Middlesex
University
London

A software development framework for

context-aware systems

Unai Alegre-Ibarra

Supervisors:
Prof. Juan Carlos Augusto
Dr. Carl Evans

Middlesex University

Department of Computer Science, Faculty of Science & Technology

A thesis submitted to Middlesex University in partial fulfilment of the requirements for the

degree of Doctor of Philosophy.

Acknowledgments

1 take this opportunity to thank all those people without whom this thesis would not have
been possible.

En primer lugar, quisiera agradecer a mis padres, por todos los sacrificios bechos para que
yo pudiera tener una oportunidad, por la educacion y los valores que me ban brindado y
sin los cuales el camino bubiera sido mucho mas dificil. Sois y seréis siempre un ejemplo

a seguir.

1o Carl Evans and Franco Raimonds for their guidance and support throughout this

whole process.

A ti Rocio por tu paciencia, por todos los buenos consejos y los sacrificios que has hecho
por que yo pueda tener esta oprotunidad. A toda mi familia por su apoyo incondicional

durante todo este tiempo, y en especial a Marisa por acogerme de la forma en que lo bas

becho.

10 all the colleagues who I encountered throughout this experience, and made London
a warmer place to be. Especially, to Pragya, Javier, Poujha, Alexandra, Dean, An-
dras, Olanna and Diego. Ta nola ez, Esti ta Imanoli, nigatik egin duzuen guztiagatik,
eta zuen bibotzarekin Londres pixkat jasangarriagoa egiteagatik. Londresen elkartu
ginen euskal lagun taldears, eta azkenik, Gasteizko kuadrillari etxera itzuli izan na-

izen bakoitzean eskeini didazuen beroagatik.

T was awarded by Middlesex University with funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement n 610840.

Abstract

he beginning of the new century has been characterised by the miniaturisa-

I tion and accessibility of electronics, which has enabled its widespread usage
around the world. This technological background is progressively materialising the
future of the remainder of the century, where industry-based societies have been mov-
ing towards information-based societies. Information from users and their environ-
ment is now pervasively available, and many new research areas have born in order
to shape the potential of such advancements. Particularly, context-aware computing
is at the core of many areas such as Intelligent Environments, Ambient Intelligence,
Ambient Assisted Living or Pervasive Computing. Embedding contextual awareness
into computers promises a fundamental enhancement in the interaction between com-
puters and humans. While traditional computers require explicit commands in order
to operate, contextually aware computers could also use information from the back-
ground and the users to provide services according to the situation. But embedding
this contextual awareness has many unresolved challenges. The area of context-aware
computing has attracted the interest of many researchers that have presented differ-
ent approaches to solve particular aspects on the implementation of this technology.
The great corpus of research in this direction indicates that context-aware systems have
different requirements than those of traditional computing. Approaches for develop-
ing context-aware systems are typically scattered or do not present compatibility with
other approaches. Existing techniques for creating context-aware systems also do not
focus on covering all the different stages of a typical software development life-cycle.
The contribution of this thesis is towards the foundation layers of a more holistic ap-
proach, that tries to facilitate further research on the best techniques for developing
these kinds of systems. The approach presents a framework to support the develop-
ment not only with methodologies, but with open-source tools that facilitate the im-

plementation of context-aware systems in mobile and stationary platforms.

CONTENTS

Contents
List of Figures
List of Tables

Definitions

I Opening

1 Introduction
1.1 Introduction
1.2 Supporting a software development methodology for context-aware
SYSTEIMIS © o v v e e e e e e
1.3 Problemstatement,
1.4 Objectives
15 CaseStudy

1.6 Documentstructure v v v v v v v e e e e e e

2 Conceptualisation
2.1 Introduction
2.2 Context in context-aware computing
2.3 Reflections on the context conceptualisation
2.4 Perspectives on context for the engineering of more usable context-
AWATESYSTEIMIS . . . o v v v v e e e e e e

25 Conclusions e

3 State of the art

3.1 Introduction

14

16

17

19
20

23
25
28
30
33

35
36
37
42

46
56

59

3.2 Requirements engineering 62
3.3 Model-drivenengineering L 73
3.4 Implementationsupport 80
3.5 Conclusions e 88
II Requirements stage 921

4 RC-ASEF: Requirements for the context-aware systems engineering

framework 93
41 Introduction 94
4.2 Establishscope 98
43 Stakeholderanmalysis 0 L. 98
4.4 Establishobjectives 0 .. 108
45 Elicitrequirements 111
4.6 Evaluate 124
47 Conclusions 126

5 SRC-ASEEF: Situational requirements for the context-aware systems en-

gineering framework 131
5.1 Introduction 132
5.2 Mainactivities oL L 134
5.3 Applyevaluation procedure oL 136
S4 Exampleo Lo 146
5.5 Conclusions 166
III Design stage 169

6 DC-ASEF: Design for the context-aware systems engineering framework171

6.1
6.2
6.3
6.4

Introduction 172
General systemdesign L oL 174
Context-aware featuredesign 176
Contextinformationdesign 180

6.5 Applyevaluationprocedureo L Lo 194
6.6 Conclusions 197

7 VC-ASEEF: Verification for the context-aware systems engineering frame-

work 199
7.1 Introduction L. 200
72 TheMlanguage 201
73 MappingMtoNuSMV 0L 202
7.4 Usageillustration 0 L0 L. 211
7.5 Evaluation L 215
7.6 Conclusions L L o 217
IV Implementation, deployment and maintenance stages 219

8 IDMC-ASEF: Implementation, deployment and maintenance for the

context-aware engineering framework 221
8.1 Introduction 222
82 Codegeneration L 223
8.3 Implementsystem, 225
84 Deploy&run L 226
8.5 Maintenancetasks 227
8.6 Toolsupport 228
8.7 Model to text transformations 232
88 Conclusions 252
V Evaluation and critical reflection 255
9 Conclusions and future work 257
9.1 Introduction 258
9.2 Reflecting on the objectives and futurelines 261

p)

VI Appendixes

A Appendix A

A.1 Modelio

A2 Stationaryplatform Lo

A.3 Mobile platform

A4 Code generation rules

A5 NuSMV specification counter-example

Appendices
B Appendix B

Bibliography

275

277
278
279
283
286
296
277

299

301

LisT OF FIGURES

2.1

2.2
2.3

3.1
3.2

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8
4.9

Context categorisation divided into conceptual and operational perspect-
ives,aspresentedin [1]. Lo o L L Lo
Decomposition of the different concepts related to context.
Decomposition of the different concepts related to the functionality of
the system and its personalisation. Note that additional layers for feature
preferences and personalised functionality could be added, as context-
aware features can be decomposed in other context-aware preferences de-

pending on the feature preferences of the stakeholders.

Core Activities in the R4IE (AAL) Framework.
Ilustration of the selected methodologies and tools which will serve as a
foundation for the C-ASEF.

Different foci of the engineers as the methodology iterates.
Core activities in the early requirements elicitation stage, F7.
Activity model representing the core sub-activities in the early require-
ments elicitation stage, correspondingtoF1. L.
Part I, meta-model for the Stakeholder Diagram.
Part II, meta-model for the Stakeholder Diagram.
Power vs Interest Grid representation, created with the Stakeholder Dia-
gram fromthe RC-ASETool.
Activity diagram of primary user displacements, UML Activity Diagram,
ModelioTool.
Different profile features and profile feature instances of primary users. .

Value model representation, Stakeholder Diagram, RC-ASE Tool. . . .

4.10 Objective Diagram meta-model.
4.11 Goal Decomposition I, Objective Diagram, RC-ASE Tool.
4.12 Goal Decomposition II, Objective Diagram, RC-ASE Tool.

7

38
52

54

70

920

96
96

97
104
105

106

107

107
108

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

4.27

4.28
4.29

5.1

5.2

5.3

5.4

5.5

5.6

Goal Decomposition III, Objective Diagram, RC-ASE Tool.
Goal Decomposition IV, Objective Diagram, RC-ASE Tool.
Goal Decomposition V, Objective Diagram, RC-ASE Tool.
Goal Decomposition VI, Objective Diagram, RC-ASE Tool.
Obstacle analysis, Objective Diagram, RC-ASE Tool.
Resource analysis I, Objective Diagram, RC-ASE Tool.
Resource analysis II, Objective Diagram, RC-ASE Tool.
Stereotypes for the OMG SysML Requirements Diagram [2].
Requirements Diagram meta-model, part L.
Requirements Diagram meta-model, part IL.
Requirements model I, Requirements Diagram, RC-ASE Tool.
Requirements model II, Requirements Diagram, RC-ASE Tool.
Requirements model III, Requirements Diagram, RC-ASE Tool.

Personalised Requirements model I, Requirements Diagram, RC-ASE

Ethical analysis, Stakeholder Diagram, RC-ASE Tool.

Screenshot of the evaluation of objectives using the RC-ASE module in
Modelio.

Context-related activities in the late requirements elicitation stage, cor-

respondingtoF2. oo oo

Core sub-activities in the early requirements elicitation stage, correspond-

ingtoF2.
Metamodel for the Situation of Interest Diagram.
Metamodel for the Situation Detection Diagram.

lustration of the traceability link between the SOI under analysis and a
UMLactivity.

Representation of the situation of interest presented in 5.4.2, created with

the Situations of Interest Diagram from the RC-ASE Tool.

8

112
113
113
113

123

123
124

128

134

137

140

144

151

5.7

5.8

5.9

5.10

6.1
6.2
6.3

6.4
6.5
6.6

6.7

6.8
6.9
6.10

6.11
6.12
6.13

Representation of a detection plan for the situation of interest presen-
ted in 5.4.2, created with the Situation Detection Plan Diagram from the
RC-ASETool.o

Example of the Link view provided by Modelio with the RC-ASE tool

for the situation of interest introduced in the example of this chapter.

Example of the Link view provided by Modelio with the RC-ASE tool

for the primary user stakeholder element.

Example of the Link view provided by Modelio with the RC-ASE tool

for the deviceLocation context-attribute element.

Core sub-activities for the design methodology.
Metamodel for the Information Display Diagram.

Example of an Information Display Diagram for representing how mes-
sages are displayed for the context-aware feature introduced in Figure 5.6,

Section S.4.2. e e e e

Part I, Metamodel for the Context Acquisition and Modelling Diagram.

Part IT, Metamodel for the Context Acquisition and Modelling Diagram.

Example of the usage of the Acquisition and Modelling Diagram for mo-
bile platforms. Particularly related to the temperature context-attribute,

introduced in the example from Section 5.4.3, Figure 5.7.

Example of the usage of the Acquisition and Modelling Diagram for sta-
tionary platforms. Particularly related to the smart-kitchen scenario from

Section 1.5.3. e
Metamodel for the Reasoning Diagram.
Metamodel for the States of the model in the Reasoning Diagram. . . .

Example of the usage of the Context Reasoning Diagram. Particularly

related to the smart-kitchen scenario from Section 1.5.3.
Part of the metamodel for the Context Deployment Diagram.
Part of the metamodel for the Context Deployment Diagram.

Example of the usage of the Deployment Diagram for stationary plat-

157

163

164

165

174
177

178
180
182

185

187
188
189

190
191
192

forms. Particularly related to the smart-kitchen scenario from Section 1.5.3.194

9

7.1

7.2

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Estimated performance of the experiments by applying Lagrange’s inter-

polation to time resultsin Table 7.4.

NuSMYV variable number required for each M element.

Core sub-activities for the Implementation, Deployment and Mainten-

ancemethodology. Lo L

Libraries created and extended during this thesis for the reasoner in sta-

tionary platforms and its connectivity to external elements.

Main elements in the android reasoner and it interacts with the context
library, the newly developed applications the operating system and the

learning platform. L o oo

Map of the software artefacts produced by the Acquisition & Modelling,
Reasoning and Deployment Diagrams, and their relation to the Android

libraries and the mobile system under development.

ustration of the pseudo-code rules for transforming stereotypes in the
Context Acquisition & Modelling Diagram, to the Java class for the con-
text receiver in the Android Context Library. Where get Else() isa func-
tion that writes an else if there has been a previous if, and text between
square brackets represents an attribute from the stereotype in the form

of Stereotype.name. Lo o

[lustration of the pseudo-code rules for transforming stereotypes in the
Context Deployment Diagram, to the Java class for the ontology manager

in the Android Context Reasoner.

Ilustration of the pseudo-code rules for transforming ContextPreference
stereotypes in the Situation Detection Diagram, to the Java class for the

preferences in the Android Context Reasoner.

Ilustration of the Stereotype transformation in the Context Acquisition
& Modelling Diagram, to the Java class for the context mapper in the An-
droid Context Reasoner. Where text between square brackets represents

an attribute from the stereotype in the form of Stereotype.name.

10

216

238

8.9

8.10

8.11

8.12

8.13

8.14

8.15

[lustration of the pseudo-code rules for transforming stereotypes in the
Situation Detection Diagram, to the Java class for the context mapper in

the Android Context Reasoner.

Ilustration of the pseudo-code rules for transforming stereotypes in the
Situation Detection Diagram, to the Java class for the context mapper
in the Android Context Reasoner. For space reasons, the tranformation

rules can be found in Appendix A.4.C. L.

Code snippet of the C-SPARQL code generated by Modelio with regard
to the model of Figure 6.6. Note that this code generates Java clases. The
engine for producing the content inside the string has been reused from

that presented in [3], which is publicly availablein [4].

Map of the software artefacts produced by the Acquisition & Model-
ling, Reasoning and Deployment diagrams, and their relation to the M

Reasoner codeand system.,

Ilustration of the pseudo-code rules for transforming stereotypes in the
Context Acquisition & Modelling Diagrams, to the SensorObserver type
of class in the M Reasoner GUI Library. Where toDeclaration() is a
function that returns the corresponding Java declaration type for each
JavaValueType (e.g., for an Integer value of the JavaValueType it returns

7772 TS

lustration of the pseudo-code rules for transforming stereotypes in the
Context Deployment Diagrams, to the Actuator type of class in the M
Reasoner GUI Library.

Ilustration of the pseudo-code rules for transforming stereotypes in the
Context Acquisition & Modelling Diagrams, and Deployment Diagrams,
to the Deployment Module class in the M Reasoner GUI Library.

11

244

245

247

8.16

8.17

8.18

8.19

8.20

9.1

Al

A2

[lustration of the pseudo-code rules for transforming stereotypes in the
Reasoning Diagrams, to the specification text file for the M Reasoner
GUI Library. Where useComma() is a function that inserts a comma
if there is another element remaining, use And() is a function that in-
serts the A symbol if there is another element remaining, getSymbol
(OperatorType) returns “[-]” for STRONG OperatorType, and “<->”
for WEAK Operator Type, get Sign(boolean) returns “#” for false value
of the input variable, and nothing for #7ue value. Note that brackets with

aslash (“/[” “/]”) represent text to be transformed.

Ilustration of the pseudo-code rules for transforming stereotypes in the
Context Deployment Diagram, to the configuration txt file of the M Rea-
soner. Where text between square brackets represents an attribute from
the stereotype in the form of Stereotype.name; and where get Driver() is
a function that returns the driver used by each database type (e.g., for an

Integer value of the MDBTypeitreturnsznz).

lustration of the pseudo-code rules for transforming the modelio pro-

ject into the Main class in the M Reasoner GUI Library.

Mlustration of the pseudo-code rules for transforming stereotypes in the
Context Acquisition & Modelling Diagrams, to the configuration text
file for the M Reasoner GUI Library.

Code snippet of the M specification code generated by Modelio with re-
gard to the model of Figure 6.7.

Representation of the different parts conforming the C-ASEF. Light grey
boxes represent parts which have been developed as part of the contribu-
tion of this thesis. White boxes represent parts that have been adopted.

The darkest grey box represents a mixture of both.

Screenshot of the main window of the M IDE (mreasoner-gui) applica-

tion, which appears immediately after executingit.

Screenshot of the database and SSH configurations panel of the M IDE

(mreasoner-gui) application. L L L

253

A3

A4

A.S

A6

Screenshot of the SSH configurations panel of the M IDE (mreasoner-
gui)application. L L L Lo
Screenshot of the main window of the M IDE (mreasoner-gui) applica-
tion, just immediately after executing a specification by pressing the start
button.
Screenshot of the database window panel of the M IDE (mreasoner-gui)
application, after executing a specification by pressing the start button. .
Main structure of the modified observer pattern in the Android Context

Library.

13

Li1sT OF TABLES

1.1

2.1

3.1

3.2
3.3

4.1

5.1
5.2

5.3

S.4

5.5

Comparison of current methodologies, frameworks and toolkits for the
development of context-aware systems, with the required characteristics

asintroducedin Section 1.3

Comparative analysis on the interaction modalities that context-aware

systemscanhave. Lo Lo

Comparison of current methodologies for requirements engineering in

traditional and context-aware systems. L. L.
Open-source and non-commercial modules for Modelio [S5].

A suitability analysis of the verification aspects for the M reasoning language.

Prioritisation values for the different objectives presented in section 4.4.5.

Recommendation calculation table for a context-aware feature.

Situation of Interest Detection Feasibility according to the Recommend-
ation of the DetectionPlans which have a derects relationship with the

Situation of Interest under evaluation.

Table for calculating the DetectionPlan implementation recommenda-
tion attending to the two main factors: a) Failure Likelihood Level of the

detection plan; and b) Failure Impact Level of the detection plan.

Calculation of Failure Likelihood, given the accuracy of those Contex-
tAttributes in a given DetectionPlan which are not the source of any other

ContextAttribute in that DetectionPlan.

Failure impact for objectives traced to the DetectionPlan with a contrib-

utes relationship. It is reviewed in order of positive contribution, e.g., if
there is one MAKE relationship and the objective priority is CRITICAL,

the impact will be HIGH, regardless of the rest of the contributions. . .

14

29

49

72
79
89

127

142

143

145

145

146

5.6

5.7

6.1

7.1

7.2

7.3

Example of accuracy propagation for two source context attributes re-

lated with a derives relationship to a target context attribute. 147
Situations of interest (A), context-aware features (B) and context-attributes

(C) of the illustration example for a navigation application to support
people with Down’s syndrome integrate in society. (PU = Primary User,

SU = Secondary User, A = Active, P = Passive, STD = Standard Deviation) 150

Mapping between requirements types and UML Diagrams. 175

Representation of the corresponding code to the references expressed in

the left column of Table 7.2. Where s1, 52, sn and sc are example states,

and mu, alpha and beta are example time expressions. 203
Left column: Syntax for amodel specifiedin M, denotedas M [M ODEL];
Right column: Syntax for a specification model in NuSMYV, denoted as
NuSMV ([MODEL]). Where M[MODEL]isbisimilar to NuS MV
([MODEL]). Red text between simple quotes is mandatory. Text between
square brackets references code shown in Tables 7.1 and 7.3. Note that in

order to declare independent states in NuSMV it suffices with not initial-

ising a state. The [MAXIMUM ITERATION] value needs to be manu-
allyspecified. o L L o 204
Representation of the corresponding code to the references expressed in

the left column of Table 7.2. Where 51, 52, sn and sc are example states;

mu, alpha and beta are example time expressions; and time is the itera-

tionnumber. 209

7.4 Execution time for six models, scaling the NuSMV'size. 215

15

DEFINITIONS

A N R W N

Definition (Situation of interest) 50
Definition (Context-attribute) 52
Definition (Context) 53
Definition (Context-awareness)« v v v v v v .. 53
Definition (Context-preference) 55
Definition (Feature preference) 55
Theorem 210

16

Part 1

Opening

17

meeeeesssssssssmy CHAPTER] S

INTRODUCTION

1.1 Introduction 20

1.2 Supporting a software development methodology for context-

AWATESYSTEIMIS . . . & . v v v e e e e e e 23
1.3 Problemstatement L. 25
1.4 Objectives 28
15 CaseStudy 30
1.5.1 Userswithspecialneeds. 30
1.5.2 Anavigationapplication 32
1.5.3 An assistive smart-home environment 32
154 Toolsupport 33
1.6 Documentstructureo 33

19

1.1 Introduction

ust as the industrial revolution brought the industrial age, the digital revolu-
J tion is abruptly giving rise to the information age. Emerging technology break-
throughs have made accessible a wide range of heterogeneous devices, which are not ne-
cessarily bound to a desktop anymore. Computing can occur in tablets, smartphones
or laptops, as well as in everyday objects with integrated circuits. Electronics are now
easily available, and people have quickly assimilated these new technologies into the
fabric of their being. Global positioning systems, microphones, cameras, acceleromet-
ers, gyroscopes, ambient light and proximity detectors are some examples of sensors
that are already part of people’s daily life, as they are embedded by default into the
most commonly used devices. In the information age, data is originated by almost any
digital process, from sensors to social media exchanges or website communications.
The third wave of computing [6] is now here, and digital information is now every-

where.

Communication and understanding in human interactions happen naturally. Even
when some information is omitted, humans can effortlessly figure out meaning from
the context. For instance, imagine two people athome. One announces to the other: “I
am going out now, to buy it at the store”. The listener can interpret what the speaker
is going to buy, as they are both holding the flyer of a product. After noticing the
speaker leaving without it, the listener does not require a great effort to remind him:
“Do not forget your wallet”. Both have a natural and deep contextual understand-
ing. They know that buying requires money that is usually kept in a wallet and can
use this information to help each other. But the interaction between humans and
computers happens differently, as computers are of a radically different nature than
humans. When requiring a computing service, a user typically has to make a request
for it, and explicitly provide all the information required. This makes the interaction
artificial for the users, especially in cases where the same information is requested re-
peatedly, and there is a poor communication interface. Inspired by human abilities,
context-aware computing | 7][8] aims to dynamically and non-intrusively provide ser-
vices according to the situational needs and preferences of the users by using context

information. Such an enhancement is in the essence of new emerging areas such as

20

Ubiquitous & Pervasive Computing, Ambient Intelligence, Ambient Assisted Liv-
ing or Intelligent Environments, which have the potential of materialising significant
improvements in society. Intelligent houses, autonomous driving cars, or systems to
support carers looking after patients, can facilitate the creation of more efficient and
enhanced hospitals or better public transport. Technology can be made available for
groups that find it confusing or difficult to use like the elderly population and people
with disabilities. The elder population can extend their independence at home by the
intelligent assistance of different technologies [9] [10] [11]. People with disabilities
or chronic diseases can also achieve more independence and be more integrated into
society, mainstream education and work thanks to these new technologies [12] [13]
[14].

In the current information age, it is becoming more and more feasible to obtain
and use digital data about the context. Companies and researchers are now much more
likely to adopt the trend of aiming to provide more usable services to the end-users
by using this information. The acceleration of technological progress has opened the
discussion as to whether or not the mid-century will be the point where human in-
telligence will be exceeded by machine intelligence [15] [16]. Although a number of
context-aware systems (C-AS) have been created, context-aware computing is still in
its infancy, and many of the existing projects are still laboratory-based prototypes. In
projects that involve the development of contextual awareness, the real abilities exhib-
ited by the final system can often differ from the stakeholder expectations [17]. The

development of C-AS is difficult because of the following challenges:

Chgl Context conceptualisation: Context is a term that most people tacitly under-
stand, but find difficult to elucidate [18]. The dynamic nature of context com-
plicates its programming in a computing system, for which it is required to be
more static. There is no consensus on its definition, and context is understood
as a reflection of the concerns in the particular area that approaches the notion.
Sometimes is also difficult to delineate a boundary between context and other
system information.

Chg2 Diversity: The field of context-awareness itself is very broad and interdisciplin-
ary, while context-aware solutions are quite ad-hoc. Typically, a context-aware

feature (or aspect) is added on top of an existing system or functionality, mak-

21

Chg3

Chg4

Chgb

ing its implementation intrinsically dependent on the system within which it
is going to be implemented. As systems vary significantly with respect to the
implementation of context-aware features, a consequence is that their develop-
ment has followed a series of ad-hoc paths. Existing tools and methods provide
a solution specific problem and are typically disconnected with other research
works.

Context information management: Data is acquired from multiple and dis-
tributed resources, which makes it difficult to ensure its quality and authen-
ticity. Besides, sensors can provide inaccurate, overlapping, contradictory or
even missing data [19]. After the information is sensed, it needs to be translated
into usable values that are stored in models, which can often involve a trade-
off between expressiveness and complexity. This is often also called “low-level”
context. Based on the modelled data, new knowledge and understanding is ob-
tained. Reasoning techniques will be applied, transforming “low-level” context
into “high-level” context. Therefore, the accuracy of context information cre-
ated at a higher architectural layer will depend on the correctness of information
created at a lower layer. Then, all the produced information needs to be timely
distributed to the part of the system that will be consuming it. It is also im-
portant to mention that this information might contain some user private data,
raising privacy and ethical concerns.

Cost: Writing a context-aware system without having an underlying software
framework that is bespoke to context-awareness is a hard process. For the way
in which the context information needs to be managed, systems usually depend
on some sort of infrastructure to support the information handling. One must
develop the code to communicate with some external sensing and reasoning sys-
tem which should be scalable to support the use of different kinds of sensors
through its life-cycle. Creating and maintaining these sorts of infrastructures
requires a considerable investment of resources, making the creation of context-
awareness more expensive than creating traditional software [20].

Reliability: Usually, context-aware systems require complex technologies which
enable them to obtain higher order knowledge from sensors in order to trigger

different services. The more contexts that the system is aware of, the more com-

22

plex will be the system, and therefore, the more complex it will be to ensure that
the system will not exhibit any undesirable behaviour. Likewise, it is difficult to
have high quality context information that reflects an accurate representation
of reality, making it difficult to reason and adapt accordingly to the way that
the user might desire.

Chg6 Change: The dynamic nature of context makes these systems demand high ad-
aptability. The requirements of such systems have a tendency to rapidly change
[21]. The context information management infrastructure needs to be both
flexible and scalable, enabling the addition and removal of new sensors or high-
level context inferences. The introduction of additional context information
may trigger requirements for further developmental change. Entirely new ser-
vices, actuators, or graphical user interface variations are some of the examples

of things that might be required for these changes.

It needs to be mentioned that the scope of this thesis is not aimed at completely
resolving all the existing challenges in the field. However, these challenges are used as

a starting point to guide the research of this thesis.

1.2 Supporting a software development methodology

for context-aware systems

The challenges in the creation of context-aware systems make their development dif-
ferent from that of traditional computing. Literature shows scattered and disconnec-
ted research extending existing software development methods, indicating that there
is a need for a more holistic approach in the development of context-aware systems.
A development process with so many challenges requires a set of governing methods,
rules and principles to maximise the chances of creating a successful and reliable sys-
tem. There are several methodologies, frameworks, and toolkits that have been tried
to address this problem. Although the state-of-the-art is presented in Chapter 3, the
following section presents a few selected examples in order to illustrate common issues

that provide some context for the themes that are addressed by this thesis.

The Context Modelling Language (CML) [22] was created as a tool to assist de-

23

signers exploring and specifying the design and implementation of context-aware ap-
plications with an emphasis on rapid prototyping. The authors propose a set of con-
ceptual models to support the development process, including context modelling tech-
niques, a preference model for requirements representation and two programming
models. The methodology they present has three main steps: Analysis, infrastruc-
ture customisation and testing. During the analysis the general goal is to document
the functionality and requirements of the application, including the identification of
context information, its quality and the sources which are suitable. The infrastructure
customisation is a tool-supported step that helps to personalise some context compon-
ents, identifying new situations and its changes in the databases. Finally, the testing
is divided into three stages. First traditional white box testing methods are applied
(T1), to then perform black box testing, which uses specially constructed sets of con-
text information (T2). Finally, the application is evaluated in the field, using a realistic

hardware environment.

Later on, OPEN [23] was introduced, an ontology-based cooperative program-
ming framework for the rapid prototyping, sharing, and personalisation of context-
aware applications for users with diverse technical skills. To meet diverse developer
requirements in the development and customisation of context-aware applications, it
implements four programming modes with diverse complexity: 1) Incremental mode,
for high-level users, which supports the creation of new context-aware applications;
2) Context Interpreter, to reason sensor data using different reasoning techniques;
3) Composition mode, a programming mode for middle-level users; and 4) Paramet-

risation mode, for low-level users, to enable them customise existing applications.

The MUSIC [24] framework and methodology facilitates the development of ad-
aptive applications in open, heterogeneous ubiquitous computing environments. The
methodology proposed has five main stages. The first stage starts with an analysis of
resources, context dependencies and context adaptations. Then, during the model-
ling stage, the variability and the domain model are created. The first stage specifies
application variants and their dependencies on the context and resources while the
second stage provides semantic information on the execution domain with respect to
the context and resource entities as well as the service landscape. Once the model is

ready, appropriate transformation tools generate the adaptation model that publishes

24

the design elements into the middleware. Finally, the testing, validation and operation

of the code adapting to contextual changes in the desired manner.

And more recently, DiaSuite [25] is a tool-supported development suite that uses a
software design approach to driving the development process in the domain of Sense-
Compute-Control (SCC) applications. The first step of the method consists of creat-
ing a taxonomy of entities. Then, the application logic is decomposed into context and
control operators. These first two steps constitute a description of the system in the
DiaSpec language. After this, its compiler generates a dedicated Java modelling frame-
work to support the programmer in the implementation of the application. Then,
the program is simulated in a smart-home environment scenario. During this step,
the tester can develop simulated entities by extending the corresponding abstraction
provided by the generated programming framework. DiaSuite also provides support

for deploying, maintaining and evolving the system.

Augusto [26] also highlights the need for a more tailored software development
process to the area of Intelligent Environments. Although the aim of this thesis is to
address the more general topic of context-aware computing, this work has been in-
fluenced by, and has synergies with these works [26] [27]. Other development envir-
onments and methodologies [28] [29] [30] [31] [32] oriented to similar areas such as
Pervasive Computing, Ambient Intelligence [33] and Intelligent Environments [34]
also provide support to some extent for context-awareness development. Neverthe-
less, these approaches share other concerns that are not essential to context-awareness,

such as services or ubiquitous features.

1.3 Problem statement

There are several methodologies, frameworks and toolkits that have been presented
for supporting the development of context-aware systems. Table 1.1 presents an ana-
lysis based on the contents of their corresponding publications. The analysis summar-
ises, to the best of our knowledge, the support for the following feature categories:
a) The scope of the approach, aiming to analyse if the work is focused just on contex-

t-awareness, or it also has influence from other areas; b) Whether or not the approaches

25

take into account user needs, preferences and limitations; ¢) Whether or not the ap-
proaches are able to guide developers with respect to identifying context and contex-
t-triggered services; d) To what extent the approaches give coverage to the most com-
mon development stages of an application’s life-cycle;) Tool support for developers,
and; f) Whether or not the code of those tools is publicly and freely available to any
researcher that might be interested in extending it. The analysis concludes that there
is no unified software development methodology for the creation of context-aware sys-

tems, which has:

* Focus on context-awareness: The development process of a context-aware sys-
tem has different needs to that of traditional software [Chgl] [Chg2] [Chg3]
[Chg4] [Chgd] [Chg6]. Although context-awareness is key for Ubiquitous Com-
puting, Ambient Intelligence, and Intelligent Environments, it constitutes a
small part of the whole approach. An approach that is narrowed to context-
awareness will make it easier to create some principles that give response to the
specific needs of this field, enabling other fields at the same time. Table 1.1
Column (4) shows the specific field in which the research group approaches
context-awareness. Although all methodologies provide support to a certain de-
gree for developing context-awareness, in some cases methodologies pay more
attention to other field-related aspects and oversimplify the real complexity of
context and context-awareness.

* User-centred perspective: Context-aware computing looks for a natural human-
computer interaction, where the main purpose is making the computer disap-
pear from the user perception. Therefore, it is inherently user-centred, where
the needs, preferences, and limitations of the stakeholders need to be taken into
account. Table 1.1 Column (5) conveys whether or not the methodological ap-
proach has the philosophy of developing systems which take into account the
user needs, preferences and limitations. Only three of the approaches have a
user-centred perspective, but none of them include this philosophy as an essen-
tial aspect of the conceptualisation of context and context-awareness.

* Development life-cycle coverage: There is a need to have an even more holistic
approach to the development of C-AS. Generally, existing methodologies and

frameworks do not cover the most common stages of the development life-cycle

26

of a system, focusing mostly on design and implementation. Not taking into
account some stages like requirements elicitation makes it more likely for de-
velopers to be uninformed about what to program and increases the chances of
producing an incorrectsystem. Enabling a complete life-cycle can also give a bet-
ter response to the dynamic nature of context, that demands frequent changes
in the systems [Chg6]. Stages like requirements elicitation and maintenance
gain more importance. Finally, design verification also takes an important role
in producing more reliable systems [Chg5]. Table 1.1 Column (7) collates in-
formation about the methodological coverage throughout the different devel-
opment life-cycle stages. It can be observed that most of the methodologies fo-
cus on the design and development stages, paying less attention to other essen-
tial development stages such as requirements elicitation. Even methodologies
thatinclude support for eliciting requirements do not provide it for other stages
like deployment or maintenance.

Developer guidance: Some approaches present very sophisticated frameworks
and tools for the creation of C-AS, predominantly focused on the increase of
development speed of highly routine contextual situations. However, they do
not include anything to inform developers about what contextual situations are
appropriate for the system under development, and what information can de-
termine a contextual situation and what services it will trigger [35] [1]. Table
1.1 Column (6) expresses whether or not the methodology has any support
for: (a) enumerating the set of contextual states that may exist; (b) knowing
what information could accurately determine a contextual state within a set,
and (c) stating what appropriate action should be taken from a particular state,
or (d) another type of context discovery guidance for developers. As it can be
observed, developers have very little guidance on what contexts need to be im-
plemented and why.

Open-source tool support: One of the challenges in the development of C-AS
is how expensive it is to develop these systems [Chg4] and their specific needs
for information handling [Chg3]. For this reason, it is desirable to have a set
of tools and infrastructure that helps to reduce development time and cost of

implementation. Although almost half of the analysed methodologies provide

27

tool support (Table 1.1 Column (8)), these tools are usually hard to find online.
As far as the author of this thesis is aware, only one methodology has released
the code so that it can be improved and extended by other researchers, DiaSuite

[36].

1.4 Objectives

The broader goal of this research thesis is to:

Lay the foundations of a user-centred and open-source tool-supported framework for
aiding the development of context-aware systems throughout the most common stages of

their development life-cycle.

The philosophy of this dissertation is to provide a contribution that is an integ-
ration of its parts in terms of addressing several phases within an overall software en-
gineering process. The approach bases a development model on the standard phases
of existing methods and tools, respectively enhancing them with respect to the needs
of context-aware systems. The core development phases are addressed with a view to
enhancing rather than having a deep focus on a particular stage to a depth of a thesis

itself. This dissertation targets the following research goals:

* Conceptualisation: A conceptualisation of context-aware systems that facilit-
ates its development by focusing on the creation of more usable context-aware
systems, by taking into account the following aspects: (a) The specific devel-
opment needs of these systems; (b) The state-of-the-art limitations of these sys-
tems; and (c) the needs and preferences of the end-user stakeholders (user-centred
perspective).

* Life-cycle coverage: The assembly of a framework which embeds the conceptu-
alisation across the most common phases of a development process. By doing
so, the aim is to achieve an integrated consistency across those phases towards
the achievement of a methodology that holistically addresses the concerns re-

lated to the development of more usable context-aware systems.

28

* Open-source approach: The area of context-aware computing is still in its in-
fancy, and achieving a methodology which can create perfectly mature context-

aware systems is out of the scope of this thesis. The aim is to contribute to the

| | T . g £ ¢
| Qo 8 = 5 o 5
| g | 58 S ETE F o8
\ . S D 2= T S G = B
[S G % 5 5 B 5 E 3 8 o
No. ' Name > & 1 Scope o o A O A A O = O
| |
T T
I N) B € B G R G © O ®) _0)
(a) | ISAMadapt 2002 [28] | Percom - - Des, Dev v oo
s suany SNt et St A
! 21 C- in ~ - es, Dev, -
b) ' CML 2006 [22] 1 C-A Des, De M v/
} | Percom
(c) 1 CAMUS 2007 [29] 1 C-A in ~ ; Des, Dev -
| |
I T (Ubleomp
(d) ;| MUSIC 2012 [24] Ubicomp ~ - R,Des,Devv M vV ~
(e) ' OPEN 2011 [23] ' C-A v ~ Des, Dev -
IOt SR b e e D A
(f) | CA-PSCF 2010 [30] | C-A in ~ - Des, Dev v oo
: : Pervcom
(g) [— 2010 [33] i AmlI v ~ Des, Dev - -
(h) | MIRIE 2013 [34] | IE : i Des -
(i) ' REUBI 2013 [32] | Percom - - R, Des, Dev ~ -
IR b e iRt e A
(j) ' PerDe 2014 [31] ' Percom v ~ Des, Dev v oo
(k) | DiaSuite 2014 [25] | SCC - - Des, Dev, M - -

4
Scope: “C-A” = Context-Awareness, “Percom” = Pervasive Computing, “Ubicomp” = Ubiquitous Computing,

“AmI” = Ambient Intelligence, “IE” = Intelligent Environments, SCC = “Sense Compute Control”.

«» _

5 . . .
User-centred perspective: “v/” = Has a user-centred perspective, “~” = Takes into account the user preferences,

Does not have a user-centred perspective.

« »_ «»

e Developer gnidance: Offers developer some development support for context discovery [35] [1]., “-” = Does not
offer any development support.

7 Coverage of development stages: “R”= Requirements elicitation, “Des” = Analysis and Design, “Dev” = Development,
“M” = Maintenance.

8 Tool support: “/”= Ofters tool support, “-” = Does not offer tool support, “~” = It has tool support for some aspects
of the methodology but not all of them.

«» _

? Open source: The code is not publicly available.

Table 1.1: Comparison of current methodologies, frameworks and toolkits for the develop-
ment of context-aware systems, with the required characteristics as introduced in Section

1.3

29

foundations of an engineering process that will hopefully be able to do so in the
future. Therefore, it is also important to highlight the open-source philosophy
of this thesis, for which all the tangible source outcomes are publicly available

to facilitate its study, adoption, and extension in the future.

1.5 Case Study

The whole framework presented in this thesis utilises a total of eight diagram formats,
each of which requires the introduction of its corresponding meta-model. In order
to facilitate the understanding of the most technical aspects, this section introduces
the case study which has been used as a validation example for this thesis. In each
of these five chapters, activities of the methodology are illustrated with an example
which is related to this case study. Particularly, when presenting the meta-model of
each diagram, its corresponding example will be presented, to illustrate the usage of
these diagrams to the Reader.

The case study introduced in this section is based on the insights gained during
the development of the EU funded POSEIDON project [14] [37]. The project name
stands for PersOnalised Smart Environments to increase Inclusion of people with DOwn’s
syNdrome, and is particularly focused on using smart assistive technologies in order to
foster the independence of people with this condition. During the POSEIDON pro-
ject, several meetings, discussions, interviews and questionnaires were conducted, in
which representatives from the Down’s Syndrome Association, carers or parents of
a person Down’s syndrome, and people with Down'’s syndrome (PDS) participated.
These interactions happened in the United Kingdom, Germany and Norway. Some
outcomes from these meetings have been referenced for complementing the case study

presented in this chapter.

1.5.1 Users with special needs

Down’s syndrome (DS) is a neuro-developmental disorder, which is caused by the
presence of either a copy, or part copy, of chromosome 21 [38]. As part of the PO-

SEIDON project research efforts, an evaluation of the particular needs of people with

30

this disability was conducted. The aim of the following section is to illustrate, to the
Reader, the relevant insights to the examples that are presented in this chapter as part
of the validation of the framework introduced in this dissertation. This section mainly
summarises the results obtained from [39]. The term PDS, will be used in this section
to refer to people with Down’s Syndrome which are part of the research sample of the
mentioned investigation.

PDS have two main challenges which are relevant to this case study: lack of inde-
pendence and difficulties with regard to integration. The results of the background
study revealed that PDS can only complete a few daily tasks on their own. This lack
of independence is also related to their inability to integrate socially. The study shows
that PDS often experience low social participation. Although PDS show a slightly
better integration at work or school, their involvement in leisure activities is more dif-
ficult for them. Lack of integration in leisure activities especially holds for the group
of youngest PDS. As most of PDS have leisure activities outside home, a key enabler
for their integration is their ability to displace. The ability of travelling independently
enables better access to a person’s community, friends, and activities, giving the person
self-determination and quality of life [40]. In some cases, the lack of independence is
linked to the challenges presented when travelling alone. Due to challenges in inde-
pendent travel, especially when travelling to leisure activities, they mostly need to be
driven by a relative, walk accompanied by someone or take a taxi. This dependence
also impacts the life quality of their family members, as this dependence put a strain
on other individuals. Their lack of independence for travelling, affects negatively to
their low social integration and vice-versa, creating a negatively feedbacked circle [38].

It is important to mention two main aspects that give an opportunity for tak-
ing on these two main challenges. The first aspect is that PDS can often complete
tasks by themselves, provided that they have a set of instructions they can follow. The
second aspect is that the majority of PDS already use information technologies in their
daily lifel, which can be used for assisting and giving them guidance. The aim of the
POSEIDON project is to foster the independence of people with Down’s syndrome
through the use of smart and assistive technologies which are personalised to their spe-

cial needs and preferences. The hypothesis of the project is that by enabling the inde-

Ttis also important to mention that half of PDS can use these devices without any help [39].

31

pendence of individuals, they will naturally be more integrated into society.

1.5.2 A navigation application

It has to be mentioned, that the POSEIDON project presents itself a suite of frame-
work tools, and thata discussion of these is out of the scope of this example. For simpli-
fication purposes, the example presented in this chapter is constrained to an outdoors
navigation application, which is bespoke to this particular disability. More specific-
ally, the case study focuses on a mobile application that uses a real-world representa-
tion of maps along with location services to support outdoor journeys that might be
walking or by bus. Due to space restrictions, this example is further limited to bus
displacements happening in London, United Kingdom. There are several differences
between this application and other existing navigation applications. The application
uses routes with tailored directions, notifications, reminders, and other services which
will be triggered depending on the context. The navigation system described in this
case study can be found in [41], although it has to be mentioned that not all the fea-
tures described in this chapter have been implemented into that system. This navig-
ation system is part of a larger project architecture, which has broader purposes. For
instance, the architecture enables customisation of services, so that carers of PDS can
tailor the navigation application to the particular needs of their protégé [42]. This
larger architecture also facilitates the training of PDS in safe environments by using
virtual reality [43]. In a virtual environment, PDS associate images and audios are dis-
played in certain points of the route, so that they can learn and use the same references

to better orientate when using the navigational services outdoors.

1.5.3 An assistive smart-home environment

The example presented in Section 1.5.2 is mainly focused on mobile environments
where the user is expected to be carrying and using small devices such as phones or
tablets. Nevertheless, the scope of context-aware computing spans also stationary plat-
forms, enabling other technologies, such as ambient intelligence or ambient assisted
living, to happen. In order to illustrate better the creation of context-aware systems

in different platforms, another scenario is introduced. In this scenario, the focus is on

32

a stationary platform, installed as a smart-house, that uses different stationary sensors
to provide context-awareness. The scenario assumes an individual with Down’s syn-
drome living alone in a smart-house, where the technology provides the user with the
means to have a more autonomous life at home. In order to narrow the example, the
example will be constrained to the kitchen of the house, particularly to facilitating the

person to cook independently.

1.5.4 Tool support

This thesis presents an open-source tool supported framework for the development of
context-aware systems. The examples available throughout the thesis, including dia-
grams, have been created with the framework and are an illustration of what can be
done with these tools. Appendix A explains how to download and install these tools.

This step is assumed to be completed before continuing with the case study.

1.6 Document structure

This doctoral thesis is divided into eight main chapters. A review of context concep-
tualisation is presented in Chapter 2, which proposes updates to existing definitions.
This conceptualisation is the base for the remainder of the thesis. Chapter 3 is a lit-
erature review in relation to the requirements, model-driven development, and im-
plementation techniques for the creation of context-aware systems. The following
chapters of this dissertation introduce the Context-Aware Systems Engineering Frame-
work (C-ASEF), an open-source tool supported framework for facilitating the cre-
ation of more usable context-aware systems. This framework is divided into three sub-
frameworks, according to the main development stages of a software development life
cycle: Requirements, Design, and Implementation, Deployment and Maintenance.
Chapter 4 introduces the Reguivements for the Context-Aware Systems Engineering
Framework (RC-ASEF), which is a sub-framework of C-ASEF that is focused on non-
contextual requirements for the creation of context-aware systems. Chapter S presents
the Situational Requirements for the Context-Aware Systems Engineering Framework

(SRC-ASEF), a specialisation of RC-ASEF which focuses on the contextual require-

33

ments elicitation for context-aware systems. Chapter 6 describes the Design for the
Context-Aware Systems Engineering Framework (DC-ASEF), a sub-framework of C-
ASEF which is focused on the design of rule-based context-aware systems. Chapter
7 introduces the Verification for the Context-Aware Systems Engineering Framework
(VC-ASEF), a specialisation of DC-ASEF which is focused on the verification of reas-
oning rules created with the DC-ASEF framework. Chapter 8 presents the Jmple-
mentation, Deployment and Maintenance for the Context-Aware System Engineering
Framework (IDMC-ASEF), a sub-framework of C-ASEF which is specialised into the
Implementation, Deployment and Maintenance of rule-based context-aware systems
that use radio-based and mobile sensors. Chapter 9 summarises the main conclusions
of the thesis and suggests future work and extensions of this work. The thesis is accom-
panied by a set of Appendices. Appendix A introduces a guide for downloading and
installing all the open-source tools that support the C-ASEF. Finally, the publications

written during this doctoral thesis are listed in Appendix B.

34

CONCEPTUALISATION

2.1

2.2

2.3

2.4

2.5

Introduction L 36
Context in context-aware computing 37
221 Context . . . v ovv v e e 37
222 Context-awareness o0 oo a ... 41
223 Features 41
224 Interaction modalities 42
2.2.5 Life-cycle of context-information 42
Reflections on the context conceptualisation 42
2.3.1 On the limitations of context-aware systems 43
2.3.2 A philosophical conceptualisation analysis 44

Perspectives on context for the engineering of more usable context-

AWATESYSTEIMS v v v v v v v 46
241 Interacting with context-aware systems 47
2.42 Features of a context-aware system 48
243 Situationofinterest 50
244 Context-attribute oL L 52
245 Context . . . v v v v i e e 53
24.6 Context-awareness« o o e oo 00 .. . 53
2.47 DPersonalisation management 54
Conclusions 56

35

CHAPTER 2 I

2.1 Introduction

he notion of context is an important research theme, as its better understand-

I ing naturally facilitates the engineering of context-aware systems. But research
on this concept is not modern, and it has been approached from the point of view of
multiple disciplines throughout history. Currently, and in regard to context-aware
computing, many definitions have been presented, and there appears to be a lack of
agreement on its meaning. As this is such an important challenge, which underpins
the broad theme of this work, this chapter is dedicated to the understanding of context
and context-awareness, and the current limitations that it imposes on the engineering
of context-aware systems. The first half of this chapter analyses the state-of-the-art spe-
cific to the conceptualisation of context and context-awareness, which is used in the
second half of the chapter to create a conceptualisation which is aimed towards the en-
gineering of more usable context-aware systems. This first part has been kept separate
from the general review of context-aware software engineering because of its under-
pinning importance to the rest of the work. The conceptualisation introduced in the
second part does not constitute a piece of the literature review, but rather a contribu-
tion to the conceptualisation of context, context-awareness and context-aware systems,
which has been published in [44] and [45]. The remainder of this chapter is as follows.
Section 2.2 presents a literature review which is focused on the most important con-
cepts that surround context within the theme of context-aware computing. Section
2.3 introduces a more holistic view of context and context-awareness, which analyses
the main issues in its conceptualisation, exploring areas which are out of the scope of
computer science, such as philosophy. Section 2.4 introduces a novel conceptualisa-
tion of context which is conceived for guiding developers with respect to the creation
of more usable context-aware systems. Finally, 2.5 summarises the chapter and intro-
duces the main conclusions that guide the rest of the research work conducted in this

dissertation.

36

2.2 Context in context-aware computing

2.2.1 Context

The word “context” has evolved from the Latin word “contextus”, which is composed
by the prefix “con” (together) and the root word “texere” (weave). The meaning of
the word is now used to broadly define the set of circumstances that frame an event or
an object [46]. Despite the numerous attempts to define this concept, there is still a
lack of consensus on what context and context-awareness really mean. The objective
of this explanation is not to provide an exhaustive analysis of all the definitions that
have appeared in the literature, but to show the Reader a brief history of the term in

context-aware computing.

The term of context in context-aware computing was first introduced by Schilit
and Theimer [47], which considered it as the “Location, identities of nearby people and
objects and changes to those objects”. One year after them, Brown [48] defined context
as “The elements of the user’s location, the environment, the identity and the time.” Dey
initially understood this term as “the user’s emotional state, focus of attention, location,
and orientation, date and time, objects and people in the user’s environment” [49]. Sim-
ilarly, Hull [50] defined the concept as “the aspects of the current situation”. Ryan et al.
[51] as the “User’s location, the environment, the identity and the time”. The term con-
text was also defined in the ISO 13407 [52] standard, which considered it as the “User
characteristics, task, as well as the technical, physical, and social environment”. Later
on, the most acknowledged definition of context was introduced by Dey and Abowd

[8][18], which considered context as:

Any information that can be used to characterise the situation of an entity, where the
entity is a person, place, or object that is considered relevant to the interaction between a

user and its application, including the user and the application themselves.

But their definition did not bring an absolute consensus about what context means.
Some authors tried to extend the definition of context by providing more operational
definitions and include other dimensions of context [53] [54]. Other authors reported
some drawbacks of this definition, such as being too broad [55] [35]. More definitions

were also introduced after Dey and Abowd’s. Yau et al. [56] defined context as “any

37

instantaneous, detectable and relevant condition of the environment or the device, such as
time, location, light intensity, noise level and available bandwidth.”. Bazire [46] defined
it as a et of constraints that influence the behaviour of a system (a user or a computer)
embedded in a given task”. Roto [57] as the “Circumstances under which the activity
takes place.” More recently Ye et al.[58] define context as “@ well-structured concept that

describes a property of an environment or a user’.

2.2.1.1 Categorisation

Categories of Context (Operational Perspective)

Primary Secondary

Distance of two sensors

Location data from GPS computed using GPS values
sensor (e.g. longitude and .
latitude) Image of a map retrieved

from map service provider

Retrieve friend list from users
. Facebook profile

Identify user based on P
RFID tag Identify a face of a person
using facial recognition system

Calculate the season based
on the weather information

Read time from a clock
Predict the time based on the
current activity and calender

Predict the user activity based

. . . on the user calender
Identify opening door activity) o
from a door sensor Find the user activity based on

mobile phone sensors such as
GPS, gyroscope, accelerometer

Categories of Context (Conceptual Perspective)
| Activity || Time | [Identity | [Location |

Figure 2.1: Context categorisation divided into conceptual and operational per-

spectives, as presented in [1].

Not only is it difficult to reach an agreement on what context is, but also it is
difficult to reach an agreement on how can it be categorised. Many authors have ap-
proached context by dividing it into categories and taxonomies [7] [59] [60] [1]. Perera
etal. [1] presented a broad comparison between categories and taxonomies, including

their relationship, advantages, and disadvantages. As it can be observed in Figure 2.1,

38

they acknowledge two different types of categorisation schemes: operational and con-
ceptual. While the operational category helps to understand the issues and challenges
of data acquisition techniques, the conceptual scheme allows an understanding of the
relationships between different contexts. After comparing all the existing categorisa-
tion schemes, Perera et al. acknowledge that there is no single categorisation scheme

1
that can accommodate all the demands for context-awareness .

2.2.1.2 Context model

Since computers need to be programmed, it is natural in the field of context-aware
computing to seek formal or semi-formal descriptions of the context information used
by the system. A context model typically tries to provide the interface or behavioural
description of the information that the computer handles. In an ideal world, a working
definition should express a class of systems that one can then capture as a model, since
models can omit all unnecessary detail. Nevertheless, the concept of context entails
such complexity that it is very difficult to capture a unique model to fit all systems. Be-
sides, this model would necessarily be evolving to capture new and changing contexts.

Henricksen [60] considers that a context model:

“Identifies a concrete subset of the context that is realistically attainable from sensors,

applications, and users and able to be exploited in the execution of a task’.

She mentions that the context model employed by a given context-aware application
is usually explicitly specified by the application developer, but may evolve over time.

Also, she distinguishes a context-attribute as being:
An element of the context model describing the context [60)].

Each system should support its own context model, where each of the context-attributes
can be mapped to the particular functional requirements that it s related to. The exist-
ence of appropriately-designed context information models, which are mappable to re-

quirements, would naturally ease the development and maintenance of future systems.

