15,0 149,0 17,0 252,0 150,V Q00,0

162
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Y0287 TELEPHONIST TRAINING DATA  T&7s EXCHANGE
/

5,0:1%7,0: 7,0 113,0 %0,0-157,0 %350 115,0

20,0 160,00 22,0 183,0 113,0 2u7 0

TO0ZAB TELERPHOR]IST TRAINING DATA T86¢ FXCHANGE
4

5,0 05,0 7,0 57,0 13,0 70,0 15,0 89,0

20,0 151,00 2¢,0 2V4,0 123, U 2ud> U

T0289 TELEPHUNIST TRAINING DATA Tege EXCHANGE

e

5,0 122,0 7,0 142,0 9,0 102,06 13,0 161,0

20,0 184,00 2¢,0 203.0 106,90 £57,0¢

T0290 TELEPHUNIST TRAINING DATA T90r EXCHANGE
10 .

5,0 58,0 7,0 Y9 0 9,0 58,0 11,0 67,0

13,0 79,0 15,0 50,0 17,0 51,0 19,0 55,0

20,0 168,0 135,0 3u2,0

T0Z9] TELEPHUNIST TRAINING DATA T94¢ EXCHANGE
Fg

5,0 123,0 7,0 157,0 9,0 192,0 13,0 161,0

15,0 163,0 17,0 208,0 109,0 £16,0

Y0292 TELEPHONTISY TRAINING DATA T92¢r EXCHANGE

/

5,0 915,0 7,0 135,0 9,0 159,0 15,0 15<,0

15,0 186,0 17,0 170,0 100,0 215,0

TOL93 TFLEPHONTIST TRAINING DATA 193, EXCHANGE

10

$,0 73,0 7,0 75,0 10,9 129,0 15,0 91,V

15,0 99,0 17,0 125,0 19,0 134,V €1,0 164,0

30,0 199,0 12¢,0 £89,0

T0296 TELEPHONISY TRAINING DATA 194, EXCHANGE
10

5.0 91,0 7,0 107,00 9,0 114,0 11,0 123,V

16,0 135,0 16,0 166,0 29,v 15¢,0 ¢2,0 1335,V

23,0 153,0 116,060 3542,0

70299 TELEPHONTIST TRAINING DATA 1951 EXCHANGE
7

5.0 115,0 7,0 153,00 9.0 155,0 13,0 186,0

15,0 178,0 17,0 1¥3,0 155,0 264,9

Y0296 TELEPHONIST TRAINING DATA T96r EXCHANGE
10

5.0 129,0 7,0 146,0 9,0 147,0 11,0 125,0

13,0 1619,0 15,0 146,0 17,0 1735,0 18,0 1865,0

19,0 175,V 10Y,0 ¢56,0

163
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APPENDI

XF

BEST FIT PARAMETER VALUES FOR DATA IN APPENDIX C

BEST FIT PARAMETER VALUES BEVIS MODEL

DATA SET

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

116

117

Yc
22.0
24.16

115.26
17.38
18. 68
55.77
61.00
-1.41
-3.63
-2.29
-2.29
10,21

-1.87

4.96

24.34
1460. 26

1475.11

80. 32

72. 86

72. 64
58.79
109. 09
73. 31
73,91
290. 24
123.42
69.28
69.28
58.48
10. 51
105.18
82.33
3502. 32

5862.90

TAN
32,21
44, 69

4.68
l23.60

79.22

6.29
77.70
29.22

6.36

6.36

9.83

1. 64

4.33

6.63
19.79

22.25

164

FINAL
102. 32
97. 01
187. 90
76.17
127. 717
129,07
134, 91
288. 83
119.78
65. 67
136, 27
68.69
8. 64
110. 14
106. 68
4962. 59

7338.01

START
22.00
24.16

115.26
17.38
18. 68
55. 77
61,00
-1.41
-3.63
-2.29
-2.29
10. 21
-1.:87

4.96
24. 34
1460. 26

1475.11



BEST FIT PARAMETER VALUES BEVIS MODEL

DATA SET

118
19 |
120
121
122
123
124
125/
126;
127
128
129
130
131
132
133
134
135
136
137
138
139

140

Y
c

181.

99.

=22,

65.

74.

71.

58.

38.

-13.

33.

20.

24.

26.

14.

157,

80.

129.

144,

21.

26

64

78

33

73

35

49

95

82

.09

82

47

99

00

71

26

42

15

42

70

Y

31.

157.

259.

180.

164.

156.

195.

197.

261

272.

130.

37.

90.

324,

178.

155,

70.

49.

64.

93.

f

47

46

24

42
46
37
49
12

69

08
35
98
98
08
57
79
82

90

165

TAN

49.

13.

18.

20.

20.

26.

21.

8

25.

53

14.

52.

40.

26.

21

52

. 68

91

13

14

33

50

33

94

74

.41

84

40

.21

14.03

TINAL

49.

257.

236.

245,

238.

2217.

253.

236,

2417.

213,

164.

20.

115.

350.

193.

312,

150.

178.

209.

115.

49

10

46

92

84

7

95

32

68

21

52

47

34

97

68

34

29

94

24

60

START

181.26
99. 64
-22.78
65.33
74.73
71.35
58.49
38.95

-13.82

33. 82

20. 47
24.99
26.00
14. 71
157.26
80, 42
129.15
144, 42

21.70



BEST FIT PARAMETER VALUES BEVIS MODEL

DATA SET Y ¥ TAN FINAL  START
141 13.64 152.14  144.71 165. 79 13. 64
142

/
143
144 17.98  82.66 75.77 100. 64 17.98
145 22.59  62.97 20. 63 85. 56 22. 59
146 3.18  72.56 10. 59 104. 35 3.18
147 61.66  86.55 7. 71 148. 22 61. 66
148 44,24  60.48 9.95 104. 73 44. 24
145 72.88  67.06 3. 64 139. 94 72. 88
150 61.42 117.175 12. 01 179.17  61.42
151 63.27 92. 06 6. 58 155.32  63.27
152 53.80  932.60  401.27 986.41  53.80
153 -24.09 139.68 11. 82 115.59  -24.09
154 | -2.66  170.77 35.63 168.11  -2.66
155
156
157
158 -18.74  142.99 12. 52 124.25 -18.74
159 16. 95 11. 66 3.11 28.61  16.95
160 10. 43 19. 52 2.35 29.95  10.43
161 3,44 31.07 2.08 34, 51 3. 44
162 -12.18 38.03 1.92 25.86 -12.18
163 8. 20 26.18 2.09 34, 39 8. 20

166



BEST FIT PARAMETER VALUES BEVIS MOD EL

DATA SET

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185
186
187

Y
c

26. 60
77.72
63.68
76.43
85.63
63.08
21. 37

76.30

67.33
79.31
82.11
92.28
57.07
24.21
60. 89

86. 82

73.70

72.09

44,69

95.23

32,76
30.90

Yy

12,10
22.12
35.64
22.82
14. 82
33. 38
74.75

24. 24

61.93
20. 88
94. 50
165.03
186. 90
112.15
156. 50

132.13

. 133.43

219.27
129.58

160.28
176.94
77.30

167

TAN

1.12

1.02
5. 11
0.98
3.75

4,42

21.22

4.26
11.72
36. 31
17.58
7.67
39. 17

25.54

55.27
36.90
4.63

25.09
9.89
17.85

FINAL

38.70
99. 84
99.31
99.25
100. 44
96. 46
96.12

100. 54

129. 26
100.19
176. 62
257, 31
243.98
136. 36
217. 39

218.95

207.13
291. 36
174. 27

255.52
209. 71
108. 20

START

26.

7.

63.

76.

85.

63.

21.

76.

67.

79.

82.

92.

57.

24,

60

86.

e

72.

44,

95.
32.
30.

