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ABSTRACT Facial landmark detection is a key component of the face recognition pipeline as well as
facial attribute analysis and face verification. Recently convolutional neural network-based face alignment
methods have achieved significant improvement, but occlusion is still a major source of a hurdle to
achieve good accuracy. In this paper, we introduce the attentioned distillation module in our previous work
Occlusion-adaptive Deep Network (ODN) model, to improve performance. In this model, the occlusion
probability of each position in high-level features are inferred by a distillation module. It can be learnt
automatically in the process of estimating the relationship between facial appearance and facial shape. The
occlusion probability serves as the adaptive weight on high-level features to reduce the impact of occlusion
and obtain clean feature representation. Nevertheless, the clean feature representation cannot represent the
holistic face due to the missing semantic features. To obtain exhaustive and complete feature representation,
it is vital that we leverage a low-rank learning module to recover lost features. Considering that facial
geometric characteristics are conducive to the low-rank module to recover lost features, the role of the
geometry-aware module is, to excavate geometric relationships between different facial components. The
role of attentioned distillation module is, to get rich feature representation and model occlusion. To improve
feature representation, we used channel-wise attention and spatial attention. Experimental results show that
our method performs better than existing methods.

INDEX TERMS Facial landmarks, channel attention, spatial attention, deep learning, scalable computing.

I. INTRODUCTION
Facial points are predefined landmark points on a face graph,
mainly located around the common facial components, e.g.
nose, chin, mouth, ear and eyes. These points also can be
centred at common facial components. Facial analysis tasks
can differ in numbers and types, in terms of number of
needed facial points, and use of these facial points. For face
alignment mostly localizing of these facial points has been
done, and it gained more attention during the last decade [1]
due to its importance. The area of Facial Landmark Detec-
tion (FLD) has received much attention within the computer
vision community since it is a fundamental problem. In fact,
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fast and accurate FLD is beneficial either directly or indi-
rectly tomany application domains [1]: Directly by indicating
the relevant area where to extract the interesting features as
for face recognition, facial emotion recognition, and gender
recognition; Indirectly as a critical task for face alignment,
facial attribute analysis, dysmorphic facial signs identifica-
tion in the medical field, and even for face detection [2].
Because of the practical value associated with this topic,
it has been attracting efforts from both industry and academia,
which has resulted in impressive progress in recent years.
In spite of the achieved promising results, accurate localiza-
tion of facial landmarks in unconstrained scenarios remains
an extremely challenging task, mostly when faced with view-
point change, severe occlusion and large appearance varia-
tion, caused by change in the illumination. Complex facial
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expression and different head poses make the task even
harder.

Existing facial landmark detection methods can be cat-
egorised in 3 groups: template based methods, regres-
sion based methods, and deep learning based methods.
Template-based fitting methods aim to learn a shape model
during training and then fit the input pictures when testing.
It can be formulated by minimizing the distance between
the reconstructed images and the shape normalized testing
image [3]. It builds global facial shape and facial appear-
ance based on Principal Component Analysis (PCA), mainly
the focus is to improve the fitting algorithms. Notable
examples include: ‘‘Face detection, pose estimation, and
Landmark Localization’’ (FPLL) [4], Active Appearance
Models (AAM) [5], Discriminative Response Map Fitting
(DRMF) [6], and Active Shape Models (ASM) [7]. More
particularly, ASM method incorporates the distributions of
corresponding anatomical points, and then parameterizes the
mean shape and most likely variations of this shape across
a training set. As for AAM method, PCA is firstly used to
model the shape and texture separately and then integrating
them together with another PCA to get a generative appear-
ance model. Various refinements on this basic scheme of
AAM have boosted the performance, and have shown to
be robust with large variations of occlusions and extreme
illumination conditions. In this type of model, the recon-
struction error affects whole face under occlusion [8], which
leads models to be unable to locate facial landmarks in hard
circumstances.

Regression-based methods aim to directly learn the map-
ping from image appearance to landmark locations. This can
be done either in one iteration without any initialization of
landmark positions, which is the case of direct regression
methods; or by starting from an initial guess of landmark
locations (e.g. a face from training set or mean face) and
perform cascaded prediction, which is the case of cascaded
regression methods [3].