1Although the particular research of Perera etal. [1] is bounded to the internet of things paradigm,

the cited conclusion is also applicable for the areas covered by this thesis.

39

This dissertation acknowledges the definitions of the context model and context-attribute

as introduced by Henricksen [60].

2.2.1.3 Situation

The term situation can also be observed in the literature. Its meaning is often ambigu-
ous but strongly related to context. McCarthy [61] introduced the theory of situation
calculus. Later on, the same theory was formalised by Reiter et al. [62] into the action
theory, considering the situation as “a finite sequence of actions”. Not a state or a snap-
shot, but a history. Yau et al. [56] define a situation as “z set of past context-attributes
andyor actions of individual devices in the application which is relevant to future device
actions”. Anagnostopoulos [63], defines the situation as “the concurrent activities per-
formed in a specific location for a certain period of time”. Kim and Kim, consider that
a situation is a problematic and developing state of a computational element charac-
terised by its context”. By “problematic”, they mean that there is a problem of which
the system should take care in a given situation, and by “developing” they mean that a
situation is changeable to another situation or state by system operations for solving
the problem. In Ye etal. [58] asituation is defined as “an external semantic interpreta-
tion of sensor data”. Where “interpretation” means that situations assign meanings to
sensor data. The term “external” means that the interpretation is from the perspect-
ive of applications, rather than from the sensors. Finally, the term “semantic” means
that the interpretation assigns meaning on sensor data based on structures and rela-
tionships within the same type of sensor data and between different types of sensor
data. Typically, approaches related to situations are more related to the field of artifi-
cial intelligence and have more to do with the logical and mathematical formalisation
of the term. Situation awareness is more related to an artificial intelligence approach,
where it is important to take into account the perception of the environment by the
system with respect to time, the understanding and meaning, and the projection of
future states. The approach is useful for critical decision-making and it is applied to
areas such as aviation, transport or emergency services. Nevertheless, the scope of this
thesis is more focused on areas such as intelligent environments, where the aim is to
provide services to humans in daily life situations. Ruiz-Lopez et al. [64] also intro-

duce the notion of context situation, understood as “z set of context-attributes repres-

40

enting a situation of interest to the system”. Where a context-attribute is “any observable

property in the system environment that characterises a situation of interest for itself”.

2.2.2 Context-awareness

Dey [8] also defined a system as context-aware if “2¢ uses context to provide relevant in-
[formation and/for services to the user, where relevancy depends on the user’s task”. Inde-
pendently from this definition, the phrase “context-aware” is generally used in the liter-
ature to describe any type of system that is able to use context. Also, systems that have
characteristics which could be considered as “context-aware” use other terms such as
“smart”, “intelligent” or “automated” or simply do not specifically refer to this aspect.
Forinstance, let us think about the feature of smartphones that changes the orientation
of the screen (landscape/portrait mode) depending on the phone position. Although
it could be considered as “context-aware”, it is typically known as simply auto-rotate
or automatic screen orientation. Also, recently created applications such as Google
Now [65] use different terms for these kinds of features. On the one hand, the great
variety of systems and features to be considered “context-aware” make it very difficult
to formulate a definition that is suitable for all of them. On the other hand, since
“context-awareness” relies on the definition of context, and since there is no consensus

on its definition, it is also very difficult to characterize what contextual-awareness is.

2.2.3 Features

Schilit et al. [7] first identified different classes of context-aware applications. Later,
Pascoe [66] aimed atidentifying the core features of context awareness. Dey and Abowd
[18] presented a categorisation for features of context-aware applications, based on the
classification of Schilit and Pascoe, namely:

1) Presentation of information and services to the user.

2) Automatic execution of a service.

3) Tagging of context information for later retrieval.
With regard to the first feature, the system decides which information and services are
presented to the user, based on context. Nearby located objects might be emphasised,

or for instance, a printer command might print to the nearest printer. The second fea-

41

ture refers to the automatic execution of a service. For example, let us consider a smart-
home environment. “When a user starts driving home from their office, a context-aware
application is employed in the house, which should switch on the air conditioning system
and the coffee machine to be ready to use by the time the user steps into their house” [1]. Fi-
nally, Dey and Abowd present “contextual augmentation”, which extends the abilities
of sensing, reacting and interacting with the environment by using additional inform-
ation. This is done by associating digital data with a particular context. For example,
a tour guide can augment reality by presenting information about the attractions that

surround the tour party, or that are approaching [66].

2.2.4 Interaction modalities

Barkhuus and Dey [67] classified the possible interactions into three main categor-
ies. The first category is personalisation, in which the users are able to set their pref-
erences, likes, and expectations of the system manually. The second category is pass-
1ve context-awareness, where the system is constantly monitoring the environment and
offers choices to the users in order to take actions. The last category is active context-
awareness, where the system is continuously monitoring the environment and acting

autonomously.

2.2.5 Life-cycle of context-information

Perera et al. [1] review different works on life cycles of context information, conclud-
ing with a life cycle structure that consists of four phases. First, context is acquired
from different sources (context acquisition). Second, the collected data is modelled
and represented meaningfully (context modelling). Third, the modelled data is pro-
cessed to obtain high-level context information. Finally, low and high level data is dis-

tributed to applications.

2.3 Reflections on the context conceptualisation

Section 2.2 has analysed the main concepts around context and context-awareness.

This section goes beyond the theme of context-aware computing, to review literat-

42

ure on the most relevant conclusions regarding the conceptualisation of context and
context-awareness in other disciplines such as philosophy or human-computer inter-
action. The conclusions presented at the end of this section are used for creating the

conceptualisation presented in Section 2.4.

2.3.1 On the limitations of context-aware systems

Making computers intelligent, able to think and appear to be conscious, has been a
topic of discussion since the very inception of computer science [68] [69] [70] [71]
[72] [73] [74]. The latest achievements in the simulation of human intelligence are
remarkable. Computers can recognise objects, emotions or even transcribe and un-
derstand speech at a professional translation service level [75] [76]. In artificial intelli-
gence for games, one of the major advances of the century has been the creation of an
artificial intelligence which is able to defeat top-tier human Go players [77] by using
general purpose neural networks that resemble the way in which the human brain uses
memory. Expert systems are now able to substitute human workforce in industry, or
manage to drive autonomous cars and drones. Even human-scale cortical simulations
of the brain [78] have been achieved. Nevertheless, although seems to be no problem
in the simulation of intelligence (weak AI) [71], it still remains a topic of debate as to
whether or not it is feasible for a computer program to create intentionality in an arti-
ficial way (Strong AI), since a computer program is essentially syntactical and human-
like consciousness requires semantics [71]. The lack of biological embodiment could
also be a limitation for computers in the acquisition of expertise to the same degree,
and as extensively as humans [73]. Currently, it is difficult to understand how con-
sciousness and intelligence fit in the physical world, and there is not such a thing as
a comprehensive science of consciousness. Neither scientists nor philosophers agree
on a universal conceptualisation for the human mind, or its causal interactions with
the body. Also, there are still many open questions about how human-like artificial
intelligence would behave. Since intelligence is strongly related to unpredictability,
it is difficult to ensure that a human-like intelligent system would remain within the
constraints of a software system, and would not go beyond its function. It is also hard
to know if the copy of a consciousness will have the same mental-life as the original.

Further discussion of these topics is out of the scope of this thesis, as this dissertation

43

is not focused on hard artificial intelligence, but rather on the more specialised theme
of context-awareness. Nevertheless, it is important to note that although the simu-
lation of intelligence has achieved outstanding advances, the creation of human-like
consciousness is still in its infancy. The Reader should bear in mind not only that the
contextual awareness exhibited by state-of-the-art intelligent machines is not the same
as that of humans [17], but that it is going to take considerable time to reach such
an achievement, if it is ever reached. Therefore, the main conclusion that should be
drawn is that there is a need to understand the current limitations and strong points
of context-aware systems (and computers in general), in order to focus the engineer-
ing of these systems into those aspects that strengthen the advantages and mitigate the

limitations as much as possible.

2.3.2 A philosophical conceptualisation analysis

As can be concluded from Section 2.2, the concept of context is still not fully under-
stood. This section aims to shed some light on the reasons why there is not a consensus
on the definition of context. The interest in the notion of context to computer science
started around the end of the 20" century, and it was stimulated by previously intro-
duced arguments of social science with regard to traditional interactive system design,
which often fails to respond to the settings in which the action occurs [79]. Developers
have hoped that by incorporating notions of context into information technologies,
computers can be made more sensitive to the details of the specific settings of use, but
turning social observation into technical design seems to be problematic. In order to
better understand how to engineer more usable C-AS, there is a need for a broader
understanding of influencers and ideas that can serve as a source for inspiration, ex-
ploration and innovation that refocuses upon the first-person human experience of

ubiquitous computing and C-AS [80].

Dourish [81] acknowledged that the drive to represent context is inspired by, and
in some cases the direct response to, sociological investigations. Nevertheless, the philo-

sophical tradition behind those investigations (phenomenologyz) stems from a dif-

’A philosophical tradition related to the study of phenomena, or things, as they appear in a first-

person experience, or consciousness.

44

ferent tradition than that of computer science (positivism3). In the phenomenolo-
gical perspective, context is understood as a continually evolving and highly situation-
dependent construct [35]. Therefore, context is an issue that has a strong bond with
the concept of interaction, where:

1. Contextuality is a relational property that holds between objects or activities. It
is not a matter of something being or not being context; rather it may or may
not be contextually relevant to some particular activity.

2. The scope of contextual features is defined dynamically. Rather than being
something that can be delineated and defined in advance.

3. Context is particular to each occasion of activity or action. Context is an occa-
sioned property, relevant to particular: settings, instances of action and parties
to that action.

4. Context arises from activity, being actively produced, maintained and enacted.
However, the representational nature of computing systems demands a different ap-
proach to the concept of context. After analysing the conceptual work of several defin-
itions, Dourish extracted four assumptions that seem to underlie the notion of context
as it operates in the view of computer science, where it is treated as a representational
problem rather than an interactional one. The assumptions are:

1. Context is a form of information. Something that can be known, encoded and

represented in the same way as other information is in software systems.

2. Context is delineable. For some set of applications, one can define what counts
as the context of activities that the application supports, and do so in advance.

3. Context is stable. Although the precise elements of a context representation
may vary from application to application, they do not vary from instance to
instance of an activity or an event. The determination of any contextual element
can be made once and for all.

As Dourish [81] remarks, in context-aware computing, there is an attempt of deriv-
ing positivist responses from phenomenological arguments. One one hand, context
in social sciences is understood as something dynamic, with a set of nuances that make
each situation unique, and particular to the occasion. On the other hand, context in

computer science necessarily trends towards the creation of models that are abstracted

A philosophical system that recognises only that which can be scientifically verified.

45

from the detail of particular occasions, so that they can be programmed in a computer.
Even in computer systems that resemble the human brain, such as neural networks, the
models need to be programmed and trained in order to obtain the desired output. Re-
gardless of the way in which it is done, a developer will necessarily have to program a
model of the situations and the actions to be taken in each of them. Based on Green-
here is a need to conceptually support developers in: A) Enumerating the set

berg’s [35] reflections, the dual nature of context has the following implications :
of contextual states that may exist; B) Knowing what information could accur-
ately determine a contextual state within that set; C) Stating what appropriate
action should be taken in that particular state. Developers require a better un-
derstanding of the situations which are relevant to provide services according
to the needs, limitations and preferences of the users. Even if frameworks and
toolkits provide elegant ways to design and implement context-aware applica-
tions, they fall into a design trap if they do not provide any support for inform-
ing the developers of what contextual situations are appropriate to the system.
I, Even with adequate support, it is very difficult or even impossible to foresee all

the situations in order to program them. Even some situations that might seem

similar a priori, can greatly differ from the actual instantiation of the situation.

I 1 C-AS have a high chance of taking actions that might not be the most
appropriate in certain situations. While the engineering of these systems
matures, there is a need to mitigate the impact of context misinterpreta-
tion.

I, 5 Thereisaneed to direct the research efforts towards the discovery and ana-
lysis techniques of the different situations in which the system can offer

services, as they are key to the development of a C-AS.

2.4 Perspectives on context for the engineering of

more usable context-aware systems

The following section constitutes a significant enhancement to the conceptualisation

of context that underpins the related work of this dissertation. The aim is to create

“Note that the listed implications will be referenced as [11], [12.1], and [15.2] along the rest of the

report. [I1] and [I5] appear in [35], while [15.1], and [15.2] are reflections of the authors of this paper.

46

a conceptualisation of context which can guide the creation of more usable context-
aware systems. Although it takes into account the state-of-the-art conceptualisation
of context introduced in Section 2.2, and the more holistic analysis of the concept in-
troduced in Section 2.3, this section introduces a revised conceptualisation of context

and context-awareness for the engineering of more usable context-aware systems.

2.4.1 Interacting with context-aware systems

Context-aware systems were originally conceived to operate without human super-
vision. Nevertheless, the state-of-the-art in its conceptualisation shows that creating
exclusively autonomous systems, in all but simple cases, could significantly increase
the chances of these taking inappropriate actions. Section 2.3, explains the need for
strengthening the abilities of context-aware systems and reduce the negative implica-
tions of their limitations [/51]. For this purpose, this thesis extends the approach of
Barkhuus and Dey [67] as follows. When a system exhibits a context-aware feature,
there are always two different dimensions that should be taken into account:
1) Execution: Referring to the actions/behaviours of the system when a specific
situation arises;
2) Configuration: Relating to the adjustment of actions that a system will exhibit
and which takes place following implementation.
Both dimensions are mutually exclusive but both can be executed in two different
modalities:
A) Active, where the system changes its content autonomously;
B) Passive, where the user has explicit involvement in the actions taken by the sys-
tem.
Itis important to emphasise that a system can have many services and each of them can
be executed in each of the interaction modalities. This can help the creation of more
flexible context-aware systems [82]. The result is a classification into four different
interaction types:
1. Active Execution: The systems have autonomy to execute services, and self-
adapt them depending on the context. For example, the screen of a smartphone
can switch for landscape to portrait automatically, when reaching certain accel-

erometer values.

47

2. Passive execution: The users are involved in the action-taking process of the sys-
tem, where they specify if and how the application should change in a specific
situation. The system can present services for that specific situation or ask per-
mission of the user to take an action.

3. Active Configuration: The user is not directly involved in the evolution of the
system after it is implemented. The system is able to learn from the user pref-
erences, which are used (autonomously or through non-user human interven-
tion) in order to maintain its rules.

4. The user is involved in the manual personalisation of preferences, likes, and ex-
pectations of the system after its implementation. Overall programming com-
plexity is reduced by introducing abstractions that enable users to act like soft-
ware engineers to directly modify these rules, in order to obtain the desired be-
haviour.

With these categories, developers take not only into account the modality for the exe-
cution of services, butalso how these will be configured, evolved and maintained. Each
interaction modality has its own advantages and disadvantages (see Table 2.1). Taking
them into account, developers can mitigate the negative effects of not having a com-
pletely mature technology, in each particular service of the application or system. The
determination of the most suitable interaction modality will depend on the particular

situation and will have to be decided separately.

2.4.2 Features of a context-aware system

Also taking into account the limitations and real abilities of context-aware systems
[12.1], an enhancement of Dey and Abowd’s context-aware feature classification [8]
is introduced. The extended approach accommodates the interaction modalities ex-
plained in Section 2.4.1. Additionally, it extends the information presentation to any
system stakeholder, rather than limiting it to the users. This change accommodates the
usage of this technology to emerging fields such as that of data-science. The proposed
extension is as follows:

1) Presentation of information to the stakeholders.

2) Active or passive execution of a service.

3) Active or passive adaptation of a service.

48

Name Pros Cons Name Pros Cons

A[[ZUEEXEC?{ZU?I ¢ Difficult to ensure that Pax:wt.’l?xf’c'utwn * Augments the trust of * Requires developers to

(Self-adaprivity) * Little or no effort re- the system will take (Incelligibilicy users [86] since they un- understand how to gen-
& Control)

quired by users [83]
* No special user know-

ledge is needed [83]

an appropriate action
(Difficult to validate and

verify the system)

Loss of control over

what the system is

executing and why [83]

derstand better how the
system works

Easier to evaluate the sys-
tem behaviour

The system will take

the actions that the user

erate explanations [87]
The users might not have
enough expertise to take
decisions on their own
Applications need to

convey more informa-

* There aresstill some open wants tion to explain actions to
issues [84] [85] users [86]
* Developers have all the * May compromise the
burden privacy of users if
¢ Users can be uncomfort- they are used on social
able not understanding interactions
N what happens with the ® Users can use their
o information that the ma- higher context under-
g
chine gathers from them standing for a better
control the system [86]
(17]
Active Configura- . . Passive Configura- .
. vfig o Little or no effort re- * Difficult to determine ; fig: * Offers greater mo- * Users might be forced to
fon on L .
quired by users when rules should be tivation, control, contribute and cooper-
(Learning &] dor deleted (End-user pro- hi . . for which
) * No special user know- created or delete) ownership, creativity ate in context for whic
Adapting) . gramming)

ledge is needed

* Can unearth needs, pref-
erences or habits diffi-
cult to see in other ways
[88]

The rules are based on
sensors values (inaccur-

acy and uncertainty)

Loss of control over

what the system s

executing and why [83]

and quality to end-users
(89]

Users are in control;
users know their tasks
best [83]

Releases developers bur-

den

they could lack experi-
ence [89]
Meta-design is more
complex and abstract
than design
Complexity is increased
(users need to learn ad-
aptation components);
Systems may become

incompatible [83]

Table 2.1: Comparative analysis on the interaction modalities that context-aware systems can have.

4) Tagging context to information.

The first feature is very similar to that presented by Dey and Abowd. It keeps the
essence of Pascoe’s “presenting context” and Schilit’s “proximate selection”, but “con-
textual commands” are merged with the second feature. The notion of collaboration
among stakeholders is introduced, rather than just the users. There can be different
situations of interest according to the category of stakeholders. For example, in an
ambient-assisted living system that takes care of a person with disabilities, stakehold-
ers can be roughly divided into protégés and carers. Each group of stakeholders can
have different needs and might require being aware of disparate pieces of information.
Some context of interest from all these stakeholders will typically intersect. They do
not necessarily have to be disjoint. Equally, they do not have to be exactly the same.
There are no a priori relations and it all depends on the applications and personal
choices. Even when some “situations of interest” may be the same for different stake-
holders, they may be interested in them for different reasons and may expect different
outcomes. This happens especially in healthcare related scenarios, where primary users
are typically the patients, secondary the carers, and tertiary other professionals. The
second feature extension includes all the different interaction modalities and clearly
differentiates between the execution of a service and its configuration or evolution. A
service can automatically be triggered, making the system autonomous in its decision.
But it also enables an interaction where permission is requested from the user before
executing. Also, a list of different choices could appear on the screen, as in Schilit’s
“proximate selection”. The third feature extension is related to the user-centred per-
spective, where the possibility of having end-users as part of the configuration and
personalisation of the services exists. Finally, the last feature (tagging context to in-

formation) is the same as that presented by Dey and Abowd.

2.4.3 Situation of interest

Definition 1. Situation of interest:
The circumstance in which developers understand that the system can potentially exhibit
features which are relevant for the intention, preferences, and needs of its stakeholders at

that particular moment.

50

The power of the presented context definition resides in the role that the situation
of interest (SOI) takes in the development of C-AS. Since the SOI is understood as
an observer-dependent phenomenon, it is targeted to represent the interpretation that
developers give to it. This implies that developers inherently need to engage in an un-
derstanding process for developing a C-AS. Particularly, they first have to understand
how users give meaning to the actions they take in a SOI (semantics), and then find the
best manner in which the computer can realise that situation (symbols) and to provide
useful services that can help them accomplish their actions. Therefore, the SOI acts as
a nexus between two key conceptual components in the development of C-AS, facil-

itating the application of the principles for getting the correct context [].

The first conceptual component that is related to the SOl is the provision of useful
context-aware features, which are directly related to the needs and preferences of the
stakeholders, and are relevant to their intention in that particular situation, as shown in
Figure 2.3. The second conceptual component related to the SOl is the representation
of the developers’ plan to make the system realise that the particular SOl is happening.
For the second component, the context-attribute concept is used, as shown in Figure
2.2, and further explained in the next subsection. It needs to be mentioned that de-
velopers can consider more than one SOI detection plan, and evaluate which one is
more suitable to be implemented, taking into account the particular restrictions of
the project in which it is being developed. It could also happen that developers deem
they do not have enough resources to make the system identify a particular SOI under
their current project scope. Making such realisations and decisions at an early stage
is fundamental to the creation of a successful C-AS. This conceptual tool enables the
stakeholders to have more accurate expectations on the behaviours that the system will
exhibit. Itis also important to note that this relation between SOIs, context-aware fea-
tures, and SOI detection plans, facilitates the analysis of C-AS not only during the re-
quirements elicitation stage of the system, butalso during maintenance stages, after the
system has already been implemented and deployed. Additionally, since the definition
of context-aware features considers all the interaction modalities, these are intrinsically
included in the conceptualisation of what context and SOI are. Consequently, its own
conceptualisation helps developers to foresee and reduce the potential misbehaviours

of the system.

51

Layer 1 Context of the context-
Context aware application
+ Y
Layer 2 i . - I
Situations of interest Situation of Interest 1 Situation of Interest 2 oo Situation of Interest n

N .

Figure 2.2: Decomposition of the different concepts related to context.

2.4.4 Context-attribute

Definition 2. Context-attribute:
An observable property of a situation of interest which can be realistically attained from

a sensor, application or stakeholder.

A context-aware system is able to characterise a situation of interest by observing
a set of context-attributes. The definition is inspired by that of context model intro-
duced by Henricksen etal. [60], and that of context-attribute provided by Ruiz-Lopez
[64]. The context-attribute is not only that which is used by the application to charac-
terise a situation of interest, but also an element of the context model, which describes
the whole context of the system. As acknowledged in [64], a context-attribute can
have a context value. This represents the particular value that a context-attribute can
take, and can be a punctual value, an interval or a set. Finally, a context value can be in
a context-value domain, which indicates all the possible values that the context-value
can take. Finally, it needs to be mentioned that although typically a sensor refers to
a hardware sensor, in this case, it has a broader sense, including physical, virtual and
logical sensors [1] [90]. Physical sensors refer to those tangible (hardware) sensors that
provide data by themselves. Virtual sensors are those which are not tangible (software)
and do not necessarily generate information by themselves. They can gather data from
different sources and publish it as sensor data (e.g., twitter status, emails, contacts).
Logical sensors combine physical and virtual sensors to provide more meaningful in-

formation.

52

2.4.5 Context

Definition 3. Context:
The information which is relevant for a computing system to characterise situations of

interest.

The aim of this conceptualisation is to introduce a perspective that acknowledges
the duality of context, that which brings closer the phenomenological (dynamic) and
positivist approaches (static). This context definition acknowledges the positivist per-
spective, demanded by computerised systems, where context is necessarily a form of
information. More precisely, context is considered as the sum of all the symbolic rep-
resentations required by the computer to figure out when different situations of in-
terest are happening in the real world. Notice that this definition of context depends
on the concept of situation of interest, which, as explained in Section 2.4.3, is recog-
nised as an observer-dependent and ontologically subjective phenomena. Although,
in comparison, whilst the definition is similarly broad to that of Dey and Abowd’s 8],
there are two main differences. The first is that the context information exists without
requiring an interaction between the user and an application [55]. Rather, it requires
the existence of some added value for the stakeholders, provided in the form of one of
the context-aware features presented in Section 2.4.2. The second difference, as further
explained in the next subsections, is that it facilitates the application of development

principles to identify the correct context [14].

2.4.6 Context-awareness

Definition 4. Context-awareness:
The ability of a system to use context for exhibiting features which are useful to the stake-

holders because they directly relate to their preferences and needs.

This definition is similar to that presented by Dey and Abowd [8], but introduces
a more user-centred perspective, connecting the definitions of context to the above-
mentioned context-aware features and its usability. Therefore, contextual information
becomes that which makes the system run better for the stakeholders of the system.

Also, it is important to mention the introduction of stakeholders as a concept with a

53

broader scope than users. While “users” is a word more focused on those who have the
most direct experience with the final product, stakeholders not only encompass them
but also other people who might have an interest or a concern with the project. This
includes companies interested in making money from the system, or governments that
have interests in its implications. Itis practical not only for commercial reasons but for
other applications such as healthcare, where the approval of medical staff is essential
to certify the safety of end-users. Also, the enhanced definition of context-awareness
above is linked to the provision of its features, as defined in Section 2.3, which relate to
the different interaction modalities which aim to reduce the impact of misinterpreting

the context [I51].

Layer 1

A Situation of Interest
Situations of Interest

v j v) v
Layer2 Context-aware Context-aware vee Context-aware
Functionality Feature 1 Feature 2 Feature n

A J

[L [[
Layer 3
Feature @ o FP1 " @ @ o @ @ @ o @
Preferences -
Layer 4
Personalised
Functionality Context- Context- Context- Context- Context- Context-

aware
Feature
1.1.1

aware
Feature
1.1.2

aware
Feature
1.1.n

aware aware aware
Feature Feature Feature
n.p.1 n.p.2 n.p.q

Figure 2.3: Decomposition of the different concepts related to the functionality
of the system and its personalisation. Note that additional layers for feature pref-
erences and personalised functionality could be added, as context-aware features
can be decomposed in other context-aware preferences depending on the feature

preferences of the stakeholders.

2.4.7 DPersonalisation management

One important feature of the introduced conceptualisation is the end-user stakeholder
centred perspective. For this reason, it is also important to introduce a way in which

preferences can be handled using this conceptualisation. Section 2.4.1 has introduced

54

an interaction modality that enables the configuration of the context-aware applica-
tion, either in an active or a passive way. Particularly, the following subsection focuses
on the modelling of subjective knowledge relative to the preferences of the end-user
stakeholders, by introducing concepts to abstract the specific values of user prefer-
ences. This facilitates the treatment of generic knowledge about preferences, letting
the users, after the system is implemented, define their own preferences as they use
the application. For the passive configuration modality, the final values of prefer-
ences are meant to be determined by their own users. For the active configuration
modality, instead, the final values of the preferences are meant to be determined by
preference learning algorithms. The abstraction of particular preference values helps
to handle subjective knowledge during the requirements, design and implementation
stages. The preference configuration of the end-user stakeholders can be categorised

in one of two ways, according to the introduced context conceptualisation, as follows:

A - Context-preference

Definition 5. Context-preference:
A type of context-attribute whose particular values are to be personalised by a stakebolder

or an agent after the system implementation.

The first configuration type is related to the detection of a situation of interest,
via personalisation of certain context-attributes. For example, let the Reader imagine
ascenario where it is required to know the temperature, and where a certain threshold
temperature will detect a situation of interest where the associated context-aware fea-
ture is to automatically turn on the heating. In this hypothetical scenario there will be
two context-attributes for detecting the situation of interest: temperature and temper-
ature threshold. It is important to highlight that under the current context definition,
both will be considered as being context. Particularly, the temperature threshold will
be considered as a context-preference, which can be configured after the system is im-

plemented.

B - Feature preference

55

Definition 6. Feature preference:
A non-contextual software variable which is used to personalise the way in which a context-

aware feature is provided.

On the other hand, the second configuration type consists of personalising the pro-
vision of context-aware features according to the user preferences. Under the current
context conceptualisation, feature preferences are not used for identifying a situation
of interest, but to personalise the way in which a context-aware feature is provided.
Therefore, the Reader should note that they can not be considered as context. For in-
stance, let the Reader imagine that in the previous scenario, apart from triggering the
heating to turn itself on, there is another context-aware feature which is to prompt the
user informing that the heater has been turned on. Some users with visual difficulties
might prefer to receive this notification with a big font size. Other users might prefer
to receive this notification with a normal font size. In this case, the feature preference
associated to the provision of the context-aware feature will be the visual acuity of the

user.

2.5 Conclusions

This section has reviewed the literature on context conceptualisation for context-aware
computing, concluding that there is no consensus on what context means. A further
examination of the notion beyond the area of context-aware computing sheds some
light on the causes for this disagreement. The main challenge behind the conceptu-
alisation of context is that computing systems have a different philosophical tradition
than that of social sciences, which is behind the traditional explanations of context.
This chapter further explores the current limitations in the conceptualisation of con-
text for the development of context-aware systems, concluding that, to the possible
extent, there is a need to conceptually support developers in: A) Enumerating the set
of contextual states that may exist; B) Knowing what information could accurately de-
termine a contextual state within that set; C) Stating what appropriate action should
be taken in that particular state. Additionally, it is concluded that even with adequate
support, it is very difficult or even impossible to foresee all the situations in order to

program them, and that even some situations that might seem similar a priori, can

56

greatly differ from the actual instantiation of the situation. Context-aware comput-
ing is a still maturing technology, where context-aware systems have a high chance of
taking actions which might not be the most appropriate in certain situations.

The conceptualisation presented in this chapter is not intended to solve all these
challenges, but rather to encourage further research in the direction of maximising
the usability results of context-aware systems, mitigating the limitations of C-AS and
strengthening their real capabilities. The underlying premise for this purpose is that

current C-AS can maximise their usability results when:

* Developers adequately identify those situations that, to some extent, are pos-
sible to be predicted and represented as computational models.

* Developers understand the intention, meaning of the actions, preferences and
needs of the users in a particular situation of interest (end-user stakeholder centred
perspective).

* There exists a set of observable properties which can identify a situation of in-
terest with enough accuracy to distinguish it from the maximum number of
similar-looking situations where the context-aware feature to be displayed is not
appropriate.

* The properties that identify a situation of interest can realistically be attained
from sensors.

* The developers can implement the situation of interest detection while it is still

meaningful for the users.

The updated conceptualisation of context and context awareness presented in this
chapter takes into account three main aspects. The first aspect is the separation of con-
cerns into the mentioned three high-level ideas that allow developers to get the context
right. The concept of situation of interest is introduced as a central tool which enables
the separation of the information used by the system to identify a situation and the
services to be provided under that situation. Besides, it also provides an abstraction
to make the developers understand and be guided during the process of developing
context-aware systems. The conceptualisation approaches context acknowledging its
two philosophical perspectives. The situation of interest enables the management of

the notion as an observer-dependent phenomena. This concept is used as a key nexus

57

between the detection of the situation via context-attributes, and the triggering of dif-
ferent services which are associated with the situation of interest. Also, a conceptual
tool for managing the preferences of the users is introduced. The second aspect is an
end-user stakeholder centred perspective that on one hand considers the preferences
and needs of the stakeholders, and on the other hand extends the notion of user to
that of stakeholder. Finally, the last aspect is the consideration of different interaction
modalities to mitigate the effects of using a still maturing technology. The outcome
of this chapter has been used as foundation for the rest of this dissertation, with spe-
cial influence into the design principles stemming from this definition, introduced in

Chapter S.

58

meeessssssssssssn (CHAPTER 3 I

STATE OF THE ART

3.1

3.2

3.3

3.4

3.5

Introduction 60
Requirements engineering 62
32.1 Goal-oriented 62
3.2.2 Scenario-based L. 64
3.23 Hybridapproaches 65
324 Analysis.o Lo 70
Model-driven engineering L. 73
3.3.1 UML: Universal Modelling Language 75
3.32 SysML: Systems Modelling Language 75
333 UTP: UML TestingProfile 76
3.3.4 Other approaches for model-driven context-aware sys-
temsdevelopment 77
33,5 Toolsupport 78
Implementation support 80
3.4.1 Implementation techniques 80
3.42 Rescarch prototypes and systems 83
343 Reliability 0 0 85
Conclusions 88

59

3.1 Introduction

his chapter presents an overview of previous work that is related to the devel-
T opment of context-aware systems, which is partly based on a published state-
of-the-art survey conducted as part of the contributions of this thesis [45]. Current
research in the development of context-aware systems happens to be typically scattered
and disconnected, mainly adapting traditional software development methods to some
particular needs of context-aware systems. As previously introduced in Chapter 1, the
aim of this dissertation is to help build the foundations of a more holistic approach in
the development of context-aware systems. It becomes necessary, then, to conduct a
literature review to find the most adequate tool supported frameworks and methodo-
logies, as well as the existing gaps, in order to propose a more holistic framework which
can be used as the backbone of an engineering process with regard to these systems.
An initial exploration of the literature shows that there is a vast amount of research
in the field of context-aware computing, and in similar areas such as that of Ubiquit-
ous Computing, Intelligent Environments or Ambient Intelligence. In order to avoid
further review of dated, and perhaps redundant works in some cases, this survey has
been strategically divided into three different research themes, according to the chal-
lenges explored in Chapter 1, and the insights obtained from the conceptualisation of

. 1
context in Chapter 2. These themes are as follows

* Requirements: In Chapter 2, it was concluded that there is a special need dur-
ing the development of context-aware systems, and this is the need for guiding
developers in the design of adequate systems [Chg1]. For this, there is a need for
developers to exercise an understanding of the context of the system, to discover
different contextual services that can be provided to the end-user stakeholders.
This understanding process has a strong connection with the requirements eli-
citation process, which helps developers to reach a better understanding of the
user needs and demands by finding a systematic approach for eliciting, analys-
ing, documenting, validating and managing software requirements from indi-

vidual stakeholders [91] [92] [93]. If the right requirements are not well-defined

"Note that the following explanation includes a citation in the form of [Chgz], referring to those

challenges mentioned during Chapter 1.

60

prior to the development of the system, it will be more likely to fail meeting
the user and other stakeholder’s expectations (stakeholder validation). An early
identification of the implementation feasibility of certain situations of interest,
or the triggering of different associated services, can save the development team
from wasting efforts which can translate into high development costs [Chg4].
Therefore, the creation of a coherent framework for requirements elicitation
will occupy a considerable part of the research efforts of this dissertation, as it is
considered as a key stage for providing guidance to the main aspects for getting
the context right [35]. Consequently, there is a need to research the existing
methods for this purpose, in order to find and fill existing research shortcom-
ings.

Model driven development: Another importantaspect of context, as introduced
in Chapter 2, isits dynamic nature. Itisimportant to note that not only the con-
text, but the associated services of a context-aware system are expected to be in
constant evolution, in order to meet the always changing demands of the end-
user stakeholders [Chg6]. Therefore, an important aspect of a development
framework is that it speeds the process of implementing those changes. For this
reason, the model-driven approach is chosen as another of the three main re-
search themes to be further analysed. Model-driven development leverages the
development abstraction level, enabling the development of the system through
graphical models and pre-built application components. Such an approach, not
only is cost-efficient [Chg4] and fast, but it also facilitates the communication
between stakeholders, empowering domain experts, and allowing developers to
focus on the technical aspects. Additionally, this approach can help to man-
age the context information [Chg3], leading to more meaningful validation, as
the high-level abstraction can avoid functional errors [Chgb]. Existing model-
driven approaches to context-aware systems development will be analysed, in
order to find potential applications which can be reused in the context of a more
general framework.

Implementation techniques: Finally, the last research theme focuses on the dif-
ferent techniques which have been used for implementing context-aware sys-

tems, so that the model-driven development can be mapped to the code automa-

61

tion focused on these implementation techniques. Once techniques are identi-
fied, further research is constrained to existing tools for giving response to the
different techniques. The aim is to find which tools have the more useful as-
pects for a context-aware engineering methodology, discover the gaps between
the different tools, so that they can be further extended into a more holistic

tool which can support the implementation and deployment of diverse systems

[Chg2].

The remainder of the chapter is as follows. Section 3.2 introduces the state-of-the-
art in requirements elicitation for traditional and context-aware systems. With this
information, Section 3.3 focuses on the literature review related to the model-driven
development of context-aware systems. Section 3.4 analyses the different implement-
ation techniques used for creating context-aware systems. With this information, an
analysis of existing tools for this purpose is created. Finally, Section 3.5 concludes with
a set of the most adequate methodologies and tools which will be used to support the

creation of a framework for the engineering of context-aware systems.

3.2 Requirements engineering

This subsection focuses on requirements engineering for both context-aware and tra-
ditional systems, with two main purposes. The first is to analyse the suitability of the
different approaches to elicit requirements for context-aware systems. The second aim
is to identify existing methods and techniques that could be used in partnership to
provide a more holistic requirements elicitation methodology. The remainder of the
subsection explains goal-oriented, scenario-based, and hybrid techniques for this pur-

pose.

3.2.1 Goal-oriented

Goal-based requirement engineering techniques use the concept of a goal as a logical

mechanism for identifying, organising and justifying software requirements [94].

62

3.2.1.1 Framework for Requirements Engineering for Context-Aware Services

Finkelstein and Savigni [95] introduce a goal-based framework for eliciting require-
ments of context-aware services. They present five main elements to complement the
concept of a goal: Environment, which is whatever in the world that provides a sur-
rounding in which the machine is meant to operate; Context, understood as the re-
ification of the environment; Requirement, which represents one of the possible ways
of achieving a goal; Service description, a meta-level representation of the actual, real-
world service; and Service, which provides the actual behaviour as perceived by the user.
Along with these elements, Finkelstein and Savigni also introduce seven different re-
lationships among them: Context znfluences requirements, while goals operationalise
them; The requirements of the system determine the service descriptions, which re-
flect and are refied by services; The environment monitors context, and constrains the

services provided.

3.2.1.2 Requirements Analysis using feedback from context

Oyama et al. [96] present an approach to elicit goals using feedback from context-
aware systems based on templates from the CAPIS model [97]. The context goal eli-
citation is based on Data, Information, Knowledge, and Wisdom (DIKW) templates
[98]. First, the structure of DIKW guides developers to infer situations and inten-
tions of a user, conceptualising service problems and issues through goal elicitation.
Then, developers describe service problem templates, which use DIKW to help them
describe contexts as a set of <situation, cause, effect>. Finally, developers use service
issue templates, which use DIKW to help them describe corresponding goals as a set
of <alternatives, goal, significance> that explains the engineer’s decision process for

identifying the user goal. The overall process has three main steps:

1) Conceptualisation of a service problem based on the contexts. First, a list of
contexts and its meaning are extracted from the information layer and then it
lists situations for the users;

2) Goal identification through the temporarily desirable results of previous and
changed intention;

3) The conceptualisation for a service issue. First, the process in the knowledge

63

layer describes tools, methods, and environments of services to achieve a goal.

Then, the goal meaning is explained and a goal graph is shown as data.

3.2.1.3 FLAGS: Fuzzy Live Adaptive Goals for Self-adaptive systems

Goal relaxation acknowledges the partial or fuzzy satisfaction of goals. While the meth-
ods introduced in the previous subsection consider the completion of a goal as some-
thing binary, this approach also acknowledges some objectives as being so vague that
cannot be objectively measured. The introduction of fuzziness in the satisfaction of
goals enables engineers to define objectives without the sufficient definition, giving the

team a sense of direction and purpose while leaving them free to follow their intuition.

Baresi et al. [99] introduce an extension of KAOS [100][101][102], another goal-
oriented methodology for requirements engineering that is supported by a specifica-
tion language. It is focused on adaptive systems, which can benefit from the allowance
of small violations in the satisfaction of goals. The process they propose is as follows:
1) Authors create a goal model following the traditional KAOS notation. In such mod-
els, conflictive relations between goals are identified. Those in conflict are assigned a
priority. Finally, Temporal Linear Logic is used for formalising the objectives. 2) Goals
in conflict are softened, by using fuzzy logic. There are two types of goals: crisp and
fuzzy. The former are binary while the latter map to a greater range. 3) Specify the
adaptation at execution time through adaptive goals, which have: a trigger for determ-
ining when such goal needs to be satisfied, a condition for its activation and an ob-
jective to achieve. Moreover, a set of actions to be taken is specified, including to add
or remove goals from the model, modify the preconditions of a goal, add or remove

entities, events or agents.

3.2.2 Scenario-based

Scenario-based requirements elicitation approaches use descriptions of activity sequences
and foreseeable interactions with the different user roles of the system under develop-
ment to extract and determine its requirements. Scenarios can be used as: descriptors

of the unsatisfactory state of affairs that the system under development has to solve;

64

Visions of how the system might operate; Descriptions of behaviour that represent the

users and the system [103].

3.2.2.1 Discovery of requirements for context-aware systems

Seyftetal. [104] [105] present a framework for the scenario-based requirements engin-
eering of context-aware systems. They show that is feasible to develop requirements
elicitation approaches which use ubiquitous technologies to identity the current work
context. Their approach is divided into three layers. The first level supports conven-
tional approaches for understanding context, such as contextual inquiry that supports
comprehending users in their workplace and examining how people work to meet real
world requirements. The aim is to have an understanding of the context and no soft-
ware tool support is required. The second level represents user-driven requirements
engineering tools which enable analysts to elicit requirements in the work context. Fi-
nally, the third level is supported by context-aware requirements engineering tools that
are capable of identifying the current work context. Such tools offer features to inform

users about context changes.

3.2.3 Hybrid approaches

There are also approaches which combine the strengths of scenarios with the repres-

entation of goals.

3.2.3.1 PC-RE: Personal and contextual requirements engineering with some

experience

Sutcliffe et al. [106] propose a three layered framework to explore requirements spe-
cification for specific individuals. The method focuses on the evolution of individual
needs over time and its evolution once the individual learns how to use the system.
Each layer contemplates changes on the spatial and temporal dimensions. The layers

are described as follows:
* Stakeholder group: This layer collects the most general requirements of the sys-
tem as well as its evolution over the two dimensions. The changes process (tem-

poral change) and cultural differences or internationalisation (spatial change).

65

Contextual enquiry and prototype evaluations specify product versions for dif-
ferent cultural markets. Other architectural implications are: Design for cus-
tomisation, design of monitors and adaptive functions for mobility; custom-
isable or adaptive user interfaces for changes depending on the evolution of
user skills, and a flexible adaptable architecture to evolve as business processes
change.

* User characteristics: In this layer, the system-domain independent needs of the
users are captured in a model. Abilities and needs are gathered from interviews
and psychology-based questionnaires and captured in a user profile. The spatial
dimension is affected by changes in the physical and social context, while the
temporal dimension is affected by the changes in the abilities of the users over
time.

* Personal goals: This layer analyses the requirements from an individual point
of view. Changes in the temporal dimension depend on the stability of user
desires, while the spatial change depends on how the location affects the goals.

The personal-level consideration of requirements entails the appearance of many al-
ternatives to satisfy similar goals. To help prioritise and discard such alternatives for
a later design and implementation, authors propose a cost-benefit analysis technique,
consisting of: (a) Estimated benefits of achieving the desired goal; (b) Cost of each
design alternative; (c) Cost penalties if the solution alternative does not achieve the

goal; (d) Costs associated to infringements of non-functional requirements.

3.2.3.2 RE-CAWAR: Requirements engineering for context-aware systems

Sitou and Spanfelner [107] propose the use of an integrated model of usage context
in which three different dimensions that affect the context are considered: Changing
participants, in regard to the location and orientation of the users, as well as their per-
sonal, mental and psychological states, expectations and social dependencies; Chan-
ging activities, referring to the tasks and goals of participants influenced by events in
the environment and; Changing operational environment, such as the location of the
application, network conditions, devices and communications quality, etc. In order
to help the systematic handling of context, the authors propose the following models:

* User, representing the aspects of users and user groups.

66

* Task, responsible for identifying which task and which interactions are needed
to perform a task.
* Domain, modelling the operational environment which consists of any user vis-
ible, accessible and manipulable objects in the system domain.
* Platform, which shows the physical infrastructure and the relationship between
involved devices.
* Dialog, representing the interaction between the user and system.
* Presentation, that includes the visual, haptic and audio elements needed for the
interaction.
The core of the methodology is based on approved methods from traditional and
model-based requirements engineering such as scenario and goal-based approaches. It
is based on two main parts. The first part is the stability check, that consists of eli-
citing, analysing and specifying general requirements for the system core and the user
interface. For this purpose, use-cases based on previous models are employed and con-
text dependent needs are identified. Then, this data is used as input to the next part,
identification checking. In this part, the aim is to identify needs that could be auto-
matically recognised by the system at runtime and at converting them into adaptation

requirements.

3.2.3.3 REUBI: Requirements engineering method in ubiquitous systems

Ruiz-Lopez et al. [32] present a hybrid method between scenario and goal-based re-
quirements elicitation that provides guidance to discover the top-level goals of the sys-
tem and its non-functional requirements. It has the following characteristics: (1) Has
support for obstacle analysis. (2) Models the contributions of potential architectural
and design decisions to satisfy different objectives. (3) Collects rationale to support
the decision-making process during the requirements analysis phase. (4) Shows the im-
pact of the context on the objectives that need to be satisfied. (5) Allows representing
variable prioritisation with regard to the satisfaction of objectives related to the influ-
ence of context in priority changes. (6) Provides an evaluation procedure to determine
which decisions are the most suitable for the satisfaction of objectives in different con-
texts. The method is as follows:

1. Value Model: Represents the main interests of the stakeholders (actors) and

67

defines the relevant goods, services or information (value) that will exchange in
the system under development. It also represents the quality properties that en-
hance a certain value or the process of acquiring it, relating them to the different
values.

. Goal and soft-goal refinement: From the value model, an extension of the soft
goal interdependency graph is used to decompose goals and soft-goals hierarch-
ically. Scenarios can also be considered during this stage.

. Obstacle Analysis: Apply a sequential procedure to deal with adverse and un-
desirable situations which are identified and related to the goals or soft-goals
they may hinder.

. Resource Exchange: Relationships between objectives and resources are iden-
tified. A resource is a set of data that is originated after the realisation of an
objective or that is necessary for its satisfaction.

. Operationalisation of goals and soft-goals: Alternatives that help to achieve goals
and soft-goals are proposed, which can be decisions that refer to the way in
which software is structured (architectural), or can refer to the detailed defin-
ition of software components and connectors (design). Sets of operationalisa-
tions with the same purpose can also be grouped. Finally, the relation towards
the different goals is analysed, whether or not they have a positive or negative
impact on them, or whether or not they make its achievement or deny its asso-
ciated group.

. Argumentation: Maintains a record of the decisions made during the previous
steps by modelling the claims, or reasons that justify the decisions taken.

. Context modelling: The impact of context situations on other elements of the
interdependency graph is modelled, rather than the actual representation of the
context of the system under development. They include three main compon-
ents: (1) Context situation: A set of attributes representing a situation of in-
terest in the system which has impact on the interdependency graph; (2) Con-
text attribute: Any observable property in the environment which character-
ises a situation of interest to the system; (3) Context value: A possible value for
a context attribute. They use a context-dependency relationship to trace the

context situations to the element that needs to be addressed when the situation

68

arises.

8. Prioritisation: Objectives are classified into three different levels of priority:
normal, important and critical. Context situations are related to the relation-
ships of decomposition or operationalisation they affect by means of a context-
dependency.

9. Evaluation procedure: Based on the NFR framework and the use of rules, an
evaluation is conducted to check the satisfaction of the goals and soft-goals con-

tained in the model.

3.2.3.4 RA4IE (AmlI): Requirements for Ambient Intelligence

Evans et al. [108] analyse the state-of-the-art in requirements engineering for context-
aware systems, and acknowledge the following prominent themes: a) A considera-
tion, adoption and possible enhancement of a context taxonomy; b) General assump-
tion that systems need to be adaptable to be context-aware; ¢) In HCI focused works,
elicitation techniques for capturing end-user cognitive tasks require enhancement to
account for context-awareness; d) Identification of target groups in contrast of indi-
vidual user customisation and an acknowledgement that contextual requirements for
different profiles may evolve over time; e) Requirements may be context-driven and
change dynamically, unlike high order operational goals; f) Consideration of cultural
context; g) The adoption of goal-based requirements engineering and support for the
adoption of scenario-based modelling. They also map the context-awareness domain
to that of ambient assisted living, acknowledging that: 1) Goal oriented tasks are usu-
ally evident; 2) Context can vary significantly, and there can be associated prioritisa-
tion of design and implementation activities in terms of the services associated with
those contexts; 3) Depending on the nature of the assistance, there can be a demarc-
ation between individual requirements with a degree of customisation and distinct
user groups that support an individual who also present different set of requirements;
4) When distinct target groups and individual stakeholders are identified, a prioritisa-
tion of the highest stakeholder value is demanded; 5) There can be important ethical is-
sues, including the matter of privacy relating to context; 6) Strong association between
requirements for interaction design and the design of appropriate user training sup-

port due to differences in aspects such as modality, physical and cognitive skills and

69

experience; 7) Need for harmonisation in terms of coordination, planning, and man-
agement of different specialist knowledge required for ambient assisted living. Taking
into account these themes, they present a requirements engineering process for Intel-
ligent Environments which has been instantiated for ambient assisted living. As it can
be observed in Figure 3.1, the process follows five main steps which are carried out iter-
atively. The central step consists of establishing the scope in terms of the boundaries of
the project. This activity is complemented by the following four phases: establishing
the high-level goals, identifying the tasks through scenario-based techniques, identify-

ing system performance qualities and identifying stakeholders.

Establish
High-Level
Objectives

A

\ 4

Establish
Scope

£

Identi Determine Task
Syster:\y Identify Identify — Subset
Performance Tasks/Functions Stakeholders
Qualities
Determine
v Context
Interaction
Determine — Requirements
Stakeholder
Profiles for
Context Users Determine
—= Ethical
Requirements

__> Determine Setup,
Customisation,
Training and
Review
Requirements

Figure 3.1: Core Activities in the R4IE (AAL) Framework.

3.2.4 Analysis

An analysis of the previously described requirements methodologies is presented in
Table 3.1. In order to determine the compatibility between the different requirements
engineering methodologies, the table covers the following aspects:

* Scope: It analyses the coverage of the methodologies for the typical elicitation

activities. Columns 4, 5 and 6 represent the support of the methodologies for

70

acquisition, elaboration and modelling activities respectively. It can be observed
that most of the methodologies give support for these three main activities.
Approach: Columns 8 and 10 represent whether or not the methodology is
based on goals, scenarios or a hybrid approach. Column 9 describes if the meth-
odology has support for the partial satisfaction of goals rather than just being
binary. Column 11 indicates whether or not the methods provide specific and
systematic treatment of non-functional requirements. The theme is to have a
goal-oriented approach and then offer support either to scenario-based tech-
niques or the partial satisfaction of goals. The most complete approach is that
of REUBI [109], which has the potential to cover all these approaches.
Context-awareness: Column 12 indicates whether or not the methodology takes
into account the needs, preferences and limitations of the end-users, or in its
absence, they support personalisation to a certain degree. Only three meth-
odologies support this feature, from which PC-RE and R4IE are highlighted.
Column 13 shows whether or not the methodologies take into account the in-
fluence of contextual aspects. Many methodologies support this, but each has
its own particular way to manage this. Column 14 indicates if the methodology
has specific support guiding developers into: (a) enumerating the set of con-
textual states that may exist, (b) knowing what information could accurately
determine a contextual state within that set, and (c) stating what appropriate
action should be taken from a particular state [35]. Oyama et al. [96] presenta
series of templates for this purpose which could be reused for other methodo-
logies.

Tool support: Column 15 and 16 show whether or not the approaches have
tool support and if such tool is freely and easily available for other researchers

to be extended.