60
72
68
43
63
08
37

30

33
31
11
28
07

21

. 89

82

70
09
69

23
76
90



BEST FIT PARAMETER VALUES GOMPERTZ MODEL

DATA SET K A B FINAL START
100 76.18 0.30 0.93 76.18 22.56
101 76. 96 0. 32 0.95 76. 96 24.80
102 187. 48 0.63 0.79 187. 48 117. 78
103 64.07 0.29  0.92 64.07 18. 45
104 79. 43 0.25 0.96 79. 43 19. 48
105 126. 94 0.46 0.81 126. 94 - 58.21
106 133.92 0.48 0.83 133. 92 64. 34
107 87.28  0.040 0.89 87.28 3.51
108 82.34 0.043  0.89 82. 34 3.54
109 64. 52 0.22 0.90 64. 52 14. 05
110 66. 33 0.15 0.81 66. 33 9. 74
111 68. 00 0.26 0.88 68. 00 17. 78
112 8. 61 0.098 0.45 8. 61 0.85
113 99. 25 0.14 0.66 99. 25 13.97
114 98.93 0.28 0.79 98.93 28.10
115 4628. 92 0.33 0.92  4628.92 1515, 32
116 5733. 79 0.27 0.90  5733.79 1532. 85
117 10254. 76 0.13 0.98 10254.76 1329. 12
118 25148. 37 0.052 0.98 25148.37 1307, 36
119 48. 72 0. 40 0.97 48. 72 19. 70
120 257.11 0.43 0.92 257.11 111. 66
121 . 236.58 0.19 0.84 236. 58 45. 40
122 245. 71 0.32 0.93 245. 71 77.98

168



BEST FIT PARAMETER VALUES GOMPERTZ MODEL

DATA SET
123
124
125/
126
127
128
129
139
13i
132
133
134
135
136
137
138
139
140
141
142
143
144

145

K
238.72
227.72
253.18
236.01
247.07
270. 54
124. 51

87.55
129.82
53.58
88.27
146. 46
106.18
305.13
150.95
178. 31
208. 54
93.14
69.12
300. 40
134.84
17.37

77.72

A

0. 36

0. 35

0.29

0.10

0.28

0.39

0.29

0.53
0. 56
0.73
0.70
0.25
0.20
0.073

0.18

169

B

0.94

0.94

0.95

0.93

0.92

0.94

0.96
0.98
0.98
0. 89
0.96
0.95
0.90
0.95
Q. 71
0.92
0. 86
0.96
0.96
0.98
0.96
0.97

0.92

FINAL
238.72
227.772
253.18
236.01
247.07
270. 54
124. 51
87.55
129. 82
53.58
88.27
146. 46
106.18
305.13
150795
178. 31
208. 54
93.14
69.12
300. 40
134. 84
77.37

1¢.72

START
84.78
80. 38
73.39
57.12
28.01
27. 65
35.23
17.16
24.29
20.76
25,99
27.72
16. 44
160.36
84.57
129.95
145. 62

23152
14,17

21.99

24.16

24.14



BEST FIT PARAMETER VALUES GOMPERTZ MODEL

DAT A SET K A B FINAL START
146 71.49 0.14 0. 86 71.49 9. 80
147 147.77 0.46 0. 86 147.77 68. 20
148 103. 49 0.45 0. 88 103. 49 46. 64
149 139. 64 0.53 0.72 139, 64 74. 61
150 166. 40 0.38 0.88 166. 40 63. 32
151 153,71 0.43 0.83 153. 71 66. 37
152 282. 41 0.20 0.98 282. 41 55.13
153
154 115. 47 0.070 0.92 115, 47 8.08
155
156 139.97 0.016 0.92 139. 97 2.18
157
158 109.12 0.017 0.83 109. 12 i.84
159 28. 57 0.61 0.70 28.57 17. 38
160 29. 89 0.42 0. 62 29. 89 12. 48
161 34. 33 0.24 0. 54 34.33 8.12
162 25. 59 0.015 0. 44 25. 59 0.39
163 34,24 0. 31 0. 54 34,24 10. 46
164 38. 63 0.69 0.70 38. 63 26. 76
165 59.81 0.78 0. 67 99. 81 78.28
166 99. 31 0.68 0.39 99. 31 66. 30
167 99.25 0.178 0.37 99. 25 77. 53
168 100. 40 0. 85 0.81 100. 40 85. 80

170



BEST FIT PARAMETER VALUES GOMPERTZ MODEL

DATA SET
169
170
17/
172
173
174

15

176
/
/

177
178
179
180
181
182
183
184
185
186

187

K
96. 45
94.95

100.43

121.66
100. 09
172.11
253. 86
243.178
134,17
214. 64
218.17
322.67
201.22
284.60
173, 75
254. 54
209. 31

104.03

A

.68
&9

.76

.56
.79
. 49
.38
29
s O
.32
.40
.23
.38
.26
.34
.40
.28

.32

171

B

.35
.70

.18

93
.78
.89
.96
.93
.84
. 96
.95

.98

97

. 96
7T
«95
.89

.92

FINAL
96. 45
94.95

100. 43

121. 66
100. 09
172.11
253. 86
243.78
134,17
214, 64
218.17
322.67
201.22
284. 60
173.75
254, 54
209. 31

104.03

START
65. 69
27.44

T0. 72

67. 60
79. 55
84. 10
97. 67
71. 62
35. 31
69. 02
88. 29
74.73
76. 58
75. 46
58. 52
102. 88
59. 71

32. 80



BEST FIT PARAMETER VALUES MATHEMATICAL MODEL

DATA SET
100
101
10#
103
104
105
106
107

/
1oé
109
110
111
112
113
114
115
116
117
118
119
120

121

122

B
163.97
146. 95
200. 22
111.49
209.05
151.85

150.22

201. 82
77. 39
75. 39
76.78

9.21
155.11
141. 88

6704.22

11607.18

57.42

263.95

259. 46

C
0.0070
0.0081
0.010
0.011
0.0053
0.010

0.010

0. 0049
0.013

0. 0092
0.011

0.0083
0.0066
0.0084
0.00019

0.000099

0.024

0.0037

0.0043

172

0.

G FINAL
. 00013 163.97
. 00011 146, 95
. 0035 200. 22
. 00030 111. 49
. 000039 209.05
. 0016 151.85
. 0021 150.22
. 00010 201. 82
. 0015 77.39
. 0035 15 39
. 0025 76.78
« L5 9,21
. 0012 155,11
. 0010 141. 88

0000069 6704.22

.0000026 11607.18
. 00058 57.42
. 00092 263.95
. 00042 259,46

START
21.98
24.01

101.28
17.08
18. 58
52. 40

52.21

-33.33
-11.12

-111.41

22.21
1449, 91

1474. 84

15.73

-9. 62



BEST FIT PARAMETER VALUES MATHEMATICAL MODEL

DATA SET
123
124
125/
126

127

128

133
134
135
136
137
138
139
140
141
142
143
144

145

B
256.45
243,26
281.63
257.91
274.48
323.2%

249. 34

79.07

167.26

351.42
356. 60
155. 44
190. 06
226.29
172.94

305.73

131.43

118.17

C

0.0049

0.0051

0.0040

0.0040

0.0029

0.0029

0. 0046

0.0070

0.0030

0.0048

0.0078

0.015

. 0065

o

0.0034

0.0088

0.010

173

G
0.00038
0.00041
0.00022
0.00030
0.00030
0.00013

0.000054

0.00078

0.000089

0.000039
0.00019
0.0094
0.0014
0.0018
0.00011

0.000012

0.000092

0.00036

FINAL
256.
243,
281.
257.
274.
323,

249,

79.

167.

351.
356.
155.
190.
* 226.
172.

305.

131

118.

45
26
63
91
48
25

34

07

26

42

60

44

06

29

94

73

43

17

START

5.
48.

32.

-75.
-12.

33.

20.

24.

14.
ISO.
27.
123,
139.
21.

13.

17.

22.

96
72

02

.88

95

72

43

66

60

83

14

34

55

20

27

65

46

04



BEST FIT PARAMETER VALUES MATHEMATICAL MODEL

DATA SET B c g FINAL START
146 99. 59 0.010  0.00091  99.59 0. 75
147 159. 92 0.0080  0.0022  159.92 35,04
148/ 120. 43 0.012  0.0014  120.43 40.27
149 148. 09 0.012  0.0054  148.09 63. 50
150 244.33 0.0055  0.00031  244.33 61.12
151 178. 27 0.0083  0.0014  178.27 59.19
152
153 165. 71 0.0053  0.00038  165.71 ~24. 32
154 262.57 0.0038  0.000073 262.57 ~3.99
155
156
157
158 183. 5 0.0049  0.00031  183.5 -19. 62
159 30,16 0.063  0.038 30.16 14.15
160 31.45 0.019  0.046 31.45 ~20. 36
161 36. 73 0.011  0.033 36.73 -54. 68
162 28. 52 0.0099  0.029 28.52 ~72. 60
163 36. 92 0.024  0.030 36.92 -4.69
164 40. 63 0.063  0.031 40. 63 24. 63
165 102.17 0.026  0.029 102.17 63. 88
166
167
168 103. 29 0.049  0.015 103.29 82.73

174



BEST FIT PARAMETER VALUES MATHEMATICAL MODEL

DATA SET B C G FINAL START

169

170 109. 22 0.0099 0.0041 109.22 8.42
171 105. 41 0.031 0.0097 105. 41 73.03
172

173

174 - 104. 86 0.036 0.011 104. 86 77.45
175 213.96 0.0074 0.00054 213.96 79.72
176 300.28 0.0047 0.00013 300.28 _ 86. 66
177 262.19 0. 0041 0.00042 262.19 20.05
178 162. 86 0.0066 0.0011 162. 86 10. 89
179 249. 74 0.0050 0.00015 249.74 50. 88
180 247.17 0.0062 0.006024 247.17 86.10
181