Recently, deep learning methods achieved prominent place
to solve computer vision problems. Facial landmark detec-
tion researchers shift their attention from traditional methods
to deep learning based methods. Convolutional Neural Net-
work (CNN) models are dominant deep learning based mod-
els for facial landmark detection, and most of them follow
the regression framework. Those methods can either directly
predict the facial landmark locations, or combine other deep
learning concepts with computer vision projection models for
prediction. Comparatively, deep learning based models have
gained superior performance over other models [9]. Recently,
convolutional neural network base facial point estimation
methods have achieved significant improvement [10]–[12].
In line with the recent continuous success of deep learning
in vision, the accuracy of the FLD task has significantly
improved. However, occlusion and extreme facial expres-
sion images are still an existing challenging task for CNN
as well [13]. If the face is partially occluded, the local-
izing accuracy would be dropped significantly because

FIGURE 1. Examples of occlusion from the COFW dataset [15]. It is very
hard to detect the facial landmarks when face is occluded by glasses,
masks, hairs, hands and scarves, etc.

occlusion probably misleads CNN for feature representation
learning.

CNN works in a hierarchical manner and deals with local
dependencies, which depends on size of kernel and depth
of network. CNN uses the concept of padding to maintain
the similarity between input and output length. For L layers
of CNN with kernel size of K , the largest size of context
size can be L(k − 1) [14]. As discussed, the convolutional
process deals with just local neighbour dependencies, either
in space or time; thus, dependencies at long-range can only
be captured through multiple repetitions of these operations,
which is time and resource taking. CNN pushes performance
on basis of the network’s depth, width, and cardinality.

To solve the occlusion problem, the first step is to model
occlusion. It is hard to model occlusion, and specifically for
facial appearance. It is very challenging because it is irregu-
lar, complex, and random, as shown in Figure. 1. To solve
the occlusion problem there exist some methods in litera-
ture. Robust Cascaded Pose Regression (RCPR) [15] pre-
dicts the occlusion likelihood of relevant landmarks using
a fixed occlusion prior knowledge. RCPR divides the face
into different blocks, and training depends on the annotated
occlusion state of landmarks in the training set, which is
very time consuming for large scale datasets, e.g. 300W [16],
AFLW [17], etc. Wu and Ji [18] introduced a supervised
regression method that gradually updates probabilities of
landmark visibility in each iteration, Liu et al. [19] Introduced
adaptive cascade regression with adaptive exemplar-based
shape model to estimate the occlusion level of each land-
mark. Recently Xing et al. [20] introduced an occlusion
dictionary into the face appearance dictionary, and occlusion
dictionary is learned in a data driven manner. To overcome
the occlusion problem during landmark detection we already
proposed (ODN) [21]. ODN consists of three modules: distil-
lation module, geometry-aware module, and low-rank learn-
ing module. We used distillation module to model occlusion
probability based on high level feature, furthermore we used
low-rank learning module to recover missing feature.

Although ODN achieved better results than previous meth-
ods, we observed the results are not as per our expectation due
to poor feature representation. In real-world scenario, many
facial images are collected in the wild, which are affected
by spatial and appearance distortion due to irregularities of
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positions in a camera according to the scene, which alter
the dimensions of the geometry of the scene, and degrades
performance [22].

To improve representation interests and to handle
spatial distortion, we employ attention mechanism into
already established ODN. Attention mechanism consists of
channel-wise attention and spatial attention, channel attention
focuses on ‘what’ is meaningful in a given input facial image,
and spatial attention focuses on ‘where’ to focus.

The remaining part of the paper is organized as follows.
Section II describes the related work. Section III introduces
occlusion adaptive attention based solution. Section IV elab-
orates on experiments and results. In section V we describe
conclusion and future work.

II. RELATED WORK
The prospective behind facial landmark detection is to iden-
tify some predefined key-points on facial components. Unfor-
tunately, occlusion is still an obstacle to achieve this task
perfectly.

Attention has a vital role in human perception. The human
visual system doesn’t process the whole scene at once
it exploits a sequence of partial glimpses and selectively
focuses on specific part in order to capture better visual struc-
ture. In human the human visual system only in the foveolar
visual acuity reaches 100 percent due to the largest connec-
tion of cones. Attention plays a very critical role to capture
long-range dependencies. Attention calculates response for a
specific location as weighted sum of features at all positions,
and tells network where to focus specifically. In this section
we will analyze the problem with the ODN followed by the
discussion about attention for FLD.