The analysis of the methodologies has been conducted for a number of aspects

that are considered relevant for the topic of this dissertation. From the point of view

of the analysis of those aspects, REUBI [109] is the most complete methodology, as

it can be observed in Table 3.1. Nevertheless, there are three main aspects that this

method does not complete. Namely, the explicitlack of a user-centred perspective, and

a lack of a tool which is publicly available. Also, it does not provide guidance for de-

71

do
nos ua
210l |

oddns jooy,
hh

o)
1X21UO
aouepmo)
Hom AT
adog
1
e
SOUITBM:
S

1X21U0))

SN
JIU3D-1
P°

N
1'I1 Y]
s
ju
S
q OLIBUD
Se
pa

s[eodijog

(3%9)
USLIO-]

1091

P2

Sui[Ppo

OnEIOqE[q
c .

vV
uonismb
I

A
30UdI

Tedx

O \ \ \ \ \ \ \ \
— |
~ |
|
J \ \ \ \ \ \
— |
,/
- —
/ -
- =
- - =
-
|
- — = |
- = | /
|
14 /
— _ /
|
/ |
/ /
/ ~,
/ - —
/ - =
/ - — ~
- —
— /
/ - —
- —
- — |
- — |
- —
— / |
N ' ' ! ' ' |
/ /,
(=] \ |
/ - —
/ - =
- —
/ - — — /
/ - — /
/ - — ~ /
/ - - — /
- — / /
- — / / /
O / ~ |
/ J -
+ —
/ / / /\,\\
J
\ / (e =)
— =
J -
e ~ 1 = -
- =
(B VAl - \O N\ (@
— \O [Q0 8,0 O N
|
|
|
|
|
—— —
1 _
- =
1 _ _l
_
- =
1 _
- =
'
'

11.
isfied at al
is not satisfie

ty i

roper

The p

»
«_

isfied.
atis
is partially s
ty i
roper
=Thep

v =

al a
n

g

S

S

g

a

ab

tems.

velopers to discover context, according to the three main principles to get it right [35].
From the point of view of guiding the developers towards the discovery of situations
and context, the data, information, knowledge, wisdom model of Oyama et al. [96]
could also be employed for this purpose. Nevertheless, Oyama’s model lacks mech-
anisms for elaborating and modelling requirements. Compared to REUBI [109], it
also lacks mechanisms for handling soft goals and non-functional requirements. Ad-
ditionally, there is no tool support for this approach. For the purpose of this disserta-
tion, the REUBI methodology [109] is the most relevant reference point. Therefore,
it is concluded that this tool will be used as the foundation from which the require-
ments framework for engineering context-aware systems will be built. Although this
approach has partial support for scenario based techniques, which can be used to un-
derstand and gather the context of the system, this is not a necessary requirement for
this thesis, and it can be further complemented. A necessary aspect that needs to be
covered for this thesis, is that of the user-centred perspective. This gap can be addressed
by combining other existing methodologies. The R4IE [108] and PC-RE [106] ap-
proaches have some synergies that can be used to complement this characteristic. Ad-
ditional techniques for analysing stakeholders and their needs can also be useful for
this purpose. In order to address the shortcomings related to guiding developers into
context discovery, a set of guidelines which are based on the conclusions of Chapter 2
will be included as part of the methodology. Finally, and significantly, whilst the RE-
UBI approach has no explicit open-source tool support, the work described here has a
specific goal of developing an open-source tool to support the proposed software de-

velopment framework, which includes specific support for requirements engineering.

3.3 Model-driven engineering

Section 3.2 has discovered a set of different methodologies which will be reused to cre-
ate a requirements elicitation process which is specialised in the engineering of context-
aware systems. As part of the objectives of this dissertation, an open-source tool to sup-
port this methodology is required. As previously mentioned in Section 3.1, a model-
driven approach is acknowledged as being effective for managing the adaptation of

context-aware systems [Chg6], speed-up and reduce costs in the development process

73

[Chg4], handle the modelling of context information [Chg3], and create more reli-
able systems [Chgb]. Therefore, this section will be constrained to the search of tools
which can aid the modelling of requirements and design elements, empowering these
mentioned aspects.

The model-driven paradigm raises the level of abstraction in the specification of
the systems to models, which are not treated just as documentation artefacts but also
enable the automation of its development. Modelling helps developers to see and solve
the most important problems at early development stages, also preventing developers
from getting distracted by swarms of detail that are better to suppress until later [110].
Models can be used to communicate ideas between stakeholders with expertise in dif-
ferent areas, avoiding the ambiguities of spoken language. This particular approach
is useful to the objectives of this thesis, as models might be used throughout all the
engineering process, in any discipline, and in any application domain. Also, it needs
to be mentioned that existing meta-models are naturally compatible with new meta-
models, domain specific languages, or profiles, facilitating the re-utilisation of different
already existing pieces in order to form a bigger picture. Moreover, since models raise
the level of abstraction, they can be cheaply and easily reused to maintain and evolve
the code, which is especially useful for the dynamic nature of context. Model-driven
engineering is a broad discipline, which comprises the following three high-level ap-
proaches: Model-driven development, model-based testing, and model-driven archi-

tecture [111].

* Model-Driven Development (MDD): Is mainly focused on the requirements,
analysis and design, and implementation disciplines. Provide modelling lan-
guages to specify the system under study, creating model to model (M2M) and
model to text (M2T) transformations in order to improve the productivity and
quality of the process [111].

* Model-Driven Architecture (MDA): Is a standard model-driven approach pro-
posed by the Object Management Group (OMG) [112], which is primarily fo-
cused on the definition of models and their transformations.

* Model-Based Testing (MBT): Is primarily focused on the automation of the
testing discipline. The models in this approach represent the desired behaviour

of the system under test, the testing strategies, and the testing environment. Test

74

cases derived from such models are functional tests on the same level of abstrac-
tion as the model, and might then be mapped into executable tests with specific

testing tools and frameworks.

A modelling language is the set of all possible models that are consistent with the
modelling language’s abstract syntax, represented by one or more concrete syntaxes
and that satisfy a given semantics [111]. The purpose of models ranges from assist-
ing different stakeholders’ communication to testing case generation or the automatic
implementation of the developed system. There are many modelling languages, from
behaviour trees [113] to Petrinets [114], the CK theory [115] or the Object-Role Mod-
elling [116].

3.3.1 UML: Universal Modelling Language

A prominent example of a modelling language is the OMG [117] Unified Modelling
Language (UML) [118]. It is a standardised general-purpose notation that provides a
way to visualize the design of a system. It was conceived to promote communication
and productivity, avoiding the risks that emerge from miscommunication between
stakeholders when resolving complex problems. Although it was aimed to support the
development of object-oriented software, it has made inroads into almost every type
of system and software development [110]. The UML language is methodology inde-
pendent and has a generic extension mechanism for customising models for particular
domains and platforms, also known as profiles [119]. This characteristic of UML has
enabled developers/designers to extend and customise it to for different purposes, in-

cluding several Domain Specific Languages (DSLs).

3.3.2 SysML: Systems Modelling Language

The OMG [117] Systems Modelling Language (SysML) [2], is a general-purpose mod-
elling language for systems engineering applications. It supports the specification, ana-
lysis, design, verification, and validation of a broad range of complex systems that may
include hardware, software, information, processes, personnel, and facilities. It reuses
a subset of UML 2, providing additional extensions needed to address the require-

ments. This standard has been used in industry for helping engineers describe the

75

system to be developed, including hardware and software aspects simultaneously. A
SysML specification is more precise than its natural language equivalent [120]. Since
UML is part of SysML, systems engineers modelling with SysML and software engin-
eers modelling with UML 2 will be able to collaborate on models of software-intensive
systems. It can also be used along with other standards such as the UML Testing Profile
(UTP), or other UML-based requirements profiles such as UML-AT [121]. Besides, it
also has the potential to be used along with other requirements capturing approaches
and languages such as KAOS [122] [102] and RELAX [123]. On top of these ad-
vantages, SysML enables the traceability of requirements through all the stages of the
development process, which is also a key goal with respect of the context-aware engin-
eering approach of this research. Although there are other languages [124] [100] and
frameworks [125] for modelling requirements, SysML and UML have more potential

to cover all the stages of the development process [126], which is key for the research

described here.

3.3.3 UTP: UML Testing Profile

UTPisastandardised language based on the OMG Unified Modeling Language (UML)
for designing, visualising, specifying, analysing, constructing, and documenting the
artefacts commonly used in and required for various testing approaches, in particular
model-based testing (MBT) approaches [127]. It is the only standardised language
for Model-based approaches to help in the validation and verification of software-
intensive systems. The standard can be used along with UML for the following pur-
poses [127]:
* Build the model-based test plans on top of already existing system models.
* Model test cases in order to assess the quality of the test item and verify if it
complies with its specification.
* Model test environments, including hardware, software, instrumentation, sim-
ulators, software tools and other support elements.
* Model deployment specifications of test-specific artefacts.
* Model the data, including the values used as stimuli into the test system, as well
as for responses expected from the test item such as the test oracle.

* Provide the information for test scheduling optimisation.

76

* Document test-case execution results, to associate test cases with the actual out-
come of their execution within the very same model in order to perform tasks
such asamore extensive analysis, and the calculus of more specific metrics amongst
others.

* Document traceability to requirements and other UML model artefacts.

3.3.4 Other approaches for model-driven context-aware systems

development

Sheng and Benatallah [128] presented ContextUML, a modelling language based on
the Unified Modelling Language (UML) [129] for the model-driven development of
context-aware web services. Serral et al. [130] [131] introduce a model-driven devel-
opment method for context-aware pervasive systems. It applies the Model-Driven Ar-
chitecture (MDA) [132] and Software Factories (SF), along with the PervML model-
ling language and the SOUPA ontology. Tesoriero et al. [133] presented CAUCE, a
methodology based on MDA [132], to provide a model-driven development of ap-
plications for Ubiquitous Computing environments. It is also worthy to be men-
tioned that there are some Domain Specific Languages (DSL) for the development
of context-aware software systems [134] [135]. Recently, a domain specific language
called Trigger-action programming [136] [137] [138] is gaining popularity. This pro-
gramming model is based on the End-User Development paradigm [139], where av-
erage users can manually customize a service according to their preferences, likes and
expectations [138]. By reducing the complexity of programming, expressing the sys-
tem behaviour becomes accessible to end-users. These, only need to handle simplified
if-then programming rules that match a trigger with an action. Is starting to emerge in
areas such as smart-homes/buildings [140] or smartphones [141]. Services and applic-

. 2 3 . .
ations such as IFTTT “ or Tasker ~ let end-users create rules with sensors/devices that

IFTTT (If This Then That): Is a web-based service that allows users to create chains of
simple conditional statements, triggered based on changes to other devices or web services (Face-
book,Gmail,Calendar). https://ifttt.com/

*Tasker: An android application for performing tasks based on contexts (applica-
tion,time,date,location,event,gesture) defined in user profiles or in click-able or timer home screen

widgets. http://tasker.dinglisch.net/

77

they already have and use in their daily life. Although there is a considerable corpus of
research in regard to the model-driven engineering for the creation of context-aware
systems [142] [143] [144] [28] [22] [24] [30] [109] [145] [146] [32] [25] [31] [147]
[3], the further analysis of these approaches is out of the scope of this thesis, since the
most common approach is the creation of UML profiles that facilitate the automa-
tion of implementation code and these approaches are specific to their corresponding
implementation frameworks. A decision is taken for the framework presented in this
thesis to use a domain-specific modelling language, based on the UML profiling exten-

sion mechanism.

3.3.5 Tool support

There are different existing tools for the creation of SysML-based diagrams. As men-
tioned in the objectives of the thesis (Section 1.4), it was an important consideration
for this thesis to provide an open-source tool which can be extended by other research-
ers. There is less open-source support for modelling SysML-based constructs. At
the time when this research started, only Modelio [148] and Papyrus [149] provided
SysML support to open-source free tools. At this point Modelio was a more mature
alternative, in its third version, while Papyrus still remained in its first version. Both
tools are based on the Eclipse IDE [150], Modelio as an RCP standalone application,
and Papyrus as a plugin. The main difference is that Modelio enables module cre-
ation, which can be flexibly integrated as a plug-in of the development environment,
also enabling the creation of new profiles. Compared to Papyrus, Modelio offers wider
support for developers, in terms of community and development tools. Modelio also
offered support for other standards in the form of external modules, as it is illustrated
in Table 3.2. It is also worth noting that Modelio offers the link edition view, where
interesting relationships among elements can be observed. This enables for example,
checking of all the elements that would be affected after the removal or modification of
a situation of interest. For these reasons, Modelio was chosen as the main software to
be used as the backbone application for the tools created for this work, as it is an open-
source tool which delivers a broad-focused range of standards-based functionalities for

software developers, analysts, designers, business architects and system architects.

78

Module Description Standard Cite

MARTE Designer Embedded software systems modelling using the v [151]
OMG MARTE standard.

SoaML Designer Model SOA Architectures using SoaML stand- v [152]
ard (UML Profile).

SysML Architect Complex system modelling, complete SysML v (2]
support.

TOGAF Architect Enterprise Architecture modelling with the v [153]
TOGAF Standard. SOA Architecture and BPM
support.

UTP Implements the UML Testing Profile (U2TP) v [154] [127]

standard, for modelling software tests.

Web Model Pub-

Generates documentation in HTML for web

lisher publishing.

WSDL Designer Web services modelling using diagrams and - [155]
definition of the exchange message types.

XSD Designer Generation and reverse of XSD schemas from/to - -

UML models.

Java Designer

UML to Java code Generation, Java to UML re-

verse engineering.

JUnit

Creation of the test model from a Java model.

Excel Exchange

Excel spreadsheet generation and reverse.

Hibernate Resource

Model and automate Hibernate mapping and

Java classes generation.

Teamwork Manager

Collaborative modelling environment that al-
lows different team members to work on the

same repository-shared project.

v =Isastandard “r

=Is not astandard

Table 3.2: Open-source and non-commercial modules for Modelio [5].

79

Although the Modelio platform provides support for most of the SysML diagrams,
the original SysML Requirements Diagram cannot be used in the non-commercial
version. As part of the contribution of this dissertation, the missing tools will be com-
plemented in order to make a free and open-source version of SysML, that includes

SysML traceability matrices and requirements tables.

3.4 Implementation support

One of the most important themes for the implementation of context awareness is
that of context information management as, typically, context-aware applications re-
quire a whole engine for this purpose. There has been some research with regard to
context information management techniques [156] [157] [158] [90] [159]. Perera
et al. [1] provides an analysis of context information management, proposing the
context-information life-cycle, as further explained in Section 2.2.5. Based on this
life-cycle, they provide an exhaustive analysis of the different techniques for imple-
menting context-aware systems, as it is further summarised in the remainder of the
section. More information on the advantages and disadvantages of each technique

can be found in their original work.

3.4.1 Implementation techniques

The first step of the life-cycle is related to the acquisition of information from different

sources. The following is a description of the five factors to be taken into account:

1. Responsibility: Itis related to the way in which the data is provided to the soft-
ware component in charge of acquiring it. There are two types: pull and push.
In the pull or query based responsibility, the software component responsible
for acquiring the data makes a periodical request to the sensor. On the other
hand, in the push or publish/subscribe responsibility the sensor sends the data
to the software component that is responsible for obtaining it.

2. Frequency: Itis related to the frequency in which the context-information events

happen, and there are two types: instant and interval. With the first type, the

80

events occur when a threshold is trespassed (¢.¢., Switching on alight or opening
a door). With the interval frequency, the events span a certain period.

3. Source: There are three different sources from which the context could come
from. The first source is sensor hardware, where context is directly acquired
from the sensor by its hardware and related APIs. In the middleware source
sensor data is acquired by a middleware infrastructure. The last source type are
context servers, where data is acquired from several other context storages such
as databases, RSS feeds or web services.

4. Sensor Types: Based on the classification of Indulska and Sutton [90], Perera et
al., explain three different types of sensors. Physical sensors are tangible hard-
ware devices which measure a determined physical property. Virtual sensors are
software-based sensors which do not necessarily generate data by themselves,
but they retrieve it from many sources and publish it as sensor data (e.g., calen-
dar, contacts, emails, etc.). Logical sensors are a combination of physical and
virtual sensors which produce more meaningful information.

S. Acquisition process: There are three main acquisition processes. In the sense
process, the data is directly sensed from sensors. In the derive process, the in-
formation is generated by performing computational operations over sensor
data. Additionally, users can manually provide context information via pre-

defined settings options such as preferences.

In order to implement models related to context, there is a need for platforms and
techniques with the power to support the expression and handling needs of context
information. Below is a brief introduction to the most commonly used techniques for

context representation and modelling [156]:

I) Key-Value: The simplest form of context models, involving a name and con-
text value pair. Used to model limited amount of data such as user preferences
and application configurations. Contain mostly independent and non-related
pieces of information, which are suitable for limited data transfer and any other
less complex temporary modelling requirements.

II) Markup Scheme: Hierarchical data structures are formed using these models,

consisting of mark-up tags, attributes and content. It can be the intermediate

81

I10)

IV)

data organisation format as well as mode of data transfer over network. It can
be used to decouple data structures used by two components in a system.
Graphical: Modelling of context using graphical notation as UML, Object-Role
Modelling, and other DSLs. Ideal for long term and large volume of permanent
data archival. Historic context can be stored in databases.

Object Oriented: Takes advantage of object-oriented concepts and techniques
as encapsulation and inheritance. To represent context in programming code
level. It allows context runtime manipulation.They work on a very short term,
temporary and mostly stored in computer memory. Also, support data transfer

over network.

V) Logic Based: Use facts, expressions and rules to define formal models. Different

VI)

facts can be inferred separately and then used in existing rules to derive higher
context knowledge. It is used for generating high-level context using low-level
context, generating new knowledge. It is also used for modelling events and
actions as well as for defining constraints and restrictions.

Ontology Based: Can be used to describe taxonomies of concepts, including
relationships. Besides, they allow different context reasoning techniques and
inference rules. Rather than storing data in ontologies, data can be stored in

appropriate data sources, while structure is provided by ontologies.

All techniques have their strong points and drawbacks. Although ontologies are the

most widely adopted approaches, they still have some deficiencies that could be mit-

igated in hybrid approaches [158]. Although the representation and information re-

trieval in ontologies can be complex, they support semantic reasoning, expressive rep-

resentations of context, have strong validation, are application independent, allow

sharing, have strong support by standardisations and have fairly sophisticated tools

available.

Once the context is modelled, there is a need to create new knowledge and have a

better understanding based on the currently sensed context. Techniques for this pur-

pose can be divided into [1]:

I) Supervised Learning: Training examples are collected to label them according to

the expected results. Finally, a function can generate the expected results using

82

the training data. Techniques such as decision trees, Bayesian Networks, Ar-
tificial Neural Networks and Support Vector Machines are considered in this
group.

1) Unsupervised Learning: Techniques that can find hidden structures in unla-
belled data. Such as K-nearest neighbour, Kohonen Self Organising Map (KSOM),
Noise and outlier detection and Support Vector Machines.

III) Rules: One of the simplest, straightforward and popular reasoning methods.
They usually have an IF-THEN-ELSE structure, but they can be based on simple
mapping associations of IDs to entities (RFID) [87]. From the works reviewed
in [1], it is recognised that the majority use rule-based reasoning.

IV) Fuzzy Logic: Allows approximate reasoning instead of fixed reasoning, extend-
ing the Boolean values 0 or 1 to expressions that simulate closeness to a natural
language. The confidence values represent degrees of membership rather than
probability.

V) Ontological: Based on description logic, ontological reasoning is supported by
OWL and RDF, rules as SWRL, are increasingly popular.

VI) Probabilistic: It allows decisions to be made based on probabilities attached to
the facts related to the problem. These include techniques such as Dempster-
Shafer, Hidden Markov Models and Naive Bayes.

Finally, the context needs to be disseminated, for which similar techniques to those

presented for the acquisition of context can be used.

3.4.2 Research prototypes and systems

A common approach to reduce development costs is to have a framework or middle-
ware to increase the development speed. There is a also a great amount of research
and prototypes on middleware aimed at facilitating the creation of context-aware sys-
tems. In order to fence in the analysis, the work of Perera et al. [1] is used to analyse
existing systems and approaches that go along with the objectives of this thesis. This
work surveys a total of 50 research prototypes, systems and approaches intended for
easing the creation of context-aware systems.These approaches, have been filtered by

their capabilities of using a combination of learning and reasoning techniques. There

83

are two main approaches which meet the criteria: Cosar [160] and Intelligibility [87].
Cosar [160] combines ontological reasoning with statistical reasoning to achieve more
accurate results in the field of activity recognition. Although it combines learning with
reasoning, this is with the aim of discovering the context of the user, and the reasoning
is not intended for triggering corresponding services, which puts the approach out of
the scope of this research. In the intelligibility toolkit [87], the authors present a system
which combines supervised learning techniques with rule and probabilistic reasoning.
Nevertheless, the intention of their toolkit is to provide intelligibility to the users about
why is the system taking decisions. Although the approach is quite interesting for re-
ducing the rejection of the system by the end-users, it is also out of the scope of this
dissertation. Other relevant cases such as CoReAmlI [161], also present a combination
oflearning and reasoning, but are mainly focused on addressing three main dimensions
of Ambient Intelligence: Activity recognition, human energy expenditure and fall de-
tection. These approaches are more related to a specific area, while the purpose of this
dissertation is to be more generic. In [162], the authors present a development en-
vironment which compatibilises learning tools for behavioural pattern discovery and
reasoning capabilities. The M IDE facilitates the creation of context-aware reasoning
components specified in a formal language, M, and the deployment of Z-Wave sensors
connected to these components. The reasoning language M is also compatible with

the output of a tool for discovering frequent patterns of user behaviour [88].

3.4.2.1 M Language

M [162], is a temporal extension of a reasoning language [163] conceived to reason
about deterministic devices and protocols. This temporal extension has been designed
in order to be compatible with a tool for learning frequent patterns of user behaviour
(LFPUBS) [88]. The LFPUBS environment learns patterns of the user, gaining know-
ledge about the preferences, needs and habits of the users, in order to facilitate the as-
sistance provided. Knowing the frequent behaviours of users enables the system to act
in a more intelligent and proactive way. The M system comes with a graphical inter-
face to automate the translation of the outcome patterns of the LFPUBS system, into
M compatible rules [164] [165]. Additionally, the graphical interface also enables the

creation of system specifications in the M language, and deploy/maintain them into

84

Z-Wave based radio sensors, which are ideal for a smart-house or smart-office environ-
ment. Their language is open-tool supported and is compatible with a learning engine
for learning frequent patterns of user behaviour [88]. For space restrictions, the full
explanation about the internal functioning of the M approach can be found in Section

7.2 and in [162].

3.4.2.2 Android Context Reasoner

The M IDE only supports the deployment of reasoning components in stationary plat-
forms. As part of the POSEIDON project [14] [37], there has been an effort to create
open-source tools [166] [167] that support the deployment of reasoning and learning
components for context-awareness in mobile platform [3]. The approach presented as
part of the framework for development in POSEIDON is based on stream reasoning
using languages including C-SPARQL [168], where continuous streams of raw data
in RDF can be reasoned over. C-SPARQL queries consider windows, i.e., the most
recent triples of such streams, observed while data is continuously flowing. Support-
ing streams in RDF format facilitates interoperability and opens up important applic-
ations, in which reasoners can deal with knowledge evolving over time [169]. This
approach has been created to be compatible with the temporal operators presented in
[162].

3.4.3 Reliability

The system complexity, and hence the likely number of design errors, grows exponen-
tially with the number of interacting system components. Although program testing
can be a very effective way to show the presence of bugs, it is inadequate for showing
their absence [170]. In these cases, verification techniques are used to explore some
general properties about the behaviour of a program. Most of the verification done
in C-AS is in the form of model checking, an approach to formal verification that
proves whether or not a model meets a given specification. Along with verification
techniques, C-AS are usually evaluated by using simulations. In these experiments,
the behaviour of a system is imitated in order to provide a preliminary understanding

of its performance. The rest of the section discusses some representative samples of

85

the state-of-the-art for evaluating the design of a C-AS.

Formal verification techniques provide a safer development of systems in intel-
ligent environments, aiding an increase their reliability [171]. Augusto et al. [172]
show techniques as well as tools that can be used to model processes and interactions,
detecting problems through simulation and verification in early stages of the devel-
opment. In other work, Augusto and Hornos [34] present a methodological guide
which provides strategies and suggestions on how to model, simulate and verify these
types of systems. The methodology is divided in four stages: A) Informal model-
ling; B) Structural modelling; C) Behavioural modelling; D) Simulation and verific-
ation. The methodology is centred on a refinement strategy which starts identifying
the core components of Intelligent Environments (sensors/actuators, actors, interfaces
and communication mechanisms) and then works on successive models of increasing
complexity. Although their methodology is tool-independent, they illustrate it using
SPIN [173],ageneric and open verification system that supports the design and verific-
ation of asynchronous process systems. Preuveneers and Berbers [174] also support a
model checking approach in order to verify the many possible configurations and con-
textual situation thata C-AS can bein. They discuss the major benefits and weaknesses
of the SPIN tool. D’Errico and Loreti [175] present a set of formal tools that allows
specifying systems along with a model-checking algorithm to verify whether or not a
considered specification satisfies the expected properties. They introduce pKLAIM,
based on a simplified version of a Kernel language for agent interaction and mobility
[176], which is based on an assume-guarantee approach: A system is not considered as
isolated, but in conjunction with assumptions on the environment behaviour where
it is executed. The system can be specified in: I) Process, accurately defined; II) En-
vironment, more abstract and formalised by logical formulae. To specify properties of
pHKLAIM systems they use modal logic (MoMo) that allows describing interactions
that the enclosing environments can have. Liu et al. [177] present AFChecker, a pub-
licly available tool to improve user’s fault detection and inspection experiences. It has
three major components: 1) Model checker based on a technique for fault patterns and

their automated identification [178]. Which derives a state transition model from a

86

set of user-configured adaptation rules and verifies the model to detect five* common
types of adaptation faults; 2) Constraint inference engine, thatinfers both deterministic
and probabilistic constraints based on CHOCO’ by analysing the propositional atoms
in the user-configured adaptation rules; 3) Fault Report Processor, that processes the
fault reports generated by its underlying model checker. The ranking of fault reports
for user’s inspection can be dynamic or static, depending on the interaction mode.

Park et al. [179] present CASS, a simulation tool for smart-homes that is able to
generate virtual people in order to perceive its movements and actions through sensors.
The tool is programmed in Java, and it allows modifying and deleting sensors/devices
according to the developers preferences. After, it can perceive simulated movements
of virtual people, generating proper values for each sensor type. They also describe
the system architecture and hierarchical rule structure model for smart-homes. Wang
etal. [180], provide an approach for automating the generation of tests for context-
aware pervasive applications. They provide an integrated solution to identify when
context changes may be relevant, and a control mechanism to guide the execution of
tests into potentially interesting contextual scenarios as defined by a coverage criterion
that is context-cognisant. Their solution can be used to enhance other test suites of
context-aware applications.

Bertran et al. [25] introduced DiaSuite, a tool suite for the development of sense-
compute-control applications. Within their suite of tools, they present DiaSim [181],
a parametrised simulator to ease the acquisition, testing and interfacing of a variety of
software and hardware components. The simulator is parametrised to a high-level de-
scription of the target environment, written in their own specification language (Dia-
Spec). This description is used to generate both a programming framework to develop
the simulation logic and an emulation layer to execute applications. Furthermore, the
simulation can be rendered, allowing visual monitoring and debugging of the system.
Their tool can be found as an Eclipse6 plugin. Yuetal. [182] apply a bi-graphical reac-

tion system to model the environment that interacts with the middleware and domain

“Non-deterministic adaptations, dead rule predicates, dead states (meaning that no rules can be
satisfied in these states), adaptation traces and unreachable states.

> Open source Java library. http://choco-solver.org/

¢ Eclipse is an integrated development environment (IDE) from the open source community of

tools, projects and collaborative working groups Eclipse. https://eclipse.org/

87

services in the development of C-AS. To model the data entities in the environment,
they extend the bi-graphical sorting predicate logic and build a meta-model. Then,
they create a model of the middleware using an extended finite state machine. By syn-
chronising the bi-graphical reaction system with the state machine, they can generate
test cases to verify the interactions between the environment and the middleware. Fi-
nally, they show the reductions of the number of test cases by using a bi-graphical
pattern-flow based testing on an airport example. Their tool is also in the form of an

Eclipse 6 plugin.

Generally, authors recognise three main issues when simulating C-AS[25][182]:
Modelling, source simulation and performance. First, it is difficult to determine what
to model and in what granularity. Likewise, the model needs to be accurate enough
to match such granularity. Second, some issues about the correctness of the stimulus
producers may arise when either the logged data are replayed from actual sensors or
a domain-specific modelling function is introduced. Emulated sensors must be pro-
grammed in such way, that for a given input, they produce the same output as its
equivalent real sensor. Besides, merging the different intensities of simulated sensors
requires domain-specific knowledge. Finally, physical spaces may involve lots of ser-
vices, accurate simulation models and rich simulation logics which can be resource

consuming.

Analysis As explained in Section 3.4.2.1, a specific tool has been chosen to be exten-
ded as part of the framework presented in this thesis. Further analysis has been done in
the specific requirements related to those models representing the behaviour of reas-
oning rules specified in M, as shown in Table 3.3. The approach proposed in this thesis
is that of presenting a proof-of-concept, based on the NuSMV [183] model-checker,

but other discrete-time model checkers could be used, if found to be more efficient.

3.5 Conclusions

This chapter has presented an analysis of the literature review, which was focused on

three main research themes. This exercise was used to identify a set of existing tools

88

Aspect Dimension Suitable

Linear YES

Branching YES

Model Discrete YES

Dense/Continuous NO

State based YES

Event based YES

Event based YES

State spaces Difference Bound Matrix NO

rfepresenta— Binary Decision Diagram YES
tion Set of constraints *

Table 3.3: A suitability analysis of the verification aspects for the M reasoning language.

and methodologies which can be further combined and extended in order to create a
context-aware systems engineering framework according to the objectives of this dis-
sertation, introduced in Chapter 1. The remainder of the thesis presents the Context-
Aware Systems Engineering Framework (C-ASEF), a framework to facilitate the devel-
opment of context-aware systems. This framework is based on a set of existing meth-
odologies and tools, which have been selected through an analysis of each of these re-
search themes. The C-ASEF is divided into three main sub-frameworks, dedicated
to different stages of the development process of a context-aware system. Figure 3.2
shows the relation between the tools selected during the analysis of this chapter for
being adequate for the objectives of this thesis, and the resulting frameworks and sub-

frameworks of this dissertation work.

89

C-ASEF: Context-Aware Systems Engineering Framework

IDMC-ASEF: Implemen-
RC-ASEF: Requirments for | DC-ASEF: Design for | tation, Deployment, and
C-ASEF C-ASEF Maintenance for C-ASEF
R4I1E NuSMV LFPUBS
REUBI CoMo
MReasoner
SysML UML
AContextReasoner
Modelio

Figure 3.2: Illustration of the selected methodologies and tools which will serve
as a foundation for the C-ASEF.

920

Part 11

Requirements stage

91

CHAPTER 4 I

RC-ASEF: REQUIREMENTS FOR THE

CONTEXT-AWARE SYSTEMS

ENGINEERING FRAMEWORK

4.1
4.2

4.3

4.4

4.5

4.6

Introduction L 94
Establishscope L. 98
Stakeholderanalysis 98
43.1 Identifystakeholders 98
432 Determine stakeholder profiles 100
433 Identifyvalues 103
434 Stakeholderdiagram 104
435 Example 104
Establish objectives 108
441 Refinegoals 109
442 Analyseobstacles L. 109
443 Analyseresourceexchange 109
444 Objectivediagram 110
445 Example 0L 110
Elicitrequirements L. 111
451 Refinerequirements 115
452 Argumentdecisions. 115
453 Requirementsdiagram 115
454 Example 0 oo 118
Evaluate 124

4.6.1 Prioritisation 125

4.6.2 Evaluation 125
4.6.3 Example 126
47 Conclusions 126

4.1 Introduction

hapter 3, Section 3.2 analyses different methods and tools for requirements
C engineering in context-aware systems, where the methods presented in [109]
[106] [108] are highlighted. The support provided for the requirements elicitation
stage in the Context-Aware Systems Engineering Framework is divided into two main
foci, as represented in Figure 4.1. During early stages of the requirements elicitation
process, the methodology is focused on the generic or non-contextual aspects of the
system ([7), to then iteratively advance towards the requirements which are more re-
lated to the identification of situations, the way in which they are planned to be de-
tected by the system and their associated context-aware features (£3). This section
presents the Requirements for Contex-Aware Systems Engineering Framework (RC-
ASEF), a framework for requirements engineering which is specialised for the require-
ments elicitation of the non-contextual aspects of context-aware systems, correspond-
ing to F}, and which has been developed with reference to previous work [184] [109]
[106] [108]. In particular, the framework is based on a collection of models, presen-
ted as a combination of dynamic and static diagrams which collectively define this
new requirements eliciation framework, for which in addition, new, open-source tools
have been developed. These constructs have been strategically chosen to be based on
UML profiles, as this facilitates its use along with other existing standards such as UML
[118], SySML [2], and U2TP [127], or other UML-based requirements profiles such
as UML-AT [121]. A specialisation of the requirements elicitation methodology into
the contextual aspects of context-aware system, corresponding to F, is introduced in
Chapter 5. RC-ASEF has been created following the objectives explained in Section
1.4, and supports:
* Anend-user, stakeholder centred vision, which guides the analysis of stakehold-

ers towards the discovery of specific stakeholder profiles and their particular

94

needs, preferences, and limitations. It also enables the representation of stake-
holders and stakeholder profiles, as well as their interests, value requests and pro-
vision, source of power, support towards the project, influences, ethical aspects,
and the ways in which values are exchanged between them. The methodology
also supports the capture of these aspects into a Stakeholder Diagram model.
Guidance for discovering objectives (goals and soft-goals), enabling their hier-
archical decomposition into sub-objectives, obstacles and resource analysis, as
well as their representation into models, using an Objective Diagram.

The guidance for operationalising objectives into requirements and refining them
into lower-level requirements. This allows not only their modelling, but also
the modelling of development decision contributions towards objective satis-
faction, as well as the cause for making the decision. Italso enables the engineers
to model the way in which requirements will be tested after their implementa-
tion. All this can be modelled in a Requirements Diagram.

An evaluation procedure for determining which objective operationalisation
decisions are most optimal towards the satisfaction of particular objectives, us-
ing a set of evaluation procedures based on existing rules and heuristics.

A model-based representation of the relevant elements presented as part of a
UML profile. The representation of requirements and related elements during
the development process is supported by an open-source tool, which includes:
SySML Diagram Representation, including traceability matrices, requirements
tables and a link editor view, automatic generation of certain documentation ar-
tifacts, and compatibility with other open-source and licensed modelling tools,
such as the UML testing profile, UML, SySML and other tools for completing

the remaining development stages of this methodology.

Figure 4.2 presents the six main activities of a coherent methodology out of the most

relevant approaches identified in the state-of-the-art review for the purpose of creat-

ing a framework for supporting the non-contextual aspects of the requirements elicit-

ation, influenced by R4IE [108]. The main enhancement is that the identification of

system performance qualities, used for gathering non-functional requirements, is now

part of the objective establishment. A new activity group, corresponding to the evalu-

ation of the objectives and requirements, which is partially based on the harmonisation

95

F1 = Generic aspects of the system (Figure 4.2); F2 = Situations of interest, the plan for making the

system detect them, and their associated context-aware features (Figure 5.1).

Figure 4.1: Different foci of the engineers as the methodology iterates.

Establish
Objectives

Stakeholder Elicit
. > > .
Analysis Requirements

[Evaluate]

Determine
Stakeholder
Profiles

Figure 4.2: Core activities in the early requirements elicitation stage, F.

activity from R4IE, is introduced. The activities in Figure 4.2 are divided into differ-
ent sub-activities, as shown in Figure 4.3, which are mainly influenced by the works
presented in [184] [109] [108]. The method gives great importance to the exhaustive

analysis on the stakeholders of the systems, as part of the identification of their needs

96

Establish Scope

4. Refine Goals

Stakeholder Analysis Establish Objectives Elicit Evaluate
4 8. Refine 10. Prioritisation)
Requirements

Requirements
1. Identify
Stakeholders —>C
' Y [
y

2. Determine
5. Analyse
Stakeholder Obstc‘ﬂd;)_>
Profiles

y y A
A

9. Argument]
v Decisions 11. Evaluation)

6. Analyse T

A A

(3'\/1;3221:" — Resource
r Exchange ! ®
Y j . 1
. Stakeholder R _V_ ¥ Y
Model ' Objective Requirements
> Model | 77777 e Model Scope Statement

[rcton g |

Figure 4.3: Activity model representing the core sub-activities in the early re-

quirements elicitation stage, corresponding to F1.

and preferences in further stages. The remainder of the chapter is directly related to the
framework shown in Figure 4.2. The sub-activities constitute an enhancement of the
RA4IE methodology, where the first sub-activity of the stakeholder analysis is inspired
by [185] and [184], and the second sub-activity is impacted by the profiling of users
[106] [108], the ethical analysis recommendation in [185], and the e-FRIEND ethical
framework [186]. It is also influenced by the conceptualisation perspectives presen-
ted in Chapter 2, as it adopts a standpoint of understanding stakeholders and then to
analyse their activities/behaviour in order to give developers a better understanding
on the meaning behind their action, and help them to create services that are tailored
to the needs and preferences of the stakeholders. The last activity in the stakeholder
analysis, and the sub-activities related to the establishment of objectives, have been ad-
opted from [109]. Finally, those sub-activities corresponding to the identification of
functional requirements and the application of the evaluation procedure are inspired
by those activities in [109], and influenced by the heuristics and rules from the NFR
Framework [187] as well as the SySML [2] standard. The methodology introduced
in this chapter reuses a particular vocabulary and definitions, which are adopted from
that used in previous work [109][64] [188] [106] [185] [184] [189] [2] [187] [1]. The

97

remainder of the chapter is as follows. Section 4.2 is related to the establishment of a
project scope. Section 4.3 corresponds to the stakeholder analysis of the methodology.
Section 4.4 is related to the objective establishment activity. Section 4.5 corresponds
to the identification of functional requirements. Section 4.6 corresponds to the eval-

uation activities of the methodology. Finally, Section 4.7 summarises the chapter.

4.2 Establish scope

The central activity of the methodology during F is to establish the scope of the sys-
tem in terms of the system boundaries (z.e., what is inside the system and what is imme-
diately external to it) . As it can be observed, this activity is influenced by the remain-
ing core activities in F}, which help to determine the objectives, resources, budget and

schedule to be included within the scope statement.

4.3 Stakeholder analysis

The initial step consists of a stakeholder analysis, which allows documenting and mod-
elling the outcome from the array of techniques proposed in [185], usinga UML pro-
file for the creation of Stakeholder Diagrams. The stakeholders are identified, and their
different relevant relationships to the project are analysed. The outcome of this activ-
ity is used as part of the scope statement and part of the models. Finally, the aim is
to identify different user profiles, in order to pave the way for discovering useful Situ-
ations of Interest in F,. Using the information gathered during the stakeholder ana-

lysis, it focuses on the identification of activities.

4.3.1 Identify stakeholders

The first step consists of identifying the different stakeholders who are interested in
the system under development. This activity is initiated by a small group, and later
reviewed with a larger group of stakeholders. After the review with a larger group of
stakeholders, the participants should think about those stakeholders who are still not

included. If there are more interested parties, a bigger group should be assembled to

928

review the stakeholders [185]. This process iterates until a consensus has been arrived
at such that it is considered that all relevant stakeholders have been accounted for. A
set of techniques are recommended to guide this process, which have been adopted
from [185] [184]. Each of which can build on the previous technique, and some of

which are explained below in this list:

* Listing Stakeholders: Consists of brainstorming a list of potential stakeholder
groups or individuals. This is the initial step on which subsequent stages build.

* Basic Stakeholder Analysis: This technique can be used to identify stakeholders
and their interest, as well as the stakeholders’ view of a focal organisation, facil-
itating the later identification of coalitions of support and opposition. It con-
sists of, for each stakeholder identified in the brainstorming session, creating a
list with the criteria that this stakeholder would use to judge the organisation’s
performance or the expectations that this stakeholder could have about the or-
ganisation. Finally, quick actions which can be taken to satisfy the stakeholder
are identified and recorded, as well as long term issues. Other additional steps
might also include the specification of how each stakeholder influences the or-
ganisation, what the organisation needs from the stakeholder, and a ranking of
stakeholders according to their importance to the organisation.

* Power Versus Interest Grids: Stakeholders are arranged on a two-by-two matrix
in which one dimension reflects the stakeholder’s interest in the project devel-
opment and the other dimension maps to the stakeholder’s power to affect the
project development. This classifies the stakeholders into four main categories
(z.e, Subjects, Players, Crowd and Context Setters). This technique helps in
determining which stakeholder’s interests must be taken into account in order
to address a particular problem. Also, the technique provides information on
how to convince stakeholders to change their views.

* Stakeholder Influence Diagrams: Indicate how stakeholders on a power versus
interest grid influence one another. For this, lines with arrows are drawn into
the Power Versus Interest Grid, in order to indicate the direction of the influ-
ence. Two-way influences are possible, but the primary direction in which the

influence flows between stakeholders should be clear.

The stakeholder identification can also be complemented with a stakeholder analysis,

99

as further explained in [185] [184].

4.3.2 Determine stakeholder profiles

The aim of this activity is to identify stakeholder profiles, by establishing personal goals
and setting different levels of achievement. The user profiling is attained by setting cer-
tain achievement levels and monitoring progress towards those personal goals [106].
In order to set the achievement levels, three main dimensions are analysed during F7,
which include the cultural aspects of the stakeholders, their quotidian activity, and
their relevant ethical aspects. Finally, the information obtained from this analysis is
used to customise the requirements, as well as the system set-up and training. In activit-
ies related to stakeholder profiling corresponding to /5, other dimensions are analysed,
namely, the interaction modalities, and the mechanisms for monitoring the achieve-
ment of personal user goals. The user profiling activity is mainly based on the activity
with the same name in R4IE [108], but it also includes the cultural analysis and profil-
ing guidelines from PC-RE [106] and the ethical analysis mechanisms from [185] and
[186]. The main enhancement is that the task subset and context-interaction require-
ments sub-activities of R4IE [108], and the monitoring mechanism specification related
activities of PC-RE [106] have been moved to the context-aware specialised stage, F5.
Also, a new sub-activity has been proposed, to analyse the activity of stakeholders in

order to prepare the situation of interest identification in F5.

4.3.2.1 Cultural analysis

The first sub-activity of stakeholder profiling deals with the system from an interna-
tional point of view, where the different effects of culture are analysed in order to in-
fluence the definition of requirements for localising systems and specifying how it will
be tailored for its different cultural profiles. During this activity, scenarios are sourced
from users who belong to the cultures, nationalities and linguistic groups inside the
intended market. The four' main steps of the guide proposed in [106] can be applied

for this purpose:

"Note that the fifth step has been moved to the user profiling activity in F5.

100

* Consider the cultural impact on the social context of the user: This includes an
analysis of five main aspects: cultural uncertainty avoidance, which can cause
the users to prefer more precise instructions and fewer options; power—dz’smnce
which is related to the way in which users react to authority, initiative and re-
sponsibility; Individualism or collectivism in societies, which can result in users
having different attitudes towards personal or collective goals; Context repres-
entations in a more visual or symbolic way, against representations in hard facts,
detail, and statistical evidence; and 77me, which is related to the preference of
doing one task at a time against multi-tasking.

* Beware of the impact of authority relationships on user goals: Take into account
the effect of different levels of authority and responsibility as obstacles for the
acceptance of goals on users, where goals are owned by stakeholders that are
managers.

* Assess the impact of culture on the users’ work patterns: Consider the effect of
culture on how work is organised by the system.

* Assess the literacy of the local user population: Consider the possibility of users

not having the knowledge or literacy skills to operate complicated functions.

4.3.2.2 Ethical analysis

An ethical analysis can contribute to ensure the ethical appropriateness of actions are
ultimately taken in a project. For this purpose the use of Ethical Analysis Grids is
recommended [185]. This grid can aid the satisfaction of both deontological (duty-
based) and teleological (results-oriented) obligations. It consists of classifying some
characteristics of each stakeholder into: High, Medium, Low and None. The char-
acteristics are the vulnerability and gravity of the stakeholder, her/his dependency on
the government, likelihood remedy, risk to fundamental value and policy impact. Al-
though the ethical analysis proposed in [185] is useful for general purpose systems,
it is not focused on context-aware systems. Context-awareness is the essence of dif-
ferent areas” that typically raise some ethical concerns which are different to those of

traditional systems. For this reason, this sub-activity also adopts the eFRIEND ethical

Particularly referring, in this case, to Ubiquitous & Pervasive Computing, Intelligent Environ-

ments, Ambient Intelligence and Ambient Assisted Living.

101

framework [186]. In order to apply it, it is recommended to carefully evaluate and
discuss with the end-user stakeholders the different ethical concerns that might arise,
until there is an agreement between all parties (¢.g., increasing user safety at the expense
of giving up some privacy). The discussions can be complemented by questionnaires
or interviews. The outcome of those discussions at a conceptual level can be used to

modify or create different objectives and requirements.

4.3.2.3 Activity analysis

This stage consists of analysing the activity of end-user stakeholders, and is especially
focused on that activity of end-user stakeholders. The purpose is to facilitate (for the
benefit of developers) the identification of the meaning behind the behaviour of the
end-user stakeholders. Particularly, by analysing how they usually behave in their quo-
tidian tasks, and by thinking about how the stakeholders could use the proposed sys-
tem to improve the way in which they achieve these tasks. This gives more opportunit-
ies to identify services that can be provided to them according to their particular needs,
preferences, and limitations. Techniques such as observation, prototyping, scenarios
or wizgard of 0z [190] can be used. Other approaches such as ethnomethodology can
be adopted to understand the meaning of the actions of the end-user stakeholders. On
the other hand, data analysis techniques such as classification or pattern-recognition
could also help in revealing unexpected relations in the behaviour of the stakeholders.
Other workflow techniques such as UML Activity Diagrams can also facilitate the cap-
ture of the relevant end-user stakeholder activities into workflows that can be later on

associated to situations of interest.

4.3.2.4 Determine customisation, set-up, and training

The method proposed in 4.2 is iterative. Once developers have defined some require-
ments, it is time to use the information gathered during this activity to customise ex-
isting requirements. The main dilemma is to specify context-aware systems that suit
the requirements of individual users, while delivering a general system that can be used
by many (individually different) users [106]. Not only this, but requirements can also
evolve for the same user. For instance, as users become more experienced using the sys-

tem, they require less help and supportive dialogues, and can access more sophisticated

102

features. Also, the requirements engineering process should take into account aspects
of maintenance and bespoke tailoring (to different stakeholders) after the system is
deployed [108]. In order to help the identification of different stakeholder profiles,
there is a need to think about how the system will be set-up by/for the different stake-
holders, trying to distinguish the different common needs of stakeholders that can be
classified into profiles. As well as how the different stakeholders will want to custom-
ise the system, what type of training will they receive, and how will they receive it. In
order to enable the customisation of the system, an individual user profile is defined
first. The requirements are frequently set by another expert stakeholder (e.g., a teacher
sets certain requirements for a student’s learning abilities). Individuals directly elicit
(and own) personal goals. For both personal goals and user profiles, attainment targets
can be set which become benchmarks for monitoring processes. A trade-oft analysis
might help to identify any conflicting user profile goals set by the expert stakeholders

with the personal ambitions of the end-user stakeholder.

4.3.3 Identify values

During this sub-activity the aim is to identify the different values to be produced by
the system and consumed by the stakeholders. This model has been adopted from the
value model introduced in REUBI [109]. It takes existing stakeholders, humans or
agents, and identifies the different values that are expected to be exchanged. Particu-
larly, stakeholders which produce, consume a value, or are interested in a value or in
its acquisition quality. Also, developers analyse what values are interchanged by the
system and other stakeholders. Then developers reflect on how these values can be en-
hanced. Aspects such as how to improve the value, what is the expected quality of the
value, what time restrictions exist in the provision of the value are taken into account.
Other enhancement aspects apply, such as the flexibility in the value acquisition, pre-
cision or reliability restrictions, as well as cost or security restrictions applicable to the

value.

103

4.3.4 Stakeholder diagram

Inspired by the techniques of the sub-activities explained in this section, the Stake-

holder Diagram is introduced, which can model relevant stakeholder related informa-

tion, as it is shown in the parts I and II of the meta-model of the Stakeholder Diagram

(Figures 4.4 and 4.5). Note that the Stakeholder Diagram also supports the modelling

of the different grids and elements introduced in Section 4.3.

«enumerationy»

«stereotype» «stereotype»
) s .. StakeholderType
Grid Participation yP
1 SUBJECT
type: ParticipationType PLAYER
0.* CROWD
0..% 1 CONTEXT_SETTERS
. . 1.% * ; . d i
influences 1. interested in
0..% «stereotypen V1*
Stakeholder ¢ «stereotype» «stereotype»
0.% * [id: String reques Value enhance ValueEnhancer
d iption : Stri
t;;:‘pségeholdz‘r'%pe 0..* 0..* description: String 1.* 0% description: String
power: PowerType | type: ValueType type: EnhancerType
support : SupportType
T 1 provide 0
1..* 1 b -
«enumeration» «enumerationy «enumpy
ParticipationType PowerType ValueType
NOT_ENGAGED Low coon
DATA SOURCE MEDIUM SERVICE
INFORM HIGH INFORMATION
CONSULT
INVOLVE 3
«stereotype» COLLABORATE «enumeration» «enump
EthicalProfile EMPOWER SupportType EnhancerType
id: String N HIGH_SUPPORT PRODUCT
description: String «enumerationy LOW_SUPPORT PROCESS
gobDependency : ProfileType ProfileType HIGH_OPPOSITION
vulnerability : ProfileType LOW_OPPOSITION
gravity : ProfileType HIGH
valuelnRisk : ProfileType MEDIUM
policylmpact : ProfileType LOW
NONE

Figure 4.4: Part I, meta-model for the Stakeholder Diagram.

4.3.5 Example

The stakeholder identification activity presents a set of techniques that build on the

previous activity. Following the case-study introduced in Section 1.5.2, the following

list of stakeholders are identified: 1) Primary Users (PU), people with Down’s Syn-

drome; 2) Secondary Users (SU), parents or carers of people with Down’s Syndrome;
3) POSEIDON Managers, the management team of the POSEIDON project; 4) POS-
EIDON Development Partners, POSEIDON project partners which work in creating

code or libraries that are to be reused by this application. 5) Developers, the developers

104

«stereotype»
Stakeholder

id: String

description : String
type: StakeholderType
power: PowerType 0..%
support : SupportType v

«stereotype»

UserProfileFeatureInstance

0..*
profiles
0..* *
0.
«stereotype» 0% 0..* «stereotype»
UserProfile UserProfileFeature

Figure 4.5: Part II, meta-model for the Stakeholder Diagram.

of the navigational system; 6) Bus driver, the person(s) that drive(s) the bus in which
the PU will get on; 7) Bus company, the company in charge of the bus line; 8) Calls
and Internet provider, referring to the company that provides phone calls, SMS and
internet to the mobile device; 9) Device Manufacturer, company that manufactures
the device; 10) Operating System Developers, group involved in the development of
the operating system of the device; 11) Maps Library Developers, group involved in
the development of the maps libraries. The list is further refined into the power versus
interest grid, which evolves through iterations into the stakeholder influence grid, as
it is shown in Figure 4.6. The stakeholder diagrams introduced give better insights
about who are the stakeholders of the system and their relevant aspects to the project.
The analysis of the stakeholders and their profiles can provide relevant information
about the stakeholders which can be later reused for identifying their needs and pref-
erences in the context related requirements. The stakeholder profiling activity follows.
The POSEIDON project involved a total of three different countries, namely, United
Kingdom, Germany and Norway. These three cultures are similar in the sense of avoid-
ing uncertainty, having similar work patterns, and responding similarly to authority,
initiative and responsibility. Additionally, the United Kingdom has a difterent cur-
rency, representation of metrics, and driving direction than Germany and Norway.

This might affect the payments of users for public transport, the location of bus stops,

105

Power

Power VS Interest Grid ~ FH ‘

<<Stakeholder>>

Secondary Users /J\/ POSEIDON Managers

<<Stakeholder>>

Primary Users

N <<Stakeholder>> <<Stakeholder>>
igati y POSEIDON Development
Developers Partners
= \
<<Stakeholder>> <<Stakeholderss.
External .
Libraries < Operating System
Developers Developers
<<Stakeholder>>
Bus Driver
<<Stakeholder>>
Calls and
Internet Provider
<<Stakeholder>> <<Stakeholder>>
Bus Company | Device
irer

Interest

Figure 4.6: Power vs Interest Grid representation, created with the Stakeholder
Diagram from the RC-ASE Tool.

as well as the distance representation in the maps. The discovery of personas3 revealed
that some particular users have visual or auditive impairments, and the questionnaires
revealed that different skill levels using information technologies [39]. The different
profiles identified can be observed in Figure 4.8. There are five different user profile
features for the primary user stakeholder: Culture, visual impairment, skills with tech-
nology, independence degree, and auditive impairment. Each of the profile features
is divided into its corresponding user profile feature instances. Following, the activity
of the end-user stakeholders when displacing is analysed, as it is represented in Figure
4.7. This information will be used to identify situational interests in 5. The ethical
analysis, customisation, set-up and training example sub-activities examples from the
user profiling activity can be found in Section 4.5.4.

The last activity in the stakeholder analysis consists of creating a value model, as

3

The persona is a virtual character that substitutes for the human users [93]. These hypothetical
characters distil the characteristics of the majority of the system users. The usage of personas is useful
when real users are not available or are too numerous to interview all of them. Personas can be built by

surveying the user community and deriving an archetypical character to represent that community.

106

checkpoint
close?