182 253: 27 0.0055 0.000087 253.27 71.37
183 360. 65 0.0034 0.000079 360.65 70. 82
184 192. 44 0.0052 0.0023 192, 44 1.70
185 282.63 0.0050 0.00026 282.63 81.22
186 215.69 0.0012 0.0015 215,69 -608.14
187 135. 48 -.‘ 0.0095 0.00047 135.48 29.94

175



BEST FIT PARAMETER VALUES WILTSHIRE MODEL

DATA SET g K ALPHA N FINAL START
100 67.73  43.33  0.023  1.40 67.73  24.41
o1
10% 191.24  98.16  0.43 0.68  191.24  93.08
103
104
105 - 126.18  65.55  0.12 1.19  126.18  60.63
106 139.29  93.42  0.29 0.72  139.29  45.88
107 73.26  65.44  0.0030  2.18 73.26  7.82
/
108 76.93  70.35  0.0052  1.88 76.93  6.58
109 68.86  75.71  0.19 0. 71 68.86  -6.85
110 67.14  71.98  0.18 0.95 67.14 -4.84
111
112
113 " 93,14  70.18  0.085  1.82 93.14  22.96
114
115 4323.81 2589.15  0.010  1.67  4323.81 1734.66
116 4857.07 3060.84  0.017  1.74  4857.07 1796.23
117 5771.53 4265.34  0.0014 1.76  5771.53 1506.19
118
119
120
121
122 247,22 220.58  0.14 0.73/0C 24722 26.64

176



BEST FIT PARAMETER VALUES WILTSHIRE MODEL
DATA SET c K ALPHA N FINAL START
123

124

125

126 236.96  212.85  0.071 0.88  236.96 24,12

127

128

129

130

131

132

133

134

135 83.93  60.71  0.0059  2.08 83.93  23.22

136

137

138

139 214. 71 80.49 . 0.23 0.4 214.71 134,22

140

141 82.05 67. 55 0.0097 1,17 82.05 14,50

142

143 350. 45 326.17 0.0043 1.10 350.45 24. 28

144

145 92. 45 71.28 0.056 0.90 92. 45 21.16

177



BEST FIT PARAMETER VALUES WILTSHIRE MODEL

DATA SET

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

C

.3

105. 34

151. 60

150. 52

100. 94

K

62.58

62. 39

77.57

70.48

63. 64

178

ALPHA

0.049

05

0.022

0.028

1

11

33

N

1.28

0.95

1., T

1.79

0.42

FINAL

14. 13

105. 34

151. 60

150. 52

100. 94

START

42. 95

74. 03

80. 05

37. 30



BEST FIT PARAMETER VALUES WILTSHIRE MODEL

DATA SET
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187

C

97.13

100. 41

99. 38

254.12

262.70

215.50

257405

K

82.18

23.40

16.72

155. 69

564. 88

145. 88

167.71

179

ALPHA

0.34

0.20

0.096

0.017

0.027

0.053

N

0.88

0.88

0.91

FINAL

97.13

100. 41

99. 38

254.12

START

14.95

77.00

82.56

98.43

262.70 -302.19

215.50

257.05

69. 63

8§9. 33



BEST FIT PARAMETER VALUES ACCUMULATIVE MODEL

DATA SET
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120

A
92. 31
92: 36

197. 77
76.83
93.72

142.13

145.02

104. 59
97.75
71.66
72.05

73.57

120. 51
117.50
5721.09
7591.04
11147. 35
18261.02
53.04
310.94
269.36

867.76

22

24

106

18.
19.
58.

57.

Ii.

10.

13.

21.

961.

1304.

1129,

1087.

15,

131.

91.

99.

B

.73

.87

. 60

54
68
11

57

.01

.95

30

.37

97

«33

68

45

92

59

01

11

01

77

12

04

180

THETA
0.0012
0.00079
0.0023
0.0017
0.00073
0.0022
0.0024
0.0022
0.0022
0.0077
0.017
0.0010
0.022
0.0054
0.0031
0.000097
0.000036
0.000017
0.000011
0.0051
0.00064
0.0014

0.000060

FINAL

92.31
92. 36
197.77
76.83
93.72
142.13
145.02
104. 59
9. 75
71. 66
72.05
13+ 57
9.07
120.51
117.50
5721.09
7591. 04
11147, 35
18261.02
53.04
310.94
269. 36

867.176

START
22.73
24. 36
106. 60
18. 54
19. 68
55.11
57.57
5.01
4.95
11.30
2.37
10.97
0.33
13.68
27. 45
961. 92
1304. 59
1129.01
1087.11
15.01
131.77

91.12

99. 04



BEST FIT PARAMETER VALUES ACCUMULATIVE MODEL

DATA SET

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

A
467. 46
388.23
675.17
447.36
416.67
905. 35
146.74
94. 04
135.37
64.27
102. 52
169. 68
128.07
335.53
154.75
187. 62
222. 87
110. 66
81.37
200. 85
143. 72
81.63

92.71

B
98. 69
93: 74
85.65
75.90
56. 65
52+16
35.16
17.26
24.40
20.94
25.87
28.22
17.12

155.19
51.98
124. 92
141.06
23.66
14.43
22.12
24. 30
18.67

24.17

181

THETA

0.

0.

o

00017

00021

. 00011
. 00026
. 00030
.00012
. 00049
. 00046
. 00029
. 0023

. 00069
. 00052
.0014

. 00022
. 0081

. 00066
. 00097
. 00082
. 00082

. 00020

00050

. 00072

.0013

FINAL
467.46
388.23
675.17
447.36
416.67
905. 35
146.74
94. 04
135.°37
64,27
102. 52

169.68

128.07

335.53
154.75
187.62
222,87
110. 66
81.37
200. 85
143,72
81.63

92.71

START
98. 69
93. 74
85.65
75.90
56. 65
52.16
35.16
17.26
24. 40
20. 94
25.87
28.22
17.12

155.19
51.98
124.92
141. 06
23. 66
14.43
22.12
24. 30
18. 67

24.17



BEST FIT PARAMETER VALUES ACCUMULATIVE MODEL

DATA SET A B THETA FINAL START
146 82.17 9. 62 0.0036 82.17 9. 62
147 156. 34 52.78 0.0024 156. 34 52.78
144 114.23 43,77 0.0018 114,23 43.77
149 145. 70 59. 47 0.0052 145. 70 59.47
150 196.09 61.71 0.00096  196.09 61.171
151 169.34  62.46 0.0019 169. 34 62. 46
152 288. 37 55. 26 0.00015  288.37 55,26
153 122. 25 0.53 0.0031 122.25 0.53
152 128. 90 9.08 0.0015 128.90 9.08
155 430.27 14, 37 0.00013  430.27 14. 37
156 147.99 2.15 0.0013 147.99 2.15
157
158 126.08 3.22 0.0029 126.08 3,22
159 | 29. 90 15. 50 0.024 29.90 15.50
160 31.26 4.98 0. 051 31.26 4.98
161 36.23 -0.15 0. 050 36.23 -0.15
162 27.45 -0.08 0. 060 27.45 -0.08
163 36. 31 5.69 0.039 36.31 5.69
164 40. 37 25. 41 0.015 40. 37 25. 41
165 102. 00 67. 38 0.011 102. 00 67.38
166
167
168

182



BEST FIT PARAMETER VALUES ACCUMULATIVE MODEL

DATA SET A B THETA FINAL START
169
170 104.03 21.10 0.0068 104.03 21.10
171 104. 78 73.83 0.0036 104;78 78.83
172
173
174 104. 30 77. 84 0.0034 104. 30 77. 84
175 197. 87 84. 41 0.0010 197. 87 84. 41
176
177
178 152. 86 34,05 0.0027 152. 86 34,05
179
180
181 318.08 75.48 0.00014 318.08 75.48
182 257.05 89.33 257.05 89. 33
183
184 193. 87 61.10 0.0028 193. 87 61.10
185 674.28 108. 22 0.000077 674.28 108. 22
186 248. 53 32. 65 0.0045 248.53 32. 65
187 119. 82 18. 32 0.0049 119. 82 18. 32