A. OCCLUSION-ADAPTIVE DEEP NETWORK
ODN consists of three modules: distillation module,
geometry-aware module, and low-rank learning module.
We used the distillation module to model occlusion probabil-
ity based on high-level feature, furthermore we used low-rank
learning module to recover missing feature. In real-world
scenario many facial images are collected in the wild, which
effected by spatial and appearance variations [22] due to
irregularities of positions in a camera according to the scene,
which alter the dimensions of the geometry of scene, and
degrades performance.

To obtain ODN we modify the last residual block of
ResNet-18 [23]. Feature map from last residual block is fed
into geometry-aware module, distillation module to obtain
geometric information, and clean feature representation.
Geometry-aware module consists of two pathway subnet-
works, is similar to quadratic kernel expansion, which aims
to generate high level feature representation. Objective of
distillationmodule is, to eases the sensitive of occlusion, filter
the features of occluded region, and remove irrelevant infor-
mation from background. Distillation modules also consist
of two sub-pathway networks. To generate the hybrid feature
representation of face appearance, geometry-aware module

FIGURE 2. Comparison of local receptive field and our proposed
geometry-aware module on capturing facial geometric relations.

FIGURE 3. Occlusion-adaptive Deep Network.

and distillation module are concatenated together into one
high-dimensional featuremap. The output of geometry-aware
module and distillation module are assembled and fed into
low-rank learning module to recover missing features by
modelling facial inter-feature correlation. In ODN feature
distillation module is responsible to model occlusion and fea-
ture representation. Rich feature representation can help low
rank learning module to recover missing feature in efficient
way.

B. ATTENTION ADAPTIVE FACIAL ALIGNMENT
Attention has a vital role in human perception. Normally
human visual system process iteratively, instead of process-
ing the whole image at once, exploits a sequence of partial
glimpses and focus on selective portions to capture better
visual structure [24]–[28]. In the human visual system only
in the foveolar visual acuity reaches 100 percent [29]–[33],
due to the largest connection of the cones.

Recently there are several attempts to improve the per-
formance of CNN by using attention [34]–[38]. Attention
calculates response for a specific location as the weighted
sum of the features at all positions, and indicates where to
focus [34]. Li et al. [22] introduced Spatial Alignment Net-
work (SAN) for facial landmark detection, focusing on spatial
and appearance variations. SAN consists of two methods;
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FIGURE 4. The diagram of Occlusion-adaptive Attention Deep Network Model.

the hand-crafted method, as well as learning-based method.
But, the problem is, if the handcrafted method is used,
the efficiency is very low and if the learning-base method
is used, it is not steady. JAA-Net [39] and AAN [40] uses
spatial attention to improve network performance regarding
landmark detection. In JAA-Net, and AAN spatial align-
ment indicates ‘where’ to focus but still ‘what’ to focus is
missing. Channel-wise attention and spatial attention [34],
[35], [41] achieved remarkable improvement for image clas-
sification. Inspired by [34], [35], [41] we incorporated
channel-wise attention and spatial attention, in already estab-
lished ODN [21] to improve the performance of our model.

III. OCCLUSION ADAPTIVE ATTENTION BASED DEEP
NETWORK
Most deep learning based face alignment models are using
CNN. Convolutional process deals with just local, neighbour
dependencies. Thus, dependencies at long-range can be cap-
tured through multiple repetitions of these operations, so it
is computationally inefficient to compute long-range depen-
dencies. Attention calculates responses for a specific location
as the weighted sum of the features at all positions and
leads, where to focus [34]. Channel-wise attention and spatial
attention achieved remarkable improvement in performance
of the CNN. We incorporated channel-wise attention and
spatial attention in the ODN [21] to improve the performance
of network.

To be very specific in ODN we edited the last Residual
block of ResNet18 [23]. It consists of three modules: distilla-
tion module, geometry-aware module, and low-rank learning
module. We replaced distillation module with attentioned
distillation module by incorporating channel attention and
spatial attention. We used the attentioned distillation module
to model occlusion probability based on high level feature,
furthermore we used low-rank learning module to recover
missing feature.

The attentioned distillation module filters the feature of
occluded region. The absence of some features doesn’t mean,
the face doesn’t have that features, which could be an incor-
rect interpretation of the model. Large number of feature of
face are co-related or co-occur. Some have symmetry, Prox-
imity or position relation. Presence of features directs towards
the presence of other features or recover missing features.