®
X

[start
navigation]

[ves]

[reach
checkpoint]

[no]

[bus arrives]

[pay journey]

Go by bus

[arrive [one stop before [F;ress
destination arrival] Siop
stop] button]

Request stop

[off bus]

~
~

destination arrived?

Figure 4.7: Activity diagram of primary user displacements, UML Activity Dia-

gram, Modelio Tool.

\’/—0

<<stakeholder>>

Primary Users

<<userProfileFeature>> 0 0 ‘} <<userProfileFeature>>
Culture Visual Impairment
i el i i nce>> nce>>
Instance>> ance>> Instance>> No vi !
i+ . v . 0 visual
British Norwegian German Visual Impairment impairment
<<userProfileFeature>> <<userProfileFeature>>
Skills with Independ
technology Degree
ileFeature ileFeaturelnsta | | <<userProfileFeature <<userProfileFeature <<userProfileFeaturelnsta <<userProfileFeature
Instance>> nce>> Instance>> Instance>> nce>> Instance>>
Moderately
Low level skills Medium level skills High level skills Independent Dependent
9 P! Dependent P

<<userProfileFeaturelnstance>>

Auditive Impairment

<<userProfileFeature>> <<userProfileFeaturelnstance>>

Auditive Impairment

-
S o

No Auditive Impairment

Figure 4.8: Different profile features and profile feature instances of primary

users.

107

<<request>> <<Stakeholder>>
Primary Users
<<Value>>

<<Stakeholder>> <<provide>> | Foster displacing <<request>> <<Stakeholder>>
Navigation System 4 independence < Secondary Users
<<Value Enhancer>> <<Value Enhancer>>

. <<enhance>> <<enhance>>
Timely £ 3 Comfortable

displacements displacements

<<Value Enhancer>> <<enhance>> <<enhance>> <<Value Enhancer>>
Privacy respectful [« 7 Safe Displacements
<<enhance>>
<<Value Enhancer>>
Affordable

Figure 4.9: Value model representation, Stakeholder Diagram, RC-ASE Tool.

shown in Figure 4.9. The first actor to consider is the navigational system itself, which
offers the value of fostering the independence of both primary and secondary users.
That value is a service, which is requested by the primary and secondary users. Five
main aspects enhance the value provided by the navigation system. These are: that
primary and secondary users can afford the system, that the system can preserve the
privacy of the users, that the primary users can displace safely when using the system,
that the primary users can reach their destination on time, and that the instructions

given by the navigation system are understandable by primary users.

4.4 Establish objectives

Taking into account the value analysis, the objectives of the system are declared. Then,
from the higher order objectives, a refinement process is applied in order to obtain and
decompose them into sub-objectives. This step is followed by an analysis of the adverse
conditions that may impede the satisfaction of a goal. Following this, the analysis fo-

cuses on the resources required for the satisfaction of goals.

108

4.4.1 Refine goals

Once the system boundaries and the higher-order objectives are identified, in the form
of values and value enbancers, it is necessary to derive more specific objectives, and pro-
gressively refine them in order to obtain more knowledge about the system under de-
velopment. Objectives act as a bridge between the system values and the final require-
ments of the system, providing specific guidance during the requirements elicitation
process. Objectives are divided into goals and soft-goals, according to the identified
values and value enbancers. Goals have a clear criteria of satisfaction. Soft-goals do not
have a clear criteria of satisfaction, which means that they can be used for identifying
and modelling non-functional requirements. The objectives can also be progressively
decomposed using inclusive (AND), alternative (OR), or exclusive (XOR) relation-
ships between them. Such relationships can help in determining if their correspond-
ing parent objectives are satisfied or not, as further explained in the definitions for the
refine relationship introduced in [64]. The introduction of objectives not only guides
the process of requirements elicitation, but also enables an early evaluation of the re-

quirements satisfying the goals, as further explained in Section 4.6.2.

4.4.2 Analyse obstacles

The dynamic nature of context-aware systems is closely related to the existence of mul-
tiple adverse conditions which can make it difficult for system objectives to be met.
This sub-activity consists of identifying obstacles which may affect meeting a specific
goal, in the same way as described in [109]. The main objective is to determine those
situations which are likely to be inconvenient for meeting the objectives, even if ob-

taining a complete set of adverse conditions can be a difficult achievement.

4.4.3 Analyse resource exchange

Sometimes, there exist restrictions on the way in which sub-objectives need to be sat-
isfied in order to satisfy the parent objective; such as not satisfying an objective until
other objectives are satisfied, mainly because these require access to certain resources

which are generated as a result of satisfying other objectives. The objectives relate to

109

the resources through two different relationships: provision and demand, as further

explained in [109].

rovides
J1.* «enum»

«stereotype» mitigates «stereotype» RefinementType
Resource Obstacle AND
OR
XOR
requests
«stereotype»
1 RefineObj

type: RefinementType

Figure 4.10: Objective Diagram meta-model.

4.4.4 Objective diagram

With the purpose of facilitating the objective, obstacle and resource exchange analysis
is explained in this section, the Objective Diagram is introduced, which has been adop-
ted from the Interdependency Graph in [109]. The meta-model of this diagram can
be observed in Figure 4.10. More information about the meaning of each stereotype,

relationship and enumeration can be found in [64].

4.4.5 Example

The main goals and soft-goals of the system are derived from the value model shown
in Figure 4.9. In this way, the goal Guide displacements, is related to the Foster displa-
cing independence value, as shown in Figure 4.11. Since this value is still too generic,
it needs to be refined. The goal can be decomposed into two sub-goals: Walking dis-

placement guidance and Bus displacement guidance. Note that for satisfying the high

110

level objective, both lower level objectives must be satisfied. It equally happens with the
value enhancers. Walking displacement guidance is refined into the objective ” T7me-
based guidance”, which proposes that the guidance received by the stakeholders will
take into consideration time constraints, as shown in Figure 4.12. This goal is divided
into another two lower level goals, which are to provide guidance about when to start
the displacement, and to provide guidance according to the walking speed. The value
enhancer Affordable, is distilled into the Low-cost soft-goal, which at the same time is
divided into Low-cost hardware and Low-cost software soft-goals, as it can be observed
in Figure 4.13. The value enhancer Privacy respectful is also refined into the soft-goal
User privacy, that is divided into the two soft-goals Anonymity/psendonimity and Con-
fidentiality, as shown in Figure 4.14. The value enhancer Safe displacement is refined
into the soft-goals Displace through safe environments, and Support lost users, as it ap-
pears in Figure 4.15. Finally, the value enhancer Comfortable displacement, is distilled
into the goal Guide on required objects, that supports the user with a list of objects that
can make more comfortable the displacement or the activity to do where the user is dis-
placing. Also, this value enhancer is refined into the soft-goal Provide understandable
guidance.

Following, an obstacle analysis over the objectives proceeds, as shown in Figure
4.17. The main obstacle found is due to the interruption of the service, caused by a
lack of power. The battery may run off, and the user is left without instructions to
follow. In order to mitigate, the soft-goal Avazlability is added. Next, is the Resource
analysis, shown in Figures 4.18 and 4.19. The first of these two figures shows how the
goal of guiding displacements refines from the Start instructions resource, generated
from the time-based guidance goal. The second of these two figures indicates how
the goal for guiding displacements also requires from the Personal object list resource,

generated from theGuidance on object list goal.

4.5 Elicit requirements

Once the objectives of the system are defined, they need to be operationalised into
requirements. Then, an analysis of the contribution that the requirements have to

objectives should be performed. This stage is inspired by the task/function and sys-

111

<<refineObj, and>> i

<<refineObyj, and>>

Figure 4.11: Goal Decomposition I, Objective Diagram, RC-ASE Tool.

<<Value Enhancer>> <<Trace>>

Timely
displacements

,
e

O

<<refineObj, and>> <<refineObj, and>>

i
i
i
1

Figure 4.12: Goal Decomposition II, Objective Diagram, RC-ASE Tool.

<<Value Enhancer>> <<Trace>

Affordable <TTT

\

<<refineObj, and>>

Figure 4.13: Goal Decomposition III, Objective Diagram, RC-ASE Tool.

112

Privacy respectful

<<refineObj, and>>

<<valueEnhancer>> <<Trace>

I <<refineObj, and>>

Figure 4.14: Goal Decomposition IV, Objective Diagram, RC-ASE Tool.

<<Value Enhancer>>

Safe displacements

#

~

]
<<Trace> |

<<Trace>

Figure 4.15: Goal Decomposition V, Objective Diagram, RC-ASE Tool.

<<Value Enhancer>>
<<Trace>>
Comfortable P
displacements :
<<Trace>>

Figure 4.16: Goal Decomposition VI, Objective Diagram, RC-ASE Tool.

113

<<hinders>>

Figure 4.17: Obstacle analysis, Objective Diagram, RC-ASE Tool.

B
1
1
1
1
1
1
1
1

<<mitigates>>
.

N

~

)

| ““““““‘

<<request>> <<provide>>

——
s

Figure 4.18: Resource analysis I, Objective Diagram, RC-ASE Tool.

S

<<request>> <<provide>>

1
i
i
i
i
i
i
i
i
i
i
i
i
i
!
i
——

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
L

Figure 4.19: Resource analysis II, Objective Diagram, RC-ASE Tool.

tem performance qualities identification activities of R4IE [108]. Following this, re-

quirements are refined, decomposed into sub-objectives, and related to other model

114

elements. All the decisions taken need to be documented as rationales, in order to fa-
cilitate requirements tracing, by modelling the reasons which developers are following

to make decisions.

4.5.1 Refine requirements

Once the engineers agree upon the representation of values, objectives, their decom-
position, obstacles and resources; the next step is to discover alternatives which can
satisfy the objectives, finding their possible operationalisations, in the form of require-
ments. In the previous sub-activity, higher-order requirements are identified, as well as
their contribution to the objectives. In this sub-activity, those requirements are refined
into more precise requirements, and are related to other elements of the system. In ad-
dition to those relationships (RefineObj and Contribute) introduced by the Interde-
pendency Graph in REUBI [109], the Requirements Diagram inherits five different
types of relationships from SysML, as can be observed in Figure 4.20. This sub-activity
mainly consists of applying the Refine, DeriveRqt, and Copy relationships. More in-

formation about the elements in the diagram can be found in [64].

4.5.2 Argument decisions

Once the requirements are operationalised and refined, the aim is to model the de-
cisions taken during the previous activities. The Requirements Diagram enables this
through the use of the Argumentation stereotype, which is related to other elements
in the Requirements Diagram as illustrated in Figure 4.22. SysML already provides a
means to argument relationships via the Rationale stereotype. Nevertheless, the Argu-
mentation stereotype provided in the Interdependency Diagram of REUBI [109], fa-
cilitates the specialisation of the rationale into support and rejection arguments. More

information about the elements in the diagram can be found in [64].

4.5.3 Requirements diagram

For the purpose explained in this section, the Requirements Diagram is introduced,

which inherits the stereotypes of the OMG SysML Requirements Diagram [2] shown

115

«stereotype»

«stereotype» DirectedRelationship

UML4SysML::Trace

PropertyPath
«stereotype»
Trace
«stereotype» «stereotype» «stereotype» «stereotype»
DeriveReqt Verify Copy Satisfy
«metaclass» «metaclass» «metaclass» «enumeration>
UML4SysML::Class UML4SysML::Operation UML4SysML::Behavior VerdictKind
A pass
fail
inconclusive
error
«stereotype»
Requirement «ﬁ.t:gfggé):»
text: String
id: String
/derived: Requirement [*]
/derivedFrom: Requirement [*] «stereotype» «stereot
e ype»
/satisfiedBy: NamedElement [*] . Reafi . . f
IrefinedBy: NamedElement [UML4SysML::Refine DirectedRelationshipPropertyPath
ltracedTo: NamedElement [*]
IverifiedBy: NamedElement [*]
/master: Requirement [0..1]

«stereotype»
Refine

Figure 4.20: Stereotypes for the OMG SysML Requirements Diagram [2].

«enump»» «enumeration» «stereotype»
ContributionType VeredictKind TestCase
MAKE PASS id: String
HELP FAIL text: String
UNKNOWN INCONCLUSIVE verdict: VerdictKind
HURT ERROR 0..% i
BREAK ¥ | verifies
EQUAL

- \; 1.*

contributes

Figure 4.21: Requirements Diagram meta-model, part I.

116

«stereotype»
RefineObj

type: RefinementType

«stereotypen «stereotypen
DeriveRqt Contribute
type: ContributionType

rationaleFor :
«enumeration»
«stereotype» RefinementType
Argumentation AND
rationaleFor ; rationaleFor |OR
type: ArgumentationType XOR
\
«enumeration»

ArgumentationType
SUPPORT
DENY

Figure 4.22: Requirements Diagram meta-model, part IL.

in Figure 4.20, and the object and justification meta-models from the REUBI Interde-
pendency Graph [109]. Also, the requirement categorisation has been adopted from
the ISO 25010 standard* [189] [191]. The Operationalisation stereotype from RE-
UBI, has been substituted by the SysML Requirement, which gives the following ad-

vantages:

* Requirements Traceability [192]: Keeping track of what happens to a Require-
ment during system modelling and specification by identifying the sources, des-
tinations and links between requirements and models created during system de-
velopment. This can give engineers the possibility of ensuring that all require-
ments are fulfilled by the system and sub-system components.

* Requirements Evaluation Constructs: Specifically, SysML provides a way of
documenting how the Requirements will be tested through the stereotype of

TestCase. Such modelling constructs can also be used with other UML-based

4Although the introduced Requirements Diagram only supports the requirement categorisations
of the ISO 25010 standard, those requirements categorisations in FURPS+ or the ISO/IEC 9126 could

also be used for the classification of requirements in this methodology [191].

117

standards such as the UML 2.0 Testing Profile [127], to facilitate the design and
automation of test runs [193].

Requirements Visualisation Approaches [192]: Requirements Tables provide
means to identify, prioritise and improve requirements traceability by directly
showing a table with the id, name of the requirement, and its description. Re-
quirements Traceability Matrices capture all the proposed requirements and
their corresponding traceability in a single table.

Use-Case Diagram Compatibility: Although the exclusive use of Use-case dia-
grams might be limited for the requirements engineering process, the use of
SysML requirements to complement them represents an advantage and improves
standardisation [192]. Use-case Diagrams can be used to describe the early sys-
tem requirements, facilitating the comprehension of the system and its features
by non-technical stakeholders, as they can present different scenarios which can
be detailed through informal descriptions. SysML complements the use of use-
case diagrams by enabling its tratceabilityS through the model.

Objectives are used as a bridge between the stakeholder analysis and the require-
ments. They act as an intermediate step to guide the discovery of requirements.
Specifically, the objectives from REUBI have been created to facilitate the dis-
covery of non-functional requirements.

The operationalisation of objectives can be evaluated using the evaluation pro-

cedures from REUBI, as further explained in [64].

Figure 4.21 shows part of the meta-model for the Requirements Diagram. More in-

formation about the elements in the diagram, including the different requirements

types (Req Type) and categories (ReqCategory), can be found in [64].

4.5.4 Example

At this stage of the method, the different goals of the system are refined into require-

ments, that represent a condition or capability that the system needs, and which con-

tribute to the satisfaction of objectives. These design decisions, as well as the positive

or negative contributions of the decisions are studied. For this, the lowest-level goals

5Speciﬁcally, with the refine relationship

118

are considered (ze., those goals which do not have any sub-goal). Note that in order
to facilitate the readability of the diagrams, the argumentation is omitted from then,
and it is explained in the text. Also, note that the requirements are specified with short
names, but that Modelio enables a longer description of the requirement. This longer
description of each requirement can be found in the main example of [194]. In the
previously introduced goal models, there are 5 low-level goals, which are used to define
the functional requirements of the system, and 7 low-level soft-goals, which are used to
define the non-functional requirements. For simplicity, the Requirements Diagrams
of this example have been divided into three parts: requirements related to navigation,
as shown in Figure 4.23; requirements related to reminders of the system, as shown in

Figure 4.24; and non-functional requirements, shown in Figure 4.25.

Navigational requirements are based on a main requirement, Navigation Map,
that specifies that the user will be able to observe a map that represents the real-world
surroundings. Note that this requirement is a positive contribution towards two low-

level goals: Walking displacement guide and Bus displacement guide. However, since

<<requirement>>

Navigation Map

Lo

§<<derive>> <<derive>> ;
<<requirement>> <<requirement>>
Route Location
N .
<<derive>>
<<requirement>> <<requirement>>
q derive:
Customisable e PR
routes eckpoints

<<contributes, help>>

I
i <<derive>>
H

<<requirement>>

Customisable
checkpoint
instructions

<<contributes, help>>

<<contributes, make>>

&
-

E §<<derive>> <<derive>>

i <<requirement>> <<requirement>>

T Bus Instructions Walking instructions
<<contributes, make>>

Figure 4.23: Requirements model I, Requirements Diagram, RC-ASE Tool.

119

just showing a map can not be considered as providing enough guidance, the contribu-
tion relationship can not be considered as a Make contribution. To keep the diagram
simple, the hbelp relationships between requirements and these two goals have been
omitted in Figure 4.23. Since the Navigation Map requirement is not enough proof
for satisfying the two previously mentioned goals, this main requirement is divided
into another two additional requirements which are to show specific instructions on
the next movements that users need to do in order to ultimately arrive at their des-
tination. The navigation map will have a route, indicating the path that the user has
to follow in order to arrive at her/his destination. Additionally, the navigation map
will display the Jocation of the user in the map in real-time. Although these two new
requirements also provide a positive contribution towards the satisfaction of the two
main guidance goals of this diagram, they are still not enough proof for providing ad-
equate guidance to the users when walking and displacing by bus. Taking into account
the low level objective of Displacing through safe environments, the requirement Cus-
tomisable routes is included, where it is specified that the secondary users will be able to
create their own routes for the primary users. The difference between the application
under development and other navigation applications, is that this option increases the
security of the primary users, as parents are expected to send them through safer and
easier routes, instead of the most complicated routes. This requirement also satisfies
the needs of users with different skill levels. As it can be observed in Figure 4.23, this
new requirement is considered as a positive contribution towards the soft-goal for safe
environments. Routes will also have checkpoints that divide the route into more man-
ageable smaller parts. Although this requirement by itself does not provide any contri-
bution to the objectives, it is necessary to understand the next requirement that derives
trom it: Customisable checkpoint instructions. The checkpoints of the routes, will not
only be located by the secondary users, but they will include a set of personalised in-
structions about the next movement. For example, it could be “ When you see the blue
house with a white door, turn left, using the crosswalk”. An additional picture of the
blue house can be included for making the instruction more clear. This requirement
positively contributes to the soft-goal of Provide understandable guidance. These cus-
tomisable checkpoint instructions can map at walking or for bus displacements. These

last two instruction types make the main guidance goals. Therefore, the requirements

120

engineers can consider this diagram as finished, and continue with the following dia-
gram.

Reminder related requirements have a main requirement, which describes that the
system is going to be able to prompt the user with reminders, as shown in Figure 4.24.
The Reminders requirement positively contributes, but is not enough to satisfy, the
following goals: Displacement start guidance, Guide on required objects, and Walking
speed guidance. Again, in this diagram, belp type of relationships have been omitted.
This requirement is divided into three different reminders, according to each of the
goals treated in this diagram: Displacement reminder, Walking speed reminder, and
Object list reminder. These three requirements make the previously mentioned three
goals. The Displacement reminder requirement is divided into a reminder for the pre-
vious day displacement, previous half an hour and current displacement reminders.
From Object list reminder requirement, a reminder to take a charger and an extra bat-

tery is added, in order to contribute to the Availability soft-goal.

<<goal>><<objective>> <<requirement>> <<goal>><<objective>>
Displacement start 9 Guide on required
guidance AT objects
ED T <<derives>
; <<contributes, make>>
<<requirement>> <<requirement>> <<requirement>> <<derives> <<requirement>>
. . . n Remind to take a
———————————————— Displacement Walking speed Obiject list
<<contributes, make>> reminder reminder eminder charger and an
extra battery
1 <<derive>> <<contributes, make>>
i y <<contributes, help>>
| <<derive>> <<derive>> | i
<<requirement>> <<requirement>> <<requirement>> <<goal>><<objective>> <<softGoal>>
Previous day Previous half an Current Walki d <<objective>>
displacement hour displacement displacement 2 ':‘g s o
reminder reminder reminder R GllEBLLEy

Figure 4.24: Requirements model II, Requirements Diagram, RC-ASE Tool.

The remainder of the non-functional requirements are shown in Figure 4.25. This
diagram is focused on two main aspects, maintaining the low-cost of the product and
respecting the user privacy. Regarding the low-cost aspect, the product should be able
to be used on a mobile platform. The hardware of this platform has to be limited to
less than £300. This requirement makes the soft-goal Low-cost hardware. The software
of the application will use a free operating system (Android), and it will be released
for free in its market. This other requirement makes the soft-goal low-cost software.

Regarding the privacy of the users, they will be required to login to the application

121

before being able to navigate. No personal data will be gathered from the users, and
they will be able to register using a pseudonymous name. This requirement makes the
Anonymity/pseudonymity soft-goal. Additionally, the users will be able to deactivate

their location to the application at will.

<<softGoal>>
<<objective>>

Low-cost hardware

<<requirement>> <<softGoal>>

Mobil latf <<objective>>
obile platiorm Low-cost software

B
i
H

T i
| <<derive>> <<derive>> i
! H

<<requirement>> <<requirement>>
LI .. I
—contributes, makess. Hardware cost limit Free software <<contributes, make>>
<<softGoal>><<objective>> <<requirement>> <<softGoal>>
A ity/P: d . Logi <<objective>>
nonymli nymi in . -
SRV Sl COR Y °9 Confidentiality
. . .
S ~ B
:
é <<derive>> <<derive>> é
<<requirement>> <<requirement>>
LI T o A H
<<contributes, makes> Register user Deactivate location | __., ibutes makes»

Figure 4.25: Requirements model III, Requirements Diagram, RC-ASE Tool.

After completing the operationalisation of objectives into requirements, the next
step is to personalise or create new requirements according to the different user pro-
files, as shown in Figures 4.26 and 4.27. As it can be observed in the first figure, the
cultural profile affects the existing communication with the users. Therefore, this fig-
ure illustrates the different requirements that are created to satisfy the demands of a
British profile. The project supports English, German and Norwegian languages, Brit-
ish pounds (BGP) and Euros (EUR), as well as the Imperial and Metric systems. On
the other hand, the second figure enables a different communication with the users.
For those users with visual impairments, audio based communications will be present,
and for those with auditive impairments visual communications will be enabled. The
sub-activity for personalisation introduced in Section 4.3.2.4 also includes a specific-
ation of the set-up and training. The users of the navigation application, will have to
their disposition a training tool for letting them acquire navigation skills in a virtual
environment, without exposing themselves to unnecessary risks. For space reasons,
further explanation on the training framework is out of the scope of this example, but
the Reader is referred to [43] for more information about how users can train using

this system.

122

<<userProfileFeature
Instance>>

British

<<requirement>> <<requirement>>
Customisable Reminders
checkpoint instructions
’ \<<derive>> <<derive>>
qui >
Communication
with the users
<<derive>> <<derive>> <<derive>>
<<requirement>> <<requirement>> <<requirement>>
Language Currency Units
<<derive>> <<derive>> <<derive>>
<<requirement>> <<requirement>> <<requirement>>
English Pounds Imperial
<<Trace>>
<<Trace>> <<userProfile>>
> British Primary Users <
<<Trace>>

Figure 4.26: Personalised Requirements model I, Requirements Diagram, RC-

ASE Tool.

<<userProfile>>

Visually Impaired Primary
User

<<Trace>>

<<userProfileFeaturelnstance>>

Visual Impairment

<<requirement>>

Communication with the
users

<<userProfile>>
Auditive Impaired Primary
User

<<Trace>>

<<Trace>>

i
b

<<derive>> <<derive>>

ie
AN

<<userProfileF

Auditive Impairment

<<requirement>>

Audio based
communications

<<requirement>>

Visual
communications

<<Trace>>

Figure 4.27: Personalised Requirements model II, Requirements Diagram, RC-

ASE Tool.

Finally, an ethical analysis of the stakeholders is done. Figure 4.28 shows an ex-

ample of an ethical analysis of the primary user stakeholder against the Login, Mobile

123

platform, Reminders, Navigation map, and Communication with the users require-
ments. Note that the figure does not represent the values of the analysis, which are
contained in the properties of the Ethical profile and can be modified using the Mod-
elio tool. For this profile, there is no dependency of the stakeholder on the government
regarding the mentioned requirements. Also, there is a medium level of vulnerability
from the users, in case they can get lost by misinterpreting indications. Nevertheless,
the gravity of this stake is low. There is a high /ikelyhood that there will be a remedy
for this which will be addressed when creating the context-awareness specialisation of
the requirements methodology. There is a medium 745k to the integrity of the stake-

holders, and the policy impact is high.

<<Stakeholder>>

<<has>

Primary Users

<<Ethical Profile>>
Primary Users

<<Trace>

<<Trace>
e

]
| <<Trace>

<<Requirement>>
Login

<<Requirement>>
Mobile platform

<<Requirement>>
Reminders

<<Trace>

<<Trace>

<<Requirement>>
Communication with
the users

<<Requirement>>
Navigation Map

Figure 4.28: Ethical analysis, Stakeholder Diagram, RC-ASE Tool.

4.6 Evaluate

Finally, an evaluation of the objectives and requirements is conducted, which is guided
by a set of heuristics, that has been adapted to their application to the framework
presented in this chapter from [187] [109]. Then, a plan for evaluating the require-
ments is created, setting the criteria for how each requirement will be evaluated once

the system is implemented.

124

4.6.1 Prioritisation

There are some objectives that are more important than others. In order to focus the
development efforts on the most important objectives, requirements engineers need
to classify and prioritise the objectives first. For this, three main priority levels exist, as
inherited from [109]: NORMAL, IMPORTANT, and CRITICAL. Objectives, as
introduced in the Objective Diagram (Figure 4.10), are defined with a priority attrib-
ute, which enables the selection of a value in between these three priority levels. The
requirements engineers can classify an objective using the following criteria [64]. An
objective is considered as having a CRITICAL priority if its insatisfaction results in a
failure for the system (its satisfaction is vital for the success of the system). An object-
ive has IMPORTANT priority if its satisfaction gives an added value to the system.
Finally, an obective has NORMAL priority if its partial satisfaction does not severely
affect the loss of quality of the system. As a main difference with the activity presen-
ted in [109], is that the prioritisation activity presented here does not take into account
any context or situations during F. Instead, a different prioritisation of situations of

interest is introduced as further explained in Section 5.3.

4.6.2 Evaluation

The next sub-activity helps engineers to determine if the current modelled operational-
isation of objectives into Requirements satisfies the objectives. For this, the evaluation
procedure for the NFR framework is adopted, as presented in Page 70 [187] and Page
146 [64]. The evaluation procedure uses a set of 11 rules, available which determine
the satisfaction result of the proposed objectives, and its propagation to higher level
objectives. These rules are further explained in [64]. An algorithm inspired in the
work of [64] is introduced, which has been informally applied, and which helps the
evaluation of the main requirements of the system:
1) From agiven model, for all those Objectives that are not the source of an objRe-
fine relation, apply the satisfaction function rules from [64].
2) Propagate the satisfaction function results to higher level objectives following
the rules from [64].

3) Ifthere exists an Objective whose satisfaction function is not considered as SAT-

125

ISFIED, and the Objective is CRITICAL, then the verdictis considered as failed.

4) If there exists an objective whose satisfaction function is not considered as SAT-
ISFIED, and the objective is IMPORTANT, then the verdict is considered as
passed with warnings.

5) For other cases, the verdict is considered as passed.

The purpose of this evaluation is to show the potential of the approach for future
extensions, that can also include other types of formal evaluation. Note that this eval-
uation has still not been fully formalised and is not proposed as a fully mature evalu-

ation, rather as something which it is still under assessment.

4.6.3 Example

First of all, if it has not been done already, all the objectives defined in 4.4.5 need to be

prioritised. In this case, the objectives have been given a priority as shown in Table 4.1.

Once the priority of all the objectives is established, the R-CASE module will auto-
matically give a verdict on the satisfaction of the objectives of the system, according
to the algorithm and rules explained in Section 4.6. For this example, the result of
this evaluation can be observed in Figure 4.29. The current verdict of the example is
WARNING, as the Support lost users objective is DISSATISFIED, and the Availab-
ility objective is PARTIALLY SATISFIED. This means that in order to improve the
verdict to PASS, special attention should be paid to the completion of these objectives

when eliciting requirements related to the context-awareness of the system.

4.7 Conclusions

Chapter 2 has presented a novel conceptualisation of context which is aimed at maxim-
ising the usability results of developed context-aware systems, mitigate the limitations
of C-AS and strengthen their real capabilities. Chapter 3 analyses existing methods
and techniques for eliciting requirements for context-aware systems. The conclusion
from this analysis is to follow an approach that assembles existing methodologies for re-

quirements elicitation, and then embedding in them the conceptualisation of context

126

Objective Priority

Guide displacements Critical
Walking displacement guidance Critical
Bus displacement guidance Critical
Time-based guidance Important
Displacement start guidance Important
Walking speed guidance Important
Low-cost Normal
Low-cost hardware Normal
Low-cost software Normal
User privacy Normal
Anonimity/Pseudonimity Normal
Confidentiality Normal
Displace through safe environments Important
Support lost users Important
Guide on required objects Important
Provide understandable guidance Important

Table 4.1: Prioritisation values for the different objectives presented in section
4.4.5.

introduced in Chapter 2. Accordingly, the description of the requirements method-
ology is divided in two chapters. This chapter creates the foundations of a require-
ments elicitation framework (RC-ASEF), by assembling different requirements elicit-
ation methodologies and tools. Chapter S extends the framework introduced in this
chapter to embed the conceptualisation of context presented in Chapter 2.

The framework presented in this chapter provides a coherent guide for developers
for the requirements elicitation process which is specialised for gathering the non-
contextual aspects of context-aware systems. Developers are guided from the iden-
tification of stakeholders, to the identification of objectives and its corresponding op-
erationalisation into requirements. This guidance process facilitates the identification
of key information which can be used in the specialisation of the framework (SRC-

ASEF), introduced in Chapter 5. Chapters 1 and 2 highlight the need to have an end-

127

@ Rc-AsE | @) Objectives Audit 52 | [Audit| 2 Outline| 27 Links Editor

Property Value
Verdict WARNING
Displacement start guidance SATISFIED
Guide displacements SATISFIED
Guide on required ohjects SATISFIED
Support lost users DISSATISFIED
Time-based guidance SATISFIED
Anonimity/Pseudonimity SATISFIED
Low-cost SATISFIED
Bus displacement guidance SATISFIED

Displace through safe environments PARTIALLY_SATISFIED
Walking displacement guidance SATISFIED

Low cost hardware SATISFIED
Availability PARTIALLY_SATISFIED
Provide understandable guidance PARTIALLY_SATISFIED
Walking speed guidance SATISFIED
Low-cost software SATISFIED
User Privacy SATISFIED
User Intimacy SATISFIED

Figure 4.29: Screenshot of the evaluation of objectives using the RC-ASE module
in Modelio.

user stakeholder centred perspective. In order to support this, the framework supports
an initial stakeholder analysis, from which more individualised stakeholder profiles are
derived, enabling to match functional requirements to particular capabilities of users.
Another salient feature of the profiling activity includes a core ethical model.

In order to facilitate the management of this information, a model-based approach
is taken. The framework introduces an enhancement of some existing UML/SysML
profiles, introducing the: Stakeholder, Goal, and Requirements Diagrams. As part of
the contribution of this chapter, a new module for Modelio has been created, namely
Requirements for Context-Aware Systems Engineering (RC-ASE) [194]. This mod-
ule implements not only the Diagrams introduced during this section, but also the
missing SysML features that the free version has, including traceability matrices and
requirements tables, as well as other relevant functionality such as partial documenta-
tion generation. This tool has been extended in Chapter 5. More information on how

to download, install, use or develop the tool can be found in Appendix A.

Additionally, the framework inherits the means to analyse and guide the software

128

design, exploiting the benefits of design techniques that adequately satisfy the object-
ives of the system, through the study of its contributions. This analysis includes a study
of the possible obstacles that might hinder the satisfaction of objectives and shows the
impact of the proposed requirements in the system objectives, as well as the decision
taken towards the satisfaction of objectives. This evaluation process has also been im-
plemented in the open-source tools. The usage of the framework is illustrated using
the case-study introduced in Section 1.5.2. The resulting models obtained with the ap-
plication of the proposed method contain reusable information that can be used as an
input for the situational requirements and for the design stage, introduced in Chapters

S and 6.

129

CHAPTER S I

SRC-ASEF: SITUATIONAL
REQUIREMENTS FOR THE
CONTEXT-AWARE SYSTEMS

ENGINEERING FRAMEWORK

Introduction L 132
Mainactivities oo 134
Apply evaluation procedure 136
5.3.1 Situations of Interest Diagram 140
5.3.2 Situation Detection Plan Diagram 141
Example 146
5.4.1 Identify situations of interest 146
5.4.2 Context-aware features 149
5.4.3 Situation DetectionPlan 154
5.4.4 Evaluaton 156
Conclusions 166

131

5.1 Introduction

hapter 2 analyses the problems behind the conceptualisation of context and
C context-awareness, introducing new definitions of the concept with the aim
of directing them towards the engineering of more usable context-aware systems. Chap-
ter 4 has introduced RC-ASEF, a framework for gathering requirements of context-
aware systems, which is divided into two main foci: [, for non-context related re-
quirements and F, for context related requirements. This section presents the Situ-
ational Requirements for the Context-Aware Systems Engineering Framework (SRC-
ASEF), a specialisation of RC-ASEF focused on the contextual aspects of the require-
ments elicitation in context-aware systems (F3), which is based on the conclusions
presented in Chapter 2. The framework presented in this chapter has a situation-based
approach to guide developers with regard to the identification of situations, situation
detection mechanisms and associated context-aware fmmresl. For this, it relates to the
outcome of the framework introduced in Chapter 4, RC-ASEF. The previously in-
troduced RC-ASEF framework gives great importance to the exhaustive analysis of
the system stakeholders. This information is used in SRC-ASEF for the discovery of
situations of interest (SOIZ), as well as for choosing associated services according to the
needs and preferences of the stakeholders. While the artefacts produced by RC-ASEF
are more likely to be static, those artefacts produced in SRC-ASEF aim to dynamically
model the different aspects of the system. In this way, requirements engineers can fo-
cus on the analysis of the requirements according to the different possible variations of
the models created with SRC-ASEF. The SRC-CASEF framework has been created
following the objectives explained in Section 1.4, and it supports:

* A set of guidelines which are based on the perspectives and definitions intro-
duced in Chapter 2, which take into account the current strengths and limita-
tions of the state-of-the-art in context-aware systems.

* The discovery of different SOIs, as well as the contextual objectives of the sys-
tems, and the needs of the stakeholders in those situations.

* The identification and establishment of situational needs and objectives, in or-

der to guide requirements engineers towards the adequate context-aware fea-

1 . ..
The concept of context-aware feature is further explained in 2.4.2.

*The concept of SOT is explained in Definition 1, Section 2.4.3.

132

tures to be triggered in the situations analysed, supported by the Situation of
Interest Diagram. This includes an evaluation of the objective operationalisa-
tion in the same fashion as that evaluation included in Section 4.6. As it also
enables the association of the context-aware features displayed in a certain SOI
to static objectives, it facilitates the analysis of the effects on dynamic changes
to the different SOIs, not only by determining which context-aware features are
most adequate towards the satisfaction of situational objectives, but also facilit-
ating design and implementation of related decisions, by analysing the comple-
tion of higher order objectives when adding/removing/editing SOIs.

* Guidance for developers to analyse different approaches to the detection of a
SOI once the system is implemented. Including the automated recommend-
ation evaluation procedure to facilitate the analysis of the proposed detection
plans and associated context-aware features of a certain SOI, supported by the
Situation Detection Plan Diagram.

* A model-based representation of the relevant elements presented as part of a
UML profile. The representation of requirements and related elements dur-
ing the development process is supported by an open-source tool, which in-
cludes: SySML Diagram Representation, including traceability matrices, re-
quirements tables and a link editor view, automatic generation of certain doc-
umentation artefacts, and compatibility with other open-source and licensed
modelling tools, such as the UML testing profile, UML, SySML and other tools
for completing the remaining development stages of this methodology. The
tool is also open-source, and it constitutes an extension of the open-source tool
presented in Chapter 4, which includes the model-based representation of two
novel diagrams and their corresponding elements, presented as part of the SRC-
ASEF UML profile. Also, it includes the algorithms for evaluating the comple-
tion of objectives with the proposed SOIs, associated context-aware features and

associated situation detection plans.

The remainder of the chapter is as follows. Section 5.2 explains the main activities
of SRC-ASEF. Section 5.3 explains the different evaluation procedures for determin-
ing the suitability of the different approaches. Section 5.4 illustrates the usage of the

framework with an example based on the case-study presented in Section 1.5.2. Fi-

133

nally, Section 5.5 summarises the chapter.

5.2 Main activities

This section explains the main activities of the framework presented in this chapter,
as shown in Figure 5.1. The central activity of the framework uses the output from
the end-user stakeholder activity analysis in F) to identify SOIs. For each SOI identi-
fied, the rest of the peripheral activities of the methodology are applied. Once a situ-
ation of interest is selected for analysis, and although there is iterative flexibility on the
steps, the natural activity that follows is that of analysis of the needs and objectives

of the stakeholders. The stakeholder analysis conducted during F can contain useful

Determine
Context-aware
Features
Identify Stakeholders’ Identify Create Situati
Situational Needs > Situations <—>[Dretd i ! I;Ll 101‘1]
and Objectives of Interest crection ©ans
A
Apply
Evaluation
v Procedure
Revise
Stakeholder
Profiles

Figure 5.1: Context-related activities in the late requirements elicitation stage,

corresponding to F2.

information to identify the particular needs of each end-user stakeholders in the differ-

134

ent situations of interest. Additional interviews and questionnaires can be conducted
to have a better understanding of the needs of the end-user stakeholders for this pur-
pose. The aim of this activity is that of understanding the meaning of the action of
the end-user stakeholders in order to identify the objectives and needs of the different
stakeholders in the situation under analysis. Once the needs of the stakeholders are
analysed, these are reflected as situational objectives. The main distinction between an
objective and a situational objective is that the objective ultimately stems from a value
or a value enhancement of the system, while the situational objective ultimately stems
from, and only exists, in the domain of a situation of interest. As it is done with regular
objectives, these need to be refined, analysed for obstacles and resource exchanges in
the same way as explained in Sections 4.4.1, 4.4.2, and 4.4.3. Additionally, situational
objectives can be related to other existing objectives of the system. Another activity
is the determination of the adequate context-aware features, which are relevant to the
intention of the users and help them achieve their goals according to their preferences
and needs. In the same way that requirements are operationalised from objectives,
as further explained in Section 4.4, the situational objectives are operationalised into
context-aware features. Note that there could be more than one context-aware fea-
ture triggered by a particular SOL Introduced context-aware features relate not only
to situational objectives, but they might also relate to regular objectives.

Situation of interest detection plans also need to be proposed. These consist of
identifying the different context-attributes’ that can be used to detect a particular situ-
ation of interest. Note that there could be more than one plan for implementing the
same situation of interest. This step can have as much detail as developers wish to con-
sider, and it can be an informal definition or it can include the assignation of values
or value domains to context-attributes, or even the definition of particular rules or on-
tologies that will be used for inferring higher level context-attributes from lower-level
context-attributes, or to trigger the associated services.

User profiles identified as part of I} have to be taken into consideration, .e., that
which can help discover new, or personalise existing context-aware features. Note that,
as a consequence of applying the different activities of SRC-ASEF, it might happen

that some existing user profiles might change. For this reason, the stakeholder pro-

3
The concept of context-attribute is defined in Definition 2, Section 2.

135

files need to be revised. The following sub-activities of the revise stakeholder profiles

activity have been adopted from R4IE [108], and PC-RE [106]:

Task subset: There might be different levels of users that should be reflected in a
stakeholder profile, these different levels of users might have different situational
needs, objectives and required context-aware features.

Context interaction requirements: The most appropriate interaction modal-
ity for the proposed service is determined. For each of the context-aware fea-
tures proposed, requirements engineers determine the most adequate znzerac-
tion moafozlz'z‘y4 for the different user profiles.

Monitoring mechanisms: Using the sensors of the system, it might be benefi-
cial for the system, or the business model of the application, to monitor certain
end-user stakeholder activities. During this stage, the activities to be monitored
are determined, as well as the mechanisms to be used for that purpose (e.g., su-
pervised or unsupervised learning mechanisms). Taking into account the goals
of particular users, certain achievement levels can be set and monitored. Goals
of particular user profiles can be set-up for being monitored, to be aware of their

achievement levels.

The analysis of the SOI ends with its evaluation, in order to give the developer

more information about its implementation feasibility. This process is further ex-

plained in Section 5.3.

5.3

Apply evaluation procedure

During this activity, developers evaluate different aspects which can help them determ-

ine if the situation of interest under analysis should be implemented or not. The eval-

uation process consists of the following steps, as illustrated in Figure 5.2:

Prioritisation: Similar to what itis explained in Section 4.6.1, situational object-
ives are prioritised. But also, not all situations of interest have to be approached
with the same degree of effort. Some situations of interest are more important

than others, and this should be accounted for. As well as with objectives, situ-

The different ways of interacting with a context-aware feature, are explained in Section 2.4.1.

136

Apply Evaluation Procedures
for Context-awareness

1. Prioritisation

2. Evaluate Objective
Satisfaction

k{/

[
y

3. Evaluate Context-Aware
- Feature Implementation
Feasibility

\T/

4. Evaluate Situation of
Interest Detection Plan
Feasibility

5. Ethical Evaluation

A
y

Situations of
Interest
Model

UTP
Model

Figure 5.2: Core sub-activities in the early requirements elicitation stage, corres-

ponding to F2.

137

ations of interest are prioritised with one of the three priority levels: Critical,
Important and Normal [64].

Objective satisfaction evaluation: During the activity for identifying situational
objectives, several situational objectives are identified, and these, along with the
proposed context-aware features, are related to previously existing objectives.
During the goal operationalisation, the objectives of the system after including
the SOI are re-evaluated, according to the evaluation procedure introduced in
Section 4.6.2.

Evaluation of context-aware feature implementation feasibility: There are three
main aspects that should be taken into account to conduct this cost-benefit ana-
lysis. The first aspect is the cost estimation, where developers gauge the cost of
implementing that particular context-aware feature. The second aspect is the
frequency with which the situation of interest related to the context-aware fea-
ture under analysis is expected to occur. Finally, the last aspect is the detection
plan feasibility of the situation of interest related to the context aware feature
under analysis. This analysis is explained in the previous bullet-point. This ana-
lysis can help to avoid implementing features that have a high cost and are not
going to occur frequently, taking also into account the detection plan feasibility.
The specific procedure to conduct this analysis is further explained in Section
5.3.2.

Situation of interest detection plan feasibility: Each proposed situation detec-
tion plan is analysed in more depth. For this analysis, two main features are
taken into account. The first feature focuses on determining how likely it is for
the current plan to misunderstand the occurrence of a particular situation of
interest. For this, developers can check the accuracy of each of the proposed
context-attributes. The second feature has to do with the impact, in terms of
objectives of the system, that a failure in detecting a particular situation of in-
terest can cause. A cost-benefit analysis using these features can help developers
to determine the feasibility of implementing the detection plan under analysis.
This can help to avoid the implementation of situation detection plans that have
a high failure likelihood and a considerable situation detection failure impact.

The specific procedure to conduct this analysis is further explained in Section

138

5.3.1.

* Ethical evaluation: Engineers evaluate if the implementation of the detection
of the situation of interest or its associated context-aware features has a conflict
with other stakeholders, or if it implies ethical or privacy concerns which are
against those of the development team values. An ethical framework is recom-
mended for this purpose [186]. It is recommended to carefully evaluate and
discuss with the end-user stakeholders the different ethical concerns that might
arise, until there is an agreement between all parties. The discussions can be
complemented by questionnaires and/or interviews.

* Validation: The situation of interest should pass through a selection process
that helps to determine if the situation of interest is important. For this, a pri-
ority is assigned to the situation of interest. Engineers check if the situation is
within the system scope or budget, and ask themselves if its associated context-
aware features will truly help the user or not according to their preferences and
needs. The proposed context-aware features can be validated with the end-user
stakeholdersin order to check whether or not the proposed features and their in-
teraction modality are adequate for them. For this purpose, interviews or ques-
tionnaires can be used. During this stage, it is not the intention to run a ques-
tionnaire or interview for each of the identified situations of interest, but rather

to add the corresponding questions to a general questionnaire or interview.

The proposed evaluation procedures are not just envisaged for complementing the re-
quirements elicitation stages of the system, but can also be applied at later stages of
the life-cycle of a C-AS, such as maintenance. This conceptualisation enables the de-
veloper to have better control over the context-attributes and services associated to a
particular SO, facilitating the maintenance of systems. The dynamic nature of con-
text demands that developers constantly exercise an understanding of the interaction
between the user and the system in different situations. Such conceptual tools em-
power developers, as they guide them exactly to those elements that they need to alter
in an already developed system. Developers can decide to remove or modify a particu-
lar SOI, controlling which context-attributes and services will be affected. Also, they
can have a better control over the system design when adding/removing associated ser-

vices.

139

5.3.1 Situations of Interest Diagram

«enumerationy ¢enumerationy
RecommendationType CostLevel
RECOMMENDED LOW
RECOMMENDED WITH _WARNINGS MED
NOT_RECOMMENDED HIGH

«stereotype» «stereotype»
_— SituationOfInterest . . Context AwareFeature
<" 1id: String L. L. type: FeatureType
faoq description: String trigoers | interaction: InteractionType
arises g8
frequency: FrequencyLevel cost: CostLevel
rec: RecommendationType rec: RecommendationType
0..*
«enumeration» arises
" .
FeatureType 0.. «enumeration»
«stereotype» InteractionT;
PRESENT_INFO yper (e B)
EXECUTE_SERVICE UML::Activity ACTIVE
ADAPT_SERVICE PASSIVE
TAGGING__INFO

Figure 5.3: Metamodel for the Situation of Interest Diagram.

In order to facilitate the capture of the relevant information resulting from the
application of the framework, the Situation of Interest Diagram is introduced, whose
metamodel is illustrated in Figure 5.3. This diagram introduces two main stereotypes:
the SituationOflInterest and the ContextAwareFeature. The SituationOfInterest has
an attribute, frequency, which determines an estimation of the occurrence frequency
for that situation of interest, which can have a value in between: LOW, MEDIUM and
HIGH. The ContextAwareFeature has an attribute, znteraction, which determines the
interaction type of the feature. The interaction type can be one of the four interaction
types introduced in Section 2.4.2. Finally, the ContextAwareFeature stereotype also
has another attribute, cost, which estimated the implementation cost of the feature in
a level between: LOW, MEDIUM and HIGH.

Both SituationOfInterest and ContextAwareFeature stereotypes have an attrib-
ute, 7ec, which determines a recommendation level for implementing the element rep-
resented by the stereotype, in a scale between: RECOMMENDED, RECOMMEN-
DED WITH_WARNINGS, and NOT _RECOMMENDED. In order to automat-
ically estimate the implementation feasibility value of this attribute, two evaluation

procedures are introduced, one for each stereotype.

140

The evaluation of the rec attribute of the ContextAwareFeature stereotype is in-

troduced in Table 5.1, where three main factors are taken into account:

* Occurrence Frequency: This factor focuses on analysing the expected frequency
that a SOl is expected to occur, as determined by the stakeholders in the Situ-
ations of Interest Diagram.

* Cost: Itanalyses the estimated cost that the engineers give to the particular Con-
textAwareFeature in the SOI Diagram.

* SOI Detection Feasibility: This last evaluation factor directly depends on the
evaluation of the rec attribute of the SituationOflInterest stereotype. Particu-
larly, it depends on the recommendation of its proposed DetectionPlans, from
which the SOI detection feasibility is calculated, as shown in Table 5.2. which
is conducted as shown in Table 5.2, it is determined whether or not it is feasible

to detect a given SOI, as it is further explained in Section 5.3.2.

5.3.2 Situation Detection Plan Diagram

The Situation Detection Plan Diagram, whose metamodel is illustrated in Figure 5.4,
facilitates requirements engineers to design different ways in which the system under
development can detecta situation of interest. This diagram introduces three main ste-
reotypes: DetectionPlan, ContextAttribute, and ContextPreference. The detection
plan represents set of observable properties (ContextAttributes and ContextPrefer-
ences, as defined in Sections 2.4.4 and 2.4.7) of a Situation of Interest which are spe-
cifically combined for detecting the occurrence of that Situation of Interest. It helps
modelling the way in which the system is going to be aware of a SOI by decomposing
it into its observable properties. The DetectionPlan stereotype has an attribute, rec,
which is related to the recommendation for each DetectionPlan to be implemented.
The value of this attribute can be calculated using the evaluation procedure shown in
Table 5.3, which is based on analysing the following dimensions:
* Failure Likelihood: The failure likelihood of a DetectionPlan determines the
tendency of a situation of interest DetectionPlan to fail detecting the occur-
rence of a particular situation of interest. A DetectionPlan is conformed by a
set of primary (low-level) ContextAttributes that relate through derzve relation-

ships to other secondary (high-level) ContextAttributes. Typically, this follows

141

Frequency Cost

SOI Recommendation

Recommendation

|
SOI CAF SOI : CAF
LOW LOW NOT_REC. ' NOT_REC.
LOW LOW REC_WITH WARNINGS | NOT REC.
LOW LOW RECOMMENDED 1 REC_WITH_WARNINGS
LOW MED NOT_REC. ' NOT_REC.
LOW MED REC_WITH_WARNINGS ; REC_WITH_WARNINGS
LOW MED RECOMMENDED ' REC_WITH_WARNINGS
LOW HIGH NOT REC. ' NOT_REC.
LOW HIGH REC_WITH_WARNINGS ' NOT_REC.
LOW HIGH RECOMMENDED ' REC_WITH_WARNINGS
MED LOW NOT _REC. ' NOT_REC.
MED LOW REC_WITH WARNINGS ; REC_WITH_WARNINGS
MED LOW RECOMMENDED ' RECOMMENDED
MED MED NOT_REC. ' NOT_REC.
MED MED REC_WITH WARNINGS | REC_WITH_WARNINGS
MED MED RECOMMENDED 1 REC_WITH_WARNINGS
MED HIGH NOT_REC. ' NOT_REC.
MED HIGH REC_WITH_WARNINGS | NOT_REC.
MED HIGH RECOMMENDED ' REC_WITH_WARNINGS
HIGH LOW NOT_REC. ' REC_WITH_WARNINGS
HIGH LOW REC_WITH WARNINGS : REC_WITH_WARNINGS
HIGH LOW RECOMMENDED ' RECOMMENDED
HIGH MED NOT_REC. . NOT_REC.
HIGH MED REC_WITH WARNINGS | REC_WITH WARNINGS
HIGH MED RECOMMENDED ; REC_WITH_WARNINGS
HIGH HIGH NOT_REC. ' NOT_REC.
HIGH HIGH REC_WITH_WARNINGS , NOT_REC.
HIGH HIGH RECOMMENDED EREC_WITH_WARNINGS

SOI = SituationOfInterest

CAF = ContextAwareFeature
REC_WITH_WARNINGS = RECOMMENDED_ WITH_WARNINGS
NOT_REC.=NOT_RECOMMENDED

Table 5.1: Recommendation calculation table for a context-aware feature.

142

Group of recommendations of all the Detection Plans asso- : SOI Det. Feas.
ciated to a situation of interest with a detects relationship |

Exists a plan in the group thatis RECOMMENDED . FEASIBLE
Does not exist a plan in the group that is RECOMMENDED . UNDET.

and exists a plan in the group that is REC_WITH_WARN- i

INGS !

|

Does not exist a plan in the group that is RECOMMENDED | NOT_FEASIBLE

and does not exist a plan in the group that is REC_WITH_- |
WARNINGS and exists a plan in the group that is NOT_RE- :
COMMENDED |

SOI Det. Feas. = Situation of Interest detection feasibility.
REC_WITH_WARNINGS = RECOMMENDED_WITH_WARNINGS
UNDET. = UNDETERMINED

Table 5.2: Situation of Interest Detection Feasibility according to the Recom-
mendation of the DetectionPlans which have a detects relationship with the Situ-

ation of Interest under evaluation.

a pyramidal structure that finishes in a single ContextActtribute that is not the
source of any derive relationship with other ContextAttribute in the same De-
tectionPlan, as shown in Figure 5.7. The failure likelihood is calculated by in-
verting the accuracy attribute of this highest level ContextAttribute, as shown in
Table S.4. If there is not a specific reason to consider the opposite, the accuracy
attribute of the secondary ContextAttributes is obtained from propagating the
accuracy attributes of lower level ContextAttribute stereotyped elements. This
means that there is a need to specifically determine the values of the accuracy
attributes of the lowest level (primary) ContextAttributes, and then propagate
these values until the accuracy attribute result of the highest order level Contex-
tAttribute is obtained. The accuracy between context attributes related with
the derives relationship can be propagated taking into account the lowest ac-
curacy of the sources pointing to the particular target. Having a set of context-
attributes related with the derives relationship to a particular context-attribute.