183




BEST FIT PARAMETER VALUES REPLACEMENT MODEL

DATA SET A B THETA FINAL START
100 68. 69 23.08 0.0017 68. 69 23.08
101 70.26 25.36 0.0011 70. 26 25.36
102 187.25  119.52 0.0014 187. 25 119. 52
103 59. 79 19.29 0.0021 59. 79 19.29
104 68. 84 20.12 0.0010 68. 84 20.12
105 125. 175 59.76 0.0019 125, 74 ' 59.76
106 133. 40 66. 57 0.0016 133. 40 66. 57
107 76.11 5. 68 0.0026 76.11 5. 68
108 76. 58 6.45 0.0023 76.58 6. 45
109 64.07 16.99 0.0050 64.07 16.99
110 66.17 13.17 0.0090 66.17 13.17
111 67. 81 21.05 0.0054 67. 81 21,05
112 8. 61 1.90 0.092 8. 61 1.90
113 96.22 16.90 0.0055 96.22 16.90
114 96. 00 30.29 0.0032 96.00 30.29
115 4557.81 1077. 64 0.00010 4557. 81 1077. 64
116 5484.52 1331.49 ' 0.000050  5484. 52 1331. 49
117 7095.29 1134.99 0.000028  7095.29 1134.99
118 10528.10 1088.54 0.000020 10528.10 1088. 54
119 48.33 19. 30 0.0032 48.33 19. 30
120 267.33  135.08 0.00069 267.33 135. 08
121 . 242.36  104.77 0.0011 242. 36 104. 77
122 519.29 59.05 0.00011 519,29 99. 05

184



/

BEST FIT PARAMETER VALUES REPLACEMENT MODEL

DATA SET
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145

A

320. 64

274.71

412.32

309. 22
291.45
525. 49
112.94
63.57
87. 60
51.68
80. 87
123.14
92.170
299.06
150.93
E17.91
208.10
85. 86
57.07
119,85
97.84
71.72

74.28

B
98. 51
93. 44
85.08
76. 38
57.17
51.71
36. 42

1737

24.44

20.97
26. 86
29.18
17,67
162. 30
86. 82
130. 59
146. 58
24, 87
14. 59

22.13

24.55

19.96

185

THETA

0

. 00027
. 00033
. 00019
. 00039
. 00044
. 00021

. 00061

.00074-

.00049
. 0029
.00083
. 00071
. 0018
. 00020
. 0024
. 00048
. 00079
. 00098
. 0012

. 00036

. 00078

. 00069

. 0015

FINAL

320.

274.

412.

309.

291.

525.

112

63.

87.

51.

80.

123.

92.

299.

150.

177.

208.

85.

5.

119.
97.

71.

74.

64

71

32

32

45

49

.94

57

60

68

87

14

70

06

93

07

85

84

72

28

START
98. 51
93.44
85.08
76.38
57.17
51 .71
36.42
1737
24. 44
20.97
26. 86
29.18
17.67
162. 30
86. 82
130. 59
146. 58
24,87
14.59

22.13
24.55

19.96

25.21



BEST FIT PARAMETER VALUES REPLACEMENT MODEL

DATA SET A B THETA FINAL START
146 70.15 12.98 0.0029 70.15 12.98
147 147. 39 71.50 0.0011 147. 39 71.50
148 102.79 . 48.38 0.0014 102.79 48. 38
149 139.31 ‘72.66 0;0027 139,31 72. 66
150 159. 39 63.57 0.0011 159.39 63.57
151 . 152.72 68.18 0.0015 152. 72 68.18
152 224.07 55.98 0.00019 224.07 55.98
153 105.48 33.Zé 0.0025 - 105.48 33.28
154 110.20 14.27 . 0.0011 110.20 14.27
155 287. 75 14,57 0.00019 287.75 14.57
156 91.76 1.88 0.0021 91.76 1.88
157 42.97 -0.27 0.0038 42.917 -0.27
158 106. 59 6.65 0.0024 106. 59 6.65
159 28.55 17.68 0.013 28.55 17.68
160 29.87 13.56 0.017 29. 87 13,56
161 34. 35 10.24 0.018 34. 35 10.24
162 25. 58 2.12 +0.034 25.58 2.12
163 34,20 11/25 0.019 34. 20 11.25
164 38.§0 26.94 0.0098 38. 60 26.94
165 99. 80 78. 71 0.0041 99. 80 78.171
166 99. 30 67.02 0.0095 99.30 67.02
167 99.25 77.83 0.010 99.25 77.83
168 100. 37 85. 94 0.0021 100. 37 85. 94

186



BEST FIT PARAMETER VALUES REPLACEMENT MODEL

DATA SET A B THETA FINAL START
169 96.45 66.15 0.011 96.45 66.15
170 94. 50 30.23 0.0043 94. 50 30.23
171 100. 36 77.07 0.0025 100. 36 77.07
172
173 116.63 67. 71 0.00078 116.63 67.71
174 100.01 79.73 0.0026 100.01 79.173
175 168.52 85. 71 0.0012 168. 52 85.71
176
177
178 133.60 41.25 0.0021 133. 60 41.25
179
180
181 217.89 75.70 0.00024  217.89 75.70
182
183
184 206. 52 34,54 0.0021 206. 52 34,54
185 456. 61 109.13 0.00012  456.61 109.13
186 212.85 57.41 0.0033 212.85 57. 41
187 102. 62 24.68 0.0039 102. 62 24. 68

187



BEST FIT PARAMETER VALUES DE JONG MODEL

DATA SET

100
101

/
102/
103
104
105
106
107
10&;
109
110
111
112
113
114
115
116
117
118
119
120

121

122

B

255.50

422. 88

169.17
83.90
100. 07

9.24

268.27
238. 41

301.57

A

130.22

355.14

174.71
105.90
109. 62

6.46

397.21

1188. 32

355..13

188

N

R/

. 066

.14
w53
«33

. 96

.70
« 35

0. 36

FINAL

255.50

422. 88

169.17
83.90

100.07

2068.217
238.41

301.57

START

125.28

67.75

-4.54
-22.00
-9.55

2.79

-128. 94
-949.91

-53.56



BEST FIT PARAMETER VALUES DE JONG MODEL

DATA SET
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145

B

339.09

310.43

462,66

353.52

336.43

2500. 36

156. 49

A

347.

321,

516,

434,

553,

2579.

61.

62

04

36

74

23

15

189

0.

0.

N

25
27
.18
w26

.39

. 030

75

FINAL

339.09

310.43

462. 66

353.52

336.43

2500. 36

156.49

START
-8.52
-10.61
-53.66
-80.83
-217.31

-78.88

95. 34



BEST FIT PARAMETER VALUES DE JONG MODEL

DATA SET
146
147
148
149
150
151
152
153
/
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168

B

230.15

165. 64

32.

32.

37.

29.

39.

46.

104.

99.

99.

133.

21
67
79
32
31
60
36

96

22

A

172. 68

76.20

12,25
16. 34
23.48
26.56
20.98
16.70
20.50
15.29

8.95

45.93

190

N

0.22

0.36

0.44
0. 69
0.76
0.80
0.57
0.28
0.58
1.38

1.33

FINAL

230.15

165. 64

32.21
32.67
37.79
29. 32
39. 31
46. 60
104. 36
99.96
99. 72

133.22

START
57.47

89. 44

190 96

16.33
14,31

2. Tb
18. 32
29.90
83. 86
84. 68
90.78

87.30



BEST FIT PARAMETER VALUES DE JONG MODEL

DATA SET

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187

B
98. 33

156. 99

136.67 -

153,12

330.73

351.10

206. 52
1883.3

219.23

A N
13.09 0.89
120.09 0.25

56.27 0.16

69. 72 0.099

378.70 0.31

334.41 0.13

171.99 0. 54
182.47 " 0.024

472. 54 0.85

3191

FINAL
98, 33
156. 99

136.67

153,12

330.73

351.10

206. 52

1883.3

219.23

START
85.24
36.90

80. 40

83. 41

-47.97

16. 69

69.05

58. 83

-253.31



BEST FIT PARAMETER VALUES LOGARITHMIC MODEL

DATA SET

106
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117

119
120
121

122

11.

12.