FIGURE 5. ResNet18 [23] Default architecture.

FIGURE 6. Distillation module.

In real-world scenario many facial images are collected in
the wild, which effected by spatial and appearance distortion
due to irregularities of positions in a camera according to
the scene, which alter the dimensions of the geometry of the
scene, and degrades performance.

min
1
N

N∑
i=1

∥∥∥S̆i − S∥∥∥2
F
+ αRank (M) (1)

Given the training set
{(
Ii, S̆i

)}
can be learned by (1).
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FIGURE 7. Self-Attention module.

FIGURE 8. Proposed attentioned distillation module.

where S̆, and S represents ground-truth and correspond-
ing prediction. S̆ = {s1, s2, . . . .sL} and S = W T

fcMTX .
where X denotes the output of the geometry-aware mod-
ule and the attentioned distillation module as feature map.
L is the number of landmark and s denotes the facial
landmark. Wfc denotes the parameters of fully connected
layer.

We have trained our model same as the ODN in an end-to-
end manner.

A. ATTENTIONED DISTILLATION MODULE
As the self-attention, in the visual context is designed to
explicitly learn the relationship between one pixel and all
other positions, even regions far apart, which is computation-
ally so expensive and time-consuming.

In Figure 8. Z is the feature map from previous residual
learning blocks. It can be easily observed, ODN needs good
feature representation. Good network feature representation
can help to learn missing feature more efficiently. To achieve
this goal we incorporated channel-wise attention and spatial
attention as proved by [34], [35], [41], that channel-wise
attention and spatial attention can improve the ability of fea-
ture representation. The attentioned distillation module also
consist of two pathways. Pathway-C deploys the attention
mechanism to improve feature representation.

Z = Z ′′ + F (2)

FIGURE 9. Attention mechanism.

where Z is a refined feature map after combining attention
map and residual map. F is feature map from previous resid-
ual block and Z ′′ is feature map from attention process.

B. CHANNEL-WISE ATTENTION AND SPATIAL ATTENTION
Normally in network engineering, to improve rich feature
representation researchers increase the depth of the network.
Recently [35], [41] proved that feature representation can be
improved through attention mechanism. Attention not just
improve feature representation, It also guides the network
about, area to be focused. So in this work we will use
channel-wise attention and spatial attention. To be specific
channel wise attention tell the network ‘‘what’’ to be focused
and spatial attention guides ‘‘where’’ to be focused. In our
case spatial attention guides the network about the location to
predict landmarks and channel-wise attention helps to select
semantic features. Our goal is to ensure that the network
is able to increase its sensitivity to informative features.
Channel attention map can be produced easily by exploiting
inter-channel relationship to extract semantic features for
specific facial points.

CNN generally extracts features of images. An input image
W×H×3, when passes through a convolutional layer having
C channels, filters scan the input image and generate output
as Ẃ × H́ × C feature map, which will be input of the
next convolutional layer. In CNN, normally filters perform
as pattern detector i.e. lower-level filters detect low level
visual patterns like corners and edges and the high-level filter
detects semantic patterns like parts, objects etc. CNN extracts
image features by stacking of layers through a hierarchy of
visual abstraction. So in simple words we can say image fea-
tures of CNN are spatial, channel-wise and multi-layer. In our
case in context of facial point, channel-wise attention can
be viewed as the process of selecting semantic attributes on
demand. For example when we wants to predict facial points
of the left eye, our channel-wise attention will assign more
weights on channel-wise feature map generated by filters.

1) CHANNEL-WISE ATTENTION
The channel attention map has been produced by exploit-
ing the inter-channel relationship of the features. As it is a
common perception that each channel of a feature map is
a feature detector. As already discussed, channel attention
focuses on ‘what’ is meaningful in the given input image.
We squeeze the spatial dimension of the input feature map
to compute the channel attention efficiently. In ODN we
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used average-pooling but here, used both max-pooling and
average-pooling. The primary purpose of max-pooling is to
gather more valuable information about the distinctive fea-
tures of the object to refine channel-wise attention.