Then, the accuracy can be propagated using the minimum accuracy from a set

143

«enumeration» «enumeration»
Feasibility Type RecommendationType
NOT_FEASIBLE RECOMMENDED
UNDETERMINED RECOMMENDED_WITH_WARNINGS
FEASIBLE NOT_RECOMMENDED
: e «enumeration»
«stereotype»
. ImpactLevel
5 «S?ereotype» DetectionPlan 1
SituationOfInterest 1 * 1 ?AIEG]%UM
id: String description: String LOW
description: String detects recommendation: RecommendationType NONE
frequency: FrequencyLevel toBelmplemented: boolean
feasibility: FeasibilityType failureLikelihood: LikelihoodLevel
failurelmpact: ImpactLevel
: «enumeration»
«enumeration» R
LikelihoodLevel
FrequencyLevel
HIGH
Low MEDIUM
MEDIUM LOW
HIGH
1..%
«stereotype» «stereotypen
SysML::ValueType ContextPreference
- - N - id: String
qufznt'ltyK.md: QuantityKind description: String
unit : Unit accuracy: AccuracyLevel

derive

Figure 5.4: Metamodel for the Situation Detection Diagram.

of accuracy values where (LOW < M ED < HIGH), as shown in Table 5.6.
* Detection Failure Impact: This factor is centred on analysing the impact, in
terms of Objectives, that a failure in detecting a particular SOI might cause. For
this, the SituationOfInterest stereotyped elements associated to the detection
plan with a detects relationship is identified. Then, the corresponding Contex-
tAwareFeature stereotyped elements which are related’ to the identified Situ-
ationOfInterestare analysed. Finally, the RefineObj relationships between these
ContextAwareFeatures and the Objectives of the system is studied. This result
indicates the effect in the Objectives that a failure in detecting a particular Situ-
ationOfInterest, following a given DetectionPlan would cause. The detection
failure impact value is in between HIGH, MED, LOW and NONE. The failure

5 N .
Note that ContextAwareFeatures can be derived into other ContextAwareFeatures which may be

refined from other situational objectives which also need to be taken into account.

144

impact is determined by the result of this function, and the type of Objective,
as it is shown in Table 5.5. Note that when there are more than one objectives
in the analysis, the impact result is considered as the maximum result from all

the objectives affecting the detection plan.

Failure Failure :

Likelihood Impact | Recommendation

HIGH LOW ' NOT_RECOMMENDED
HIGH MED | NOT_RECOMMENDED
HIGH HIGH | NOT_RECOMMENDED
HIGH NONE : RECOMMENDED_WITH_WARNINGS

‘
Level Level |
LOW LOW |, RECOMMENDED
LOW MED ' RECOMMENDED WITH_WARNINGS
LOW HIGH i RECOMMENDED WITH_ WARNINGS
LOW NONE ' RECOMMENDED
MED LOW ' RECOMMENDED WITH WARNINGS
MED MED | RECOMMENDED WITH WARNINGS
MED HIGH | NOT_RECOMMENDED
MED NONE ‘ RECOMMENDED WITH WARNINGS
|
|
|
|
|

Table 5.3: Table for calculating the DetectionPlan implementation recommend-
ation attending to the two main factors: a) Failure Likelihood Level of the detec-

tion plan; and b) Failure Impact Level of the detection plan.

Accuracy Level l Failure Likelihood

LOW ' HIGH
MED ' MED
HIGH ' LOW

Table 5.4: Calculation of Failure Likelihood, given the accuracy of those Con-
textAttributes in a given DetectionPlan which are not the source of any other

ContextAttribute in that DetectionPlan.

145

Contribution of context- : Objective Impact
aware feature related to detection plan | Priority

MAKE | CRITICAL | HIGH
MAKE ' IMPORTANT | MED
MAKE 'NORMAL | LOW
HELP ' CRITICAL | MED
HELP ' IMPORTANT | MED
HELP ' NORMAL LOW
UNKNOWN | CRITICAL | MED
UNKNOWN 3 IMPORTANT | MED
UNKNOWN ' NORMAL MED
HURT . CRITICAL LOW
HURT . IMPORTANT | MED
HURT NORMAL | LOW
BREAK 3 CRITICAL | LOW
BREAK ' IMPORTANT | MED
BREAK . NORMAL MED
No objectives : * NONE

Table 5.5: Failure impact for objectives traced to the DetectionPlan with a con-
tributes relationship. It is reviewed in order of positive contribution, e.g., if there
is one MAKE relationship and the objective priority is CRITICAL, the impact
will be HIGH, regardless of the rest of the contributions.

5.4 Example

5.4.1 Identify situations of interest

The metamodels introduced in this chapter will be illustrated using the case study in-
troduced in Section 1.5.2. In order to keep the example simple, it is constrained to the
analysis of the most common activities that the primary users perform on being dis-
placed by bus, analysed in Figure 4.7. An additional constraint is set as part of this case
study, which is that of focusing on bus displacements happening in London, United

Kingdom. The activity for situations of interest identification consists of requirements

146

Source Context Attribute 1 ~ Source Context Attribute 2 ' Target Context Attribute
Il

LOW LOW ' LOW
LOW MED ' LOW
LOW HIGH ' LOW
MED MED ' MED
MED HIGH . MED
HIGH HIGH | HIGH

Table 5.6: Example of accuracy propagation for two source context attributes

related with a derives relationship to a target context attribute.

engineers thinking about meaningful actions that the system can accomplish during
the different activities that the primary users perform, for which the activity diagram
shown in Figure 4.7 is used. The first activity is that of wasting for a bus. During this
activity two main situations of interest are identified, when the primary user arrives
at the bus stop, and when a bus arrives at the bus stop. These situations are relevant,
as the context-aware system can provide services to let the user know how much time
is remaining until the bus arrives, or if the bus that has just arrived is the one which
the user should get on. The next activity is to get on the bus, in which the situation
of interest paying for the journey is identified. Following, for the going by bus activity,
two main situations of interest arise, when primary user has to press the stop button,
and when the bus arrives at the destination stop. When getting off the bus, it is import-
ant to know if the user fazled to get off at the right stop, especially if there are no more
buses coming after that. When the users are walking, it might happen that the user
gets lost. Additionally, when generally using the application it might occur that the
device loses battery power while navigating, as the primary user will end up without
any instructions to continue. Another important situation of interest is when the user
starts a journey with the device baving not enough battery to support it without switching
off. The listed situations of interest are just an example of some situations that might
be relevant to the case study. Note that these situations can be further nuanced and
analysed. Descriptions of situations of interest can vary from requirements engineer

to requirements engineer, as they are a reflection of their subjective interpretation of

147

what is required by the end-user stakeholders. Also, this analysis can be applied to dif-
ferent observations of the end-user stakeholders’ behaviours, patterns or activities they
might perform. The main benefit of SRC-ASEF is the ability to handle the dynamic
nature of context, and the requirements engineers understanding of it, as it enables the
addition/edition/removal of situations of interest, and analysis of the consequences of

the changes in terms of requirements satisfaction.

Table 5.7 summarises the result of applying RC-ASEF to some of the most relev-
ant SOIs of this example, and the main results of their corresponding analysis. Table
5.7 specifically presents data that was a result of a questionnaire used as part of the re-
quirement elicitation of the POSEIDON project, which involved potential uses of an
application developed as part of that project [195]. For this questionnaire, 130 Brit-
ish families were contacted, and these were composed of at least one family member
with Down’s syndrome. The respondent population was divided into people with
Down’s syndrome (primary users) and carers of people with Down’s syndrome (sec-
ondary users). A total of 52 responses from potential secondary users and 29 from
potential primary users were obtained. Each group had a different format of ques-
tionnaire. That prepared for primary users was an “easy-to-read” version, in which
they were asked only about the different services. Also, this group was helped by their
carers during the process. The questionnaire for the group of secondary users included
questions about the situations and the services. This example was a specific scenario
used in the requirements engineering phase of the POSEIDON project [14]. During
this stage, several meetings, discussions, interviews, and questionnaires were conduc-

ted.

Table 5.7 is divided into three main blocks. In the first block (A), the description
for each SOI is included. Also, the mean (A-III) and standard deviation (A-IV) of
the responses to the questionnaires regarding the perception of the primary users on
the usability of the SOIs is provided. In the second block (B), each proposed context-
aware feature is illustrated (B-III), for each of the end-user stakeholders of the system
(B-I), as well as the proposed execution modality (B-IV). Aditionally, mean (B-V) and
standard deviation (B-VI) of the results of the questionnaire regarding the perceived
usefulness of the features is included. Also, how much the primary users liked the

feature (B-VII). Finally, the last block (C) represents the proposed operationalisation

148

plan in which each context-attribute required is illustrated. It should be noted that
these only represent a small sample of all the possible SOIs that could arise during the
development of such a system. Some other situations include when the primary user
gets lost, someone tries to steal his/her phone, or the primary user falls asleep when
travelling by bus. The secondary users that participated in the discussion provided
information, using a scale from one to five, on the usefulness of particular SOIs (Table
5.7-A-III/IV) and its associated context-aware features (Table 5.7-B-V/VI). Primary
users were asked, in a binary scale, if they would like to have the context-aware feature
proposed (Table 5.7-B-VII). The interviews also prompted them about new SOIs and
the best interaction modalities for the different features. The questionnaires related to

this table can be found in [195].

5.4.2 Context-aware features

Due to space reasons, only a single SOI will be analysed for the remainder of the ex-
ample, and this is when the primary user is waiting for a bus that, due to unforeseen
circumstances, will not arrive on time, or at all. In this particular SOI there are no
more buses available within a given time-frame that will take the user to the destina-
tion. Another thing that needs to be taken into account for this SOI is whether or not
the user is waiting under certain comfort standards. Some people with Down’s syn-
drome might not be able to realise by themselves that a particular bus is taking more
time than it should to arrive. So, particularly, if the user is standing outdoors for along
time, under bad whether conditions, it could imply certain risks for the user’s health.
Developers can also analyse other alternative variations or extension points on the tar-
get SOL There could be other SOIs where more buses for the same line are available
after the the one that is missing, which would arrive in a given time-frame, and would
take the user to the destination. There could also be buses from another line available
for an alternative route to the destination. The SOI analysed in this particular example

is as follows:

The primary user is waiting outdoors, under bad weather conditions, for a bus that will
not arrive due to unforeseen circumstances, and there are no more buses available in a

given time-frame to the user’s destination.

149

A B C
I II I | 1Iv 1 I I v vV | VI VII I II
o} sl = |~ < =~
ko g = Situational -8 E 2 o) a
L = & & 2
2 Situation of b E 2 Context-aware 5| & | X °) . Context-
1 S |»] Needs and 8| § E = Operationalisation
< interest = Feature S < g E attributes
& Preferences = |» E E
¢ Know waiting Nonf: plr)lm?ry Navigating, the PU * Device location
PU arrives to time user the bus line gar
5 | the origin stop 3.9/5 11| |PU and the time A | 4.9/5 0.9 28/28 location is thatof e Origin bus stop
'g * Remember bus | remaining the bus stop location
o line
g
=
= Current time
i .Identify whether Notify PU to get Current time is .
A bus arrives at 41/91 is the bus they (ornot)on thebus | A | 43/9 0.9| 23/24 (approx.) the Scheduled bus
the bus stop A3 10 PU need to get on or X 375 0. scheduled for bus arrival time
that has arrived
not arrival Marein ti
. argm time
. . R ber th Notification .
The bus arrives emember that o The primary user’s |* Device location
h d reminding that . T
. | tothe 43909 U they need to get N d Al4s/3 07 2226 device location is in
2 . . - . . | they need to get X A . inati
-2 | destination off the bus in chis v (§) the destination bus Destination bus
B sto off the bus in this . stop location
o | stop P stop location
g stop
O
* Device location
The primary * Remember that | Notification The primary user’s
user has to 43909 U they need to reminding that Al 459 07] 2326 device location is * Location of the
press the stop ' ’ press the stop they need to press ’ ’ one stop before the | Previous bus
button button the stop button destination stop stop to the
destination one
Notify situation ol is cl
* Realise situation)’ . _ U speed s close), Device speed
and give instruc- | A | 4.5/5 0.9 17/29 to walking speed
3 PU. Know how to tions and is earlier than |* Walking speed
o
il . correct it arrival time value
5 The pf1111ary Call secondary b | 46/5 07| 12/29
o | user fails to user ’ . Current time
‘B 4.5/5 0.8
5 | get off at the
0] The PU is in the | Busarrival time
correct stop * Realise situation
Nortify situation A | 4.8/5 0.4| 16/29 bus route and the Devi
. evice
SU * SafEty alld Tnovement S_peEd movement Speed
comfort of the b is (approx.) higher
PU Request the than walking |* Walking speed
location of the P | 4.8/50.5) - speed
* Knowifthe PU | primary user * Device location
can resolve the « Bus route
siuation

Table 5.7: Situations of interest (A), context-aware features (B) and context-
attributes (C) of the illustration example for a navigation application to support
people with Down’s syndrome integrate in society. (PU = Primary User, SU =

Secondary User, A = Active, P = Passive, STD = Standard Deviation)

150

Developers begin to consider meaningful actions that the user can take in that SOI,
as well as the needs of the stakeholders. In this case, the requirements analysis puts the
potential user into the situation (hypothetically) and asks them for possible actions.
Ideally, this process should also observe the users in such scenarios, to help get a better
understanding of their actions. It is also worth remembering that the process applies
to all the stakeholders, and has to be applied to each of the identified SOIs. The SOI
is related to its corresponding element in the model, in this case to the waiting for
bus activity, as shown in Figure 5.5. In order to select the priority of the situations of
interest, the previous evaluation conducted during RC-ASEF is taken into account.
As further explained in Section 4.6.3, the objective support lost users is not satisfied.
Although the context-aware features proposed are not enough to satisty the objective,
they present a positive contribution towards its satisfaction. Additional context-aware
features, related to the specific situation the user gets lost while navigating will address
the satisfaction of this objective. For this reason, the SOI under analysis is categorised
as CRITICAL. Similarly, other CRITICAL situations of interest are when the device
loses battery power while navigating and the user starts a journey with the device having
not enough battery to support it without switching off, as these are related to the avail-
ability objective. The process of applying SRC-ASEF finishes once the verdict for the

objectives and objective analysis is recommended (or recommended with warnings).

<<Trace>> : -
- , :Primary user waiting outdoors for a
Wait for bus < bus that will not arrive

\|/[bus arrives]

Figure 5.5: Illustration of the traceability link between the SOI under analysis
and a UML activity.

Primary Users: In this situation, the primary user needs to know that the bus
she/he is waiting for will not arrive, and what to do next in order to safely arrive at
their destination. During this process, they need to wait in comfortable conditions.

Based on these needs, following services are proposed:

151

* The primary user receives a notification communicating that the bus will not
arrive, and a set of instructions to follow.
* The primary user is prompted to call a secondary user, and alist of carers appears

in the screen as possible options.

Looking at the interaction modalities of the services, the notification service is chosen
to be purely active at execution time. Nevertheless, the instructions received are pass-
ively configured by the secondary users, as further explained in the next paragraph.
On the other hand, the call to the secondary user will be merely a prompt (passive ex-
ecution). This second context-aware feature can be passively configured, enabling the

secondary users to set a list of preferred secondary users to call.

Secondary Users: In the case of secondary users, they need to ensure the comfort
and safety of the primary users during the process of finding another alternative and
reaching their destination. The proposed service consists of sending a notification to
the secondary users, prior to the notification for primary users, letting them know their

current situation. Then, a set of options would be displayed, which include:

* Giving a call to the primary user.

* Requesting the location of the primary user. If the location is available:

— Suggesting alternative places where the primary user can wait, according
to her/his current location. After selecting them, the route to these places
will be automatically added to the primary user instructions.

— Automatically ordering a taxi. Once the user has arrived at the suggested
waiting destination, secondary users can select to order a taxi, by auto-
matically sending the location to the taxi service, that will automatically

charge them through their bank account.

Although most of the services, when selecting them, are automated, the secondary user
is in control of the critical decisions the system will take (passive execution) while the
system provides as much relevant information as possible to ease the decision-making.
They can evaluate better than a machine whether or not it is the best option for the

primary user to go to the nearby sheltered places in particular SOl instances. It might

152

be that the place is inappropriate or that there is no information about opening/closing

times, and it is risky to send the primary user there whilst it is raining.

Independent Primary Users: More useful services can be provided to the primary
users, but they require the use of the current location of the user. Looking at the ethical
aspects, the primary users deserve privacy and intimacy, and should be able to prevent
the secondary users for accessing their location. However, in potentially dangerous
situations like this, the secondary users are allowed to have access to this information.
Figure 4.8 illustrates the main profiles of the Primary Users. In this case, there is a
profile regarding the dependency level of the Primary Users. Only in cases where the
Primary User is considered as being Independent will they be able to have the following

features:

* The device asks permission to reveal the location to the secondary user. In case
the permission is given, the Secondary User will manage the presentation of the
instructions containing alternative places where to wait and ordering a taxi. If
the Independent Primary User does not give permission to the Secondary User,
the following instructions will be manually configured.

* Suggesting alternative places where the primary user can wait, according to her-
/his current location. After selecting them, the route to these places will be
automatically added to the primary user instructions.

* Automatically ordering a taxi. Once the user has arrived at the suggested wait-
ing destination, they can select to order a taxi, by automatically sending the loc-
ation to the taxi service, that will automatically charge them through their bank

account.

In this case, all the context-aware features will be passive at execution and configuration
time. This subsection reflects on the result of the feature proposal process. Note that
different developers may derive different services or execution modalities, according
to their own criteria. The evaluation of the services may depend on different factors.
Figure 5.6 represents the Situation of Interest Diagram for the Primary Users and the
Independent Primary User profiles. Note that for visualisation purposes, some of the

the context-aware features for Secondary Users have been omitted, as well as some re-

153

lations between elements. Each of the context-aware features has an arzses relation-
ship with the situation of interest appearing in the diagram. The Call secondary user
and Order a taxi context-aware features make the objective support lost users soft-goal,
while the Communicate that the bus will not arrive context-aware feature belps to the
same soft-goal. The three situational objectives Know that no more buses are arriving,
Know what to do next and Wait in comfortable conditions are traced to the Primary
User stakeholder. The situational objective Know that no more buses are arrivingis

also traced to the secondary user.

<<arises>>

<ssituationOfinterest>>

<<arises>> Primary user waiting
outdoors for a bus that will
not arrive <<arises>>

<<Trace>>

H <<triggers>>

4 <<requirement>> <<contextAwareFeature>>
<<stakeholder>> <<Traces> ‘eature>> deri

0 ¢ ;) Communicate that |---------------—----3
Primary Users Call secondary user the bus will not | <<contibutes, make>>
arrive

help>> <<contextAwareFeature>> <<derives> <<stakeholder>>
.) . N
< Request primary o> 7 secondary Users
user location
<<derive>> <<derive>>
T r— <<requirement>> <<requirement>>
<<userProfileFeature <<contextAwareFeature>> <<contextAwareFeatures>
Instance>>
Iternative
Independent Suggestl CEEIS Order a taxi
P

H
i <<contributes, make>>
:

<<Trace>>

<<Trace>>

Figure 5.6: Representation of the situation of interest presented in 5.4.2, created

with the Situations of Interest Diagram from the RC-ASE Tool.

5.4.3 Situation Detection Plan

This particular SOI, can be split into: 1) The user waiting outdoors; 2) The user is
standing still for a long time; 2) Bad weather conditions; 3) The bus will not arrive in a
specified time-frame; 4) No more buses will arrive in a specified time-frame. For 1, the

position can be operationalised just by using the signal to noise ratio from the phone

154

of the primary user, and deducing if the person is indoors or outdoors. For 2, it can
be estimated with the location history of the user device. In the case of 3, the weather
conditions can be obtained via http, through the API of openweathermaps6 and the
location of the user. For 3 and 4, as the users will be located in London, the unified
Transport for London (TtL) API” can be used. Also, for 3, the user location could
be used for estimating how much time has elapsed since the user has been stationary.
Note that this is just an example of one possible operationalisation, but developers can
consider more than one approach for this purpose, to then compare them using the
evaluation procedure presented in Section 5.3. This particular operationalisation has
the following main context attributes: inout, standingStillForTooLong, weather, bus-
NotArriving, and noMoreBusesArriving. In the case of irnout, it will indicate that the
user is indoors when the signal noise-to-ratio value® is below 26, and outdoors oth-
erwise. The value indicating if it is day or night will be taken from the date of the
calendar. Note that at this stage, it is not important to describe the exact values of the
sensors, as this will happen when designing reasoning rules’. The context attributes
can be considered as variables, as they only describe an observable property, and not
its final value. For the busNotArriving context-attribute, first, the location and time
that the user has been standing in the stop will be taken into account (standingStill-
ForTooLong). When the time waiting is higher than a maximum amount of minutes,
personalisable by the user, the TfL API will be checked to see if the bus is delayed or
not. The data for the origin and destination bus stops and current time will be needed
for querying the TfL API. The current bus stop can be deduced from the user location,
the bus line from the route, and the time from that of the phone. For noMoreBusesAr-
riving, other alternatives to reach the destination can be checked in the TfL API. Note
that developers can analyse in greater depth and even start creating the corresponding
rules or ontologies.

Finally, the context attributes for standingStillForTooLong and weather will be en-
abled for personalisation as follows. The standingStil[ForTooLong attribute, can be de-

rived from two context-attributes, the location of the user, and a tZmer that counts how

6https:/ /openweathermap.org/api
7https://api.tﬂ.g0v.uk
*The suggested signal noise-to-ratio value is known to be accurate for this purpose.

9
More information on how the reasoning rules are created can be found in Section 6.4.2.

155

much time the user has been in the same position. Additionally, a context-preference
will be used, which will let the users decide on how much time the application should
consider her or him to be standing still. On the other hand, the weather context-
attribute can be divided into precipitation and temperature context attributes. If the
weather is cold or there are precipitations, the weather will be considered as bad weather.
In order to calculate whether if the temperature is cold or not, a context-preference,
cold Temperature, will be introduced. With this preference users can introduce to the
system at what temperature they feel cold. The representation of the whole plan is

shown in Figure 5.7.

5.4.4 Evaluation

Finally, the four main aspects of the operationalisation plan are evaluated to determine
if the situation of interest and its associated services should be implemented. For this
purpose, the aspects introduced in 5.3 are analysed. Particularly, the first two aspects
and their sub-aspects are evaluated using the following metric: LOW, MEDIUM and
HIGH.

1. Situation of interest detection plan feasibility: For estimating the detection plan
feasibility, the failure likelihood and the failure impact are evaluated. For the
failure likelihood, all the proposed low level context attributes are evaluated in-

dividually, as exemplified below.

a) 7nout: This main context attribute is based on the deviceSignal. With an
adequate implementation, the device signal can be used to detect open
outdoors, semi-outdoors, light indoors and deep indoors environments
with 100% accuracy [196]. Therefore the precision of the main and low
level context-attributes can be estimated as HIGH.

b) standingStillForTooLong: This context-attribute directly depends on the
accuracy of the deviceLocation, depends on the chipset of the phone of
the user, and the number of satellites available in the zone. It is reason-
able to estimate that in London, the accuracy of the user location will be
around 10 meters. This can be used to detect if the primary user is stand-

ing still for a long time, in an area of 10 square meters. For this reason, the

156

<<situationOfinterest>>
Primary user
waiting outdoors for
a bus that will not
arrive

<<detects>

<<detectionPlan>>
Situation Detection Plan1

<<deriveContext>

- <<deriveContext>

<<contextPreference>>

coldTemperature

- e -
- - | =

5 - S —

o <<deriveContext> |

<<derive = ; 3
Context>>
- ----- <<deriveContext>
<<contextPreference>> 5
<<deriveContext>
maxStandingStillTime S <<deriveContext>
<<deriveContext> |
<<deriveContext>
<<deriveContext>

Figure 5.7: Representation of a detection plan for the situation of interest

presented in 5.4.2, created with the Situation Detection Plan Diagram from the
RC-ASE Tool.

157

deviceLocation context-attribute is considered as having HIGH accuracy.
Regarding the device Time, typically mobile devices have an accurate rep-
resentation of time passing. Therefore, this low level context attribute can
also be considered as having a HIGH accuracy. According to the accuracy
propagation rules explained in Section 5.3.2, the standingStill ForTooLong
attribute will have HIGH accuracy.

weather: As mentioned before, the deviceLocation has a HIGH accuracy.
As explained in section 5.4.3, the use of open weather maps has been pro-
posed. This service retrieves raw data from airport weather stations, radar
stations, and other official weather stations. Additionally, it also involves
weather station owners that can help increasing the weather data accur-
acy. Although this information could not be perfect, it is estimated that
for the purpose of this application the precipitation and temperature ac-
curacy is HIGH. Applying the accuracy propagation rules, the weather
attribute is considered as having HIGH accuracy.

busNotArriving: As previously mentioned, the accuracy of the device Time
attribute is HIGH. The real time traffic information about the bus, bus-
Information, can be obtained from London’s TfL API. It is known that
many transport applications like Citymapper [197] use real time inform-
ation which is directly retrieved from the official London’s transport sys-
tem, via the TfL API. Initial qualitative analysis (as part of the POSEIDON
project) has concluded that the accuracy provided by the TfL API is sufhi-
ciently HIGH. The busStop can be retrieved from the deviceLocation, hav-
ing a HIGH accuracy, and the busLine can be retrieved from the naviga-
tion application. The application of propagation rules, makes the accur-
acy of the busNotArriving context attribute HIGH.
noMoreBusesArriving: This attribute shares the busLine and busStop at-
tributes with the busNotArriving attribute. It also requires the device Time
to estimate if more buses are scheduled to the location. All these attrib-
utes have a HIGH accuracy. Similarly to the devicelnformation attrib-
ute, the busTimeTable attribute can be obtained form the TfL API, with

HIGH accuracy. Therefore, the noMoreBusesArriving attribute can be

158

considered as having HIGH accuracy.

Opverall, the estimation for the failure likelihood is LOW, as the accuracy of
all the analysed context-attributes has been estimated as HIGH. On the other
hand, for the failure impact detection aspect, two cases can occur. The first case
is when the system interprets the occurrence of the situation of interest, but this
situation is not really occurring in the real world. In this case, primary users can
simply ignore any prompts, and continue with what they were doing. It could
happen that the secondary users get worried, but a phone call would take their
doubts away. For this reason, the failure impact in this case can be deemed as
LOW. The second case is when the situation of interest is occurring, but the
system fails to detect it. In this case, it might happen that the user waits for an
undetermined time period, for a bus that will never arrive, without the second-
ary users knowing about it. This situation can entail some risks, but this risk can
be estimated as MEDIUM, as the user life would not necessarily be in danger.
Although this situation is undesirable, the failure likelihood has been estimated
as LOW. For this reason, the result of the situation of interest detection feasib-
ility is HIGH.

. Feature Implementation Feasibility: For estimating the feasibility of implement-
ing the proposed context-aware features three main dimensions are analysed:
cost, frequency of occurrence and detection plan feasibility. For calculating the
cost, each of the proposed context-aware features for the situation of interest

are analysed individually against these criteria.

a) The primary user receives a notification: As it can be observed in Table
5.7, the system under development will use notifications in many occa-
sions. Therefore, once a basic system for prompting notifications is cre-
ated, the cost of implementation of this particular feature will be con-
sidered as LOW.

b) Give the primary user a choice to call secondary user: This feature is quite
similar to the previous feature, in terms of implementation costs. It will
be simply a prompt with different options. Since Android is an operating
system that is focused on mobile devices, it also provides an easy frame-

work from which programming a phone call is straightforward. There-

159

fore, the implementation cost of this particular feature can also be con-
sidered as LOW.

Secondary users can call the primary users: As mentioned in the previous
point, programming this feature in Android is straightforward. There-
fore, the cost of implementing this feature can also be estimated as LOW.
Request location of the primary users: Although retrieving the location
of the user can be readily achieved with the Android platform, this in-
formation needs to be transmitted to the phone of the secondary users.
For this, an additional secure connection needs to the POSEIDON server,
where devices of both users would need to connect. For this reason, the
implementation cost for this feature is estimated as MEDIUM, as it re-
quires the reliability of an additional server to work. The implementation
cost is not estimated as HIGH, as the non-contextual requirements con-
template the creation of a server for storing the location of the primary
users when required.

Suggest nearby places: In order to retrieve nearby places using the loca-
tion, the Google Places API can be used. This does not have any addi-
tional difficulty other than learning how to use the API, therefore it can
be considered as having an estimated LOW cost.

Order a taxi: For ordering a taxi, the Uber API [198] for Android can be
used. This does not have any additional difficulty other than learning how
to use the API. Therefore, the cost can also be considered as LOW.

It is difficult to predict the exact frequecy of occurrence of the situation of in-

terest, as this would require a further analysis in the field, which can demand

the observation of the users, and/or having some interviews with them about

the matter. For the purpose of this example, a MEDIUM frequency of occur-

rence for the situation of interest will be assumed. Asintroduced in the previous

point, the detection plan feasibility result has been HIGH. The feature imple-

mentation feasibility will be considered HIGH for all the features with a LOW
COST, and MEDIUM for the location request.

. Ethical concerns: For evaluating the ethical aspect of the situation of interest,

the eFRIEND [186] ethical framework can be used. This enables the analysis

160

of the situation of interest and its associated context-aware features, particularly

with regard to the following principles:

a) Privacy: Itis typically difficult to keep a balance between the privacy con-
cerns and the design of context-aware systems. In different interviews and
meetings [199], the primary users expressed their concern for the second-
ary users knowing their location at all times. For this reason, and in order
to maintain a balance between the design with the privacy concerns, an op-
tion to allow the primary users control when to share their location with
the secondary users is provided. Secondary users can request the location
of the primary users, but it is the primary users who determine whether
or not their location is shared.

b) User Autonomy: Analysing the proposed features, both primary and sec-
ondary users have control over the actions of the system. In the case of
primary users, they receive indications and they decide if they want to call
the secondary users or resolve the situation by themselves. In the case of

secondary users, they can also select from a list of different services avail-

able.

Other ethical aspects such as non-maleficence, user-centred perspective, secur-
ity, transparency, equality, dignity and inclusiveness, are inherently included
in the eFriend framework. In regards to data protection, the information about
the users will be stored under the required conditions in the POSEIDON server.
4. Validation: Finally, the situation of interest and their corresponding services
were brought up for discussion with the different stakeholders. The secondary
users gave 4.5 out of 5 in usefulness to this situation of interest, with a 0.6 stand-
ard variance. The context-aware features proposed for the primary users were
both graded by the primary users in usefulness with a 4.5 out of 5 (0.5 stand-
ard deviation). Those services proposed for the secondary users were similarly
graded with 4.7 out of 5 (0.3 standard deviation). Overall the validation gave

positive results for the proposed situation of interest and associated services.

In this particular case, the whole analysis gives a positive result, and the situation is

considered as implementable under the proposed situation detection plan. In this par-

161

ticular example, the situation of interest and its corresponding context-aware features
are considered for implementation. Note that during the evaluation process, the situ-
ation of interest under analysis, or some of the associated context-aware features, could
be stopped to be considered as implementable for the system under development. In
order to calculate the priority, the security of the user will be taken into account. Since
itsimplementation might directly affect the health of the users, the priority of this situ-
ation of interest is considered as HIGH.

Note that the whole process is supported by the open-source tool developed for
this chapter, which is an extension of the open-source tool presented in 4. This tool can
be used not only to facilitate the modelling of the different elements in this section, but
to trace them to other elements produced by RC-ASEF. This tool helps to automatic-
ally evaluate the proposed situation detection plans and context-aware features, as well
as the satisfaction of objectives with new requirements and context-aware features. Ad-
ditionally, it can also be used to trace the different elements between themselves. This
takes special importance when displaying situations of interest, as this concept helps to
separate the operationalisation of its detection from the provision of goals, as shown
in Figure 5.8. The level of relationships that should be displayed can be customised,
as well as the stereotypes displayed. This can also be useful for other aspects, such
as the visualisation of those context-aware features and requirements related to a user
profile or stakeholder, as well as their relation to other user profiles or stakeholders, as
shown in Figure 5.9. This link view could also be used for identifying, among many
other things, how many times is a context-attribute reused, and how many elements

it affects, as shown in Figure 5.10. This can facilitate the analysis on which elements

should be modified/added/removed.

162

€91

o
g inout

Clig weather 0 —eeeeemeeeme 2l
@ ColdTemperature.,, -----------=r-eemmemmeneas 2
0:3 weather = —eememeeem 2l
® TemperatureSensor-—----—--r e e
0:3 weather
uig busStop e 2l
0:3 weather = —eemeemeeeme e,
of standingStill e -
013 deviceLocation = ---eeeeeeeses el N
013 deviceLocation —--memeeeeee el =

0:3 noMoreBusesArri.., --

g standingStill

.............. =o(§ deviceSignal

0‘;3 coldTemperature ----

0‘;3 temperature

.............. 4 u‘;g precipitation

0:3 devicelocation

0‘;3 deviceTime

of deviceTime memomeeie il o
ocf standingStillForT... /- 508 maxStandingStill... ———rmmmid e >

013 businformation = -----m-eeemsesii i o
013 busStop e =

013 noMoreBusesArri,., ----mm--mmmmemmm oo o

013 businformation ------mmemmmm e %
Cﬁg 1T 7T 2

013 noMoreBusesrri,., ---mm--mmmmemmmeemmneeoo o

013 noMoreBusesArri,., ----mm--mmmmmmmeemm e o
Gég busTimeTable -----mmmmmmmeem oo N

ﬁig busTimeTable -----mmmmmememmemee oo .

Figure 5.8: Example of the Link view provided by Modelio with the RC-ASE tool for the situation of interest introduced in

the example of this chapter.

4 Situation Detecti.., ——-------3 3 [Primary user wait...

............................. = @’Communicateth...
............................. = @‘ Call secondary user

............................. =@ Request primary ...

=@ Suggest alternati..

}@ Order a taxi

791

=4 Call secondary us.., -------------3 =4 @.Call SECONMANY USEr----rmrmemeoememenoen .

[Inform that there.., -3 =@ Communicate th.., —--------imeeeemeee =

@ Motification remi... —------r-omreemeeeeee =
@ Motification remi... —------r-omreemeeeeee =
@ Motify situation a... —------r-ioereemeemeee =

0—)@ Visual Impairment

‘—}E Culture

- e[skills with techno...

0—)@ Auditive Impairm...

0—}@ Independence De...

B Visual Impairment

=g No visual impair...

B Norwegian
: ﬁBritish
: ﬁGerman

ﬁ Medium level skills

ﬁLowle\rel skills

B High level skills

B Auditive Impairm...

=g No Auditive Imp...

=+ Moderately Depe...

=Hg Dependent

g5 Independent

Figure 5.9: Example of the Link view provided by Modelio with the RC-ASE tool for the primary user stakeholder element.

91

oigwaitingOutdoors... ----------------------------- 3

oigweather
(A Inform that there.., <o—+————————

o standingStillForT.., -3 0§ standingStill
0:3 businformation —---mmmmmmmmmm e 3
°

o’ busStop

0:3 noMoreBusesArri., —----mmmmmmmmmem e 3

Figure 5.10: Example of the Link view provided by Modelio with the RC-ASE tool for the deviceLocation context-attribute

element.

_____________________________ e

;:‘: Situation Detecti...
;:‘: Situation Detecti...
;:‘: Situation Detecti...
;:‘: Situation Detecti...
;:‘: Situation Detecti...
;:‘: Situation Detecti...

;:‘: Situation Detecti...

.............. = [™ Primary user wait...
.............. = ™ The primary user ...
----------- =3 [" A bus arrives to t...
.............. = ™ The bus arrives t...

.............. = [™ Primary user wait...
.............. = ™ The primary user ...

.............. = ™ The primary user ...

5.5 Conclusions

According to the conclusions for the analysis of requirements elicitation methodo-
logies for context-aware systems presented in Chapter 3, Chapter 4 follows an ap-
proach of assembling existing methodologies for requirements elicitation of the non-
contextual aspects of context-aware systems (RC-ASEF). The framework presented in
this chapter introduces an extension of the framework for requirements elicitation in-
troduced in Chapter 4 that is more focused on the contextual aspects of context-aware
systems. For approaching the contextual aspects of context-aware systems, it accom-
modates the perspectives on the conceptualisation of context introduced in Chapter
2, introducing a guide for the discovery, documentation, and modelling of context
based on the three main principles to get the context right [35]: A) Enumerating the
set of contextual states that may exist; B) Knowing what information could accur-
ately determine a contextual state within that set; C) Stating what appropriate action
should be taken in that particular state. It inherits and extends the most important
aspects from the framework presented in Chapter 4. The extension of the framework
introduced in Chapter 4 facilitates the discovery of situations of interest with an end-
user stakeholder centred perspective, where the specific user profiles are handled in
more detail, and used for the identification of adequate objectives and corresponding
functional requirements in the form of context-aware features. As well as RC-ASEF,
the framework specialisation introduced in this chapter provides means to analyse and
guide the software design exploiting the benefits of design techniques that adequately
satisfy the objectives of the system that stem from the different situations of interest.
This analysis includes a study of the possible obstacles that might hinder the satisfac-
tion of situational objectives and showing the impact of the proposed requirements
in the system objectives, and the decision taken towards the satisfaction of situational
objectives. Also, it includes an ethical evaluation. It is important to note that this
framework is not aimed at discovering all possible situations that might occur, as this
could be a very difficult or even impossible task. It is acknowledged that the number
and quality of the situations of interest identified mostly depends on the ability of the
requirements engineers to identify them, and their subjective way to understand the

context of the end-users.

166

It may occur that some of the situations of interest proposed, and their associated
context-aware features, rise the expectations of some project stakeholders [17]. The
framework introduced in this chapter, facilitates the evaluation of different situation
detection mechanisms and associated context-aware features to be implemented, dur-
ing early stages of the development life-cycle. Such an analysis enables to gauge the real
abilities that the context-aware system under development is going to exhibit. This
can be particularly useful for enabling some project stakeholders with less expertise
in computer science to have more realistic expectations. In order to document and
handle the information required to analyse these aspects, a model-based approach is
taken. The evaluation procedure method proposed for this framework is based on
two main diagrams: Situations of Interest Diagram and Situation Detection Plan dia-
gram. The first model represents the functional requirements related specification of
context-aware systems, helping developers to state what appropriate actions should
be taken in a particular situation of interest. The second model is more related with
facilitating developers to define the mechanisms to define what information could ac-
curately determine a situation of interest.

Finally, the novel diagrams and the evaluation mechanisms introduced in this chapter
have been implemented and released as open-source, as an extension of the RC-ASE
tool [194], introduced in Chapter 4. The section also illustrates the usage of the frame-
work with an example, where several situations of interest are identified, and the whole
analysis is conducted for one of them. This illustration example includes screenshots
of the models obtained using the corresponding modelling tool of the framework.

The resulting models obtained with the application of the proposed method, con-
tain reusable information that can be used as an input for the design stage, introduced
in Chapter 6. Also, the SOI based approach enables maintenance of the system after its
implementation, as further explained in Chapter 8. As part of the contribution of this
chapter, an extension of the Modelio module introduced in Chapter 4 has been cre-

ated, namely Requirements for Context-Aware Systems Engineering (RC-ASE) [194].

167

Part III

Design stage

169

CHAPTER 6 I

DC-ASEF: DESIGN FOR THE
CONTEXT-AWARE SYSTEMS

ENGINEERING FRAMEWORK

6.1 Introduction e 172
6.2 Generalsystemdesign L L 174
6.2.1 Check functional requirements 174

6.2.2 Tracerequirements to design and elaborate requirements

design . . . 175
6.3 Context-aware featuredesign 176
6.3.1 Informationdisplaydesign 176
6.3.2 Service execution, personalisation and tagging context
to informationdesign L. L. 179
6.4 Contextinformationdesign 180
6.4.1 Context acquisition & modelling design 180
6.4.2 Contextruledesign 187
6.4.3 Context information deploymentdesign 190
6.5 Apply evaluation procedureo oL 194
6.5.1 Elaborate test-casedesign 194
652 Checktraceability, 195
653 Checksyntax L. 196
6.5.4 Verify context reasoningrules 196
6.6 Conclusions L 197

171

6.1 Introduction

hapters 4 and 5 present a framework to specifically guide the requirements
C elicitation of context-aware systems, taking into account the needs of the end-
user stakeholders. This chapter introduces the Design for the Context-Aware Sys-
tems Engineering Framework (DC-ASEF), a complementary framework of RC-ASEF
and SRC-ASEF for elaborating the identified requirements into the design of context-
aware systems. In order to narrow the scope of the approach, the framework supports
exclusively the most common type of reasoning in context-aware systems [1]: rule-
based reasoning. In order to have a broader approach to the heterogeneous implement-
ation of context-awareness, the approach supports the use of both mobile and station-
ary platforms. Particularly, the approach presented in this chapter is constrained to
Android mobile devices and Java, supporting systems for stationary platforms that can
plug-in Z-Wave radio protocol based sensors. It is also worth mentioning that during
this chapter, UML specification based profiles are introduced, as the process model
of the remainder of this work is constrained to the object-oriented paradigm. Note
that the requirements methodology presented in Chapters 4 and 5 could also be ex-
tended to support the design of other types of reasoning, mobile platforms and radio
protocols if required. The design framework has been created following the objectives

explained in Section 1.4, and it supports:

* The guidance of developers with regard to the elaboration of requirements into
design constructs, aiding the process with traditional UML Diagrams for this
purpose.

— Requirements can be traced to other elements of the design, including the
test-case stereotyped elements, which are part of the SysML specification,
facilitating more control over elements when adding, editing or removing
them.

— Test-case stereotyped elements can be further designed using the UML
Testing Profile (U2TP) [127].

* The guidance of developers with regard to the elaboration of context-aware fea-
tures into design constructs, enabling the design of each feature corresponding

to its different modality, as conceptualised in Chapter 2. Depending on the

172

modality type, a set of UML diagrams is recommended, including a novel dia-
gram presented as part of the design profile, the Information Display Diagram.

* The guidance of developers with regard to the elaboration of context-information
into design constructs.

— A domain-specific UML profile to facilitate the design of context inform-
ation throughout its life-cycle. Including the design of the acquisition,
modelling, reasoning, and dissemination stages of the information [1].
This includes a set of new diagrams: Context Acquisition and Modelling
Diagram, Reasoning Diagram and Context Deployment Diagram.

— The creation of more reliable context reasoning rules, by enabling their
model-checking verification. Model-checking is a technique for automat-
ically verifying correctness of a given model. The design models describ-
ing the context reasoning of the system are automatically translated into
models of a formal model-checking tool that can be used to verify whether
or not the rules comply with a set of properties specified by the developers.
The specifics of this approach are further explained in Chapter 7.

* The following models are all supported by an open-source Modelio implement-
ation which is available to the general public [200]. This tool includes support
for: The UML profile introduced in this section, as well as traditional UML
Diagram Representations, compatibility with other open-source and licensed
modelling tools such as the UML testing profile, and compatibility with the

previously introduced tool for requirements.

The remainder of the chapter is as follows. Figure 6.1 shows the main activities
and subactivities of this specialised methodology. Section 6.2 introduces the frame-
work activity related to the design of the non context-aware parts of the system, which
traces the design to previous requirements models. Section 6.3 explains the framework
activity related to the design the context-aware feature related design. Section 6.4 de-
scribes the activity consisting of designing the context-information with respect to its
life-cycle [1] (acquisition, modelling, reasoning and dissemination). Then, Section
6.5 presents the activity to evaluate the satisfaction of the requirements after imple-
mentation, designing test-cases and verifying the design for inconsistencies. Section

6.6 summarises the chapter.

173

Context-aware Feature Context Information Apply Evaluation

General System Design Design Design Procedures

3. Information 7. Context 10. Elaborate Test
1. Check _> Acquisition and - Elaborate Test-
Functional Display Design case design

odelling Desig

equirements [

4. Service

) A4
Execution

11. Check
Traceability

A

8. Context Rule

2. Trace Design
Requirements to

Design

Yy

12. Check
Syntax

A

5. Service
Personalisation

9. Context
Deployment

3. Elaborate

y .

) v .
Requirements
qDesign 6. Context to Context 13. Verify Context
Information Acquisition & Reasoning Rules
Jagging Design Modelling Model

|- - - - -

Y ¥

______ o Y !
v o Reasoning | | |__,| NuSMV ;
R Model Model '
UMLModels + | (< &+ | : :
Information Display | |<---' 1 Y \ 1
Models € mmmmme : Deployment UTP Model
Model

Figure 6.1: Core sub-activities for the design methodology.

6.2 General system design

6.2.1 Check functional requirements

The first activity of the methodology is a nexus between the requirements elicitation
and design stages. Since it is related to the requirements elicitation stagel, it is recom-
mended to apply the requirements elicitation process first, as it produces a set of func-
tional requirements which can be used as input to inform the design decisions. During
this sub-activity, the designers analyse the previously identified requirements to start

creating the correspondent design.

More information about the requirements eliciation stage can be found in Chapters 4 and 5.

174

Requirement Category

Requirement Type

UML Diagram

Functional Suitability

All

Class Diagram and/or
Sequence/Communication Diagram

State Machine/Activity Diagram

Reliability

Fault tolerance

Recoverability

Component Diagram

Sequence Diagram

Performance Efficiency

Time Behaviour

Timing/Sequence Diagram

Resource Utilisation Class Diagram or NA
Capacity Class Diagram or NA
Security All Class Diagram and/or
Sequence/Communication Diagram
State Machine/Activity Diagram
Compatibility Coexistence Component Diagram
Interoperability Class Diagram
Maintainability Modularity Class/Package Diagram
Reusability Class/Package Diagram
Modifiability Class/Package Diagram
Portability Adaptability Class Diagram
Replaceability Class/Package Diagram
Context-aware Feature All Class diagram and/or

Information Presentation
Passive Service Execution
Active Service Configuration
Passive Service Conﬁguration

Tag Information to Context

Sequence/Communication Diagram
State Machine/Activity Diagram
Information Diagram

Information Diagram

Information Diagram

Info. = Information

NA = Not Applicable

Table 6.1: Mapping between requirements types and UML Diagrams.
6.2.2 Trace requirements to design and elaborate requirements

design

Once the designers have a clear idea about what the functional requirements of the

system are, the aim is to trace them to the system design. Table 6.1 can be used to

175

aid such decisions, based on the ISO 25010 [189] classification of requirements types,
and their relation with a set of UML diagrams that will be used to design those func-
tional requirements. The table has been adopted from [191], and enhanced with the
corresponding diagrams for the context-aware features.

During the next sub-activity, engineers elaborate the design of non context-aware

related parts of the system, as per traditional software design.

6.3 Context-aware feature design

The context-aware feature design activity is divided into four main activities, focused
on the design of the features for context-aware systems introduced in Section 2.4.2:
Information display, service execution, service personalisation, and the tagging of con-

text to information.

6.3.1 Information display design

For the information display design sub-activity, the context-aware features that con-
sist of displaying information are designed. When designing the information that is
going to be displayed with respect to a context-aware feature, the definition of context
provided in Section 2.4.5 is critical, as it helps to distinguish between context and other
information of the system. This definition considers context only as the information
which is used to characterise a situation of interest. Therefore, although the informa-
tion which is displayed in a context-aware feature can be reused, or even derive from a
sensor, it does not necessarily have to be related to context-information. For facilitat-
ing the design of these types of services, a novel Diagram for Information handling is
proposed, as it is illustrated in Figure 6.2.

The message stereotyped entities are the central unit in the Information Display
Diagrams. Messages are formed of a string, and can additionally have information
which is gathered from a sensor, but is not considered context (SezsorInformation), or
information from a context state (ContextState). The msg attribute in the message ste-
reotype can reference SensorInformation or ContextState stereotyped elements. The

message stereotype is intended for a stakeholder or a stakeholder profile, that will re-

176

«stereotype» «stereotype»
AndroidMessagelnterface JavaMessageInterface

«stereotype»

\—(> Messagelnterface]

«stereotype» 1.%
SensorInformation displays
id: String 0.* " 1.* «stereotype»
description: String \0 «stereotype» Stakeholder
value: ValueType v 1..% 0..% - -
Message - . id: String
0..% description : String
o msg: String receives type: StakeholderType
«stereotypen O*/O ecerves power: PowerType
ContextState support : SupportType
id: String
description: String
isIndependent: boolean «stereotype»
initialValue: boolean —
«stereotype» «stereotype» Context AwareFeature
Y yP trace
OptionList @— ListItem S type: FeatureType
1.*% 1*# 0..% 0..* | interaction: InteractionType
ist: Lastitem cost: CostLevel
rec: RecommendationType

Figure 6.2: Metamodel for the Information Display Diagram.

ceive that message. Messages can be in the form of an option list, displaying the list of
possible context-aware features to be triggered. Finally, messages are also displayed in
a certain label or text-based widget within a user interface, which can be Android or

Java based. For this, traditional Java syntax for Strings can be used.

The purpose at this stage is to create the messages that will be displayed to the
end-user stakeholders. Each existing user profile might prompt a different message or
service in the same situation of interest. For this, the Information Display Diagram
helps developers to design how the different messages and services will be presented
to end-user stakeholders. For instance, let us review the example introduced in Figure
5.6, Section 5.4.2, and particularly let us design the Communicate that the bus will not
arrive context-aware feature. For spatial reasons, let the display of the context-aware
feature be constrained to a user profile of Primary Users, particularly to independent
British primary users. The different characteristics for user profiles introduced for this
example can be found in Figure 4.8. Figure 6.3 represents the main message that the
independent British Primary User will receive. Note that the attribute 725¢ of the mes-
sage stereotype is not represented in this figure. Let this 7sg attribute be: The next bus
you are waiting for is not going to arrive. The current weather is “+bad Weather+, per-

haps is better to order a taxi and wait for it somewhere else. Choose one of the following

177

options: . Note that “+bad Weather+” references the context state that will represent
the current value at that time. In the same way, Sensorinformation or ContextPrefer-
ence stereotyped elements can also be referenced in the same way. Similarly, the option
list to be displayed for this message is also represented, and traced to the corresponding
context-aware features. Finally, the message is associated to the Android AlertDz’azlogz,

as this is the way in which this message will be represented.

<<message>>
<<requirement>>
<<contextAwareFeature>> <<Trace>>
Inform that there are no
. < more buses comming and
mmuni hat th .
Sl S HIEL UG that there is bad weather
bus will not arrive
-
<<recelves>> <<disp\ays>>
<<optionList>>
No more buses <<messagelnterface>>
comming for <<androidMessagelnterface>>
|ndep¢_endent british AlertDialog
primary user
<<requirement>> <<Trace>> <<listitem>>
<<contextAwareFeature>> . Call secondary
Call secondary user users
<<requirement>> <<listitem>> <<userProfile>>
<<contextAwareFeature>> <<Trace>> Share your Indep(_endent British
. . ; Primary User
Request primary user location with the
location secondary user
<<userProfileFeature
Instance>>
- British
<<requirement>> <<listitem>>
<<contextAwareFeature>> <<Trace>> ==
Suggest alternative Wait in a more <<userProfileFeature
comfortable Instance>>
places lace
P Independent
- <<listitem>>
<<requirement>> <<Traces>>
<<contextAwareFeature>>)
Order a taxi
Order a taxi

Figure 6.3: Example of an Information Display Diagram for representing how
messages are displayed for the context-aware feature introduced in Figure 5.6,
Section 5.4.2.

thtps:/ /developer.android.com/reference/android/app/AlertDialog

178

6.3.2 Service execution, personalisation and tagging context to

information design

The sub-activity for service execution design is more centred on the design of services
that are going to be triggered at execution time. As further explained in Section 2.4.2,
services can be executed in a passive or active modality. The design of the active ex-
ecution can be done using traditional UML Class, Sequence/Communication, State
Machine/Activity diagrams. The design of the passive execution can also benefit from
the Information Display Diagram, as it facilitates the way in which prompts or lists

can be presented to the users.