(&3]

B

.05

.17

. 30

. 54

.70

. 04

.02

.52

21

. 32

.33

.31

.06

. 87

. 84

s b

48

97

.00

w Dl

« 55

C

. 52

.62

. 50

.58

. 54

97

<99

.23

.24

.32

.14

.12

.38

« 56

. 66

.49

.24

w4

.76

.48

.52

192

G

. 026
.028
.69
. 052
.026
.22
.32
. 025
. 031
o3
.24

.24

.20

.20

. 046
. 034
. 0020
.0013
. 044

.24

.12

FINAL
156. 31
118.16
200. 44
93.81
100. 46
155.22
150.99
248. 68
182.49
75. 54
76. 38

74.40

157.81

130.78

6898. 00
11788.00
97184.00

43137.00

54. 47

262.55

257.49

START
22.71
23.77

102. 88

16. 86
17.59
55.27
54.78

3.47
3.07
3.26
0.06

0.02

11.04
22.06
1516.70
1562.00
1380. 34
1316.87
14.67

30.94

37.81



BEST FIT PARAMETER VALUES LOGARITHMIC MODEL

DATA SET

123

124

125

126

127

128

129

130

131

132

133

134

138

136

137

138

139

140

141

142

143

144

145

B

. 54

.49

. 60

.63
. 81
22
.16
<94
« 55
.69
. 49
.96

.70

.23
.42
.90
..96
.22
.09
« 17

.65

C G
0.68 0.10
0.74 0.093
0.43 0.080
0.23 0.077
0.39 0.037
0.58 0.026
0.42 0.0079
0. 36 0.0046
0.69 0.041
0.65 0.038
0.44 0.023
0.32 0.017
1.19 0.18
2.32 0.33
2.07 0.42
0.53 0.035
0.43 0.013
0.24 0.023
0.34 0.078
0.068 0. 059
0.63 0.063

193

FINAL
254,59
243.76
270.60
253, 38
278.14
333..75
185. 68
174.58
383.33
93. 35
108. 77
241. 85
389. 65
298.16
155,74
186. 36
225.171
134.77
142. 67
1366.16
442, 80
64.82

104. 34

START
58.27
62. 60
26. 68

16. 59

25.93
32.69
16.58
24.07
22.30
23.10
25.16
18. 49
128.70
47. 89
121,02
139,16
20, 60
13.70
21.72
23.91
14,47

21.33



BEST FIT PARAMETER VALUES LOGARITHMIC MODEL

DATA SET
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168

B

4.60

5.04

4.80

5.00

5.62

5.22

5.10

5.2

5.29

4. 64

C

0.37

0.48

0.94

1.28

0.68

0.98

0.20

1,47

0. 44

2,10

4. 47

194

G

0.093

0.67
0.059
0.20
0.057
0.047
0.035

0. 040

0. 046

1.01

1.00

2.96

FINAL

99.

153,

120.

149,

271,

184.

164.

193,

198.

103.

2217,

30.

317.

40,

102.

103.

85
94
92
72
08
93
39
98
53

14

58

35

10
68

17

17

START

6.50

19.06

4].88

68.58

63,65

66.58

47.00

1. 56

2.46

4. 36

15, 37

25,24

64.17

82.48



BEST FIT PARAMETER VALUES LOGARITHMIC MODEL

DATA SET B C G FINAL START
-169
170 4.71 0.55 0.40 111.06 18.26
171 4.66 2.76 0.99 105.59 73.48
172
173 5.08 1.14 0. 061 160.13 66. 66
174 | 4.66 3.34 1.05 105.14 77.96
175 b8 1.05 - 0.11 215.12 83.17
176 5.71 0.83 0.038 301.66 ~90.55
177 2. 56 0.46 0.12 259.88 30.19
178 5.10 0. 51 0.16 165. 30 23.04
179 5.40 | 0. 59 0.062 221.56 40.95
180 5. 56 0.97 0.044 260.76 93.37
181 7.10 0. 35 0.0035 1211.75 70. 94
182 5. 51 0.77 0.025 247.24 67.92
183 5. 9% 0.63 0.024 385.38 79.15
184 5. 29 0.68 0.32 198.98 46.03
185 5.63 0. 81 0.081 277.53 80.40
186
187 4.89 0.68 0.072 132. .9 30.26



/

BEST FIT PARAMETER VALUES SECOND ORDER MCDEL

DATA SET Y Y TAU FINAL START
100 25. 54 40.56  6.60 66.11 25. 54
101 27. 62 38.37  9.72 65.99 27, 62
102 128.72  57.46  2.54 186.18 128. 72
103 21.36  37.00  6.69 58. 36 21. 36
104 22.08 42.60  11.87 64. 69 22.08
105 66. 44 58.06  2.92 124. 50 66. 44
106 72. 85 59.45  3.22 132.32 72.85
107 5,10 91.16  8.93 . 96.28 5.10
108 4.72 8l.48  8.74 86.19 4.72
109 18.09 45.83  6.69 63.93 18.09
110 13. 69 52.53  3.175 66. 22 13.69
111 20.97 46.15 5.2l 67.11 20.97
112 1.03 7. 57 1.03 8. 60 1.03
113 20. 08 78. 75 1.91 98, 83 20.08
114 34. 30 60.67  2.68 94.98 34. 30
115 1720.16  2730.35 7.49 4450.50  1720.16
116 1776.25  3453.89 . 5.52 5230.15  1776.25
117 1503.34  5390.19  24.91 6893.54 1503, 34
118 1459.73  7067.31  23.92 8527.05 1459, 73
119 21.45 25.09  20.94 46. 54 21.45
120 13652 120. 57 7.97 257.09 136. 52
121 70. 04 166.55 4,64 236. 60 70. 04
122 96.96 148. 51 9.92 245. 47 96. 96

196



BEST FIT PARAMETER VALUES SECOND ORDER MODEL

DATA SET

123

124

125 |

126

127

128

129

130,

/

131
132
133
134
135
136
137
138
139
140
141
142
143
144

145

Y
c

103.76

97.96
92:03
74. 81
41. 39
43.67
39.45
18.96
26. 51
23.75
28. 61
31.94

21.06

173.36

97.56

135. 34

154. 61

27.37

16. 46

24.43

26. 82

20.75

£8. 34

YF
134.90
129. 66
160.78
161.06
205.70
227.01

66.25
35.90
44, 68
27.65
42.29
84.90
79.20
110.96
53.29
38.16
51.28
56.77
40. 71
69.96
57. 77
32.88

45. 45

TAU

10.

10.

1353

11

9

132

16.

15,

10.

134

20.

10.

11.

66

52

54

38

76

01

.98

26

99

.25

. 87

. 44

- 05

<89

.01

.99

.63

35
93
40
36

68

.42

FINAL

238.

227,

252,

235.

270.

247,

105.

54.

71.

Bl

70.

116.

100.

284.

150.

173.

205.

84.

5%7.

178.

84‘

53,

73.

66
62
82
87
69
09
71
87
20
39
91
85
26
32
85
51
89
15

18

60
63

79

START
103.76
97.96‘
92.03
74. 81
41. 39
43.67
39.45
18.96
26.-5]
23.75
28.61
31.94
21.06
173.36
97.56
135. 34
154.61
27.37
16.46
24.43
26.82
20.75

28. 34



BEST FIT PARAMETER VALUES SECOND ORDER MODEL

DATA SET Y Yo TAU FINAL START
146 13.06 57.94 5.02 71.01 13.06
147 78. 76 67.53 4.34 146. 30 78.76
148 53.21  48.70 4.95 101.92 53.21
149 84.21  55.02 1.97 139.23 84.21
150 72. 40 85.56 4,37 157.96 72.40
151 77. 32 74.92 3.38 152.25 27 32
152 59. 36 79.42  11.79 138.78 59.36
153 -5.00 113;84 5.85 - 108.83 -5.00
154 7.17 104.56  9.38 111.73 7.17
155 15. 60 158.21  28.00 173. 81 15.60
156 5.71 429.04  31.99 434.76 5,71
157 2.18 119.72  28.74 121. 90 2.18
158 21.35 113,64 5. 64 112.28 -1.35
159 19. 52 9.00 1.85 28.51 19. 52
160 14. 82 14.93 1.35 29.175 14. 82
161 9.83 24. 36 1.15 34,18 9.83
162 -2.53 28.19  .1.16 25. 66 -2.53
163 13.96 20.23 1.20 34,19 13.96
164 28. 67 9. 80 1.67 38.47 28.67
165 82.77 16.83 1.55 99. 59 82.77
166 75.95 23.33 0.76 99.27 75.95
167 84. 68 14. 56 0.71 99. 24 84. 68
168 | 88. 33 11. 52 2. 69 99. 86 88.33

198



BEST FIT PARAMETER VALUES SECOND ORDER MODEL

DATA SET
169
170

/
171/
172
173
174
175
176;

‘/
177
178
179
180
181
182
183
184
185

186

187

Y
ol
75.78
34.94

80. 80

71.67
82.91
94.59
111,95
90. 80
46.93
80.25
102. 42
79.91
85. 66
91.71
79.52
119.65
78.40

36.14

YF‘
20. 67
5% 39

19,09

38, 37
16.63
72.60
138.07
152572
86.28
130.33
115. 89
86.08
110.19
191.83
94.26
133,09
129. 57