To compute channel attention we first aggregated spatial
information of a feature map by using both average-pooling
andmax-pooling operations. Later we generated two different
spatial context descriptors: Zc

Avg and Zc
Max , which denote

average-pooled features and max-pooled features respec-
tively. A shared network with these both descriptor will pro-
duce our channel attention map Mc ∈ R1×1×C . The shared
network is composed of multi-layer perceptron (MLP) with
one hidden layer. To reduce parameter overhead, the hidden
activation size is set to R1×1×C

r , where r is the reduction
ratio. After the shared network is applied to each descriptor,
we merge the output feature vectors using element-wise sum-
mation.

Z ′ =Mc

⊗
F (3)

Mc,F represents the channel wise attention and feature map
from previous residual blocks respectively.

2) SPATIAL ATTENTION
The spatial attention map is generated by utilizing the
inter-spatial relationship between features. As we already
discussed the basic purpose of spatial attention is to guide
the network "where" to focus, and it is complementary to
the channel attention. Spatial attention can be computed by
applying pooling along with channel axis, so we applied
average pooling andmax pooling along with channel axis and
then concatenated them to generate the feature descriptor, and
applied convolutional layer to generate a spatial attentionmap
Ms{Z} ∈ RH×W which encodes where to emphasize. The
channel information of a feature map has been aggregated
by using two pooling operations, generating two 2D maps:
Zs
avg ∈ RH×W×1 and Zs

max ∈ RH×W×1.

Z ′′ =Ms

⊗
Z ′ (4)

Ms represents spatial attention, andZ ′ represents the feature
map driven by channel wise attention.

IV. EXPERIMENTS
To test the effectiveness of the proposed model, we analysed
our model for several benchmark datasets against normal
circumstances, occlusion as well as against various poses.
As per ODNwe cropped and resized all images as (224×224)
and exploit the scale, rotation, flip operation and translation
to conduct data augmentation for the training set. All models
are pre-trained on the ImageNet dataset [42].

A. DATASETS
To conduct the experiments we used following diverse bench-
mark datasets: 300W [16], AFLW [17], COFW [15], 300VW
[16], [43] as all datasets are publicly available and considered

as benchmark dataset. We compare our results with state-of-
the-art methods [12], [40], [44], [45].

• 300W (300 Faces In-the-Wild Challenge) dataset [35] is
a widely used database for evaluating near-frontal face
alignment. Each face is annotated with 68 landmarks.
To keep consistent with previous work, the dataset is
partitioned as follows: The 300W training set with
3148 training images from AFW [4], LFPW [46] and
HELEN [47]; the common testing subset with 554 test
images from LFPW and HELEN; and the challenging
testing subset with 135 test images from IBUG. The
full testing set of 300W is the union of both common
and challenging subsets. We use 3,148 images for train-
ing and 689 for testing as samples. We split testing
samples in 3 subsets: (i) Challenging set (135 images
from IBUG); (ii) Common set consist of 554 images
(224 images from LFPW and 330 fromHELEN test set);
the fullset consist of 689 images (containing all testing
images).

• COFW (Caltech Occluded Faces in the Wild) dataset
is designed to benchmark face landmark algorithms in
realistic conditions, which includes heavy occlusions
and large shape variations. All images have large vari-
ation in pose, shape, occlusion and expression. Orig-
inally COFW is annotated with 29 landmarks, [48]
re-annotated with 68 landmarks for landmark detection.

• AFLW (Annotated Facial Landmarks in the Wild)
dataset is a large-scale, multi-view, real-world face
database with annotated facial landmarks. This database
includes a total of 24386 face images gathered from
Flickr, having diverse variations of face appearances
like: pose, age, gender, expression as well as different
environmental conditions. It is also a publicly available
database annotated with 21 landmarks.

• 300VW dataset contains 114 videos. Each video is
one minute long and annotated with 68 facial points.
300VW includes 50 videos for training, and the remain-
ing 64 testing videos divide further into three different
categories.

B. EVALUATION METRIC AND IMPLEMENTATION DETAILS
To evaluate our proposed method we used Normalized Root
Mean Squared Error (NRMSE) and CED curve. NRMSE is
defined as.

NRMSE =
1
N

N∑
i=1

∥∥∥S̆i − Si∥∥∥
2

L�i
(5)

where L is the number of landmarks and � in inter-ocular
distance. To be very specific� represents the width of bound-
ing box for AFLW dataset. we conducted experiments with
various reduction ratios like: r = 8, 16, 32 and 64. We found
that r = 8 is best for our experiments. We also tried different
combination of spatial attention and channel attention, and
we found better performance in sequence as channel attention
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TABLE 1. Comparison of NRMSE
(
×10−2

)
results on common set and

full set of 300W.