For the service configuration and personalisation design sub-activity, there is a need
to identify the different variables required for configuring or personalising the services.
It does not really matter for which configuration modality (active or passive) these vari-
ables are intended for, as they are expected to change dynamically with the changing
preferences or needs that end-user stakeholders may have after interacting with the sys-

tem.

However, it is important to distinguish two types of service configuration, as this
can help to distinguish what is context from what is not. The first type represents
the configuration of those context-attributes that can be used for triggering services.
For example, in a scenario where there is a threshold temperature for turning on the
heating, one user can set it to 17°C and another user might prefer it to be triggered
when having an ambient temperature of 14°C. Note that this type of service config-
uration design includes both the active and passive modalities introduced in Section
2.4.1. The remaining type of service configuration design consists of triggering the
same service in different ways, according to the configuration values. Note that since
these configuration variables are not used for identifying a situation of interest, but to
configure the way in which the service is provided, the variables identified for the ser-
vice adaptation can not be not considered as context. As it happens with the previous
service configuration design type, this type can also be designed for active or passive

modalities.

Once the variables are identified, the design has to be centred around the ways in

which the information is going to be retrieved from the stakeholders, or is going to

179

be modified by intelligent agents. For cases in which the stakeholders have to input
this information, this sub-activity provides a means for designing user interfaces that
can be personalised to display information according to the different needs and prefer-
ences of the users. For the design purposes of this sub-activity, traditional UML Class,
Sequence/Communication, State Machine/Activity Diagrams can be used.

Finally, for tagging the context to information, the Information Display Diagram
can be used, as well as traditional UML Class, Sequence/Communication, State Ma-

chine/Activity diagrams.

6.4 Context information design

6.4.1 Context acquisition & modelling design

The sub-activity is related to the implementation stage, which is further explained in
Chapter 8. It consists of identifying the sources that will produce the context inform-
ation, and how this information is going to be represented in the system. For this, a
novel diagram for designing Context Acquisition & Modelling is introduced, as illus-

trated in Figures 6.4 and 6.5.

trace 0..1
«stereotypeyn «stereotypen «stereotypen
ContextPreference | | * | *| PreferenceSensor |1 feeds ContextState
0.1, 5 — " id: String
5] id: String X observe | min_vale: ValueType doscription: String
description: String max_ vale: ValueType feeds isInd dent: bool
accuracy: AccuracyLevel isBoolean: Boolean isIndependent: boolean
1 initialValue: boolean
«stereotype» 1% «stereotype» 0.1
StationarySensor ’ﬂ’) DBModellingRule produces
- .1
1, # | verald: String 1 1..% | rule: String 0
1.% | min_value: ValueType \ «stereotype»
- max_value: ValueType .
observe | isBoolean: Boolean 1.% ModellingRule
id: Strin;
0.. 1__"‘1 * «stereotype» «stereotype» / g
MobileSensor B RDFModellingRule 0..1
= : feedsInWindow roduces
observe | library: Mobil orType logicalEvaluations: String P §
froquency: Long 1 1.* | method: String 0.1
ontology: String methodTripleVar: String
data: String methodResultExpr: String «stereotypen
SensorInformation

id: String
description: String
dataType: JavaDataType

Figure 6.4: Part I, Metamodel for the Context Acquisition and Modelling Dia-

gram.

First, the existing primary context-attributes or context-preferences are mapped

to the sensors of the system so that each observable property is translated into a value

180

that is tangible for the computer. The observable information can be measured using
a great variety of sources, which are commonly known as Sensors. Nevertheless, the
information that comes from sensors is typically raw, and needs to be processed and
modelled in order to make it ready for its consumption by applications. The Seznsor ste-
reotype represents a sensor, and the Modelling Rule stereotype a rule that makes the in-
formation available for its consumption. When the context information is considered
ready for its consumption by a context-aware application, it is indicated by the use of
the ContextState stereotype. For the purpose of these diagrams, that are bounded with
the implementation of the system, the ContextState stereotype represents a Boolean

variable, which is obtained by applying a modelling rule to a sensor.

In the proposed Context Acquisition and Modelling diagram, there exist two dif-
ferent ways of obtaining a context state, depending on if they are planned to be ex-
ecuted within a stationary or a mobile application. The modelling of rules consists of
denoting different inferences which can be used for creating more meaningful atomic
context information. For example, when considering remaining battery life in a mo-
bile device, it might be more useful to know if the battery is low or not, rather than
knowing that it is x% charged [3]. Modelling rules can contain a mix of simple or
more complex logical evaluations, enabling the creation of rules on particular logical
conditions such as “if battery level is greater than 25%”. This thesis acknowledges the
context information life-cycle introduced in [1], and it adopts the Responsibility, Reg-
ularity and Sensor types classifications for acquiring data presented there, which are
further explained in [1]. A modelling rule can not only create context states, but it
can also create sensor information, which can represent information in any supported
Java type. This information will not be considered as part of the context-model, but it
can be used to complement the information displayed as part of certain context-aware
features or system functionalities. As it can be observed in Figures 6.4 and 6.5, there
are three types of stereotypes inherited from the Sezsor stereotype: StationarySensor,
MobileSensor and PreferenceSensor. The first two sensor stereotypes are related to the
stationary and mobile platforms respectively. The preference sensor can be used in
both platforms in order to represent the preferences of the stakeholders. The inform-
ation obtained from this source can be introduced in the context model and be used

in the context model.

181

verald: String
min__value: ValueType
max_ value: ValueType

driver: DriverList
library: NewDriverType
frequency: Long
ontology: String

«enumeration»
JavaDataType
«enumerate» (stereotypen BOOLEAN
NewDriverType Sensor BYTE
id: String CHAR
SENSOR valueType: JavaDataType SHORT
éggﬁTDICOA\]ST type: SensorType INTEGER
responsibility: ResponsibilityType LONG
BLUETOOTH regularity: RegularityType FLOAT
DOUBLE
STRING
- «stereotype»
«stereotype» Mobil Syp «stereotype»
. oblled>ensor
StationarySensor PreferenceSensor

min_ vale: ValueType
max_ vale: ValueType
isBoolean: Boolean

isBoolean: Boolean

data: String
«enumerate»
«enumerate» «enumerate» SensorType
Responsibility Type RegularityType
P ylyp 3 ylyp PHYSICAL
PULL INSTANT VIRTUAL
PUSH INTERVAL LOGICAL

Figure 6.5: Part II, Metamodel for the Context Acquisition and Modelling Dia-

gram.

6.4.1.1 Modelling context for mobile platforms

This sub-section explains how the Context Acquisition and Modelling diagram, illus-
trated in Figure 6.4, facilitates modelling the system according to its future implement-
ation on a mobile platform. Particularly, the following stereotypes are introduced for
this purpose.

MobileSensor: Corresponds to those sensors that are intended to acquire inform-
ation from mobile platforms once the system is implemented. The stereotype has
been enhanced from the ContextSource stereotype in CoMo [3], therefore represent-
ing the capture of some sort of raw source data, expected to be received in RDF triples.
Also, it adopts two properties from the CoMo modelling language. The first adopted
property, ontology, defines the information source ontology string, in the form of a C-
SPARQL3 ontological prefix. The second adopted property describes the data string
which relates to the RDF triples that MobileSensor provides. The variable names in

the data are expressed using the question mark symbol,?, as a prefix, in the same way

?More information about C-SPARQL is introduced in Section 3.4.2.2.

182

as in C-SPARQL. Since it inherits from the Sensor stereotype it also has its properties.
As it is based on the Android Reasoner Library [166], it can either implement one
of the existing drivers or facilitate the creation of a new one. The driver list includes:
Weather based on location, battery, compass, current location, distance travelled, ex-
ternal storage space, GPS for indoors, light, device plugged in sensor, pressure, relative
humidity, step counter, telephony, temperature, wifi, heart rate, and mood. For those
drivers which are not covered by those in the list, there is an option to create new drivers

based on the following libraries:

* Location sensor: Senses the location of the mobile device it will be deployed in;

* Broadcast sensor: Transmits information to all the listening Receivers;

* Bluetooth sensor: Senses information coming from Bluetooth wireless techno-
logy standard, in the form of low-power radio waves;

* It will be considered as simply a sezsor for any other type.

For those cases in which the responsibility of the sensor is p#/l, the frequency in
which the information is pulled can be determined by the frequency attribute, in form

ofa Long Integer value.

RDFModellingRule: The stereotype has been adopted from the inferenceRule ste-
reotype in CoMo [3]. It supports in modelling raw data from sensors into data that
can be used by applications, using logical expressions. For creating these logical expres-
sions, the variables declared in the daza attribute of the MobileSensor stereotypes are
used, where only variables related with the 70dels relationship can be used. In the case
of multiple expressions, these are formed using regular expressions separated with a
coma, that expresses the conjuncture of different expressions. The function usage is
related to the functions that are built-in to C-SPARQL. The attributes method, meth-
od TripleVar, method ResultExpr, and logical Evaluations are used for this purpose. The
method attribute of the stereotype allows the system to call more complex methods
such as COUNT(), to count the number of times that a condition or variable is met.
If the developers want a particular set of RDF triples being used with the functions,

these can be stated in the method TripleVar attribute. Lastly, the developer can also

183

apply logical evaluations, expressed in the logical Evaluations attribute, to the returned

result of those functions, expressed in the method ResultExpr attribute.

FeedsInWindow Relationship: The stereotype has been adopted from the rela-
tionship stereotype in [3]. It helps to specify what raw data the inference rule queries
over. This relationship enables the expression of temporal operators in regard to the
raw RDF. The stereotype enables the expression of two different types of temporal op-
erators. The first temporal operator is related to the data window size, that expresses
how much RDF data can be included within the rule, and it is specified in the For at-
tribute of the relation stereotype. As in C-SPARQL, the data window can be either
physical (a given number of RDF triples) or Jogical (a triples occurring with a given
time interval) [3]. The second temporal operator expresses the execution frequency,
and it relates to how often the inference rule is run in the reasoner, as it is specified in
the Every attribute of the relation stereotype. The aforementioned frequency is related
to the possibility of RDF triples being present in more than a single logical window,
as in the sliding of logical windows [201] in C-SPARQL.

Example: The example introduced in Section 5.4.3, shows the Reader how the Situ-
ation Detection Plan Diagram can help to evaluate the feasibility of implementing a
situation of interest in which the Primary User was waiting for a bus that will not ar-
rive, under bad weather conditions. But this is not the only purpose of the Situation
Detection Plan Diagram. Each of the low-level context attributes and context prefer-
ences represented in the Situation Detection Plan Diagrams can be used for guiding the
acquisition of information from the sensors of the system. Following the introduced
example, Figure 6.6 illustrates how the context attribute temperature is modelled us-
ing the Context Acquisition and Modelling Diagram. As it is shown in this figure, the
temperatureSensor, stereotyped as mobileSensor, observes the context-attribute temper-
ature. Although itis not detailed in the figure, the temperatureSensor element has a set
of attributes, which have been filled as follows. The data type of the sensor is Integer, as
these are the values that will come from the open weather API. The sensor type is cat-
egorised as virtual, as the information about the temperature comes from an external

server. The responsibility of this sensor has been set to p#/l as it will be this sensor in

184

charge of getting the information from the weather API, and it will do so in intervals
of 2000 milliseconds. The image shows the RDF ontology used and the two different
variables used for the RDF query. This sensor will create a CSPARQL stream, that
will feed information each four seconds in a window of ten seconds. As it can also
be observed in Figure 6.6, the use of context-preferences is allowed for generating C-
SPARQL queries. This diagram can automatically generate C-SPARQL queries. The
particular query generated from the diagram shown in Figure 6.6 can be found in Fig-
ure 8.11. Finally, the cold Temperature context state is produced, which will be used as

part of the context model.

FeedsInWindowNote

Data: ?m ex:hasTemperatureValue ?tempValuelRI . ?
tempValuelRI ex:temperatureValue ?tempValue .
Ont: <http://ie.cs.mdx.ac.uk/POSEIDON/envir#>

<<mobileSensor>>
<<observe>> <<Sensor>> <<rdfModellingRule>>
. > >,
(R R H
TemperatureSensor tempContextisColdRule
<<feedsInWindows>> i

Stream: <http://poseidon-project.org/context-stream>
Every: 4s
For: 10s H
<<produce>>1
<<contextPreference>> <<observe>> p = <<state>><<contextState>>
coldTemperature ¢ ColdTemperaturePreference tempContextisCold
<<feeds>>

Figure 6.6: Example of the usage of the Acquisition and Modelling Diagram for
mobile platforms. Particularly related to the temperature context-attribute, in-

troduced in the example from Section 5.4.3, Figure 5.7.

6.4.1.2 Modelling context for stationary platforms

This sub-section explains how the Context Acquisition and Modelling diagram, il-
lustrated in Figure 6.4, also facilitates the context modelling for stationary platforms.
Two related stereotypes have been introduced for this purpose. Note that the design
of components for the stationary platform is closely related to the database of the M

Reasoner, which has been enhanced from that presented in [162]. More information

185

on the modifications introduced to this database can be found in Appendix A. The

two stereotypes mentioned are:

StationarySensor: Thisstereotype corresponds to those sensors that are intended to
acquire information from stationary platforms once the system is implemented. The
following stereotype is used to declare the type of value for which the system will be
feeding information to the database. Both variables are ValueType to enable the de-
claration of more complex data structures than those introduced by UML. Note that
in this case, the attribute verald reflects the Id by which the sensor is specified in the

Vera Router of the system.

DBModellingRule: These rules help to store the data gathered from the sensors
into a database. The name of the Stationary Sensor is used for this purpose, along with
the minimum and maximum values supported. Any rule in SQL language4 which can

be applied to the value of the sensor is also added here.

Example: Section 1.5.3 introduces a kitchen scenario in a smart-house that it is con-
ceived to foster the independence of the people with Down’s syndrome at home. Let
us assume that there has been a previous analysis in which the following situation of
interest has been identified: The cooker is unattended. Also, that the proposed context-
aware service is switching off the cooker when the cooker is unattended in order to
avoid accidents. This situation can be detected by the computerised system using a
presence sensor in the kitchen and a sensor for knowing that the cooker is on. The user
can set, as a preference, the duration after which the cooker should switch off. Figure
6.7 illustrates the use of the Acquisition and Modelling Diagram for mobile platforms
in this scenario. The PresenceSensor has a Boolean data type, as it only detects if there
is presence or not. The sensor type is physical, and it has a push responsibility, with an
instant regularity. The Vera id of the sensor is obtained after pairing the Z-Wave sensor
to the Vera router, using its operating system. In this example it is assumed that the id
of this sensor is 03. In this case, as it just represents boolean values, the minimum value

will be false, and the maximum value will be true. The r#le attribute of the database

“Ie currently supports MySQL and PostgreSQL query types.

186

modelling rule stereotype, uses the variable name “sensorValue” for enabling the use
of standard Java operators against it. For this example, the value of the ru/e attribute
is “sensorValue == true”. In more complex examples, the rule attribute could be in
the form of, for instance, “sensorValue >= 50”. The CookerSwitchSensor has the same
configuration as the PreferenceSensor except the Vera id, that it is assumed to be 04.
Two main context states are created from this diagram, as part of the context model:

atKitchen and cookerOn.

<<state>><<contextState>>

atKitchen
<<produce>>
b <<sensor>> <<mobileSensor>>
<<observe>> <<stationarySensor>> <<feeds>> <<databaseModellingRule>>
oo ;)
PresenceSensor ’ atKitchenRule
<<observe>> <<sensor>> <<mobileSensor>>
, <<stationarySensor>> <<feeds>> <<databaseModellingRule>>
S —— . 7
CookerSwitchSensor cookerOnRule
<<produce>>
<<state>><<contextState>>
cookerOn

Figure 6.7: Example of the usage of the Acquisition and Modelling Diagram for
stationary platforms. Particularly related to the smart-kitchen scenario from Sec-

tion 1.5.3.

6.4.2 Context rule design

During the previous sub-activity the aim is to design the acquisition and modelling
of the context information. In this sub-activity, particular instances with particular
values of context states will be used to design reasoning rules. These rules can im-
ply an alteration on the instance of a particular context state. Also, rules can produce
new context states. Once the raw information is modelled into atomic context, it can

be used to produce higher level context that can help to understand better the situ-

187

ation. This process is typically known as reasoning, where rule based reasoning is the
most common approach for reasoning in context-aware systems [1]. During this sub-
activity, those rules that will be used to make high-level context inferences will be de-
signed. For this purpose, a novel diagram for designing Context Reasoning is intro-
duced, whose metamodel can be observed in Figure 6.8. The context rules available in
the models are inspired by those appearing in the M reasoning system [162]. Partic-
ularly, those stereotypes which can be found in Figure 6.9. The State stereotype can
be a ContextState or an Internal TimeState. There are two different ways of creating
a ContextState, by applying a modelling rule to raw sensor information (Acquisition
and Modelling Diagram), or by applying a reasoning rule to an existing ContextState
(Reasoning Diagram). Internal TimeStates can be in an instant or an interval, and can
represent clock, week or calendar values. More information about the M system can

be found in [162]. The following stereotypes of the metamodel are as follows:

«enumerate»
OperatorType
STRONG
WEAK
«stereotypen «stereotype»
Antecedent —— > ContextStateInstance |<t
state: State % value: Boolean R
1.. nextTime
1.% 1% 1%
«stereotype» a "
ontextState «stereotype» . «stereotype»
& E 1.% 1.% P sameTime P
id: String AntecedentGroup Consequent
description: String produces 1.* 1..% -
isIndependent: boolean state: ContextState
initialValue: boolean 0.%¢ 0..%
1 tri <
0% riggers
N *
trace «stereotype» L.
1 PastOperator «stereotypen
id: String Actuator
St‘}tez %ontlextsmte configs: ActuatorConfigs
value: oOolean
type: OperatorType 1..%
4 trace
1.*%
" - «stereotypen
«stereotype»
«stereotype» AbsoluteP yp Context AwareFeature
ImmediatePastOperator solutePastOperator type: FeatureType
b & Int lowbound: Integer interaction: InteractionType
ound: Integer uppbound: Integer cost: CostLevel
rec: RecommendationType

Figure 6.8: Metamodel for the Reasoning Diagram.

188

«stereotypen» «enumerate»
State TimeDomainType
id: String INSTANT
Zr INTERVAL
«stereotype» «stereotype» «enumerate»
ContextState InternalTimeState TimeType
id: String -

e type: TimeType CLOCK
E:lesCI‘lpthIl. String domain: TimeDomainType WEEK
isIndependent: boolean value: String CALENDAR,
initialValue: boolean

Figure 6.9: Metamodel for the States of the model in the Reasoning Diagram.

ContextStateInstance: As introduced in the previous sub-activity, ContextStates
are Boolean variables generated by the application of a modelling rule to the outcome
of the raw information produced by a sensor. This stereotype represents a particular
Boolean value of a context state, and is the minimal unit which can be used for creating
arule. There are two types of ContextStatelnstance stereotype types. The first type is
the antecedent, which is used in the first part of a logical proposition, and it can rep-
resent the particular values of ContextState and InternalTimeState. The second type
is the consequent, which is used in the second half of a logical proposition, and it can
only represent values of the ContextState stereotype. The consequent will occur when

the antecedent(s) of a proposition are met.

AntecedentGroup: It containsaset of antecedents that will be related between each
other with the truth-functional operator of logical conjunction “and”. Therefore, in
order for the AntecedentGroup to be considered as True, all its contained Antecedents
need to be true. An antecedent group can be used to create a ContextState, which can

be related to a ContextAttribute.

PastOperator: As the rule models are related to the M reasoning system [162], they
also enable the use of temporal operators to refer to what had happened at specific
times in the immediate past or to specific times of the day. There are two types of Pas-
tOperator, which are ImmediatePastOperator and AbsolutePastOperator, as further
explained in [162].

189

Imply relationship: This relationship can be of two different types, according to
the types of rules introduced in the M reasoning system. These types are same-time
for those rules whose consequent is applied on the same iteration, and zext-time for
those rules whose consequent is applied on the nextiteration of the M Reasoner. More

information about the same and next-time rules can be found in [162].

Example: Following the example from 6.4.1.2, Figure 6.10 illustrates the usage of
the context reasoner. Context reasoning rules are modelled in the same way for mo-
bile and stationary platforms. The immediate past operator /-//120] =atKitchen will
be considered as true, only when the azK7tchen context state has been false for 120 con-
secutive time units. The antecedent cookerOn will be considered as true, only when the
context state cookerOn is true. When this immediate past operator and this antecedent
are true at the same time, the cookerUnattended context state will be considered as true.

The remaining three antecedent groups work in the same way.

<<antecedentGroup>>
Antecedent Group1

<<pastOperator>>
<<immediatePastOperator>>
. <<consequent>>
[-][120] -atKitchen <<sameTime>>
7 cookerUnattended .
<<antecedent>> <<nextTime>> seeonsequen>>
...................... 3
cookerOn hazard 7 -cookerOn
<<state>><<contextState>>
T
Lormmemecenen ey cookerUnattendedState
<<produce>>

] <<p?sl0perator>>’ <csameTimes> o—— cnextTimess <<consequents>>
I S P A 3
[-1[60] cookerUnattended hazard -cookerOn G -hazard
T
H
H
H

<<produce>>

<<consequent>>

<<nextTime>>

hazardState 71 ~cookerUnattended

Figure 6.10: Example of the usage of the Context Reasoning Diagram. Particu-

larly related to the smart-kitchen scenario from Section 1.5.3.

6.4.3 Context information deployment design

The previous sub-activities explain how to acquire, model, and reason over context
information. During this sub-activity, the aim is to design how the context inform-

ation is going to be disseminated, from the sensors, to the reasoning modules, to the

190

different actuators that the system might have. For this purpose, a novel diagram for

Context Deployment is introduced, as it is shown in Figure 6.11.

«enumeration»
MDBType
POSTGRES
g{}fﬁgﬁ «stereotypen «stereotype»
Actuator <+— AndroidActuator [< 0%
" n state: ContextState .
«stereotype»
VeraActuator
s Sming «stereotype»
port: String JavaActuator
serviceld: String
actionCommand: String
* . *
1. Tl..* informs informs L
controls ‘[0 ¥ informs
0..* «stereotype» «stereotypen
«stereotype» MDatabase MReasoner
VeraRouter % «| type: MDBType 1 1.% fixedIterationTime: boolean
hostname: String 0.. 0.. hostname: String iterationTime: String
port: Stri.ng port: String hasMaxExecutionTime:
user1~1ame' Stising source username: String boolean
password:. String password: String maxExecutionTime: String
0..* 0..*
controls source
0..*
0..*
«stereotype» «stereotype»

StationarySensor

verald: String
min_value: ValueType
max_ value: ValueType
isBoolean: Boolean

«stereotype»
PreferenceSensor

min_ vale: ValueType
max__vale: ValueType
isBoolean: Boolean

«stereotype»
MobileSensor

library: MobileSensorType
frequency: Long
ontology: String

data: String

SoftwareComponent

1. 1%

AndroidRe

«stereotype»

1.. *
1.*
«stereotypen|
Device
0..*
«stereotype»
* 0..* | AndroidReasoner

ceiver

controls

source

ontologyBase: String
streamIRI: String

Figure 6.11: Part of the metamodel for the Context Deployment Diagram.

Device:

The device stereotype facilitates the representation of different device types

in which a software component can be executed. It can be used to allocate the different

software components in a specific computerised system. Similarly, the Vera Router

represents a special type of device, which is used as a common source to communicate

with ZWave radio based sensors.

191

«stereotype»
NuSMVSpecification|1..* 1.*

type: SpecType
specification: String

«stereotype»
SpecificationSet

0.*
allocate
«stereotype»
Reasoner
1..%
«enumerationy|
SpecType 5
CTL
LTL
PSL
INVARIANT «stereotype»
COMPUTE MReasoner
fixedIterationTime: boolean
«stereotypen iterationTime: String
AndroidReasoner maxExecutionTime:
boolean
executionTime: String

Figure 6.12: Part of the metamodel for the Context Deployment Diagram.

SoftwareComponent: A software component represents a unit of software that can
be executed in a device. There are four main types of software components. The reas-
oning components are in charge of executing the reasoning rules. This can happen
on a mobile platform (AndroidReasoner) or on a stationary platform (MReasoner).
A single android reasoner can be used for different applications that run on the same
mobile device. For each application, an android receiver is required, which will handle
all the sensors corresponding to that application. On the other hand, the M reasoner
requires a database, where different applications can update the latest status of differ-
entsensors. The database can be implemented as PostgreSQL or MySQL. If developers
prefer to implement another database, they can also choose the OTHER option. Note
that the selection of this last option for the database implementation implies that De-

velopers will have to implement this database manually.

Sensor: Additional to the previously introduced sensors (ZWaveSensor and Android-
Sensor), this diagram also introduces the PreferenceSensor, which can be used to facil-

itate the acquisition of user preferences that are treated as context.

192

Actuator: An actuator represents a software artefact that will be triggered when
certain context values are reached, as designed in the Context Reasoning Diagram.
There are three main types of actuators: AndroidActuator, VeraActuator, JavaActu-
ator. The first type represents software artefacts intended to be executed on an an-
droid platform. The actuators of the second type are intended to trigger a change over
a ZWaveSensor which is connected to a Vera Router. For this, the service id and the
action command of the Vera Router are determined. Finally, the JavaActuator is in-

tended to execute a functionality in Java code, for any platform that supports it.

NuSMYV Specification: As it can be observed in Figure 6.12, this stereotype en-
ables one to use a NuSMV specification to check the rules to be deployed in a cer-
tain reasoner. The NuSMYV specifications can be grouped into specification sets. Spe-
cification sets can be traced to requirements using the SysML verify relationship. The
developers can specify in a string any of the specifications, using the same format as

specifications in [202].

Example: Following the previously introduced example from Section 6.4.1.2, the
different sensors participating in the acquisition of information that is relative to the
presence in the kitchen and the cooker being turned on are related to a Vera router.
The cookerSwitchSensor element is stereotyped as both stationarySensor and veraAc-
tuator. This means that it can inform of when it is switched on and off, but it also
can be used as an actuator, to remotely control the switch status. The veraActuator
stereotype of the cookerSwitchSensor requires it to configure the serviceld attribute
with the service id of the sensor in the Vera router. The Vera router is configured with
its corresponding ip, hostname, and username and password for a user to connect via
ssh. Both the database and the reasoner are executed in Laptop A. The database is a
Postgres database, and its corresponding ip, port, hostname, and password are con-
figured too. The M reasoner is configured for not having a fixed iteration time, and
is set to a maximum execution time of 25775 time units. Finally, let the example as-
sume an already existing requirement that forces the maximum execution time for the
cooker to be no more than 61 time units. A specification is created in order to facilitate

the developers knowing the maximum number of computational time units that the

193

reasoning algorithm can take to execute.

Laptop A
K >
Reasoner <<specification>>
Maximum
<<Allocate>>
, cooker

<<softwareComponent>> v unnattended

<<mDatabaseStereotype>> switchoff time
Database
<<verify>>
<<source>> e

<<requirement>>
— The cooker can
'v" be unnattended
V for a maximum

of 60 seconds

<<controls>> .-~ = .. <<controls>>
“~ Vera Router
W Ty
<<Sensor>> <<Sensor>>
<<stationarySensor>> <<stationarySensor>>
P s <<veraActuator>>
Ut CookerSwitchSensor

Figure 6.13: Example of the usage of the Deployment Diagram for stationary

platforms. Particularly related to the smart-kitchen scenario from Section 1.5.3.

6.5 Apply evaluation procedure

6.5.1 Elaborate test-case design

The evaluation mechanisms for requirements introduced in Section 4.6.2, provide a
means to help developers specify requirements that satisfy the objectives of the sys-
tem. During the design stage, different mechanisms for evaluating the requirements
after the implementation of the system are created. This activity also covers any test
design to be applied in real scenarios aimed at acceptance testing, after the system is
already implemented. The Requirements Diagram adopted the TestCase stereotype
from SySML, that can also enable engineers to model and document this process. The
Verify relationship stereotype from SysML connects a Requirement to a Test Case, in-
dicating the process that will be used for this purpose. The test case, for example, can

be further modelled as a state-machine diagram containing all the steps necessary for

194

its verification. This process can include standard verification methods for inspection,
analysis, demonstration or test [203]. Although the methodology introduced in this
chapter is not attached to a particular mechanism to elaborate the test-cases design, the
use of the UML Testing profile (UTP) [127] is reccommended, as it is already suppor-
ted by a Modelio module [154] [204].

6.5.2 Check traceability

Another prominent feature of the models introduced in this, and the previous chapters,
is the ability of tracing the different elements of the design to those in requirements,
aiding the decision-making process of the developers. The next sub-activity of the
methodology consists of checking the traceability of requirements and context inform-
ation throughout its life-cycle. For facilitating this purpose, a novel evaluation proced-
ure is introduced, which helps the traceability evaluation of the system design:
1) For all the Requirements in the models, check their traceability using the re-
qTraceCheck function.
2) For all the situations of interest:
2.1) For all DetectionPlans which detect a SituationOfInterest and are to be
implemented (Detection Plan.toBelmplemented = true):
2.1.1) For all the ContextAttributes contained in the DetectionPlan:

I) If the ContextAttribute is Primary, for all the context attributes
that have this primary ContextAttribute as a source, apply the
contextModelling TraceCheck evaluation function:

II) While the ContextAttribute is not the source of any derive rela-
tionship, apply, for all the target ContextAttributes of derive re-
lationships of the context reasoning traceability checking func-
tion: contextReasoning TraceCheck.

III) For all the ContextAttributes which are the target, and are not
the source, of at least one derives relationship, apply the context-
aware feature traceability checking function: contextAwareFea-
tureTraceCheck.

IV) Apply the secondary context state creation traceability check:

contextState TraceCheck.

195

3) Forall sensors in the system, apply the following traceability checking function:

I) If the sensor is ZWaveSensor, apply the stationaryDeployment TraceCheck
function.
II) If the sensor is PreferenceSensor, apply the stationaryPreferenceDeploy-
ment TraceCheck function.
III) If the sensor is AndroidSensor, apply the mobile Deployment TraceCheck

function.

4) Check that every software component is allocated into a device using the sofz-
wareComponent TraceCheck function.

5) If, in any of the presented traceability functions, the result is DISSATISFIED,
the result of the final verdict is DISSATISFIED. If all the traceability functions
applied give as a result SATISFIED, the result of the verdict is SATISFIED.

6.5.3 Check syntax

Certain elements of the design, use the syntax of an external tool. Namely:
* Message stereotype: The attribute msg of the message stereotype, uses a String
which is formatted as a Java string.
* RDFModellingRule: The attributes of this stereotype use RDF formatted syn-
tax.
* DBModellingRule: The rule attribute of this stereotype uses MySQL or Post-
greSQL syntax, depending on what is indicated in the DBType, as it is shown
in the Context Information Deployment diagram (Figure 6.11).
* NuSMVSpecficiation: It uses the NuSMYV specification syntax for enabling the
verification of context reasoning rules.
Each of these elements need to be checked to see if they comply with their correspond-

ing syntax.

6.5.4 Verify context reasoning rules

A key feature of the framework is that it facilitates the verification of the context reas-
oning rules against properties specified by the developers. The model-checking sub-

activity of the methodology also includes the verification of context reasoning rules.

196

In order to check the design of the context reasoning, the approach is to automatic-
ally generate verifiable models from the existing Context Reasoning diagrams. The
approach proposes to translate the M theory [162] components into NuSMV [202]

components. The details of this translation are further explained in Section 7.3.

6.6 Conclusions

This chapter has presented a framework to guide and help to document the design
stage of rule-based context-aware systems, taking into account the limitations in its
creation, as it adopts the concepts introduced in Chapter 2. The framework sup-
ports, with models, the application of the methodology, and provides guidance for
developers. It uses already existing models, as those presented in the UML and UTP
standards. Additionally, a range of new diagrams have been proposed: Information
Display, Context Acquisition and Modelling, Context Reasoning, and Context De-
ployment. As part of the software process framework presented in this thesis, signific-
ant effort has been dedicated to the production of an open-source tool to support the
creation and management of the range of design diagrams that have been proposed.
The set of tools presented in this chapter are compatible with the tool introduced in
Chapter 4, as it is also a Modelio module, programmed in the Java language. Another
important feature of the framework presented in this chapter is the ability to evalu-
ate the design and trace it to the requirements. Since it is compatible with both the
previously introduced Requirements Modelio module, and the UTP Modelio mod-
ule [154], the tool enables the design of model based testing, tracing it to the require-
ments. Additionally, the theory that enables the verification of context reasoning rules
has been integrated within the tool. The Context Reasoning Diagrams generated by
the developers can be translated to NuSMV models, in order to verify their correctness
[205]. Additionally, it also supports the evaluation of the rules introduced in Section
6.5.2. The main contributions of this chapter are:
* Aguide for the requirements elicitation process from the identification of stake-
holders, to the identification of Objectives and its operationalisation of goals,
using a methodology which is based on existing approaches, and introducing

novel diagrams for supporting the documentation and modelling of the pro-

197

cess.
* A guide for designing each of the different context-aware features that the sys-
tem can exhibit.
* A guide for designing the context information in each of the different stages of
its life-cycle. From acquisition and modelling to reasoning and dissemination.
* Tool-supported mechanisms for evaluating the design aspects shown in Section
6.5.
* Implementation of an open-source tool which supports the Diagrams intro-
duced in this section, as well as the theory for checking the models.
The theory for doing the verification of context-aware rules is further explained in
Chapter 7. The resulting models obtained with the application of the proposed method
contain reusable information that can be used for generating code that can facilitate the

implementation of the context-aware system, as it is further explained in Chapter 8.

198

CHAPTER 7 I

VC-ASEF: VERIFICATION FOR THE

CONTEXT-AWARE SYSTEMS

ENGINEERING FRAMEWORK

7.1

7.2

7.3

7.4

7.5

7.6

Introduction L 200
TheMlanguage 201
721 States e e 201
7.2.2 Events, Rules and Past Operators 202
MappingMtoNuSMV 202
7.3.1 Time e 207
7.3.2 Stateand Event Declaration 208
733 Rules 210
7.3.4 Property Specifications 210
Usageillustration L. 211
7.4.1 Evaluatingproperties 214
Evaluation 215
Conclusions 217

199

7.1

Introduction

C hapter 6 has introduced DC-ASEEF, a framework for designing rule-based con-

text-aware systems in both stationary and mobile platforms. This chapter

presents the Verification of Context-Aware Systems Engineering Framework (VC-AS-

EF), a specialisation of DC-ASEF that presents an approach for verifying context-

aware rule specifications designed with the same framework. The approach presented

in this chapter explains in more detail the verification sub-activity of the evaluation

activity of DC-ASEF, introduced in Section 6.5.4. The framework has been created

following the objectives explained in Section 1.4, and it supports:

A proof-of-concept theory for automating the translations based on M language
specifications [162] into NuSMV models.

The implementation of the theory as an open-source Java library [205], which
can be reused both in the DCase Modelio module [200], and in the M Integ-
rated Developing Environment (IDE) [206].

The automatic translation from DC-ASEF reasoning diagrams to the NuSMV
model-checking tool models, enabling the verification of NuSMV formatted
specifications which include Computation Tree Logic, Invariant, Linear Time
Logic (LTL), real-time LTL, and probabilistic soft logic specifications [183].
The automatic translation from DC-ASEF reasoning diagrams into M specific-
ations [162, which can be automatically deployed using a version of the M IDE
[206]. The IDE has been extended from that presented in [162], mavenised', re-
factored, and released as an open-source integrated development environment
for M.

The automatic translation from DC-ASEF reasoning diagrams into reasoning
rules compatible with the Android Context Reasoning tool [167], which can be
directly implemented into the library for reasoning in mobile platforms, which

has been extended from its original as part of the contribution of this work.

The rest of this chapter is organised as follows. Section 7.2 explains the language M

for context-aware reasoning, which can be coupled with a learning system. Section 7.3

explains how the M reasoning language can be mapped to the NuSMV model checker.

1https:/ /maven.apache.org/

200

Section 7.4 introduces an illustrative example using a real-world scenario. Section 7.5
evaluates the performance of the model translation. Finally, Section 7.6 presents the

summary of the chapter.

7.2 The M language

The building blocks of the M language are a set S of atomic states, a set of rules I? and
aset of events I, The left column in Table 7.2 shows the top-level description of an

M specification, as used in the IDE.

7.2.1 States

The set of all atomic states .S is divided into three main subsets, such that: S = S; U
Sp U Sp. Sy represents independent states, Sp dependent states and St internal-time
handling states. An independent state does not depend causally on other states. Sy
states express a boolean value encoding whether or not the time of the system is £ a spe-
cific time-expression (St,,), or between a time expression interval (St,,), where: Sy =
St,, YU Sty,,- The set of time expressions T, is partitioned into three subsets, such
that: Ty, = T UTp UTyy. T represents clock times of internal-time handling states
expressed in bh:mm:ss” format. T, represents week times of internal-time handling
states expressed as M onday, Tuesday, . . ., Saturday or Sunday. T represents the
date times of internal-time handling states, expressed as dd/mm/yyyf. All possible in-
ternal time-handling state types can be represented as: clock At(7,), calendar At(t,),
clock Between(r., 1.), week Day Between(r,, T,,), week Day At(t,,), or

calendar Between(y, TC'Z), where 7, < 7o and 7., 7, € T3 7y < Toyand 7, 7o, €
Ty 74 < Tyand 74,7y € Tp. Each state in S can either be true or false, expressed
with the notation [—=]s. In this notation, s is the state, — is the boolean operator for
negation, and the square brackets indicate optionality. The absence of the boolean
operator indicates a state that is true. When specifying a model in the M IDE, all states
but St type states are declared as shown in Row 1 of Table 7.1. Independent states are

declared as shown in Row 2 of the same table.

2
Hours, minutes, and seconds respectively in the 24-hour time notation.

3Daly of the month, the month and the year respectively.

201

7.2.2 Events, Rules and Past Operators

Events in the M model represent actions performed on the system by external entities,
and require the explicit representation of time. In M, the time ¢ is represented as a
discrete series of atomic instants, where ¢ € N. HoldsAt([—]s, t) means that the
state [=] s holds at an atomic time instant ¢, where s € S; U Sp. In the same fashion,
an event occurring in the system is represented as follows: Occurs([—]s,t), where
s € St. The definition” of the initial state for S 1 and Sp states can be found in Row
3 of Table 7.1. The occurrence of an external event is defined in Row 4 of the same
table.

The rule set R is partitioned into two subsets, R = g U R, where Rg refers to
same-time rules and R to next-time rules. Same-time rules apply their consequent in
the same iteration in which the antecedents are satisfied. Next-time rules apply their
consequent in the next iteration to that in which the antecedents are satisfied. A rule
is specified as shown in Row 5 of Table 7.1. Note that, typically, a system has more
than one rule, and that they are specified one after the other. In particular, Rg rules
are specified first, and need to be in stratification order, and Ry rules are specified last.
More information on stratification procedures can be found in [163]. Note that Rg
are modelled using ‘ssr’ in front of the rule, and Ry using ‘sEr’.

The set of all bounded past operators I P, can be divided into two main groups:
immediate past (I) and absolute reference to the past (A) where BPy, = I U A. Both
sets can be respectively divided into strong and weak expressions: I = Ig U Iy, and
A = Ag U Ay The syntax of BFp,, is shown in Rows 7, 8, 9, and 10 of Table 7.1.
Full explanation on the different B Fy,, and further examples of their usage can be
foundin [162].

7.3 Mapping M to NuSMV

The inner workings of a context-aware system can be very complex. Computerised
systems have lots of data available from many types of resources, that span from hard-

ware sensors (GPS, light, temperature, etc.) to software entities (Emails, social net-

4
Note that more than one event can be defined one after the other.

202

Reference Corresponding Code

[STATE DECL.] 'states(' s1',' s2',' ...'," sn ');'
2 | [IND.STATE DECL.] 'is(' [SIGN] si',' [SIGN] s2',' ...','
[SIGN] sn ');'
3 [STATEINIT.] 'holdsAt (' [SIGN] s',0);'
4 [EVENTS] ‘occurs(' [SIGN] s',' t ');'
[RULES] 'ssr'|'sEr' '(' [EXPR] '~'... '"' [EXPR]

'=>' [SIGN] sc ');'

6 [EXPR] ([SIP] | [WIP] | [SAP] | [WAP]) | ([SIGN] s)
7 [SIP] '[-] [' mu ']' [SIGN] s

8 [WIP] '<-> [' mu ']' [SIGN] s

9 [SAP] '[-] [' alpha',' beta ']' [SIGN] s

10 [WAP] '<-> [' alpha',' beta ']' [SIGN] s

11 [SIGN] P

Table 7.1: Representation of the corresponding code to the references expressed
in the left column of Table 7.2. Where s1, 52, sn and sc are example states, and

mu, alpha and beta are example time expressions.

203

1 'MODULE main'

2 'VAR'

3 ‘'time : O ..' [MAXIMUM ITERATION]';'
4 [STATE DECLARATION]

5 [AUXILIARY STATE DECLARATION]

¢ [BPOP DECLARATION]

1 [STATE DECLARATION]

7 'ASSIGN'
2 [INDEPENDENT STATE o i

8§ 'init(time) := 0;'
3 DECLARATION]

9 [STATE INITIALISATION]
4 [STATE INITIALISATION]

10 [AUXILIARY STATE INITIALISATION]
s [EVENTS]

11 [SAME TIME RULES]
6 [RULES]

12 [NEXT TIME RULES]

13 'next(time) := case'

14 '(time <' [MAXIMUM ITERATION]') : time + 1;'
1S 'TRUE :' [MAXIMUM ITERATION]';'

16 'esac; '

17 [PROPERTY SPECIFICATIONS]

Table 7.2: Left column: Syntax for a model specified in M, denoted as
M[MODEL]; Right column: Syntax for a specification model in NuSMYV, de-
noted as NuSMV ([MODEL]). Where M[MODFE L] is bisimilar to NuSMV
([IMODEL]). Red text between simple quotes is mandatory. Text between
square brackets references code shown in Tables 7.1 and 7.3. Note that in or-
der to declare independent states in NuSMYV it suffices with not initialising a
state. The [MAXIMUM ITERATION] value needs to be manually specified.

204

1 MODULE strong_immediate_past (state,bound)
2 VAR

3 counter : O .. bound;
4 live : boolean;
5 ASSIGN
6 init(counter) := 0;
live := case
8 (counter = bound): TRUE;
9 TRUE: FALSE;
10 esac;
11 next(counter) := case
12 (state=TRUE & counter < bound) : counter+1;
13 (state=TRUE & counter = bound) : bound;
14 TRUE: 0;
15 esac;

Listing 7.1: Syntax for the Strong Immediate Past Operator module in NuSMV language.

1 MODULE strong_absolute_past(state, low_bound,

2 upp_bound, t)

3 VAR

4 veredict : boolean;

S veredict_aux : boolean;

6 live : boolean;

7 ASSIGN

8 init(veredict_aux) := TRUE;

9 init(live) := FALSE;

10 veredict := case

11 ((state=FALSE) & (t >= low_bound)
12 & (t <= upp_bound)) : FALSE;
13 TRUE: veredict_aux;

14 esac;

15 next(veredict_aux) := veredict;

16 next(live) := case

17 (t >= upp_bound) : veredict;
18 TRUE: FALSE;

19 esac;

Listing 7.2: Syntax for Strong Absolute

1 MODULE weak_immediate_past(state,bound)
2 VAR

3 counter : O..bound;

4 live : boolean;

S live_aux : boolean;

6 ASSIGN

init(counter) := 0;

8 init(live_aux) := FALSE;

9 live := case

Past Operator module in NuSMV language.

205

10 (state=TRUE) : TRUE;
11 (state=FALSE) & (counter = bound) : FALSE;

12 TRUE: live_aux;

13 esac;

14 next(live_aux) := live;

15 next(counter) := case

16 (state = TRUE) : O;

17 (live_aux=TRUE) &

18 (counter < bound) : counter + 1;
19 TRUE: 0O;

20 esac;

Listing 7.3: Syntax for Weak Immediate Past Operator module in NuSMV language.

1 MODULE weak_absolute_past(state, low_bound,
2 upp_bound, t)

3 VAR

4 veredict : boolean;

S veredict_aux : boolean;

6 live : boolean;

7 ASSIGN

8 init(veredict_aux) := FALSE;

9 init(live) := FALSE;

10 veredict := case

11 (state=TRUE) & (t >= low_bound)
12 & (t <= upp_bound) : TRUE;
13 TRUE: veredict_aux;

14 esac;

15 next(veredict_aux) := veredict;

16 next(live) := case

17 (t >= upp_bound) : veredict;
18 TRUE: FALSE;

19 esac;

Listing 7.4: Syntax for Weak Absolute Past Operator module in NuSMV language.
works, calls, etc.). The more complex the situations that the system needs to handle
and the more actions it needs to trigger, the more complicated it will be to ensure that
it will behave adequately and that it will not exhibit any undesired behaviour. One of
the prominent features of the framework put forward by this thesis is that it enables
the model checking of the reasoning rules created for managing the context-aware fea-
tures to be triggered. This is especially importantin those cases where the system is also
learning from the behaviours of the users, to semi-automatically update context-aware
rules in order to provide more useful services [45, 88, 207]. The following section fo-

cuses on automating the validation of the logical language M [162], by allowing the

206

indirect verification of a system modelled in M against some formalized requirements.
The approach consists of a model to model translation, which transforms M models
to NuSMV models [202].

The right column in Table 7.2 shows the NuSMV model template resulting from
the M to NuSMV model transformation. The resulting model can require up to four
additional modules, which correspond to each of the bounded past operators. If a cer-
tain bounded past operator is not used in the specific model, then the corresponding
module for that bounded past operator can be disregarded. The following subsec-

tions explain how the particular elements of the left column in Table 7.2 are mapped
to NuSMYV elements.

7.3.1 Time

As it can be observed when comparing columns in Table 7.2, even if the declaration of
time is not explicitly required in M models, the translations to NuSMV demand a dis-
crete clock for the algorithm iterations and to handle the M bounded past operators.
Let this clock be I'. The bound for the time variable in NuSMV can be computed as
follows: let 1" represent the set of all the time expressions used in the rules of a particu-
lar model, which can be in form of bounded past operators or internal-time handling
states: 1" = Tpp, U Ts,. Ty, is the set of time expression5 states S7. Tgp,, is the
set of time expression for B Py, which can be divided into three subsets, such that:
Tsp,, = T, VT, U Tp. T, is the set of all time bounds in the immediate bounded
past operators. T}, is the set of all lower time bounds in the absolute bounded past op-
erators. T is the set of all upper time bounds in the absolute bounded past operators’.

The NuSMV models can accommodate the requirement of having a discrete clock,
as NuSMYV provides an integer structure which supports I" € N. Taking into account
the NuSMV implementation constraints for the integer type [183], and that the negat-
ive values of the integer structure will not be used, the maximum iteration variable can
only be a number from zero to I',,,,, = 2" — 1. Since time is represented in seconds,
this would give the developer the representation power of almost seven decades, which

is enough for the intended verification purposes.

Sa s . . L .
St internal time-handling states are explained in Section 7.2.1.

®Time bounds are further explained in [162].

207

Notice that in order to have models where the consequent of the highest szratific-
ation level is reachable, there is also a recommended minimum iteration time, I',,,;,,

which can be calculated with the following formula®:

Fmin = ()‘maa: +]-) + z (5max + 1)
=9

I, i lets the model checker have enough iterations for reaching the path where the
highest stratification level rule consequents can be met. Ry rules require additional
iterations for considering the application of the antecedents, and R rules require an
additional iteration because past operators are non-reflexive. An example can be found
at the end of Section 7.4.1. The maximum iteration, referenced in rows 3, 14, and 15
of the right column in Table 7.2, corresponds to an integer number between I ,;,, and

L4z This value specifies the maximum iteration to which the model will be checked.

7.3.2 State and Event Declaration

Row 1 in Table 7.3 shows how a state is declared in NuSMV. Note that states are de-
clared one after the other, and that there is no need to declare states in S7. In order to
maintain the persistence of states in each iteration, an additional set of auxiliary states
are required by the NuSMV model, as it is shown in row 2 from Table 7.3. For each
s € S¢ an auxiliary boolean variable needs to be declared, where S¢ is the set of all
consequents in all the same-time rules of a given model. Each bounded past operator
is implemented referencing a different NuSMV template, depending on its operator
type. The declaration corresponds to row 3 in Table 7.3. Independent states are not
required to be initialised in the NuSMV model, as this lets the model checking engine
check for all the different combinations of their values. Note that the dependent states
which are in the consequent of a next-time rule have to be initialised, as shown in row

8 from Table 7.3. Each state s € S¢ requires an auxiliary variable, which is declared as

"The stratification level is part of the forward reasoning algorithm and it is further explained in
[162, 163].

$Where Amagz is the highest time expression from all the rules in Ry, w is the maximum strat-
ification level stage from the rule set Rg, ¢ is the stratification level of the rule in the rule set Rg,
which has the highest time expression. For comparing values in T, Tp and Ty, these will be trans-
lated to seconds, as indicated in Section 7.3.3; 6,4 is the highest time expression from a set A;, where

Omaz € T A; is the set of all same-time rules from a particular stratification stage level 3.

208

shown in row 9 from the same table. Given that the focus of the chapter is on the veri-

fication of models, the translation of external events into NuSMYV is not considered,

and therefore, there is no mapping for external events.

Reference ‘ Corresponding Code
1 [STATE DECL.]
1 s':= boolean;'
2 | [AUX. STATE DECL.]
1 s'_aux := boolean;'
3 [BOP DECL.]
1 [SIP DECL.] | [WIP DECL.] |
2 [SAP DECL.] | [WAP DECL.]
4 [SIP DECL.]
1 s'_sip_'mu': strong_immediate_past ('
2 [SIGN] s',' mu');"'
S [WIP DECL.]
1 s'_wip_'mu': weak_immediate_past ("
2 [SIGN] s',' mu');'
6 [SAP DECL.]
1 s'_sap_'alpha'_'beta': strong_absolute_past('
2 [SIGN] s',' alpha',' beta',' time');'
7 [WAP DECL.]
1 s'_wap_'alpha'_'beta': weak_absolute_past('
2 [SIGN] s',' alpha',' beta',' time ');'
8 [STATE INIT.]
1 'init(' s ') :=' [VALUE]';'
9 [AUX. STATE INIT.]
1 "init(' s'_aux' ') :=' [VALUE] ';'
10 | [SAME TIME RULE]
1 sc ':= case' [RULE EXPRESSION]
2 [RULE EXPRESSION] 'TRUE :' sc'_aux;' 'esac;'
3 'next('sc'_aux):=' sc';'
11 | /[NEXT TIME RULE]
1 'next(' sc ') := case' [RULE EXPRESSION]
2 [RULE EXPRESSION] 'TRUE : 'sc';' 'esac;'
12 [RULE EXPR.]
1 ' ((' [EXPRESSION] ')&('..."')&(' [EXPRESSION]')):
2 ' [VALUE] ';"'
13 [EXPRESSION]
1 ([BPOP] '=' [SIGN]) | (s '=' [SIGN]) | [TIME]
14 [/BPOP]
1 s'_sip_'mu' | s'_wip_'mu |
2 s'_sap_'alpha'_'beta' | s'_wap_'alpha'_'beta
15 [SIGN] |
1 I!| 1 1
16 [VALUE]

'TRUE' | 'FALSE'

Table 7.3: Representation of the corresponding code to the references expressed

in the left column of Table 7.2. Where s1, 52, sn and sc are example states; mu,

alpha and beta are example time expressions; and time is the iteration number.

209

7.3.3 Rules

Same time rules are translated as shown in row 10 of Table 7.3, while next-time rules
are translated as shown in row 11 of the same table. Time, referenced in row 14 of
Table 7.3, corresponds to St states, which are modelled as follows: For 7, € T the
values are translated directly into seconds. For 7, € Ty each day of the week is as-
signed a number according to its position9. This number is multiplied for the number
of seconds in a day. For 7; € T, the current calendar date in seconds is subtracted
for the specified date, in seconds. Notice that this happens at model translation time.
All the same-time rules in the system need to be declared in stratification order. In
NuSMYV, rules affecting the same consequent are modelled as different rule expres-
sions inside the same rule, as it is shown in rows 10 and 11 from Table 7.3. This means
that rules in different stratification levels, which imply a change in the same state of
their consequent, are not supported in these M to NuSMV model translations. To
avoid such cases, next-time rules can be used as illustrated in rows 34 and 35 from List-
ing 7.5. Note that in such cases, the corresponding code for line 3, row 10 in Table
7.3 and the modelling of initialisation events will be omitted, and the state s in line 1,

row 11, from Table 7.3 will have the suffix ©_aux’ attached.