64.99

TAU
0.69
2. 01

2+39

6.01

2.24

16.72
9.46
4.27

18.08

11,97

13.89

21.81

14.97
2.95

13.08
5.98

7.45

FINAL
96.45
94. 34

99. 89

110. 04
99,55
167.19
250.01
243,52
133,21
210.59
218. 31
166.0
195,85
283. 54
173.77
252,74
207.97

101.24

START
75.78
34. 94

80. 80

94. 59
111.95
90. 80
46.93
80.25
102. 42
79.9]
85.66
91.71
79. 52
119.65
78.40

36.24



APPENDIX G

A COMPARITIVE LISTING OF "START" AND "FINAL" VALUES

CALCULATED FROM "BEST FIT'" PARAMETERS

CURVE FINISH START CURVE FINISH START

0100 : 0102

BEV 102. 32 22.00 187. 90 115. 26
GOM 76.18 22.56 187. 48 117.78
MTH 163.97 21.98 2o 200. 22 101.28
WILT 67.73 24. 41 T 191,24 93.08
F Teln. 92, 31 272,713 197. 77 106. 60
REP 68. 69 23.08 187. 25 119. 52
DJ | 255. 49 125.28
MTHL  156. 31 22.71 200. 44 102, 88
20RD 66.11 25.55 186.18 128. 72
0101 : | 0103

BEV 97.01 24.16 76.17 17.38
.GOM 76.96 . 24. 80 64.07 18.45
MTH 146.95 - 24.01 111, 49 17.08
WILT

ACcC 92.36 .24.87 76. 83 18. 54
REP 70. 26 25. 36 59. 79 19.29
DJ

MTHL 118.16 | 23.77 93. 81 16. 86
20RD 65. 99 27.63 58. 36 21. 36

200



CURVE FINISH START CURVE FINISH START

0104 : 0106

BEV 127.77  18.68 134,91  61.00
GOM 79.43  19.48 133.92 64,34
MTH 209.05  18.58 {8t 22 g2 7
WILT | 139.29  45.88
ACC . 9372 1968 145,02 57.57
REP 68.84  20.12 133.40  66.57
DJ . ' 422.88  67.75
MTVHL 110.47 17.59 150. 99 54.78
20RD 64.69  22.09 132,32 72.86
0105 : e 0107

BEV 129.07  55.77 188.85 1.4
GOM 126.94  58.21 - 87.28 3.51
MTH 151.85  52.40

WILT 126.18  60. 63 73.26 7. 82
ACC 142,13 55.11 104. 59 5.01
REP 125.75 59.76 76. 11 5. 68
DJ

MTHL 155.22 85,27 248. 68 3.47
20RD 124.50 66.44 9628 5. 11

T ——

201



CURVE FINISH START CURVE FINISH START

0108 0110
BEV 119.78 -3.64 136.27  -2.29
GOM 82.34 3.54 66. 33 9.74
MTH 201. 83 -3.60 75.39 -33.33
WILT 76.94 6.58 67.14  -4.84
ACC 97.75 4.95 72.05 2.37
REP 76.58 6.45 66.17  13.17
DJ ' 83.90 -22.00
MTHL 182.49 3.07 76.38 0.06
20RD 86.19 4.72 66.22 13,69
0109 0111

BEV 65. 67 7.32 68.69  10.21
GOM 64.52 14.05 68.00 17.78
MTH 77.39 -.04 76, 728 49-11. 12
WILT 68. 86 -6.85

Acc 71. 66 11.30 73.57  10.97
REP 64.07 16.99 67.81 21,05
DJ 169.17 -4.54 100.07  -9,55
MTHL 75.54 3.26 74. 40 0.02
20RD 63.93 18.10 67.11  20.97
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CURVE FINISH START CURVE FINISH START

0112 0114

BEV " 8. 64 -1.87 106. 68 24. 34
GOM / 8. 61 0. 85 98.93 28.10
MTH | 9,21 -111.41 141, 88 22.21
WILT

ACC 9.07 0. 33 117.50 27.45
‘REP 8. 61 1.90 96. 00 30.29
DJ 9.24 2.79

MTHL 130.78 22.06
20RD 8. 60 1.04 94.98 34. 30
0113 0115

BEV 110. 14 4.96 4962.59 1460.26
GOM 99.25 13.97 4628.92 1515.32
MTH 155.11 2.53 6704.22 1449.91
WILT 93,14 22.96 4323.81 1734.66
ACGC 120. 51 13.68 5721.09 961.92
REP 96. 22 16.90 4557.81 1077.63
DJ

MTHL 157. 81 11.04 6898.00 1516.70
20RD 98. 83 20.08 4450.50 1720.15

203



CURVE  FINISH START CURVE  FINISH START
0116 0118

BEV 7338.01 1475.11

GOM 5733. 79 1532. 85 25148. 37 1307. 36
MTH | 11607.18 1474. 84

WILT 4857.07 1796.23

ACC 7591. 04 1304. 59 18261. 02 1087.11
REP 5484. 52 1331.49 10528.10 1088. 54
DJ

MTHL 11788.00 1562. 00 431370.0 1316.87
20RD 5230.15 1776.25 8527.05 1459. 73
0117 0119

BEV 49.59 18.13
GOM 10254. 77 1329.12 48.72 19. 70
MTH 57.42 15.73
WILT 5771. 53 1506.19

ACC 11147. 35 1129. 01 53.04 15.01
REP 7095. 29 1135.00 48.33 19.30
DJ

MTHL  97184. 00 1380. 34 54.47 14. 67
20RD 6893. 54 1503. 34 . 46.54 21.45
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CURVE FINISH START CURVE FINISH START

0120 0122

BEV 257.10  99.64 245.92  65.33
GOM 257.11  111.66 245.71  17.98
MTH 263.95 -9.62 259.46  28.96
WILT | ~ 247.22  26. 64
ACC 310.94  131.77 867.76  99.04
REP 267.33  135.08 519.29  99.05
DJ 268.27 -128.94 301.57 -53.56
M THL 262.55  30. 94 . 257.49  37.8l
20RD 257.09  136.52 245.47  96.96
0121 0123

BEV 236.46  -22.78 238.84  74.73
GOM 236.58  45.40 238.72  84.178
MTH 256.45  51.96
WILT

ACC 269.36  91.12 467.46  98.69
REP 242.36 104,77 - 320.64  98.51
DJ 238.41 -949.91 339.10  -8.52
MTHL ' 254,59  58.27
20RD 236.60  70.04 238.66 103.76
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CURVE FINISH START CURVE FINISH START

0124 0126
BEV 227.77 71.35 236.32  38.95
GOM 227.72 80.38 236.01  57.12
MTH 243.26 48.72 | 257.92 5.88
WILT 236.96  24.12
ACC 388.23 93.74 447.36  75.90
REP 274. 71 93. 44 309.22  76. 38
DJ 310.43  -10.61 353.52 -80.83
MTHL 243.76 62.60 ~ 253.38  16.59
20RD 227. 62 97.96 235.87  74.81
0125 0127

BEV 253.95 58. 49 247.68 -13.82
GOM 253.19 73.39 247.07  28.01
MTH 281.63 32.02 274.48 -75.95
WILT

ACC 675.17 85. 65 416.67  56.65
REP 412.32 85.08 ' 291.45  57.17
DJ 462.66  -53.66 336.43 -217.31
MTHL 270. 60 26. 68 278.14 3:/78
20RD 252. 82 92.03 270.69  41.39
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CURVE FINISH START CURVE FINISH START
0128 0130

BEV 273.21 1.09

GOM 270. 54 27.65 87.55 17.16
MTH 323.25  -12,72

WILT

ACC 905. 35 52.16 94. 04 17.26
REP 525. 49 51.71 63.57 17. 37
DJ 2500. 36 -78.88

MTHL 333.75  25.93 174.58  16.58
20RD 247.09 43, 68 54,87 18.96
0129 | 0131

BEV 164. 52 33. 82

GOM 124,52 35.23 129. 82 24.29
MTH 249.34  33.43

WILT

ACC 146. 74 35,15 135, 37 24.40
REP 112.94 36.42 ' 87. 60 24, 44
DJ

MTHL 185.68 . 32.69 383.33 24,07
20RD 105, 71 39. 46 71.20 26.52
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CURVE  FINISH START CURVE  FINISH START
0132 0134

BEV 57.55 20.47 350.97  25.99
GOM 53.58  20.76 146.46  27.72
MTH 79.07  20.66

WILT

ACC 64.27  20.94 169.68  28.22
REP 51.68  20.97 123.14  29.18
DJ

MTHL 93,35  22. 30‘ 241.85  25.16
20RD 51.39  23.75 116.85  31.94
0133 0135

BEV 115.34  24.99 193.68  14.71
GOM 88.27  25.99 106.17 16,44
MTH 167.26  24.60 351,42  14.83
WILT 83.93  23.22
ACC 102.52  25.87 128.07 17.12
REP 80.87  26.86 92.70  17.67
DJ