TABLE 2. Comparison of NRMSE
(
×10−2

)
results on Challenging set

of 300W.

and spatial attention. All other parameters are manually tuned
as per ODN.

1) EVALUATION UNDER NORMAL CIRCUMSTANCES
In this subsection we will, evaluate our method on faces,
under normal circumstances. We used two subsets of 300W
(full set and common set) as the test datasets. The reason
to choose these datasets is, because of fewer changes under
the poses, occlusion, and illumination. Table 1 shows the
experimental results in comparison to existing benchmark
methods in terms of NRMSE

(
×10−2

)
. It can easily be

observed from Table 1, that our method outperforms than
current state-of-the-art methods, and obtains a significant
improvement on both test datasets (full-set and common-set).
Hence, our results indicate that our method can accurately
locate landmarks of the face under normal circumstances.

2) EVALUATION OF ROBUSTNESS AGAINST OCCLUSION
To deal with occluded faces is comparatively harder than
normal faces. To the best of our knowledge, most of the

FIGURE 10. Comparison of NRMSE
(
×10−2

)
on COFW dataset.

FIGURE 11. Comparison of CED curve on COFW test dataset.

state-of-the-art methods perform well under normal circum-
stances to predict accurate landmarks of face, but accuracy
decline in case of occluded faces. Hence, to prove robust-
ness of our method against the occlusion, we conducted
experiments on two different benchmark datasets: COFWand
challenging set of 300W.

As illustrated in Table 2 and Figure 10, we compared
the proposed method with other current representative meth-
ods on COFW and Challenging set of 300W. The results
in Table 2 show that our method boost the NRMSE value
to 6.65

(
×10−2

)
, which is comparatively better then all

mentioned methods on challenging set of 300W test dataset.
Figure 10 shows the result on COFW test dataset. We trained
our method 300W training dataset and evaluated on different
datasets. From Figure 10, the improvement of result can be
easily observed. Figure 11 is about CED comparison about
COFWdataset. Figure 12 shows the CED comparison against
challenging set of 300W dataset.
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TABLE 3. Comparison of NRMSE
(
×10−2

)
results on 300VW Dataset for

all 3 categories.

FIGURE 12. Comparison of CED curve on challenging test.

FIGURE 13. Comparison on the number of parameters in million for
distillation module.

3) EVALUATION ON VIDEOS
We tested our model on 300VW dataset to asses robustness
of our model. Table 3 shows the results of our model. It can
be easily observed our model outperform than current state-
of-the-art models against all three categories.

4) ABLATION STUDY
As already mentioned, our model is an extension of
ODN. Our model consists of 3 modules: geometry-aware

FIGURE 14. Comparison on the number of total parameters in million.

FIGURE 15. The visualization of some post-distilled face images from
COFW dataset.

module (GM), attentioned distillation module (ADM) and
low-rank learning module (LM). In this subsection, we carry
out the validation study to validate effectiveness on chal-
lenging datasets. Based on the baseline ResNet-18 and
ODN, we analyse the proposed change. Figure 13, and
Figure 14 depicts the comparison on the number of network
parameters in million for attentioned distillation module and
overall respectively. It can be easily observed that our pro-
posed change decreased the number of network parameters,
which is time-saving as well as cost-saving. In the case of
scalable data processing our model is consuming very less
resources than ODN. In addition we show visualization sam-
ples from attentioned distillation module in Figure 15. In first
column we can see face images and probability maps and
post-distilled results of these images are illustrated in next
two columns.
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V. CONCLUSION AND FUTURE WORK
In this work, we present an attention-adaptive deep net-
work to solve the occlusion problem for facial landmark
detection, which is composed of three main modules: the
geometry-aware module, the attentioned distillation module
and the low-rank learningmodule. The geometry-aware mod-
ule and the attentioned distillation module can capture the
geometric relations of different facial components and obtain
the clean feature representation, respectively. The outputs
of these two modules are concatenated as the input of the
low-rank learning module to recover the missing features by
means of geometric information. We conducted the experi-
ments on benchmark datasets to evaluate the performance of
our proposed framework under normal circumstances, partial
occlusion and extreme pose. The experimental results show
that our method outperforms existing methods and achieves
robustness against occlusion and various poses.
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