7.3.4 Property Specifications

The specification languages supported by NuSMV are Computation Tree Logic (CTL),
Linear Temporal Logic (LTL), Real-time Computation Tree Logic (RT-CTL) and
Probabilistic Soft Logic. The NuSMV engine also allows the checking of the model
for deadlocks. The Reader is referred to [183] for additional details. This chapter fo-
cuses on CTL; some examples of how property specifications are used are reported in
Section 7.4.1. This section provides the sketch of proof of the main theoretical result
of the chapter, in which the notation NuSV M [*] is used, where * is an element of
M, to denote the NuSVM translation of the element according to the rules presented
in Table 7.2 and Table 7.3.

Theorem 1. . Given a model M O DEL specified in M (denoted with M{MODEL))
and a CTL formula ¢, the formula ¢ is true in M [M O D E L] (denoted with M [MOD

9Monday = 1, Tuesday = 2, ..., Saturday = 6, Sunday = 7

210

EL| E ¢)if and only if ¢ is true in the corresponding NuSMYV model, denoted with
NuSMV[MODEL] E ¢.

Proof. This section shows that NuSMV [MODEL] is bisimilar to M [MODEL].
In particular, itillustrates that, for every pair of states sin M [M ODE L]} and NuSMV [s]
in NuSMV[MODEL),

1. If there exists a rule R, such that R, ;(s) = t, then there is a NuSMV state
NuSMVt] such that NuSMV/[R,,J(NuSMVs]) = NuSMVt].

2. If there isa NuSVM temporal transition (NuSMV[s], '), then there is a rule
R, in M such that R, ,(s) = tandt' = NuSMVt];

For (1): the rule translation defined in Section 7.3.3 uniquely identifies a NuSVM
temporal transition NuSMV'[Ry] that, in turn, results in a new reachable NuSMV
state NuSMV R, |(NuSMV[s]) = NuSMVt]. For (2): assume that there is
a temporal transition TT = (NuSMV[s],t') in NuSMV[MODFEL] that associ-
ates the NuSMV state (NuSMV [s] to a new state t. The only transitions enabled
in NuSVM[MODEL]J are those obtained following the translation rules in Sec-
tion 7.3.3; hence, there must be a rule in M Rpp such that NuSVM[Ryp| = TT.
Similarly, as all the reachable states are reachable through a NuSMV temporal trans-
ition corresponding to a rulein M, and given that rules are deterministic: Ryp (s) =t
NuSMVIt] = t', and NuSMV [Rpr] (NuSMV (s)) = t'. Table 7.2 refers to the
mapping of all the supporting functions, in particular for the constraints imposed on
NuSMV[R,,] by the bounded-past operators. The claim follows from the fact that

bisimilar transition systems satisty the same CTL formulas.]

7.4 Usage illustration

This section is particularly focused on illustrating the case study inspired by a real
world scenario to show the potential of the approach with data science in order to
provide useful insights. In these types of systems, information from the users can
be gathered in an unobtrusive and transparent way. Certain scenarios in which these
types of systems provide services are likely to operate in situations in which an inap-

propriate decision can cause harm to the users or even put their life at risk. Also, a

211

1 states(cookerOn, atKitchen, cabinet, kettleOn, waterTapOn, cookerUnattended, hazard,
2 pattern_0, pattern_1, pattern_2, pattern_3, pattern_4, pattern_5, time_context);
3

4 is(cookerOn); is(#cookerOn); is(cabinet); is(#cabinet);

S is(atKitchen); is(#atKitchen); is(waterTapOn); is(#waterTapOn);

6

7 holdsAt (#cookerOn,0); holdsAt(#atKitchen,0); holdsAt(#cabinet,0);

8 holdsAt (#kettleOn,0); holdsAt (#cookerUnattended,0); holdsAt (#hazard,O);
9 holdsAt (#pattern_0,0); holdsAt (#pattern_1,0); holdsAt (#pattern_2,0);
10 holdsAt (#pattern_3,0); holdsAt (#pattern_4,0); holdsAt (#pattern_5,0);
11 holdsAt (#time_context,0);

12

13 //Stratification Level k = 1 Rules

14 ssr((clockBetween(06:18:06-07:03:10)) -> time_context);

15 ssr((#clockBetween(06:18:06-07:03:10)) -> #time_context);

16 ssr(([-]1[120]#atKitchen ~ cookerOn) -> cookerUnattended) ;

17

18 //Stratification Level k = 2 Rules

19 ssr((#atKitchen ~ time_context) -> pattern_0);

20 ssr(([-]1[60] cookerUnattended) -> hazard);

21

22 //Stratification Level k = 3 Rules

23 ssr((cabinet ~ [-][12]pattern_0 ~ time_context) -> pattern_1);

24

25 //Stratification Level k = 4 Rules

26 ssr((#cabinet ~ [-][22]pattern_1 ~ time_context) -> pattern_2);

27

28 //Stratification Level k = 5 Rules

29 ssr((waterTapOn ~ [-][18]pattern_2 ~ time_context) -> pattern_3);
30

31 //Stratification Level k = 6 Rules

32 ssr((#waterTapOn ~ [-][9]pattern_3 ~ time_context) -> pattern_4);

33

34 //Stratification Level k = 7 Rules

35 ssr((cookerOn ~ [-][11]pattern_4 ~ time_context) -> pattern_5);

36

37 //Stratification Level k = 8 Rules

38 ssr((atKitchen ~ [-][123]pattern_5 ~ time_context) -> kettleOn);

39

40 //Stratification Level k = 9 Rules

41 ssr(([-1[120]kettleOn) -> #kettleOn);

42

43 //Next-Time Rules

44 sEr((hazard) -> #cooker(On);

45 sEr ((#cookerOn) -> #hazard);

46 sEr ((#cookerOn) -> #cookerUnattended) ;

Listing 7.5: Example of an M model for the cooker example.

212

tool which directly translates the outcome of behavioural patterns might foster bad
habits instead of correcting them. In order to increase the reliability of the systems
created with this IDE, this chapter introduces a theory for translating M specifications
into models that can be used as an input of a model checking tool. In this way, sys-
tems which automatically evolve according to the preferences of the users can be built
in a more reliable way. By understanding the information obtained through sensors,
context-aware systems can learn how to adapt their services to the preferences, needs
and limitations of the users. In order to illustrate these synergies, let the scenario review
the example presented in Sections 1.5.3 and 6.4.2. As introduced in Section 3.4.2.1,
the M IDE [206] enables the automatic generation [208] of rules behavioural patterns
learnt from the users using the LFPUBS [207] tool. Let the hypothetical scenario as-
sume the generation of rules not only for switching on and off the cooker (Section
6.4.2), but also that the LFPUBS system has discovered that the user generally wakes
up around 6:30 a.m., and prepares tea and scrambled eggs for breakfast. The set of
ordered actions is as follows: Enters the kitchen, takes some eggs, tea bags, and a pan
from the cabinet, fills a kettle with water, and then starts cooking the eggs. Around two
minutes later, the user turns on the kettle in order to have the water boiling for the tea
by the time the eggs are readylo. Suppose that the user is a person in with Down’s
syndrome trying to be more independent at home through smart-technology. To in-
crease the reliability of the system two main aspects will be considered: the first is to
have the cooker switched on for a long time while unattended, and the second is to
leave the water tap on without supervision. This system is represented in the IDE as
shown in Listing 7.5. Lines 1 and 2 declare all the states existing in the system, line 3
identifies which of the states are independent, and lines 4 to 6 initialise the values of
the states. Lines 10, 13, and 29 to 31 declare those rules related to the cooker being
unattended. For illustration purposes, we assume that the remainder of the rules, re-
garding the water tap, describe patterns discovered by the LFPBUS tool which have

been automatically translated to M.

"In terms of sensors, the result is: atKitchen — (12s.) — cabinet — (22s.) — —~cabinet —
(18s.) — waterTap — (9s.) — -waterTap — (11s.) — CookerOn — (123s.) —
KettleOn — (120s.) = = KettleOn.

213

7.4.1 Evaluating properties

After translating it to NuSMYV, the model can be checked against undesired beha-
viours, as illustrated in this section. First, the recommended minimum execution time'"
is applied, as indicated in Section 7.3.1, which is 25775. Then, the desired properties
are added. For example, not having the cooker on while there is nobody in the kitchen
(there is a hazard), as shown in Line 1 Listing A.9. Also, the model can be checked to

ensure the time it will take from the cooker to be unattended until it is switched off
(Line 2). Regarding the more reliable deployment of automatically generated rules of
learned user behavioural patterns, it is feasible to make the automation safer by spe-

cifying in advance some property specifications about the expected system behaviour.

In this scenario, it is undesirable to have the tap on while there is no one in the kit-

chen. This can be specified in the properties as shown in Line 3 Listing A.9. Checking

the model resulting from translating the M specification in Listing 7.5 to NuSMYV,

against the properties from Listing A.9, takes 98 time units using the minimum ex-

ecution time I',,,;,, from Section 7.3.1, and the same computer as that indicated in

Section 7.5. The property of Line 1 is met. The property of Line 2 indicates that the

maximum time it will take from the cooker being unattended until it is switched off is

61 seconds. However, the property of Line 3 is not satisfied, as shown in the counter-

1 SPEC AG((hazard) -> AX(cookerOn=FALSE));

2 COMPUTE MAX[(cookerUnattended = TRUE), (cookerOn = FALSE)];
3 SPEC AG!((atKitchen=FALSE) & (waterTapOn=TRUE));

Listing 7.6: Example of a specification in NuSMV.

example from Appendix A.S. In this case, the system could prevent such a model from

being automatically deployed. In order to make this model satisfiable, the developers

"There are no time expressions in the next-time rules, so A4, = 0. The maximum
stratification level from the rule set R is w = 9. The set of all time expressions is T° =
{22686, 25390, 120, 60, 12,22, 18,9, 11,123, 120}. The value of the highest time expression is t =
07:03:10 = 25390, ¢t € T, which is in the stratification stage level & = 1, making ¢ = 1. The
highest time expression for all the rules in each stratification stage level, from ¢ = ltow = 9is:
Omaz € A1 = 25390, 0,00 € Ag = 60, 0,par € Az = 12, 61pae € Ay = 22, 6100 € A5 = 18,
Omaz € Ag =9, Omaz € A7 = 11, 0,000 € Ag = 123, 0,00 € Ag = 120. The formula can be
applied as follows: I',;n, = (04+1) + (25390 +1) + (60 + 1) + (124 1) + (22+ 1) + (18 + 1) +
9+ 1)+ (11+1)4+ (123 +1) 4+ (120 + 1) = 25775.

214

could add a stratification level 9 same-time rule to meet the specification property:
—atKitchen A waterTapOn — —waterTapOn. Note that if the updated rule
models containing new learned patterns do not contradict any of the safety property

specifications given in advance, these could be automatically deployed.

. . Proportion
Experiment | Metric
1 2 3 4 5 6 7 8
) Mean 0.03s 0.05s 1.01s 2.14s 1m40s 26m24s 1h 15m 03s *
STD 0.04s 0.01s 0.02s 0.05s 11.24s 1m 48s 6m 19s *
) Mean 15m12s 17m27s 17m31s 17m9s 21lm1l4s 55m 9s * -
STD 32s 2m 12s 1m 1s Im48s 0lm43s 09m 38s * -
© Mean | 15m56s 20m4ls 37m 43s * - - - -
STD 1m21s 4m 35s 6m 15s * - - - -
Mean | 14m 27s * - - - - - -
(D) pogm b= el
STD 46s - - - - - -
() Mean | 15m21s 15m02s 15m5S4s 15m00s 15m29s 15m 52s 14m 55s 15m 12s
STD 1m 09s 0m S4s 1m 38s Om S3s 1m 09s Om 55s 1m 10s 1m 46s
() Mean | 14m03s 14m13s 13m33s 13m47s 13mS53s 14m27s 13m 49s 15m 36s
STD Om 15s Om 24s 1m 06s Om 11s Om 33s Om 39s Om 27s Om 39s

Experiment A = (1,4, = 10, =3, =5, 3 =10) Experiment B = (1,4, = 86400, 1t =3, a =5, 3 = 10)
Experiment C = (1,4, = 86400, u = 300, o = 500, 5 = 1000)

Experiment D = (1,4, = 86400, 1t = 10000, o = 43200, 3 = 63200)

Experiment E = (I,,,,,, = 86400, no Bpo,,)

Experiment F = (1,,,,, = 86400, no Bpo,, Srno. = 4, Spno. =5 * p+ (Scno.))

STD = Standard deviation “*” = Tests take more than one day “.” = There is no information available.

Table 7.4: Execution time for six models, scaling the NuSMYV size.

7.5 Evaluation

The aim of this section is to provide an early evaluation of the performance of NuSMV
to check properties of M specifications. For this, six different types of experiments have
been created (from A to F). Experiment A evaluates a system with low time values, spe-
cifically in the maximum iteration and the time of the temporal operators. Experiment
B is the same as A, but it increases the maximum iteration time to a whole day. Exper-
iment C is the same as B but increases the time value of the temporal operators. Ex-
periment D is the same as C but increases even more the time values of the temporal

operators. Experiment E maintains the day length for the maximum time iteration,

215

but removes all temporal operators. Experiment F is the same as E but it reduces the
number of independent states. It is important to note that NuSMV models directly
depend on how the M models are formulated, as indicated in Table 7.2. For this reason,
each experiment type has been proportionally increased up to eight times, using a Java
programlz, to generate the code. Each of the experiments for each of the proportions
has been conducted ten times, on a Lenovo T440p with Windows 10 Enterprise, 8 GB
of RAM memory, processor Intel Core i5-4200M @ 2.5GHz, hard disk with SATA3
(6GB/s). Table 7.4 shows the results of the experiments. Figure 7.1 shows an ex-

108

10°E A .

Experiment A
Experiment B
102 ¢ ExperimentC | 3
Experiment E

3 Experiment F
0t A day 4

Figure 7.1: Estimated performance of the experiments by applying Lagrange’s

interpolation to time results in Table 7.4.

M Element t S Sc ST IS AS IW AW
NuSMV VariableNo. 0 1 2 0 1 3 2 3
NuSMV CounterNo. 1 0 0 0 1 0 1 0

Figure 7.2: NuSMYV variable number required for each M element.

trapolation of the results to larger model sizes. Experiment D has been omitted from
Figure 7.1 as there is insufficient data for obtaining an accurate function. Most of the

experiments show a performance of around a day when reaching a factor of 9. This

12https:/ /github.com/ualegre/m2nusmv-evaluation

216

means around 53 states, 44 of which are independent (sensors), 18 rules (9 same-time
and 9 next-time), and 7 specification properties. The experiments help to give insights
on how regular sized systems can behave. The reader should take into account that the
different combination of elements will give different time results. Overall, the results
show that it is feasible to check systems that have some balance between the execu-
tion time, size and number of temporal operators and independent variables. Better
time results could be achieved with more powerful computers with more RAM and
faster processors. In some cases, smaller rule sets which are independent from each
other could also be verified separately, in order to optimise the performance results.
Experiments show good performance for model checking regular-sized context-aware
systems, with running times proportional to the size of the model M. The negative ef-
fect of model size on performance could be reduced by separating rule chains that are

independent from each other.

7.6 Conclusions

One of the major disadvantages of rule-based context-aware systems is the lack of veri-
fication techniques [1]. This can help developers to reduce development costs by en-
abling them to develop and deploy context-aware reasoning components in a fast and
more reliable way. This chapter has introduced an approach for making more reliable
the context rule reasoning in DC-ASEF. Particularly, an approach to model check its
reasoning specifications, in order to increase the reliability of automatically translated
rules from user behavioural patterns. For this, a proof-of-concept tool to translate
specifications from the M language [162] to NuSMV [183] models has been presen-
ted, which can check the model against temporal properties. This approach has been
supported with an open-source tool integrated as part of the DCase Modelio module
[200] from DC-ASEF, and as part of the M IDE [206]. This library is reused as part of
the DCase tool [200] for DC-ASEEF, and it has also been implemented as an extension
of the M IDE for the implementation and deployment of rule-based context-aware
systems, which is aimed at stationary platforms. The main advantage of the approach
is that the same specifications that can be translated into NuSMV models, can also be
translated into reasoning rules for both M IDE [206] (stationary platform) and An-

droid Context Reasoner [167] (mobile platform). The approach enables the merging

217

of reasoning and learning capabilities for both mobile and stationary platforms. In
the stationary platform, the output of LFPUBS can be automatically translated into
M compatible specifications, which facilitates the anticipation of user needs and pref-

erences.

218

Part IV

Implementation, deployment and

maintenance stages

219

CHAPTER 8§ I

IDMC-ASEF: IMPLEMENTATION,
DEPLOYMENT AND MAINTENANCE FOR

THE CONTEXT-AWARE ENGINEERING

FRAMEWORK
8.1 Introduction 222
82 Codegeneration 223
821 Generatecode. L. 223
8.2.2 Preparedevelopmentplatform 224
8.2.3 Relocategeneratedcode 224
8.3 Implementsystem 225
8.3.1 Implementsystem 225
832 Compilecode L L 225
833 Testing 225
84 Deploy&run o 226
8.4.1 System Deployment 226
842 BetaTesting. 227
843 Release 227
8.5 Maintenancetasks 227
8.5.1 Maintenanceanalysis 227
8.5.2 Maintain situations of interest 228
8.6 Toolsupport 228
8.6.1 Model to text transformation 228

221

8.6.2 Reasoning tool for stationary platforms 229

8.6.3 Reasoning tool for mobile platforms 230
8.7 Model to text transformations 232
8.7.1 Process for mobile platforms 232
8.7.2 Process for stationary platforms 241
88 Conclusions 252

8.1 Introduction

hapters 4, S, 7, and 6, introduce a framework to specifically guide the cre-
C ation of context-aware systems, supporting the requirements elicitation and
design stages of the development process, focusing on giving response to the needs
of the end-user stakeholders. This chapter focuses on the Implementation, Deploy-
ment and Maintenance for the Context-Aware Software Engineering Framework, a
framework to support the implementation, deployment and maintenance stages of
a context-aware system life-cycle, taking into account the previous requirements and
design models. Particularly, the framework has been created following the objectives

explained in Section 1.4, and it supports:
* Anopen-source set of tools to automate the code generation from requirements

and Design Diagrams.
* Guidance for the code implementation of the system, as well as for its deploy-
ment and maintenance, reusing the concept of situation of interest introduced
in Section 2.4.3.

* An open-source set of tools to facilitate the implementation of context-aware

systems in stationary platforms such as those in a smart-house or a smart-office.

* An open-source set of tools to facilitate the implementation of context-aware

systems in android-based mobile platforms.

As it can be observed in Figure 8.1, there are four main activities for this methodo-
logy. The remainder of the chapter explains these activities, as well as the tool support
and model to text transformations. Section 8.2.1 introduces the activity of the frame-
work related to the code generation. Section 8.3 explains the framework activity related

to the implementation of the system. Section 8.4 describes the activity that relates to

222

deploying and running the system under development. Section 8.5 describes mainten-
ance related activities of the framework. Section 8.6 explains the details of the different
tools developed for the aforementioned framework. Section 8.7 describes the different
model to text transformations required to generate code from the different diagrams.
Section 8.8 summarises the chapter. Finally, Appendix A has been included in order
to explain how to download, install and use the different tools presented in this dis-
sertation. Additionally, this appendix includes some model to text transformations
which were too long to be included in this chapter.

The first activity consists of generating the code from previous diagrams (z.c., Con-
text Acquisition & Modelling, Reasoning, Context Deployment and Situation Detec-
tion Diagrams). Then, the second activity relates to implementing the design of the
system. The third activity relates to deploying and running the system. Finally, the
last activity occurs after the system is already implemented and running, and consists
of giving maintenance to the system. Although maintenance is expected for the whole
system, the framework specifically supports the management of changes occasioned
by changes in the situations of interest. It is worth mentioning that during this pro-
cess there is an initial stage of generating a code using a model-driven approach. Al-
though most of the code is automatically generated, there are also some cases in which
only templates are generated, which need to be realised by the developers of the sys-
tem during the implementation stage. Also, note that the automated generation of
code is focused on the context-aware aspects of the system, those which are intended
to handle the context information. The non-contextual aspects of the system are also

to be developed during the implementation stage.

8.2 Code generation

8.2.1 Generate code

The first sub-activity consists of generating the code from the different models. For
space restrictions, this automated process is further explained in Sections 8.7.1.7 and
8.7.2.8. Section 8.7 describes those files that are automatically generated, and how

they are used. Section 8.6 gives more information about the tools developed for this

223

Code Generation

Implement System

Deploy & Run

Maintenance Tasks

1. Generate Code

Y

2. Prepare developmen
platform

. Relocate Generate:
Code

4. Implement
System

y
ile Code)

7. System
Deployment
A
@Testing

%r
9. Release)e—

12. Maintenance
Analysis

13. Maintain
Situations of Interest

| | Java Code | | @

Figure 8.1: Core sub-activities for the Implementation, Deployment and Main-

tenance methodology.

framework.

8.2.2 Prepare development platform

Once the code has been generated, it is necessary to deploy it to the relevant platform,
and a Java IDE is recommended for this purpose. For this thesis, Eclipse IDE for Java
Developers1 has been used for the stationary platform code [209], and Android Stu-
dio*for the mobile platform code. More information about how to download, install

and use the different tools of the framework can be found in Appendices A.2 and A.3.

8.2.3 Relocate generated code

There are certain files which are automatically generated from the different models cre-
ated using the Modelio tool. These files are automatically generated in a specific folder,
which is selected by the developer. Created files need to be merged with the existing de-

velopment project. It is recommended to respect a certain folder structure hierarchy,

"Version Neon.3 Release (4.6.3), Build-id 20170314-1500, JRE 1.8.0, Git and Maven integration.
2Version 3.0.1, Build-id # AI-171.4443003 JRE 1.8.0, Open]DK 64 bit

224

which depends on the library used for the implementation (mobile or stationary). An

explanation and illustration example on this process can be found in Section 8.7.

8.3 Implement system

8.3.1 Implement system

Notall the code is generated automatically, in isolated cases’ only some skeleton code is
generated and it is required that the developers finish implementing some parts of the
system. Also, note that the framework automates the creation of context-related com-
ponents, but other non-contextual artefacts need to be implemented manually by the
developers of the system. For the stationary platform seven different software artefact
types can be automatically generated, from which only one is a skeleton that requires
realisation by developers. For the mobile platform, five different software artefact types
can be automatically generated, from which only one is a skeleton that requires real-

isation by developers.

8.3.2 Compile code

After the code is ready, it naturally4 requires compilation in order to generate a run-
nable file that integrates the different libraries that it is using. If developers are using
Eclipse, they can compile the code using the instructions from Appendix A. If, instead,
developers are using Android Studio, they can compile the corresponding APK using

the instruction from Appendix A.3.

8.3.3 Testing

Verification tests should have been conducted during the application of the Design
methodology, which ensure that the automatically generated code will function as in-

tended. This activity complements the verification process for the design components,

35
Particularly the Java actuators, the Context Receiver, or the Context Observer, introduced in Sec-
tion 8.7.
Since the code generated by this platform is written in Java, which is a compiled programming

language, it requires compilation. Note that any additional compilation to that of Java is not required.

225

as it verifies those parts of the system which have not been automatically generated, or
which have been generated as templates which have been manually completed by de-
velopers. Verification tests include whether or not the system meets the requirements
and specifications it was designed and developed for, and if it achieves the results ex-
pected by the relevant majority of the stakeholders. The following activity consists of

a traditional system evaluation, which comprises the following stages:

* Unit Testing: First, individual units of code are tested independently. For this
purpose, Modelio offers a JUnit [210] [211] module which generates test mod-
els and code from a given Java model. Any other technique for unit testing can
also be used.

* Integration Testing: Then, the individual units of code are combined and tested
as larger aggregates.

* System Testing: The original requirements specification is tested against the sys-
tem, which is now integrated as a whole.

* Alpha Testing: Finally, the latest testing is an early acceptance test, which con-
sists of identifying all possible bugs or issues before releasing the product to the
general public. Through the use of blackbox and whitebox techniques, the de-
velopers simulate real users, carrying out the tasks that that a typical user would
perform. Developers can guide themselves using the acceptance test design cre-

ated during the test-case design activity, introduced in Section 6.5.1.

8.4 Deploy & run

8.4.1 System Deployment

Initial deployment requires first-time installation. There are two different aspects that
are covered during the installation. Android mobile platforms require execution of
a set of commands as described in Appendix A.3. Stationary platforms also require
physical installation of the different hardware components, which includes the Vera
Router and the different Z-Wave based sensors. These can be distributed across differ-
ent rooms or spaces. More information on the installation of the stationary platform

can be found in Appendix A.2.

226

Since the methodology is intended to be incremental, when this activity happens
for a second time, there is a need to update earlier system versions which are replaced
with a newer release. This release might include not only new software components,
but also hardware components, and it can affect either the whole system, or simply
part of it. Sometimes, the updating process might also require manual deactivation
and uninstallation of the system in advance. For this, any existing legacy applications
are stopped, uninstalled and removed if necessary. Executing component instances are
shut down, as well as any version of the system that might exist simultaneously. Those
parts of the system that are no longer required are removed, including dependencies

or unused hardware components such as Z-Wave sensors.

8.4.2 Beta Testing

This activity is the final test before the product is shipped to the consumers, in which
the end-user stakeholders use the deployed system in a real environment. A Beta ver-
sion of the system is released to a limited number of users, who in return give feedback

of their experience and report any existing bugs or issues with the system.

8.4.3 Release

Once the development process is completed, there is a release sub-activity. During this
process, the resources required for the system to operate are defined, and documenta-

tion about the latest changes is prepared.

8.5 Maintenance tasks

8.5.1 Maintenance analysis

An analysis is conducted to determine what types of modifications are required for the
system. Then, a maintenance plan is prepared. This particular activity focuses on the
evaluation of the different situations of interest detection plans that are intended to be

modified, improved or introduced from scratch.

227

8.5.2 Maintain situations of interest

The next sub-activity consists of maintaining each of the modified, added or deleted
situation of interest detection plans. For this, the main activities of the methodology
are applied again. During the reapplication of the methodology, particularly during
the requirements stage, and for context-maintenance purposes, developers mainly fo-
cus on the context-related activities. At this stage, an additional impact analysis is con-
ducted for each modified, deleted or new situation of interest detection plan. This
evaluation will determine the impact of the introduced changes, and can be applied
using the Modelio Link view tool, which can be used to visualise and trace the different
elements that are going to be affected by the changes. After these activities are applied,
the design, implementation and deployment related activities are repeated. Note that
when the methodology has been applied once for each of the methodology stages, the
maintenance process becomes less arduous, as some steps might be omitted for not
being necessary. Also, note that when conducting the maintenance of situations of
interest, developers can decide to accept or reject certain changes, depending on the

results of the situation of interest and corresponding context-aware feature analysis.

8.6 Tool support

This chapter has presented a framework to guide and help to document the imple-
mentation, deployment and maintenance of context-aware systems. The framework
is supported by three different tools that have been developed as part of this thesis,

introduced below.

8.6.1 Model to text transformation

The first of these tools is part of the DCase module for the design of context-aware
systems, introduced in Chapter 6, and it is aimed at generating the code corresponding
to the different design and requirements models, as further explained in Section 8.7. As
itis a Modelio module, it is fully compatible with the previously introduced modules,
as well as with those explained in Section 3.3.5. However, it is also possible to generate

code using other tools for code transformation such as Acceleo.

228

8.6.2 Reasoning tool for stationary platforms

Layer 3 mreasoner-gui

Layer 2 mreasoner

mreasoner-
core

Layer 1 ’ Ifpubs2m ‘ ’ vera-manager ’ m2nusmv

External Tools LFPUBS

Figure 8.2: Libraries created and extended during this thesis for the reasoner in

stationary platforms and its connectivity to external elements.

The second tool facilitates the implementation of reasoning mechanisms in sta-
tionary platforms. For this purpose, an existing tool [164] has been extended. The
contributions to this tool include its publication in an open-source repository [206],
its mavenisation, and major refactorisation of the code, as well as its division into differ-
ent reusable libraries as shown in Figure 8.2. The following libraries have been created

or extended for this thesis:

* Graphical User Interface: The mreasoner-gui [206] is an additional layer to the
mreasoner library which allows one to graphically configure, create and modify
the different elements required for the reasoner to run. It includes the creation
of rule specification files and its verification using the m2nusmv library. Also,
it includes a graphical tool for translating the output file of the LFPUBS using
the Ifpubs2m library.

* LFBPUS2M: The lfpubs2m [208] library automatically translates patterns de-
tected using the pattern learning LEPUBS tool [88] [207] into rules that have
the M Language format. This library was originally created as part of [164],
and was later extended in [165]. It has been improved again to make it more
compatible with the framework of this thesis.

* MReasoner Core: The mreasoner-core [212] contains the minimal required ele-

ments for reasoning according to the algorithm presented in [164]. It is data-

229

storage independent, and it can be used as a lightweight independent library.
Vera Manager: In order to interconnect different types of Z-Wave radio based
sensors, the M reasoning system uses Vera Routers [213]. These types of routers
provide their own operating system to manage the inclusion and removal of dif-
ferent Z-Wave based sensors. The Vera manager [214] is a reasoner-independent
library that facilitates reading the events occurring in the log of a Vera Router
using an Observer pattern structure.

M2NuSMV: This library [205] translates specifications written in the M lan-
guage to specifications in the NuSMV model checker.

LFPUBS: Is a system that learns frequent patterns of user behavior, taking into
consideration the specific features of Intelligent Environents. It has a learning
layer that is independent of the particular environment in which the system is
being applied. It also includes a language that allows the representation of dis-
covered behaviours in a clear and unambiguous way. Coupled with the learning
language, it provides an algorithm that discovers frequent behaviors using asso-
ciation, workflow mining, clustering, and classification techniques [88]. The
work has been released as open-source and it can be found at [207].

NuSMV: A symbolic model checker tool that reimplements and extends SMV,
the first model checker based on Binary Decision Diagrams using the CUDD
library [215]. NuSMYV has been designed to be an open architecture for model
checking, which can be reliably used for the verification of industrial designs,

and as a test-bed for formal verification techniques [216] [183].

8.6.3 Reasoning tool for mobile platforms

The third software tool developed as part of this thesis work facilitates the implement-

ation of reasoning mechanisms in mobile platforms. It is based on an already existing

tool [167], which has been refactored for facilitating the automation of code gener-

ation, as part of the contribution to the work of this dissertation. Additionally, an-

other contribution is the influence on the design structure of observers in [217] to

include the responsibility of sensors, as introduced by [1]. The reasoner is divided

into two main libraries: Android Context Library (aContextLib) and Android Con-

text Reasoner (aContextReasoner). Figure 8.3 illustrates the inner workings of these

230

Learning
Platform

Layer 5
(Learning)

Aggregation
Engine

ContextManﬂ‘ BAROL
Engine

ContextMapper

Data Logger
Android
Context
Reasoner

Layer 4
(Reasoning)

SituationOfinterest

Android
ContextReceivers| Context
Library

Layer 3

(Middleware) ContextObserver

Layer 1 -
(Operating Android

System)

Figure 8.3: Main elements in the android reasoner and it interacts with the con-
text library, the newly developed applications the operating system and the learn-
ing platform.

two main libraries. The different components of these libraries are explained below

* Query Platform: The aim of this component s to facilitate the analysis of relev-
ant behavioural traits of users. For this, it uses historical context data produced
by the reasoner. With this data, it generates graphical visualisations over a given
time window.

. Aggregation Engine: This particular component reasons over primary context
in order to produce higher level context information or secondary contexts [1].

* Data Logger: Logs the different changes that occur in the context.

* Context Manager: It is a core component than handles the operations between
the database, the receivers (data from sensors), and the reasoner.

* CSPARQL Engine: Handles the stream reasoning engine for handling primary

contexts in the form of ontologies.

5Note that specifics of the application are explained in Section 8.7.1, as well as the SituationOfln-

terest, ContextObservers and ContextReceivers.

231

* Context Mapper: This componentis responsible for registering and de-registering
both context and context modelling rules.

* Sensor Framework: Most Android-powered devices have built-in sensors that
measure motion, orientation, and various environmental conditions [218]. For
the purpose of letting the developer access the raw data from sensors, Google

provides the android sensor framework.

8.7 Model to text transformations

It is anticipated that the framework developed and described in this thesis report will
improve the efficiency of the software developer, and, to some extent, speed up the
implementation stage. The key for making the implementation faster is the feature of
the model driven development to generate code text from diagram models. Previous
sections have merely introduced the generation of code as part of the methodology.
This section focuses on explaining the specifics of code generation aspects that have
been implemented for the automatic code generating tools of this framework. The
different transformation rules are divided into two main groups: those applied to the
stationary platform related models and those applied to the mobile platform related

models.

8.7.1 Process for mobile platforms

This subsection explains in detail how the code is automatically generated, compiled,
executed and deployed, for mobile platforms, as it is illustrated in Figure 8.4. The
figure maps the different Design models to the different software artefacts of the An-
droid Context Reasoner, as well as the steps that the developers need to follow for this

purpose.

8.7.1.1 ContextReceiver Class

The purpose of the ContextReceiver class is to have a unified callback for an applica-
tion to send raw data. The Android Context Library [166] can be used as a common

software module for more than one context-aware application simultaneously. Each

232

@ Generate code from diagrams

[2
Situation Acquisition & .
Detection Modelling R(:‘Ti)sgglgg Derzfgglfm
models models
CUStOmCOW SltuatlonOﬂnterest java ContextReceiver java
ContextObserver.java
Prefs.java OntologyManager java
Relocate code
in Libraries @

Android Context

PN [SR Reasoner
Application Code < Code

Android Context
Library Code

Android Custom uses

Install
& Run
Application.apk

Figure 8.4: Map of the software artefacts produced by the Acquisition & Mod-
elling, Reasoning and Deployment Diagrams, and their relation to the Android

libraries and the mobile system under development.

233

application requires a context receiver, where all the raw data from the sensors will be
sent. There are two different flavours: The IContextReceiver is an interface which can
be used as callback for data when using observers singularly without the reasoner. The
ContextReceiver is an abstract class which helps in collecting data and feeding it into
the reasoner, and generating RDF on the fly. Figure 8.5 shows the pseudo-code rules
for creating the context receiver of the project. Note that depending on the project,

functions that receive Object types or string maps need to be manually implemented.

8.7.1.2 ContextObserver Class

ContextObservers are the primary components of the library for the collection of raw
data coming from the Android sensor framework or other datasources. Receivers are
registered to observers and receive callbacks with the raw information produced by the
sensor. All context observers contain four main methods for managing their life-cycle
(Z.e. start, pause, resume, stop). As a contribution to this thesis, a general schema for
classifying observers has been designed 6, which is based on the previous design of the
context library, and the sensor type classification introduced by [1]. According to this

classification, each observer can extend one of the following abstract classes:

* ContextObserver: The core abstract class that each observer must at least ex-
tend.

* PullObserver: In order to obtain the desired data, the observer is responsible
for making a request from the Android Sensor Framework or from other data-
sources.

* PushObserver: The sensor is responsible for pushing the raw data to the ob-
server. Although a custom sensor can directly extend from the PushObserver
class, there are currently four different types of PushObservers for this library:

— (Android) SensorObserver: It is used for getting raw data directly from
the Android Sensor Framework.

— BroadcastObserver: Which gets data from Android device intent broad-
casts.

— BluetoothLEObserver: Which gets data from Bluetooth Low Energy devices.

Note that although the classification schema was produced as a contribution to this thesis, it was

implemented by Dean Kramer, a researcher funded by the POSEIDON project.

234

Stereotypes in the
Acquisition & Modelling and D

Context
eployment Diagrams

«stereotype»
Sensor

«stereotype»
MobileSensor

id: String
valueType: JavaValueType

type: SensorType

responsibility: ResponsibilityType
regularity: RegularityType

library: MobileSensorType
frequency: Long
ontology: String

data: String

method: String
methodTripleVar: String
methodResultExpr: String

«stereotype» «stereotype»
RDFModellingRule ContextState
logicalEvaluations: String id: String

description: String
isIndependent: boolean
initialValue: boolean

Custom Receiver Class from the
Android Context Library

«class»

‘ [Project.name]Receiver.java

«stereotypen
AndroidReasoner|

ontologyBase: String
streamIRI: String

[MobileSensor.name.java

[for AndroidReasoner]
package edu.casetools.icase.custom;
import java.lang.Object;
import java.util.Map;
import uk.ac.mdx.cs.ie.acontextlib.ContextReceiver;
[forEach MobileSensor]
import edu.casetools.icase.mreasoner.extensions.sensors. [MobileSensor.name]Observer;
[end forEach]

public class [AndroidReasoner.name]Receiver extends ContextReceiver {

@Override
public void newContextValue(String name, Long value) {
String strValue = String.valueOf (value) + "““http://www.w3.org/2001/XMLSchema#integer";
[forEach MobileSensor where MobileSensor.valueType == "LONG"]
[modelRule (MobileSensor)]
[end forEach]
}
@Override
public void newContextValue(String name, Double value) {
String strValue = String.valueOf(value) + "““http://www.w3.org/2001/XMLSchema#double";
[forEach MobileSensor where MobileSensor.valueType == "DOUBLE"]
[modelRule (MobileSensor)]
[end forEach]
}
@Override
public void newContextValue(String name, Boolean value) {
String strValue = String.valueOf (value);
[forEach MobileSensor where MobileSensor.valueType == "BOOLEAN"]
[modelRule (MobileSensor)]
[end forEach]

@Override
public void newContextValue(String name, String strValue) {
[forEach MobileSensor where MobileSensor.valueType == "STRING"]

[modelRule (MobileSensor)]
[end forEach]

@Override
public void newContextValue(String name, Object value) {
/* @todo Implement code for your own specific values */
¥
@Override
public void newContextValue(String name, final Map<String, String> value) {
/* @todo Implement code for your own specific values */
}
}
[end for]
[function def: modelRule(MobileSensor)]
[getElse ()] if (name.equals([MobileSensor.name]Observer .NAME)) {
[forEach ModellingRule in feedsInWindow(MobileSensor,ModellingRule)]

[for ContextState in produces(ModellingRule,ContextState)]
getReasonerManager () .updateValues (" [MobileSensor.category]#[MobileSensor.name]",
"[ContextState.name]", strValue);

[end forEach]

[end forEach]
}

[end function def]

Figure 8.5: Illustration of the pseudo-code rules for transforming stereotypes in
the Context Acquisition & Modelling Diagram, to the Java class for the context
receiver in the Android Context Library. Where getElse() is a function that
writes an else if there has been a previous if, and text between square brackets

represents an attribute from the stereotype in the form of Stereotype.name.
235

Stereotypes in the Context

Context Deployment Diagram Ontology Manager Class in the
Android Context Reasoner Library

«stereotype» Transformation

q «class»
AndroidReasoner

OntologyManager.java

ontologyBase: String
streamIRI: String

OntologyManager.java

[for AndroidReasoner]
package edu.casetools.icase.custom;

public class OntologyManager {
public static final String BASE_ONTOLOGY = "[AndroidReasoner.ontologyBasel";
public static final String STREAM_IRI = "[AndroidReasoner.streamIRI]";

¥
[end for]

Figure 8.6: Illustration of the pseudo-code rules for transforming stereotypes in
the Context Deployment Diagram, to the Java class for the ontology manager in

the Android Context Reasoner.

— LocationObserver: Which gets data from the Android Location services.

Figure 8.8 shows the code transformation for observers. The specific pseudo-code
rules for getting the transformation of each Observer type can be found in Appendix
A4

8.7.1.3 CustomContextMapper Class

This class contains all the SituationsOfInterest required by the application. Itis a cent-
ralised way of handling the reasoning and modelling rules to be applied by the reasoner.
Figure 8.9 shows the pseudo-code rules for getting the transformation. Note that only

one CustomContextMapper is generated for each project.

8.7.1.4 Prefs Class

This class contains all the preference values which are customisable by the users and
which can be changed after the system is implemented. Itis a centralised way of hand-
ling the reasoning and modelling rules to be applied by the reasoner. Figure 8.7 shows
the pseudo-code rules for getting the transformation. Note that only one Prefs file is

generated for each project.

236

Stereotypes in the Context
Situation Detection Diagram

Sit «i?eregt:.’[pi» " Custom Context Mapper Class in the
- - m.l = Context Reasoner Library
id: String

description: String
frequency: FrequencyLevel
feasibility: FeasibilityType

Transformation / «classy

CustomContextMapper

«stereotype»
DetectionPlan

id: String

description: String

recommendation: RecommendationType
toBelmplemented: boolean
failureLikelihood: LikelihoodLevel
failureImpact: ImpactLevel

CustomContextMapper.java

package edu.casetools.icase.custom;

import android.content.Context;

import org.poseidon_project.context.ContextReasonerCore;

import org.poseidon_project.context.reasoner.AbstractContextMapper;
import org.poseidon_project.context.reasoner.ReasonerManager;

[forEach SituationOfInterest where
(detects(DetectionPlan, SituationOfInterest)
and DetectionPlan.toBeImplemented = true)]

import edu.casetools.icase.custom.situations.[SituationOfInterest.name]S0I;
[end forEach]

public class CustomContextMapper extends AbstractContextMapper {

public CustomContextMapper (ContextReasonerCore crc, ReasonerManager rm, Context con) {
super ("CustomContextMapper",crc,rm,con) ;
initialiseSituationsOfInterest();

}

private void initialiseSituationsOfInterest() {
[forEach SituationOfInterest where

(detects(DetectionPlan, SituationOfInterest)

and DetectionPlan.toBeImplemented = true)]

situationsOfInterest.add(new [SituationOfInterest.name]S0I());
[end forEach]

}

Figure 8.7: Illustration of the pseudo-code rules for transforming ContextPref-
erence stereotypes in the Situation Detection Diagram, to the Java class for the

preferences in the Android Context Reasoner.

237

Stereotypes in the Context
Acquisition & Modelling Diagram Observer Class in the
Android Context Reasoner Library

Celieieliipe) «stereotype»

Sensor . -ansformati
— MobileSensor Transformation 4 «classy
id: String q X 1. . .
valueType: JavaValueType '[‘brary' MobileSensorType [MobileSensor.name]Observer.java
requency: Long
type: SensorType

responsibility: ResponsibilityType 3222%0%);;13&““?’
: g

regularity: RegularityType

Figure 8.8: Illustration of the Stereotype transformation in the Context Acquis-
ition & Modelling Diagram, to the Java class for the context mapper in the An-
droid Context Reasoner. Where text between square brackets represents an at-

tribute from the stereotype in the form of Stereotype.name.

238

Stereotypes in the Context
Situation Detection Diagram

o «i?ere(c;tf):[pi» " Custom Context Mapper Class in the
1tuation nteres

- - Context Reasoner Library

id: String

description: String
frequency: FrequencyLevel
feasibility: FeasibilityType

Transformation J «classy

CustomContextMapper

«stereotype»
DetectionPlan

id: String

description: String

recommendation: RecommendationType
toBelmplemented: boolean
failureLikelihood: LikelihoodLevel
failureImpact: ImpactLevel

CustomContextMapper.java

package edu.casetools.icase.custom;

import android.content.Context;

import org.poseidon_project.context.ContextReasonerCore;

import org.poseidon_project.context.reasoner.AbstractContextMapper;
import org.poseidon_project.context.reasoner.ReasonerManager;

[forEach SituationOfInterest where
(detects(DetectionPlan, SituationOfInterest)
and DetectionPlan.toBeImplemented = true)]

import edu.casetools.icase.custom.situations.[SituationOfInterest.name]S0I;
[end forEach]

public class CustomContextMapper extends AbstractContextMapper {

public CustomContextMapper (ContextReasonerCore crc, ReasonerManager rm, Context con) {
super ("CustomContextMapper" ,crc,rm,con) ;
initialiseSituationsOfInterest();

}

private void initialiseSituationsOfInterest() {
[forEach SituationOfInterest where

(detects(DetectionPlan, SituationOfInterest)

and DetectionPlan.toBeImplemented = true)]

situationsOfInterest.add(new [SituationOfInterest.name]S0I());
[end forEach]

}

Figure 8.9: Illustration of the pseudo-code rules for transforming stereotypes in

the Situation Detection Diagram, to the Java class for the context mapper in the
Android Context Reasoner.

239

Stereotypes in the Context
Acquisition & Modelling and Situation Detection Diagrams

«stereotype» «stereotype» «stereotype» i . .
stom Situation of Interest Class in the
RDFModellingRule SituationOfInterest ContextState Cu tOC Sftu;tRU 2 t(L-ibt Clas; the
- - ontext Reasoner Library
logicalEvaluations: String id: String id: String) y
method: String description: String description: String
methodTripleVar: String uency: uencyLevel | | islne
methodResultExpr: String feasibility: FeasibilityType boolean
initialValue: boolean

Iransformation 5 «class»

[SituationOfInterest.name]SOI.java

«stereotype»
DetectionPlan

id: String

description: String

r dation: ionType
toBelmplemented: boolean
failureLikelihood: LikelihoodLevel
failureImpact: ImpactLevel

Figure 8.10: Illustration of the pseudo-code rules for transforming stereotypes
in the Situation Detection Diagram, to the Java class for the context mapper in
the Android Context Reasoner. For space reasons, the tranformation rules can
be found in Appendix A.4.C.

8.7.1.5 Situation of Interest Class

This abstract class enables registering and de-registering of the context modelling and
reasoning rules of a situation of interest at the same time. In this way it allows the hand-
ling of the different situations of interest separately. Figure 8.10 illustrates the pseudo-

code transformations rules for the automatic code transformation of this class.

8.7.1.6 Ontology Manager Class

This is a simple class containing (in different Java Strings) the base of the main on-
tology, and the IRI for the stream which will be used in the C-SPARQL engine. Fir-
gure 8.6 illustrates the pseudo-code rules for the automatic code transformation of this

class.

8.7.1.7 Example

This example is a continuation of the example introduced in Section 6.4.1.1 and it as-
sumes that all the corresponding tools have been installed as indicated in Appendix
A. Asitis illustrated in Figure 8.4, the generated code is related to the context library,
context reasoner library and the developed application. Although the code could be
managed directly in the developed application, in order to make the libraries more re-
usable for future projects, it is suggested divide the files as indicated in Figure 8.4. In

order to generate the code corresponding to the acquisition of context, related to the

240

models appearing in Figure 6.6, the developer (interacting with the tool GUI) needs
to select and click with the right mouse button the root folder of the Modelio model
(left folder hierarchy panel). Then, the user needs to click on Design for C-ASE -> Con-
text Acquisition and Modelling -> Generate mobile acquisition. This will generate the
NavigationSystemReceiver.java file. Note that for this example, no observers and no
actuators are generated. In this case, the driver required for obtaining the temperature
can directly be the LocationWeatherObserver.java class of the context library. In order
to generate the code corresponding to the modelling and reasoning of each situation
of interest, the developer needs to right click on the root folder of the Modelio model
(left folder hierarchy panel). Click on Design for C-ASE -> Context Acquisition and
Modelling -> Generate mobile modelling and reasoning rules. This will generate the
CustomContextMapper.java file, containing all the references to the situations of in-
terest, and a Java class for each situation of interest in the project, containing all the
modelling and reasoning rules. A code snippet of the CSPARQL rules produced for
part of the situation of interest represented in the example in Figure 6.6, is shown in
Figure 8.11. As it can be observed in this figure, the implementation allows the prefer-
ence corresponding to $$Cold TemperaturePreference to be changed at execution time.
In order to relocate the files, the following project hierarchy is suggested. The Custom-
ContextMapper.java file is located into the edu.casetools.icase.custom package. Each of
the situations of interest is located into the edu.casetools.icase.custom.situations pack-

age.

8.7.2 Process for stationary platforms

This subsection explains in more detail how the code is automatically generated, com-
piled, executed and deployed, for stationary platforms as it is illustrated in Figure 8.12.
The figure maps the different Design models to the difterent software artefacts of the
reasoner, as well as the steps that the developers need to follow for this purpose. The
first step consists of generating the code from the different Design models, which can
be done as further explained in Section 8.7.2.8. Note that there are two types of code
that will be generated in this case, Java code and text files. The Java files contain code
that needs to be integrated with the reasoner library. Particularly with the graphical

user interface version of the M Reasoner [206]. The text files will be loaded once the

241

private static final String coldTemperature_query =
"REGISTER QUERY coldTemperature_query AS
PREFIX
ex:<http://ie.cs.mdx.ac.uk/POSEIDON/envir#>
CONSTRUCT {
ex:temperaturesensor
http://ie.cs.mdx.ac.uk/POSEIDON/context/is
\"coldTemperature\"
}
FROM STREAM
<http://poseidon-project.org/context-stream>
[RANGE 10s STEP 4s]
WHERE {
?m ex:hasTemperatureValue 7tempValueIRI .
7?tempValueIRI ex:temperatureValue 7tempValue .
FILTER (7tempValue < $$ColdTemperaturePreference)
LA

public String getcoldTemperature_query(String value) {
String coldTemperature_queryString =

new String(coldTemperature_query);

return coldTemperature_queryString.replace(

"$$ColdTemperaturePreference",
String.valueOf (value));

Figure 8.11: Code snippet of the C-SPARQL code generated by Modelio with
regard to the model of Figure 6.6. Note that this code generates Java clases. The
engine for producing the content inside the string has been reused from that

presented in [3], which is publicly available in [4].

reasoner has been compiled and it is executing. The second step consists of relocat-
ing the Java code into the corresponding reasoner library [206]. Appendix A describes
how the library can be downloaded and installed. Once the code is relocated inside the
library, the next step is to compile the project and run it, which can be done follow-
ing the instructions in Appendix A. Then, the specifications and configurations are
loaded into the M Reasoner, as explained in Appendix A, A, and A. Finally, following
the instructions of Appendix A, the M Reasoner is executed. This will automatically
deploy all the required elements and run the system. Note that developers can also
simulate the system. The remainder of this section will explain the different model to
text transformations required to produce each of the files that can be observed in Fig-
ure 8.12. Note that for the rest of the chapter, model to text transformations will be
illustrated in figures, where text between square brackets represents an attribute from

the stereotype in the form of Stereotype.name.

242

@ Generate code from design diagrams

Aﬁ‘s ése'};i?]n & Reasoning Deployment

9 models models

models
SensorObservers.java m_specification.txt mconfigs.txt
Actuators.java ssh_configs.txi

DeploymentModule.java

Main.java
l@ Relocate code in Library Load
M Reasoner Compile & Run
GUI Library M Reasoner GUI
Code @ Instance
. Deploy & Start
Jn in,”’ System
“€ %
L

Figure 8.12: Map of the software artefacts produced by the Acquisition & Model-

ling, Reasoning and Deployment diagrams, and their relation to the M Reasoner

code and system.

243

Stereotypes in the Context
Acquisition & Modelling Diagram

«stereotype»
Sensor

id: String g
el e Observer Class in the
type: SensorType e M Reasoner GUI Library
responsibility: Responsibility Type !
regularity: RegularityType

Transformation «classy
«stereotype»

«stereotype» PreferenceSensor [Sensor.name]Observer
StationarySensor

min_vale: ValueType
max_vale: ValueType
isBoolean: Boolean

verald: String
min_value: ValueType
max_value: ValueType
isBoolean: Boolean «stereotype»
ContextState
id: String
description: String
isIndependent: boolean
initialValue: boolean

«stereotype»
DBModellingRule

rule: String

[Sensor.name]Observer.java

[forEach Sensor]
package edu.casetools.icase.mreasoner.extensions.sensors;
import edu.casetools.icase.mreasoner.deployment.sensors.SensorObserver;
public class [Sensor.name]Observer extends SensorObserver{
@0verride
protected boolean applyCustomModellingRules(String stateName, String iteration, String value) {
[toDeclaration(Sensor.type)] sensorValue = [Sensor.type].valueOf (value);
boolean result = false;
[forEach DBModellingRule in feeds(Sensor,DBModellingRule)]
[forEach ContextState in produces(DBModellingRule,ContextState)]
if (stateName.equals([ContextState.name])){
result = ([DBModellingRule.rulel);
¥
[end forEach]
[end forEach]
return result;
¥
}
[end forEach]

Figure 8.13: Illustration of the pseudo-code rules for transforming stereotypes
in the Context Acquisition & Modelling Diagrams, to the SensorObserver type
of class in the M Reasoner GUI Library. Where toDeclaration() is a function
that returns the corresponding Java declaration type for each JavaValueType (e.g.,

for an Integer value of the JavaValueType it returns inz).