MTHL 108.77  23.10 389.65  18.49
20RD 70.91  28.61 100.26  21.06
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CURVE FINISH START CURVE FINISH START

0136 Sy 0138

BEV 312.34 157,26 178.94  129.15
GOM 305.13  160. 36 178.31  129.95
MTH 356,60 150.14 190.06  123.55
WILT

ACC 335.53 155.19 187.62 124,92
REP . 299.06 162.30 177.91  130.59
DJ

MTHL 298.16 128.70 186.36  121.02
20RD 284.32 173.36 173.51 135,34
0137 D ’ 0139

BEV 150.99  80. 42 209,24 144,42
GOM 150. 95 84.57 208. 54 145, 62
MTH 155.44  27.34 226.29  139.20
WILT 214,71 134,22
ACC 154,75  51.98 222.87  141.06
REP 150.93  86.82 208.10 146,58
DJ 156.49  95.34

MTHL 155.74  47.89 225.71  139.16
20RD 150. 85 97. 56 205. 89 154, 61
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CURVE  FINISH START CURVE  FINISH START
0140 : . 0142

BEV 115.60 21.70

GOM 93.14  23.52 300. 40 21.99
MTH 192,94 21.27

WILT

ACC 110.66  23.66 200. 85 22,12
REP 85.86  24.837 119,85 22 13
DJ

MTHL 134577 2068 1366.16 21.72
20RD 84.15 v G 178. 54 24.43
0141 : 0143

BEV 165.79  13.64

GOM 69.12 14,17 134, 84 24.16
MTH 305.73  13.65

WILT 82.05 14.50 350, 45 24, 28
AcCcC WY O © B b B 143, 72 24, 30
REP 57.07 14,59 97. 84 24. 55
DJ

MTHL 142.67  13.70 442. 80 23.91
20RD 5718 16,47 84. 60 26.83
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CURVE FINISH START CURVE  FINISH START
0144 0146

BEV 100.64 17.98 104. 35 31.79
GOM TE:57 19013 71. 50 9.80
MTH 131.43  17.46 99. 60 0.75
WILT 71.73 9.16
ACC 8163 . 1887 82.17 9.62
REP T2 19:96 70.15 12.98 l
DJ

MTHL 64, 80 - TNoAP 99. 85 6. 50
20RD 53.63  20.75 71.01 13.07
0145 0147

BEV 85.56  22.59 148. 22 61. 66
GOM b AR ANE T 147,77 68.20
MTH 118.16  22.04 159. 92 35.04
WILT 92.45 - 2116

ACC 92: -+ 24: 1T 156. 34 52.78
REP HEi2h 2508 147. 39 71. 50
DJ 230.15 57. 47
MTHL 1oRias 23033 153.94 19. 06
20RD 73:79 28,34 146. 30 78. 96




CURVE FINISH START CURVE FINISH START

0148 0150
BEV 104.73  44.24 179.17 61.42
GOM 103.49  46.64 166.40 63.32
MTH / 120.44  40.27 244.33 61.12
WILT 105.34  42.95 151. 60 74.03
ACC 11423  43. 77 196. 09 61.71
REP  102.79  48.38 159. 39 63.57
DJ

MTHI/., 120.92  41.88 277.08 63. 65
20RD 100.92 53,218 157.96 72. 40
0149 . : 0151

BEV 139.94  72.88 155, 32 63. 27
GOM 139.64  74.61 153, 71 66. 37
MTH '143. 09  63.50 178.27 59,19
WILT 150, 52 80. 05
AcCC 145.70  59.47 169. 34 62. 46
REP 139.31  72.66 152, 72 68.18
DJ 165.64  89.44

MTHL 149.72  68.58 184.93 66. 58
20RD 139,23  84.21 152,25 .32
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CURVE  FINISH START CURVE FINISH START
0152 ~ 0154

BEV 986.41 53,80 168.11 -2.66

GOM 282.41 55,13 115.47 8. 08

MTH 262. 57 -3.99

WILT

AcCC 288.37 55,26 128.90 9.08

BEF 2389 A4 110.20  14.27
DJ »

MTHL 164.39  47.00 198.53 2. 46
20RD 138.78  59.36 111.73 : e

0153 0155

BEV 115.59 -24.09

GOM

MTH 165,71 . =24:32

WILT

ACC 122.25 0.53 430.27 14, 37
REP 105.48  33.28 ; 287.175 14, 57
DJ

MTHL 193.96: < 1.8% 103,14 4,36
20RD 108. 83 -5.00 173. 81 15. 60
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CURVE  FINISH START CURVE FINISH START
0156 0158

BEV 124.25 -18.74
GOM 139.97 2.18 109.12 1. 84
MTH 183.52 -19.62
WILT

ACC 147.99 2.15 126.08 3.22
REP 91. 76 1.88 106. 59 6. 65
DJ

MTHL -227. 58 1.59
20RD 434.76 5.72 112.28 -1.35
0157 0159

BEV 28. 61 16.95
GOM 28.57 17. 38
MTH 30,16 14.15
WILT

ACC 29.90 15. 50
REP 42.97 i BT 28.55 17. 68
DJ 32.21 19. 96
MTHL 30. 35 15. 37
20RD 121.90 2.18 28. 51 19. 57
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CURVE FINISH START CURVE FINISH START

0160 0162

BEV 29.95 10.43 25. 86 -12.18
GOM 29. 89 12.48 25. 59 0.39
MTH 31.45 -20.36 28. 52 -72. 60
WILT

ACC 31.26 4.98 27. 45 -0.08
REP | 29.87 1356 25.58 2.12
DJ 32.67 ¥6.33 29. 32 2.76
MTHL

ZORID 29.75 14. 82 25. 66 -2.53
0161 0163

BEV 34.51 3.44 34. 39 8.20
GOM : 34.33 8.12 34.24 10. 46
MTH 36.73 -54.68 36.92 -4.69
WILT

ACC 36.23 -0.15 ' 36.31 5. 69
REP 34. 35 10.24 34.20 1125
DJ 3709 14. 31 39.31 18. 32
MTHL 37.10 3. 79
20RD 34.18 9.83 34,19 13.95
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CURVE FINISH START CURVE FINISH START

0164 0166

BEV 38.70  26.59 99. 31 63.68
GOM 38.63  26.76 99. 31 66. 30
MTH 40.63  24.68

WILT

ACC 40.37  25.41

REP ' 38. 60 26.94 99. 30 67.02
DJ 46.60  29.90 : 99.97 84. 68
MTHL 40.68 25.24

20RD 38. 47 28.68 99. 27 75.95
0165

BEV 99. 84 g7 S o 0167 99.25 76.43
GOM 99.81  78.28 99.25 77.53
MTH 102.17  63.88 -

WILT 100.94  63.64

ACC 102.00  67.38

REP 99.80  178.71 99.25  77.83
bJ 104.36  83.86 99.72  90.78
MTHL 102.17  64.17

20RD 99. _;',9 82.1717 99. 24 84.68
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CURVE FINISH START CURVE FINISH START
0168 0170

BEV 100. 44 85. 62 96.12 21. 37
GOM 100. 40 85. 80 94. 95 27.44
MTH 103.29 g2o0e 109,22 8. 42
WILT 97 13 14.95
ACC 104.03 21,10
REP 100. 37 85. 94 94, 50 30.23
DJ 13323 87. 30 156. 99 36.90
MTHL 10317 82.48 111.06 18.26
20RD 99. 86 88.33 94, 34 34.95
0169 0171

BEV 96.46  63.08 100. 54 76.30
GOM 96. 45 " &5 68 100.43 76. 72
MTH 105. 41 73.03
WILT 100. 41 77.00
ACC 104.78 73.83
REP 96. 45 66.15 100. 36 77.07
DJ 98. 33 85. 24 136.67 80. 40
MTHL 105. 59 73.48
2ORD . 96.45 75. 18 99.89 80. 80
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CURVE FINISH START CURVE FINISH START
0172 0174

BEV 100.19  79.31

GOM 100.09  79.55

MTH 104.86  77.45

WILT 99.38  82.56
ACC 104.30  77.84
REP 100. 01 79.73
DJ 153.13  83.41

MTHL 105.14  77.96
20RD 99.55  82.92
0173 0175

BEV 129,26 6T 33 176. 62 82.12
GOM 121. 66 67. 60 172.11 84.10
MTH 213.96 79.72
WILT

ACC 197,87  84.4l

REP 116. 63 6T, 71 168. 52 85. 71

DJ

MTHL 160.127 66.66 215.12 83.17
20RD 110.04  71.67 167.19  94.59
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CURVE FINISH START CURVE FINISH START
0176 0178

BEV 257.31  92.28 136.36  24.21
GOM 253.86  97.67 134,17 35. 31
MTH 300.28  86. 66 162. 86 10. 89
WILT 254,12  98.43

ACC 152. 86 34,05
REP 133.60  41.25
DJ 351.10 16. 69
MTHL 301.66  90.55 165. 30 23.04
20RD 250,01 133,95 133.21 46.93
0177 0179

BEV 243.98  57.07 217. 39 60. 89
GOM 243.27 . k.62 214. 64 69. 02
MTH 262.19  20.05 249. 74 50. 88
WILT 262.70 -302.19

ACC

REP

DJ 330.73 -47.97

MTHL 259.88  30.19 ' 221.56 40. 95
20RD 243.'52 90. 80 210. 59 80. 25
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CURVE FINISH START CURVE  FINISH START
0180 . 0182

BEV 218.95  86.82 207.13 73. 70
GOM 218V 5829 201.23 76. 58
MTH 24117 86,10 253.27 71.37
WILT 215.51 69. 63
ACC 257.05 89. 33
REP

DJ

MTHL 260.76  93. 3'} 247.24 67.92
20RD 218.31 102.42 195.85  85.66
0181 0183

BEV 291.36 72. 09
GOM 322. 67 8.7 284. 60 75. 46
MTH 360. 65 70. 82
WILT

ACC 318.08  75.48

REP 217.89  75.170

DJ

MTHL 1211,75  70.94 385.38 79.15
2 ORD 166,00 7991 283.54  91.71




CURVE FINISH START CURVE FINISH START
0184 0186

BEV 174.27  44.69 209.71  32.76
GOM 173,78 58. 52 209.31 59, 71
MTH 192. 44 1.70 215.69 -608.14
WILT |

ACC 193.87  61.10 248.53  32.65
REP. .. 20658 b 212. 85 57.41
DJ 175.27  69.05 219.23 -253.31
MTHL 198.98  46.03 "

20RD 173,90 19, 88 207.97 78. 40
0185 0187

BEV 255.52  95.24 108.20 30.91
GOM 254.54 102. 88 104.03  32.80
MTH 282.63. .B1.22 135,48 29.94
WILT 257.05  89.33

ACC 674.28 . 108,22 119. 82 18. 32
REP 456.61 109.13 102. 62 24,68
DJ 1883.29  58.83

MTHL 277.53  80.40 132.59 30. 26
20RD 252.74 119,65 101.24 36. 24
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APPENDIX H

PARAMETER VALUES FOR TELEPHONIST TRAINING DATA

,/

GIVEN IN APPENDIX E

DATA SET ¥ YF TAU
201 FE % 2 %
201 36.12 1105. 66 183.95
202 FE 53, 24 205.93 16.97
202 117. 82 ST -3.10
203 FE ? Z g
203 -4304.38 4460. 75 1.06
204 FE 3 5 =
204 59. 34 2108. 41 377. 61
205 FE 5 . :
205 66.06 -39.93 -15. 68
206 FE % 4 <
206 97. 49 211 -8.75
207 FE : ‘ -
207 95.25 -0.000075 ~1.4%
208 FE e . .
208 95. 40 -249.16 6L h
209 FE g ; :
209 -63.26 353,03 17. 92
210 FE e : 4
210 16. 20 157.58 7.43
211 FE - s .
211
212 FE i . -
212 -58. 35 263.52 8. 62

* 'FE' data sets include the full efficiency check.
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DATA SET X ) TAU

213 FE G £
213 76.17 290. 37 48.19
214 FE -18. €4 245. 87 12.22
214 -48.21 243,45 8. 34
219 FE -4, 66 252.29 16.21
219 -216.25 382. 88 4, 36
221 FE 12. 64 272.11 18.91
221 -68. 66 249. 95 8.26
222 FE 115. 88 156.96 95,02
222

223 FE 70. 86 144. 94 16. 54
223 26. 82 . 141. 95 5.85
224 FE 102. 24 111.78 21.40
224

225 FE

225

226 FE 39, 81 180. 02 12.96
226 31.02 174. 05 10. 56
227 FE

221

229 FE

229

230 FE TR 99 184. 33 12.01
230

231 FE 1.50 225, 34 9. 64
231 41, 54 321, 62 26, 68
232 FE : 13. 35 237. 86 12. 94
232 30. 02 282.32 20.43
233 FE ¥2. 87 267.61 14. 00
233 53.79 -275.96 -36. 41
234 FE 55. 65 198, 51 19.28
234 85. 51 -125.48 -31.41
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DATA SET

235 Y8
235

236 FE
236

238 FLIL
238

239 FE
239

240 FE
240

241 FE
241

242 FE
242

243 FE
243

244 FE
244

246 FE
246

247 FE
247

248 FE
248

249 FE
249

251 FE
251

252 FE
252

253 FE
253

5oL
64.09

61.74
84.22

76.25
47.08
-173.68

42.59
111.20

16. 60
78.07
23239

-42.56
-41. 37

104.13
-23.06

-104. 96

39.06
-5837.63

72.13

118.40

15.95
-22.49

224

&

128.
138.

143.
-88.

13].
214.
348.
178.

109.

210.
-0.1

-0.

93
04

11
76

52

12

26

23

73

62
4

27

258.59
258. 82

182. 66

246.00
303. 31

194.05
6020. 58

154,67

139. 55

249.70
214,27

TAU

51
16.

15.
=217,

18.

23,

2l

22.
-2.

89
18

33
12

02

.00
Ok

06

73

57
95

-2.41

11,14
11,32

69. 36

18. 40

77,

14

21,40
9.96



DATA SET

254 FE
254

255 FE
255

256/FE

256

257 Tk
257

258 FE
258
259 FE
259
260 FE
260

261 FE
261

262 FE
262

263 FE
263

264 FE
264

265 FE
265

266 FE
266

267 FE
267

268 FE
268

269 FE
269

77139
109. 62

81.91

25.38
-300.97

-4.10

100. 54

28.73

-39.09

-117.93
-2.45

26.46
72.49

63.20
-462.56

70. 57
79. 66

216:73
-20.'15

4.01
61.47

8. 54

225

XX

197.20
-1.68

205. 79

263.29
467. 64

360.33

110.90

219. 89

208. 61

385.45
375. 71

210.43
11,51

182. 51
652. 89

187. 37
344.06

262.06
256. 32

315,91
-0.45

205.27

TAU

31. 80
-4,68

38. 13

21.67
3. 41

35. 60

26.49

18. 47

6.30

6. 60
16.27

24,91
-10- 87

11.92
2139

24, 44
60. 58

16. 39
15,18

39. 56
-3.93

12.83



DATA SET Yc YF TAU

270 FE -13.44 359.58 217. 81
270 59. 82 -3.77 -5.28
271 FE 96.02 134.90 53.33
271

272 FE 60.24 189. 43 14. 55
272 109. 82 -21.92 -10. 37
273 FE

273

274 FE - - _
274 71. 81 -20.94 -14.63
275 FE 54.43 163. 53 9. 65
275

276 FE 20. 54 233.69 21.82
276 -52. 82 217.97 6.96
277 FE

271

278 FE

278

279 FE 57.43 175. 91 34.98
279 92.40 -0, 021 -2.74
280 FE 52.42 164.05 25.19
280 67.18 -413.56 -119.25
281 FE 43.85 192.22 14. 89
281 -3882.29 4039. 69 1.28
282 FE =12 7% 337.96 15,66
282 ~33.73 593.53 46. 84
283 FE oy 140. 29 15. 47
283 70.14 138.63 14. 63
284 FE -8.82 265.48 28.11
284 51.23 -0.58 -3.97
285 FE - i "
285
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DATA SET

286 FE
286

287 FE
287

[
288 FE
288

289 FE
289

290 FE
290

291 F E
291

292 FE
292

293 FE
293

294 FE
294

SIS EE
295

296 FE
296

-65.

84.

23,

5.

917.
84.

49.

87.

=1 165,

72.
-14.

33.
61.

79.
57.

82.
-42.

106.
131.

92

50

96
68

39
58

58
41
62

46
24

40
79

29
09

34
97

38
39

227

Tk

281.09

124. 24

189.11

-0.11

163.15
138.83

940. 08
128, 11
1346. 40

141. 56
192. 31

269. 27
-71.15

396.98
120.20

201.25
236.42

156.41
-2.55

TAU

8. 88

19. 76

20. 52

-3.11

23.28
$3.15

431.32
10.37
1,59

12.1%
4.49

38. 81
2.79

105.21
14.08

20.45
4.41

3393
-6.22
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