8.7.2.1 Sensor Observer Class

For each Sensor stereotype in the design models, a SensorObserver Class is generated,
which contains the set of modelling rules which are applied to the same sensor, and
that produce a set of context states. Figure 8.13 shows the pseudo-code of the rules for
generating this code, using the stereotypes from the Context Acquisition & Modelling

Diagram.

8.7.2.2 Actuator Class

In the Deployment Diagrams, there are two stereotypes corresponding to actuators in

the stationary platform: VeraActuator and JavaActuator. In the case of the VeraActu-

244

Stereotypes in the Context Actuator Class in the

Deployment Diagram M Reasoner GUI Library
«stereotype» Transformation J «classy
JavaActuator [JavaActuator.name]Actuator

[JavaActuator.name]Actuator.java
package edu.casetools.icase.mreasoner.extensions.actuators;

//import javax.swing.JFrame;
//import javax.swing.JOptionPane;
import edu.casetools.icase.mreasoner.vera.actuators.data.Action;

public class [JavaActuator.name]Actuator extends JavaActuator{

@Override
public void performAction(Action action) {
// Add your own custom code
// JFrame messageFrame = new JFrame();
// JOptionPane.showMessageDialog(messageFrame,"Put here your custom message.");
}
¥

Figure 8.14: Illustration of the pseudo-code rules for transforming stereotypes
in the Context Deployment Diagrams, to the Actuator type of class in the M
Reasoner GUI Library.

ator stereotype, the reasoner library listens to changes in the state that triggers a cor-
responding actuator. If a change in that state is detected, the reasoner library sends an
http request to the Vera router, containing the action that the device should perform.
Then, the vera router makes that change to the corresponding ZWave actuator. In the
case of VeraActuator stereotypes, there is no need to generate an additional class, as the
existing class VeraActuator of the reasoner can be used for this purpose. On the other
hand, for the JavaActuator stereotypes, the reasoner is equally listening for changes in
the associated states, in the same way that it listens to associated states for VeraActu-
ators. Once a change in the state that triggers the actuator is detected, the code in the
per formAction function is executed. This function is executed in Java code that is
controlled from the reasoner library. As it can be observed in Figure 8.14, the JavaAc-
tuator stereotypes generate the code skeleton for implementing the functionality of
the actuator. In this case, the developers need to implement the functionality manu-

ally.

8.7.2.3 Deployment Module Class

The DeploymentModule class contains information about all the actuators and sensor

observers to be deployed in the system. Note that the SensorObserver class also con-

245

tains the Sensor class, which is intended to contain the information required by the
database about the relevant sensor information and its associations to the M Reasoner
states, as it contains a list with all the Actuators of the system, and all its SensorObserv-

ers. Figure 8.15 shows how the DeploymentModule class of the reasoner is generated.

8.7.2.4 Main File Class

The main file is the Java file that is used for executing the M Reasoner GUI. Figure
8.18 shows how this file is generated. As it can be observed, it simply initialises the
controller, model and view of the Model-View-Control (MVC) architecture of the lib-
rary. The system requires an AbstractDeploymentModule that contains information
to help the deployment of the system in the real environment modality. The automat-
ically generated class from Figure 8.15 extends from the AbstractDeploymentMod-

ule.

8.7.2.5 Specification

The M specification is a simple text file containing the states and rules which indic-
ate the reasoning to be performed by the M Reasoning system. This file can easily be
loaded to the reasoner, and it contains information about all the states and the rules
that are going to be applied to them [162]. Figure 8.16 shows the mapping between

Reasoning Diagram elements and the specification.

8.7.2.6 Configurations

The M configurations is a simple text file containing information about how the al-
gorithm should be executed and the data required for connecting to the database. This
file can easily be loaded into the reasoner. Figure 8.17 shows the mapping between the

Deployment Diagram elements and the configurations.

8.7.2.7 Secure Shell Configurations

There are other additional configurations required to connect to a specific Vera router

through Secure Shell (SSH), in order to read the information about changes in the

246

Modelio Project Deployment Module Class in the
- M Reasoner GUI Library
=) Project pr— .
ransformation Q
name: String J/ «classy
[Project.name]|DeploymentModule
Stereotypes in the Context
Acquisition & Modelling Diagram =
=
S g
«stereotype» 3 :
Sensor c)xo“‘ G
id: String @@“’ 3
valueType: JavaValueType =
type: SensorType
responsibility: Responsibility Type — R
regularity: RegularityType Stereotypes in the Context
. .
— e Deployment Diagram
«stereo €
. Vo PreferenceSensor
StationarySensor «stereotype»
: ValueType 2
verald: String __vale: ValueType Actuator
min_value: ValueType isBoolean: Boolean ot A erChmis
max_value: ValueType -
isBoolean: Boolean «stereotypen
ContextState
dticmesiyee «stereotypen «stereotypen
DBModellingRul id: String VeraActuator
odellinghiule description: String JavaActuator - —
1o Stri isIndependent: boolean serviceld: String
e T 8] eI GIGy Taealtamn actionCommand: String
Project.name/DeploymentModule. java

package edu.casetools.icase.mreasoner.extensions.modules;

import java.util.Vector;
import edu.casetools.icase.mreasoner.database.core.MDBImplementations;
import edu.casetools.icase.mreasoner.deployment.realenvironment.AbstractDeploymentModule;
import edu.casetools.icase.mreasoner.deployment.sensors.Sensor;
[forEach Sensor]

import edu.casetools.icase.mreasoner.extensions.sensors. [Sensor.name]Observer;
[end forEach]
import edu.casetools.icase.mreasoner.vera.actuators.device.VeraActuator;
[forEach VeraActuator or JavaActuator]
import edu.casetools.icase.mreasoner.extensions.actuators. [Actuator.name]
[end forEach]
public class [Project.name]DeploymentModule extends AbstractDeploymentModule {

public [Project.name]DeploymentModule (){
super () ;

@0verride
protected void initialiseSensorObservers() {
[forEach Sensor]
initialise[Sensor.name]SensorObserver();
[end forEach]
3

[forEach Sensor]
private void initialise[Sensor.name]SensorObserver() {

Vector<String> states = initialise[Sensor.name]SensorStates();
[Sensor.name] Observer temperatureObserver = new [Sensor.name]Observer();
Sensor [Sensor.name]Sensor = new Sensor("[Sensor.id]","[Sensor.name]",
"[Sensor.model]", "[Sensor.location]", "[Sensor.valueType]".toUpperCase(),
"[Sensor.min_value]", "[Sensor.max_value]",
"[Sensor.isBoolean()]".toLowerCase(), states);
[Sensor.name] Observer.setSensor (temperatureSensor) ;
this.sensorObservers.add([Sensor.name]Observer) ;

}

private Vector<String> initialise[Sensor.name]SensorStates() {

Vector<String> states = new Vector<String>();

[forEach DBModellingRule in feeds(Sensor,DBModellingRule)]
[forEach ContextState in produces(DBModellingRule,ContextState)]

states.add("[ContextState.name]");

[end forEach]

[end forEach]

return states;

[end forEach]

QOverride
protected void initialiseActuators(){
[forEach VeraActuator]
VeraActuator [VeraActuator.name]Actuator = new VeraActuator(
"[VeraActuator.serviceId]"," [VeraActuator.action]");
this.actuators.add(lampActuator) ;
[end forEach]
[forEach JavaActuator]
ExampleMessageDisplayActuator tuator = new Exampl DisplayActuator();
this.actuators.add(messageActuator);
[end forEach]
¥

}

Figure 8.15: Illustration of the pseudo-code rules for transforming stereotypes
in the Context Acquisition & Modelling Diagrams, and Deployment Diagrams,

to the Deployment Module class in the M Reasoner GUI Library.
247

m_ specification.txt

states([forEach ContextState] [ContextState.name]
[useComma ()] [end forEach]);

[forEach ContextState]
[if ContextState.isIndependent = true]
is(#[ContextState.name]);
is([ContextState.name]);
[end if]

Stereotypes in the Context fend forBach]

Reasoning Diagram [forEach ContextState]
holdsAt([getSign(ContextState.initialValue)]

«stereotyper [ContextState.name],0);
«stereotype» yP [end forEach]
ContextState AntecedentGroup
id: String [forEach AntecedentGroup]
description: String [forEach same(AntecedentGroup,Consequent)]
isindependent: boolean «stereotype» ssr([getRule (AntecedentGroup,Consequent)]);
initialValue: boolean Antecedent [end forEach]
tato Stat [forEach next(AntecedentGroup,Consequent)]
«stereotype» state: State sEr([getRule (AntecedentGroup,Consequent)]);
PastOperator «stereotype» [end forEach]
. [end forEach]
id: String ImmediatePastOperator

state: ContextState
value: Boolean
type: OperatorType

bound: Integer [function def: getRule(AntecedentGroup,Consequent)]
[forEach Antecedent in AntecedentGroup]
[getSign(Antecedent.value)] [Antecedent.name] [useComma()]

«stereotype» ¢stereotype» [end forEach] .
AbsolutePastOperator [forEach PastOperator in AntecedentGroup]
Consequent [getSymbol (PastOperator.type)] [pastOperator(PastOperator)]

lowbound: Integer
uppbound: Integer

[getSign(PastOperator.value)] [PastOperator.name] [useComma()]
[end forEach]
-> [Consequent.name]);
[end function def]

state: ContextState

[function def: pastOperator(PastOperator)]
v 4 [if PastOperator is ImmediatePastOperator]
/ [[PastOperator.bound] /]
[else if PastOperator is AbsolutePastOperator]
/ [[PastOperator.lowbound], [PastOperator.uppbound]/]
[end if]
[end function def]

Transformation

Figure 8.16: Illustration of the pseudo-code rules for transforming stereotypes
in the Reasoning Diagrams, to the specification text file for the M Reasoner
GUI Library. Where useCommay() is a function that inserts a comma if there
is another element remaining, useAnd() is a function that inserts the A sym-
bol if there is another element remaining, getSymbol (OperatorType) re-
turns “[-]” for STRONG OperatorType, and “<->” for WEAK OperatorType,
getSign(boolean) returns “#” for false value of the input variable, and nothing
for true value. Note that brackets with a slash (“/[” “/]”) represent text to be

transformed.

248

Stereotypes in the Context
Deployment Diagram

«stereotype»
MReasoner

fixedIterationTime: boolean
iterationTime: String
maxExecutionTime:
boolean

executionTime: String

«stereotype»
MDatabase

type: MDBType
hostname: String
port: String
username: String
password: String

Transformation

V4

configurations.txt

<USE_STRATIFICATION>
false
</USE_STRATIFICATION>
<EXECUTION_MODE>
REAL_ENVIRONMENT
</EXECUTION_MODE>
[for MReasoner]
<USE_FIXED_ITERATION_ TIME>
[MReasoner.fixedIterationTime]
</USE_FIXED_ITERATION_TIME>
<FIXED_ITERATION_TIME>
[MReasoner.iterationTime]
</FIXED_ITERATION_TIME>
<EXECUTION_TIME>
[MReasoner.executionTime]
</EXECUTION_TIME>
<USE_MAX_EXECUTION_TIME>
[MReasoner .maxExecutionTime]
</USE_MAX_EXECUTION_TIME>
[end for]
<SYSTEM_SPECIFICATION_FILE_PATH>
</SYSTEM_SPECIFICATION_FILE_PATH>
<RESULTS_FILE_PATH>
</RESULTS_FILE_PATH>
<LFPUBS_OUTPUT_FILE_PATH>
</LFPUBS_OUTPUT_FILE_PATH>
<SESSION_FILE_PATH>
</SESSION_FILE_PATH>
<SSH_CONFIGS_FILE_PATH>
</SSH_CONFIGS_FILE_PATH>
[for MDatabase]
<DATABASE_TYPE>
[MDatabase.typel
</DATABASE_TYPE>
<DATABASE_DRIVER>
[getDriver (MDatabase.type)]
</DATABASE_DRIVER>
<DATABASE_IP>
[MDatabase.hostname]
</DATABASE_IP>
<DATABASE_PORT>
[MDatabase.port]
</DATABASE_PORT>
<DATABASE_USER>
[MDatabase.username]
</DATABASE_USER>
<DATABASE_PASSWORD>
[MDatabase.password]
</DATABASE_PASSWORD>
<DATABASE_NAME>
[MDatabase.name]
</DATABASE_NAME>
[for MDatabase]

Figure 8.17: Illustration of the pseudo-code rules for transforming stereotypes

in the Context Deployment Diagram, to the configuration txt file of the M Rea-

soner. Where text between square brackets represents an attribute from the ste-

reotype in the form of Stereotype.name; and where get Driver() is a function

that returns the driver used by each database type (e.g., for an Integer value of
the MDBType it returns int).

249

Modelio Project Main Class in the
M Reasoner GUI Library
(] Project
- - «class»
name: String Transformation 5 Main
Main.java

[for Project]
package edu.casetools.icase.mreasoner.gui;

import edu.casetools.icase.mreasoner.extensions.modules. [Project.name]DeploymentModule;
import edu.casetools.icase.mreasoner.gui.controller.Controller;

import edu.casetools.icase.mreasoner.gui.model.Model;

import edu.casetools.icase.mreasoner.gui.view.View;

public class Main {

public static void main(String[] args) {

Controller controller = new Controller(new View(),new Model(new [Project.name]DeploymentModule()));
controller.start();

}
[end for]

Figure 8.18: Illustration of the pseudo-code rules for transforming the modelio
project into the Main class in the M Reasoner GUI Library.

ssh__configs.txt

[forEach VeraRouter]

<HOSTNAME>
Stereotypes in the Context [VeraRouter.hostname]
a </HOSTNAME>
Deployment Diagram <PORT>
[VeraRouter.port]
SEEERE Transformation J </PORT>
VeraRouter <USERNAME>
hostname: String [VeraRouter.username]
port: String </USERNAME>
username: String <PASSWORD>
prasRen i [VeraRouter.password]

N ~ </PASSWORD>
[end forEach]

Figure 8.19: Illustration of the pseudo-code rules for transforming stereotypes
in the Context Acquisition & Modelling Diagrams, to the configuration text file
for the M Reasoner GUI Library.

250

sensors, to then store them in the database. For each VeraRouter stereotype, a corres-

ponding SSH configurations file is generated, as it is shown in Figure 8.19.

8.7.2.8 Example

This example is a continuation of the example introduced in Section 6.4.1.2 and it as-
sumes that all the corresponding tools have been installed as indicated in Appendix
A. As it is illustrated in Figure 8.12, some of the generated code (.java) is related to
the mreasoner-gui [206] library, and some other code (.txt) is related to the execu-
tion of the mreasoner-gui. In order to generate the code corresponding to the ac-
quisition and modelling of context, related to the models appearing in Figure 6.7, the
developer needs to select and click with the right button the root folder of the Mod-
elio model (left folder hierarchy panel). Then the user should right click on Design
for C-ASE -> Context Acquisition and Modelling -> Generate stationary platform ac-
quisition and modelling code (PostgreSQL). There is also a choice to generate the same
code, but oriented to MySQL if this is the preferred database. This action will gen-
erate the following files for this example: PresenceSensorObserver.java, CookerSwitch-
SensorObserver.java, CookerUnattended ExampleDeploymentModule.java, CookerAc-

tuator.java and M, ain.java.

These files have to be merged with the existing project which uses the mreasoner-
gui library. The following project hierarchy is suggested. The Main.java generated
file should be located in the main package of the project, in the edu.casetools.icase.
mreasoner.gui package. The CookerUnattended ExampleDeploymentModule.java file
goes into the edu.casetools.icase. mreasoner.extensions.modules package of the mreasoner-
gui project. The remainding two observers (PresenceSensorObserver.java and Cooker-
SwitchSensorObserver.java) go into the edu.casetools.icase.mreasoner.extensions.sensors
package. Finally, the actuator CookerActuator.java goes into the edu.casetools.icase.
mreasoner.extensions.actuators package. Once the code is merged with the current pro-
ject, there is a need to compile and execute the code using the Main.java file. This will
launch the mreasoner-gui interface. In order to generate the corresponding code for
this platform, the developer should click on Design for C-ASE -> Context Reasoning ->

Generate stationary reasoning rules and on Design for C-ASE -> Context Deployment

251

-> Generate stationary platform configurations. This will produce the specifications
and the configurations for the M Reasoner for this example, as shown in Figure 8.20.
The user just needs to click on the main menu of the mreasoner-gui interface and go
to Session -> Load Session. Then, select the generated file in order to load the rules
and configurations to the mreasoner-gui execution instance. Finally, the developers
have to configure the Z-Wave sensors into the Vera router. For this, simply follow the
instructions provided by the company, which depend on the particular router used.

The stationary system is now ready to be deployed.

8.8 Conclusions

This chapter proposes a framework for implementing, deploying and maintaining context-
aware systems, that facilitates code generation from previously introduced require-
ments and design models. The overall purpose is to speed up the development process
for supporting the dynamic changes caused by the dynamic nature of context. The
main contributions of this chapter are:
* Aguide for theimplementation, deployment and maintenance of context-aware
systems, supporting the creation of systems in mobile and stationary platforms.
* A set of tools to support the automatic code generation for requirements and
Design models.
* The adaptation of reasoning tools for stationary platforms according to the ob-
jectives introduced in Section 1.4.
* The adaptation of reasoning tools for mobile platforms according to the object-

ives introduced in Section 1.4.

252

/s sk ok ok sk sk sk sk sk sk ok ok sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk ok sk ok sk sk sk sk sk sk ok sk ok sk sk sk ok ok sk sk sk sk sk ok ok ok ok
* *

* This file has been automatically generated as part of the *

* DCASE module for the project NavigationSystem.

* *

stk ok ok ok sk sk ok ook ok ok sk sk sk sk ok ok ok sk sk sk s o ook sk sk sk sk sk ok sk ok ok sk sk ok o ok sk sk sk sk sk sk ok sk ok sk sk sk sk ko sk sk ok ok /

states(atKitchen, cookerOn, cookerUnattendedState, hazardState) ;

is(atKitchen);
is(#atKitchen);
is(cookerOn);

is(#cookerOn) ;

holdsAt (#cookerUnattendedState,0) ;
holdsAt (#hazardState,0) ;

ssr((cookerOn ~ [-][120]#atKitchen) ->cookerUnattended);
ssr(([-][60]cookerUnattended) ->hazard);

sEr((#hazard) ->#cookerOn);

sEr((#cookerOn) —>#hazard);

Figure 8.20: Code snippet of the M specification code generated by Modelio with
regard to the model of Figure 6.7.

253

Part V

Evaluation and critical reflection

255

CHAPTER 9 I

CONCLUSIONS AND FUTURE WORK

9.1 Introduction 258
9.2 Reflecting on the objectives and futurelines 261
9.2.1 Conceptualisation 261

9.2.2 Software process framework and open-source develop-

MENT . . v v v e e e e e e e e e e e e 264

257

9.1 Introduction

The research work presented in this dissertation has aimed to cover the existing gaps in
the specification and design of context-aware systems. Initial analysis of the different
methodologies for creating these types of systems has revealed that existing approaches
do not cover sufficiently the most common development stages of the life-cycle of a
software application. This motivated research focused on the key stages of a software
process (z.e. requirements, analysis and design, implementation, verification, deploy-
ment and maintenance) each of the different stages, leading to the conclusions that the
state-of-the-art approaches were scattered, and typically disconnected. This thesis has
covered the creation of a backbone framework which covers the most common stages
of the development process, and which is open-source, for other researchers and de-
velopers to contribute. This, is specifically targeted at the design and implementation
of context-aware systems, and aims to support developers through the most common
development life-cycle stages. It supports the creation of systems in any area that uses
context-awareness, such as Ubiquitous Computing, Ambient Intelligence, Ambient
Assisted Living or Intelligent Environments. Figure 3.2 represents the whole frame-
work. More explanations and the full example used along this thesis can be found in

[? |. This research has resulted in the following contributions:

C1 Anovel conceptualisation approach for developing context-aware systems which:
A) Takes into account the real capabilities of such systems; B) Is tailored to the
needs and preferences of the end-user stakeholders for which context awareness
is a primary consideration.

C2 Anenhanced requirements engineering model that specifically addresses the eli-
citation of context-aware features of software systems that have a primary focus
of enabling a platform for an intelligent environment. This technique intro-
duces a novel approach to the discernment of ‘service triggers’ with respect to
situational detection. The work has demonstrated an improved understand-
ing for developers with respect to two dimensions: A) The discovery of services
which are tailored to the end-user stakeholder’s needs and preferences in a par-
ticular situation; and B) The real capabilities, taking into account particular pro-

ject constraints, of the system providing adequate services in those situations.

258

Methodology

Model
Support

Tool
Support

External
tools

Requirements

Design

Implementation,
Deployment and

L

RC-ASEF

SRC-ASEF

Conceptualisation

DC-ASEF

[staken.] [REUBI]

VC-ASEF

RC-ASE

l Modelio

IMDC-ASEF

Mobile Platform [SEURERALETC!
reasoner libraries [NEEEENEIATNE TS

__________________ Tt

UML ‘ l SysML
(Modelio Module) (Modelio Module)

uTpP JUnit
Modelio Module; Modelio Module;

LFPUBS

Vera Router
os

Android OS

Figure 9.1: Representation of the different parts conforming the C-ASEF. Light

grey boxes represent parts which have been developed as part of the contribution

of this thesis. White boxes represent parts that have been adopted. The darkest

grey box represents a mixture of both.

C3 A bespoke UML/SysML diagram-based profile model that supports the en-

hanced requirements elicitation methodology [C2], and thus further enabling:

— The representation of the concepts indicated by contribution C2.

— The representation of the M reasoning language [162].

— The representation of context-reasoning verification specifications and its

relation to particular requirements.

C4 The extension of an open-source tool to support model-based elicitation of re-

quirements using the enhanced requirements engineering model [C2]. The ex-

tension takes a pure requirements analysis approach with respect to an integ-

rated support tool that facilitates the handling of complex relations between

the models. The extension includes/enables:

The full implementation of SysML Requirements diagrams, including all

its elements and relations, the requirements table and traceability matrix.

Automatic generation of documentation

259

The implementation of tables to manage the properties of context

The visualization of the traceability relations between the different ele-

ments in the system. This enables trace management by, for example, let-
ting the developer observe the specific elements that will be affected after

adding/modifying/removing a situation of interest from the system.

C5 The extension of an open-source tool that supports the design of rules [C3],
compatible with different reasoning middleware libraries that support the im-
plementation and deployment of context awareness in mobile or stationary plat-

forms, by:

C5.A Automatically generating code for an external context-aware sensor mid-
dleware for mobile devices.
C5.B Automatically generating rule models for an external smart-home envir-

onment based middleware.

C6 A conceptual approach that enables the mapping of models specified in the M
language [162] to models specified in the NuSMV [202] verification language.
This enables the verification of M rules in the NuSMV model checker.

C7 Theimplementation of C6 as an integrated open-source module which enables
the automatic generation of verification models from M rule models. The im-

plementation integrates with other, already existing, open source tools:

C7.A CoMo [3]: A context modelling tool that leverages the level of complex-
ity in the definition of rules, to enable context-aware stream reasoning in
mobile applications.

C7.B M-Reasoner [162]: A graphical interface tool for reasoning in smart-home
environments that facilitates the deployment of systems which use Z-Wave

(radio) based sensors.

The original tool corresponding to [C7.A] has been refactored to facilitate the
automation of code generation. Additionally, the library corresponding to the
reasoner for mobile platforms has also been refactored in order to better accom-
modate the code generation. The tool presented in [C7.B] has been made open-
source [206], mavenised, and some major refactorisations have been applied to

the code, including its division into different reusable libraries.

260

9.2 Reflecting on the objectives and future lines

Section 1.1introduces the Reader to the main challenges in the development of context-
aware systems. It is not the intention of this dissertation to solve them all, but rather
to use them for guiding the achievement of the main objective of this thesis: Laying
the foundations of a user-centred and open-source tool-supported framework for aiding
the developing of context-aware systems throughout the most common stages of their de-

velopment life-cycle.

9.2.1 Conceptualisation

This dissertation has studied the different existing definitions of the concept of con-
text, concluding that there is no consensus on what this term means. Guided by the
first challenge [Chgl] of the analysis presented in Section 1.1, a deeper investigation
into the motives behind this lack of consensus has shed light on the main cause: the
philosophical tradition behind the traditional understanding of context is opposite to
that underlying computer science. Although the resolution of this particular challenge
is out of the scope of this dissertation, an approach to the conceptualisation of context
in the area of context-aware computing has been presented [C1] [C2], acknowledging
the synergies between these two opposite philosophical traditions. On the one hand,
the identification of situations of interest is understood as a subjective process of un-
derstanding that the developer performs. On the other hand, guidance is provided for
developers to translate their understanding into a set of programming models which
can help to reproduce, to some extent, the identification of situations and the trigger-
ing of its corresponding services.

The conceptualisation of context presented in this thesis, does notintend to provide
solutions to all of the conceptualisation challenges for the development of context-
aware systems. Rather, this thesis intends to encourage future research towards creat-
ing more usable context-aware systems by mitigating the negative aspects of open chal-
lenges, and focusing on the positive aspects of what it can be achieved with state-of-the-
art techniques. The following reflection on the current conceptualisation is presented,

compared against the first objective of this thesis, introduced in Section 1.4.

* Even under the scope of this novel conceptualisation, the development of context-

261

aware systems remains a difficult task, and there is a high chance that developed
systems will take actions which might not be the most appropriate in certain
situations. In order to mitigate this drawback, a conceptualisation of the inter-
actions between humans and context-aware systems has been introduced. En-
abling developers to choose the most adequate interaction type according to the
situation, it helps to minimise the effects of the context-aware system not being
able to fully understand a certain situation.

It is not the aim of this conceptualisation to enable developers to discover all
possible situations of interest which may occur, as this might be a very difficult
or even an impossible task. Rather, the aim is to force developers to reflect on
these situations of interest as part of the development process, and during early
stages of the development life-cycle. Also, in order to provide better services,
there is a greater emphasis in the identification and understanding of stakehold-
ers and their particular profiles. This information helps developers to under-
stand better the meaning of their actions, and to provide services which are more
adequate to their preferences and needs.

It may occur that developers come up with great services to provide in certain
situations, but it might also happen that it is not possible for a computer to
identify such situations. In such circumstances, it is important to reject the im-
plementation of the detection mechanisms of the situation and its associated
services at early stages of the development process. For this reason, an evalu-
ation technique has been created to consider which features should not be im-
plemented. Such an approach can help to balance the expectations that some
stakeholders might have on the real abilities of the context-aware system under
development.

There are some situations that developers identify that might seem similar a pri-
ori, but can greatly differ from the actual instantiation of the situation. In or-
der to mitigate this, the proposed framework enables the tracing of the different
situations of interest to the different associated design elements, and to evalu-
ate any change that could be done to the situation of interest. In this way, the
dynamic change of the context-aware system is enabled, by facilitating the main-

tenance of situations of interest which are already implemented. This can facil-

262

itate a relatively quick implementation of some nuances to distinguish between

different situations of interest.

The current conceptualisation of context has room for further exploration. The

following research directions can be explored more in depth:

* Researching traditional techniques for discovering adequate situations of in-
terest and services for C-AS. Particular approaches such as phenomenology [219]
[220], activity theory [221], ethnomethodology [79], or Merleau-Ponty’s phe-
nomenology [222] have been proposed. Further investigation might be benefi-
cial in order to perfect current approaches to situation of interest discovery.

* Researching state-of-the-art techniques for discovering adequate situations of
interest and services for C-AS. Advanced state-of-the-art computer technolo-
gies such as those provided by data science, machine learning or cognitive com-
puting, look promising for facilitating developers with greater understanding of
the meaning of the actions of the users in particular situations. An analysis of
the data that is already available in the sensors of the system can also be used for
giving feedback to developers, and help them unearth new SOIs or enhance/-
modify the provision of existing context-aware features. There is scope for a
theoretical foundation that allows developers to reach such understanding of
user action through information technologies, rather than trying to make the
machines do this process for them. For this particular goal, the LFPUBS tool
for user behaviour discovery can be further studied, as well as its relation to the
maintenance and evolution of requirements and situations of interest.

* The framework might also benefit from the inclusion of mechanisms to make
the systems intelligible to the end-users, to make them aware about what the
system is thinking, and the reasons why it is taking such decisions. This trans-
parency exercise in systems can reduce end-user rejection [87].

* The algorithm introduced in Section 4.6.2 has been informally applied. This
evaluation procedure can also be formalised. Also, further research can be done
in what other formal techniques could be applied between the requirements
and design models in order to evaluate other aspects.

* The conceptualisation presented in this thesis has provided a set of tools to deal

263

with the preferences of the users. Some issues still need to be explored, and are
currently being investigated [223], which are particularly related to the handling
of ambiguous preferences and the addressing of conflicting knowledge. For in-
stance, in a smart-house scenario there might be a preference conflict if a user
likes music with loud volume and another user prefers silence at the same time.
The M reasoning theory can be further extended in order to handle the conflicts

between preferences.

9.2.2 Software process framework and open-source development

The research work conducted during this thesis has investigated the challenges with
respect to the creation of context-aware systems, observing that the difficulties in the
development of these systems make their development significantly different from that
of traditional computing. Research on development techniques for context-aware sys-
tems is typically scattered and disconnected from existing software development meth-
ods. The thesis concludes that there is a need for a more holistic approach in the devel-
opment of context-aware systems. This has resulted into the assembly of a framework
which embeds the conceptualisation across the most common phases of a develop-
ment process. By doing so, the aim is to achieve an integrated consistency across those
phases towards the achievement of a methodology that holistically addresses the con-
cerns related to the development of more usable context-aware systems. The following
reflection on the framework presented as part of this dissertation, is compared below
against the second objective of this thesis, introduced in Section 1.4. From the analysis
of challenges presented in Section 1.1, the fourth challenge [Chg4] is related to the
development cost of context-aware applications. In order to reduce this cost, a typical
approach is to create a framework in order to facilitate the development of these types
of systems. Asitis concluded in the state-of-the-art analysis from Chapter 3, the use of
a model-driven approach could reduce development costs, as the code for implement-
ing the system can be automatically (or semi-automatically) generated. Reducing the
development speed can not only be beneficial for reducing the cost, but also to man-
age the context information through the life-cycle of the context-aware application
[Chg3], and to help in managing change [Chg6]. Although the method has been sat-
isfactorily used during the POSEIDON project case-study, the next logical stage is to

264

apply the approach in a wide range of different projects related to context-awareness
for gaining more experience about its usability, and completing some common and
particular aspects to context-awareness that might arise in the application process. The
tools of this software process framework are notintended to be fully mature, but rather
to start a coherent framework which can become a mature tool for the development
of context-aware systems. This framework has been applied to different scenarios of
the project POSEIDON. The framework influenced specifically the navigation and
weight management applications [224]. Several master students used the application
for implementing different parts of them as part of their master projects. The weight
manager application is available in [225]. Although these projects were useful for giv-
ing feedback and insights on the usage of the different tools, there is still a need to create
further experiments that help to show until what degree the tools can help to resolve

the initial challenges.

9.2.2.1 Requirements Elicitation

The initial analysis on the state-of-the-art techniques for requirements elicitation with
aspecialisation in context-aware computing concludes that there are techniques which
individually give response to certain aspects1 considered as relevant according to the
main challenges2 of context-aware systems development. Consequently, an enhanced
requirements framework for context-aware systems is created by assembling different
parts of different existing methodologies.

As part of the perspectives obtained during the creation of the context conceptual-
isation, a more end-user stakeholder centred perspective is demanded for the require-
ments elicitation framework. In consequence, developers are required to spend sig-
nificant effort during the initial stages in identifying and analysing stakeholders. The
analysis facilitates greater knowledge about the different aspects of the stakeholders,
which is then used to create profiles and activities that these stakeholders perform, and
ultimately used for gaining information to better understand the meaning behind the
actions of stakeholders. This information is useful not only for creating (contextual

and non-contextual) services that are tailored to the preferences and needs of the users,

1 . . .
These aspects are introduced in Section 3.2.

*These challenges are introduced in Section 1.1.

265

but also to identify situations in which personalised context-aware features can be dis-
played.

In order to facilitate the identification of needs, two different abstraction layers are
introduced. The first layer gathers the high level objectives, which are then refined into
lower level objectives, particularly helping to identify non-functional requirements as
soft-goals. Then, the particular functional requirements are refined from the lowest
level objectives, and the non-functional requirements from the lowest level soft-goals.
Then, the initial stakeholder analysis is refined for end-user stakeholders, from which
specific user profiles are derived. These profiles are used to elicit new goals and require-
ments to give response to their specific demands. Also, another salient feature of the
framework is that it introduces an ethical analysis and profiling of users and require-

ments.

The goal is to provide a framework with integrated consistency across those phases
towards the achievement of a methodology that holistically addresses the concerns re-
lated to the development of more usable context-aware systems. The presented ap-
proach integrates several existing methodologies and tools, but it also has a hybrid ap-
proach that uses goals to identify the requirements of the system on one hand, and uses
a scenario based approach for the identification, observation and understanding of the
user activities. Nevertheless, this assembled framework is more oriented to the require-
ments elicitation of the non-contextual aspects of context-aware systems. In order to
include the perspectives gained during the conceptualisation of context, through the
inclusion of requirements elicitation of the context-aware aspects, a specialisation of
this framework is introduced. This framework particularly focuses on including the
three main aspects to get the context right. Based on the scenario-based analysis of the
end-user stakeholder activities, different situations of interest are identified. Then two
main aspects of these situations are analysed: How the system is going to detect these
situations, and which context-aware features is going to trigger in consequence, as well
as how users are going to interact with these [C2]. The analysis is concluded with an
evaluation of the implementation feasibility of the different situation of interest de-

tection plans and the different triggered context-aware features.

One of the major challenges of this approach is the complexity of the information

that needs to be handled. In order to better represent all this information, a model-

266

based approach is taken [C3], introducing an enhancement of some existing UM-
L/SysML models/profiles to produce three main diagrams. The first diagram repres-
ents information related to the stakeholders. The second diagram is used to represent
the different goals and soft-goals of the system, as well as their relation to the different
stakeholders. Finally, the last diagram represents the requirements of the system, as
well as their relation to the goals and stakeholders or stakeholder profiles. The major
advantage of using model-based techniques at this development stage is that it allows
the visualisation of the different relationships between all the different elements rep-
resented in the system. This constitutes an advantage over other text-based techniques
for documenting the requirements. In addition, a formal evaluation of the system can
be applied to check whether or not the proposed requirements meet the specified goals.
As part of the context-oriented extension of the framework, two additional novel dia-
grams are introduced. The first diagram aims to analyse the proposed context-aware
features, to be triggered on specific situations of interest. The second diagram is re-
lated to the creation of a plan for making the system detect a certain situation of in-
terest. In this case, the situation of interest element is specially useful to handle the
detection mechanisms and the corresponding context-aware features to be triggered.
Additionally, an evaluation technique is presented, to determine whether or not the
related context-aware services and situation detection mechanisms should be imple-
mented or not. This is especially useful at maintenance stages, where the analysis of
the addition/edition/removal of situation of interests can be analysed, in order to give
response to the constant demand for change that is expected from the dynamic nature
of context-aware systems. In order to reduce the complexity of diagrams, the tool de-
veloped for the framework includes a link view, which enables the customisation of

the graphical visualisation of the different relations between the different elements.

As part of the goal to produce an open-source tool supported framework, a mod-
ule based on an existing open-source modelling tool has been created, which imple-
ments the different UML/SysML diagrams [C4]. This module implements not only
the above mentioned diagrams, but also the missing SysML features that the free ver-
sion has, including traceability matrices and requirements tables, as well as other relev-
ant functionality such as partial documentation generation. Also, it includes the ap-

plication of the different algorithms for operationalising goals into requirements, and

267

assessing the feasibility of implementing situation of interest detection plans and asso-
ciated context-aware features.The code of the Modelio module can be accessed from
[194], and the latest binaries can be directly downloaded from [226]. Further instruc-

tions for installation and usage can be found in Appendix A.

9.2.2.2 Design

The creation of the framework for the design stage of the development life-cycle of
context-aware systems presented in this thesis [C5] has been influenced by the chal-
lenges presented in Section 1.1. Taking into account the diversity of context-aware
systems [Chg2], the aim of this framework is to maximise the scope of the systems
that can be developed with this framework, while remaining within the scope of this
dissertation. For this, the scope of the context-aware systems which can be developed
with this framework has been constrained to rule-based context-aware systems, as be-
ing the most common approach in these kinds of systems [1]. Also, the scope of the
systems developed with the framework is aimed to develop both stationary and mobile
platforms. These platforms are constrained to Z-Wave sensors for the mobile platform
and mobile sensors for the Android operating system.

The design framework is divided into four main stages. The first stage is related to
general system design, focusing mostly on the implementation of the non-contextual
aspects of the context-aware system. The framework guides developers to translate the
requirements obtained during the previous development stages, into the design of the
system. The aim of this stage is to provide coherence between the design and require-
ments frameworks. The second stage is based on the conceptualisation perspectives
presented in Section 2.4.2. Specifically, it is related to the implementation of the differ-
ent context-aware features to be triggered by the system, following the models created
for context-aware features during the requirements elicitation stage. It also takes into
account the conceptualisation of interaction modalities presented in Section 2.4.1. As
part of the support provided for the information display context-aware feature, a novel
diagram is introduced, the Information Display Diagram, which can be used to rep-
resent how the information is going to be displayed in the context-aware application.
The rest of context-aware features can be implemented using existing UML diagrams.

For this, the classification of interaction modalities and types of context-aware features

268

introduced in Chapter 2 is used. Then, the third stage of the framework is more fo-
cused on the design of context information [Chg2], based on the conceptualisation of
the life-cycle of context-information presented in [1]. The first two and the last stages
of the context information life-cycle are supported with a novel diagram, the Acquis-
ition and Modelling Diagram. This diagram enables developers to specify the ways in
which context-attributes are going to be measured by sensors, and how the informa-
tion produced by these sensors is going to be modelled within the system. The diagram
supports the creation of elements for both stationary and mobile platforms. The reas-
oning stage of the information life-cycle is supported by another novel diagram, the
Context Reasoning Diagram. This diagrams allows the production of higher level in-
formation from low level information, which is previously modelled within the system
using a set of logical rules using temporal references. Designed rules are applicable for
both stationary and mobile platforms. An additional diagram for specifying the de-
ployment details in both stationary and mobile platforms is introduced, the Deploy-
ment Diagram. Finally, the last stage of the framework aims to give response to the fifth
challenge [Chg5] from Section 1.1, providing support for the design evaluation. This
process covers four main dimensions to evaluate the design. The first dimension con-
sists of the elaboration of test-cases that will be used to evaluate the produced system
against the requirements specification. The second and third dimensions are related to
identifying possible errors caused by the developers when creating the model, and fo-
cus on the syntax of certain attributes of the elements that contain queries or elements
that will be used for generating code. Additionally, the design of elements is traced
in a particular way from requirements to design. For example, the context-aware fea-
tures are traced to sensors, which are traced to modelling rules that ultimately produce
context states. Anomalies in the way this tracing is done, such as a missing relation,
can be used to discover errors in the design, which can potentially be passed into the
generated code. The evaluation procedures also include to include the evaluation of
the traceability in order to check if some elements have been left without design. Fi-
nally, the evaluation also considers evaluating the behaviour of context reasoning rules
against certain properties, in order to prevent the system from exhibiting any undesired

behaviour.

Based on the fifth challenge [Chgb] of the analysis presented in Section 1.1, an ex-

269

tension to increase the reliability of the design evaluation of this framework is presen-
ted, which is a proof of concept for enabling the verification of rule-based context-
aware systems. The approach consists of translating models specified in M, or in the
Reasoning Diagram from the design framework, into models of a model checker, en-
abling the indirect verification of a system modelled in M against some formalized re-
quirements. A scenario exemplifies how to use the framework for creating a context-
aware reasoning component that includes learnt user behaviour patterns, how to es-
tablish different specification properties, and how the framework can help to achieve a
more reliable automatic inclusion of inferred behavioural patterns. Early performance
experiments show good performance for model checking regular-sized context-aware
systems, with running times proportional to the size of the model M. The negative
effect of size on performance could be reduced by separating rule chains that are inde-

pendent from each other.

As part of the goal to produce an open-source tool supported framework, all the
diagrams presented as part of the framework have been developed as an open-source
tool for the design of context aware systems (DC-ASE) [CS], which has been imple-
mented as a Modelio module. In addition, this module includes the implementation
of the four mentioned dimensions for evaluating the design, providing a more reliable
way of creating the design. This implementation includes the creation of an open-
source library [C6] [205] for enabling the translations from M into NuSMV models,
in order to enable the model-checking of reasoning rules. The library has been applied
to both the DC-ASE Modelio module and the M Reasoner IDE.

The design evaluation procedure has satisfactorily been covered with respect to the
scope of this dissertation, but future work could also address the automated generation
of test-cases through the whole life-cycle of the context-aware system. As an extension
of the main design evaluation, this thesis provides a theory and tools for enabling the
verification of context reasoning rules, by translating the design of rules into models
that can be checked with a formal model checker. In the future, mechanisms for veri-
fying the modelling of rules could also be studied. The requirements currently guide
the test-case generation using the UML Testing Profile (UTP) [127] tool for Modelio.
The overall idea is to be able to design the test once, and apply the same tests in each of

the different stages to check whether of not the application satisfies the requirements.

270

Tests would check the results for the design. Additionally, another application will
check how the application runs once implemented, reusing the same tests from UTP
[127] , and loading them to an external application that checks the system under test.
Finally, guidelines for developers to check the system after it is installed could be auto-
mated (or semi-automated). Such a tool will significantly help in reducing the time
employed for testing, and would facilitate the creation of more reliable systems. Ad-
ditionally, UTP [127] profiles could be used for automating the testing process. But
the process itself of creation could also be automated or semi-automated using model
to model transformations from the different existing diagrams.

It can also occur that models can get very complex. In order to handle this com-
plexity, future work could address the definition of UML views over the proposed
models in order to increase their readability, not only for the design framework but
also for the requirements framework. Finally, the design framework could enable the
design of ontologies which can be coupled with the C-SPARQL reasoning engine is an
interesting idea. During the research conducted for this dissertation, an approach to
automatically translate context-attributes into ontologies was explored. It is theoretic-
ally feasible to generate ontologies from context-attributes in the Requirements Dia-
grams, which can be further edited and even translated into code using an external tool.
Namely, Protégé, an open-source development environment that provides a growing
user community with a suite of tools to construct domain models and knowledge-
based applications with ontologies. The experimental prototype of this idea can be
found at [227].

9.2.2.3 Implementation, deployment and maintenance

One of the advantages of using a model-driven approach is thatit can help to reduce the
implementation costs [Chg4], by enabling the automated (or semi-automated) genera-
tion of implementation code. As part of the coherent framework to cover the different
stages of the development process, an additional framework for the implementation,
deployment and maintenance of context-aware systems is presented. The framework
provides guidance on how developers should generate the code. Then, it guides them
through the implementation and deployment stages, enabling corresponding testing.

Finally, the framework also includes maintenance tasks which cover the general sys-

271

tem dimension, and a situation of interest centred maintenance of the system, which
is likely to occur due to the dynamic nature of context. Future work could also delve
into the best maintenance techniques, perhaps including more sophisticated evalu-

ation algorithms for evaluating the removal or modification of situations of interest.

Another contribution of this framework is the theory for creating code based on
the models from the design framework presented in this dissertation. The framework
introduces a total of 21 sets of rules for generating different code files. It is not the in-
tention of this thesis to provide the automatic generation of code for all the elements
introduced in the diagrams. The sets of rules presented satisfactorily cover the object-
ive under the scope of this thesis. Further work could be focused on automatising the
code generation for some aspects that still have to be manually implemented. Also,
code could be generated for both mobile and stationary platforms using the models
from the Information Display Diagrams, but this would require some modification
on the current libraries for mobile and stationary platforms. As part of the goal to
produce an open-source tool supported framework, the DC-ASE open-source Mod-
elio module, presented as part of the design framework, has been extended to support
the code generation of these models. The code generation is fully automated for most
of the pieces of code generated, although it still requires some developer intervention

for some other pieces of code.

Also as part of the goal to produce an open-source tool supported framework, ex-
isting tools for mobile and stationary platforms have been enhanced in order to adopt
this generated code. The stationary platform uses an integrated development environ-
ment (IDE) to facilitate the deployment and execution of reasoning rules that interact
with Z-Wave radio protocol based sensors. This platform has been enhanced as part of
the contribution of this thesis. The rule specifications for this module are automatic-
ally generated from the design diagrams. These can be further modified in the future
and can be translated into NuSMV models again for checking them against certain
properties. The translation of verification properties is still not supported in the IDE,
and developers have to specify them manually. Further work could focus on the integ-
ration of specifications as part of the M language specifications. The IDE could also be
further extended in the future in order to deploy and execute automatically generated

rules by the learning module. These rules would first be automatically checked against

272

some developer defined properties in order to prevent the system from exhibiting some
undesired behaviours.

The mobile platform adopts two existing libraries, developed by Dean Kramer as
part of the POSEIDON project, in order to facilitate the development of reasoning
components into mobile platforms. The reasoning library has been refactored in order
to better accommodate the generation of code. The learning platform associated with
the Android reasoner can be used for analysing relevant behavioural traits, use histor-
ical context data and generate visualisations. This engine can be further improved to
include other data science techniques such as pattern detection, classification, cluster-
ing and/or regression analysis. Future work can also be afforded to the centralisation of
both mobile and stationary platforms. The databases of the two reasoners (MReasoner
and Android Context Reasoner) could be merged into a single context database over

aserver. This could facilitate big data analytics of the learning platforms.

273

Part VI

Appendixes

275

APPENDIX A

APPENDIX A

The aim of this Appendix is to introduce a guide for developers so that they can freely

download, install and use the different tools of the framework. Note that all the tools

presented as part of the framework of this thesis are publicly available. This appendix

contains information is intended for two different types of audience, each of which is

assumed to have the following prerequisite knowledge:

* Developers of context-aware systems: The developers of context-aware systems

that aim to use C-ASEF, do not require as much knowledge as the developers

of the framework do.
— RC-ASE and DC-ASE Modelling tools: The developers require to be fa-

miliar with UML/SySML modelling languages. Also, it is recommended
to have some familiarity with Modelio. Developers need to be familiar
with RDF and NuSMV model checker specifications.

Stationary Platform: Although it is not strictly required, since the spe-
cification code can be generated with the modelling tools, it is recommen-
ded for developers to be familiar with the M specification language in or-
der to make small changes directly to the specifications. In addition, de-
velopers need to know about model-checking and verification, preferably
with the NuSMV model-checker.

Mobile platform: The developers require knowing Android development,
or at least to have some familiarity with the Java language. Particularly

with the sensors they are going to use.

* Developers/Researchers of the C-ASEF tools: This audience should be famili-

arised with the same topics as the developers of context-aware systems that use

the C-ASEF. In addition, they require knowing Java programming language,

as well as being familiar with the Git version control system. Preferably, also

being familiar with the Github free web-based hosting service for Git. Also, de-

277

velopers/researchers should have some familiarity with the Maven and or Gradle
software project management tools. For developing these tools, at least the same
knowledge required for using the tools is required, but also:

— Stationary Platform: It is recommended that developers are familiarised
with the M reasoning theory, the Vera routers (linux commands), data-
bases, the LFPUBS reasoner, and NuSMV.

— Mobile platform: Itis recommended that developers know about C-SPARQL,
SPARQL and/or RDF, databases.

A.1 Modelio

Modelio is an open source modelling tool which is freely available to be downloaded
from its official website [148] [228]. The current version of Modelio for which the
framework modules introduced in this thesis are compatible is v3.7. The program is
available for Linux, Windows and Mac. Follow the quick-start guide [229] provided in
the official Modelio website to install the program in your preferred operating system.
The guide also includes how to download .jmdac modules from the official Modelio

store [5], as well as how to use them in the different projects.

A RC-ASE

If there is an intention of developing context-aware systems using the RC-ASE mod-
ule, it can be freely downloaded from its official repository [194]. The compiled bin-
aries of the project can be found in the folder “rcase/rcase/target/”, where the .jmdac
Modelio module file can be directly obtained. The installation of this module is the
same as any other regular .jmdac Modelio module. Itis recommended to have installed
the SySML Architect Module [230].

If there is an intention of programming an extension or reusing the code of the
RC-ASE module, it is recommended to have Eclipse RCP neon with Maven (M2e)
and Git (EGit) plugins correctly installed beforehand. The repository can then be
cloned to your hard drive. Click on Import -> Existing Maven Projects -> (Select as

root directory the folder where you have cloned your repo). EGitshould automatically

278

detect that you are using a repository. In order to compile an updated .jmdac Modelio
module file, click with the right button of the mouse on the main folder in Eclipse ->

Run as -> 7 Maven install. This produces a new version of the .jmdac module.

B DC-ASE

The usage of the DC-ASE module is the same of the RC-ASE module. It is also re-
commended to have installed the RC-ASE module and the SySML Architect Module
[230].

A.2 Stationary platform

The M integrated development environment can be downloaded from the official re-
pository [206]. The users can directly download the latest executable jar version from

the folder “mreasoner-gui/mreasoner-gui/bin/”.

A Preparation and basic usage

The graphical user interface can be executed by simply double clicking the jar file. The
prerequisite is to have Java v1.8 and PostgreSQL v9.6.3 installed either in a Linux-
based, Mac or Windows operating system. Launching the application will display the

content shown in Figure A.1.

1. The developer can choose between three different development modes: Simu-
lation, simulation in real time, and deployment. Simulations enable to observe
the behaviour of the system without having to deploy all the sensors and actuat-
ors in the real world. The rules need to be in stratification order [162]. This can
be done manually by the user or it can be done automatically by the application.

2. Thedeveloper can specify the rules written in M language, these will be executed
against a grammar parser.

3. The time taken by the computer can be approximately fixed to a certain time
window. For example, each iteration can occur in a second. The system will try
to adjust as much as possible to this window. On the other hand, the system can

just execute without trying to adapt to a specific time-window. Also, the system

279

Figure A.1: Screenshot of the main window of the M IDE (mreasoner-gui) ap-

plication, which appears immediately after executing it.

can run until the user stops it, or until it reaches a certain number of iterations.
This can help developers to do quick simulations and observe specific results.
4. All the output results of the execution of the application will appear in this win-
dow. The log of the window can also be stored in the preferred location of the
user.
S. There are certain results which are saved on different paths. This window helps

the user to know where each of the files resides.

The program operates under the concept of a session. The session is a set of con-
figurations required for executing and/or deploying a system, and which are saved and

managed simultaneously. These include:

* M Specification: The rule specification written in M language.

* M log results: This file saves the results appearing in the panel identified as 4 in
Figure A.1.

* LFPUBS output: This is the output of LFPUBS containing the user behavi-
oural patterns in the LFPUBS specification language.

* M Configurations: Configurations related to panels identified as 1 and 3 in Fig-

280

ure A.1, as well as the database configuration from .
* SSH Configurations: Configurations related to the SSH connection to the Vera

Router for deployment purposes.

Additionally, the database can be configured using the panel shown in Figure A.2. For
the panel A, in the same figure, the default driver is org.postgresql. Driver, but the ap-
plication enables the use of other drivers, which are required to be installed independ-
ently or using Maven. This step requires access to a database through the username
and password. The application will automatically handle the creation of tables in the
database. The database can be named from Panel 2, in Figure A.2. Tables can also be
cleared at will, using the panel labeled as 3 in the same figure. The SSH configurations
are edited in the panel shown in Figure A.3, where the hostname of the router has to
be specified, as well as the main port for the ssh connection. This requires an SSH
account in the vera router, that is Linux based. Just create a new user in the router
to start using this service, or use an existing one. This requires the username and the

password.

The user can decide whether to create a session, load a previous one, save the cur-
rent session or save the current session with another name just by clicking on the main
menu (Letter A in Figure A.1) and then on session. Similarly, the developer can also do
the same actions for an M specification or the logs, by clicking on the main menu and
then on M Reasoner (M Specification or M Result Log). Also, the same can be done
with the SSH configuration by clicking on the main menu and then on Vera. There
are several full session examples that can be loaded from the mreasoner-gui/examples
folder of the repository.

There are two other functions that can be used with the M IDE. The first func-
tion consists of translating the LFPUBS output into M specifications. For this, first
load the LFPBUS output file by clicking on the main menu, LFPUBS, Load LFPUBS
output file. Then, the loaded file can be observed on the LFPUBS Rule Translations
tab (Letter C from Figure A.1). For obtaining the automatic translation of rules, click
on the main menu, LFPUBS, Translate LFPUBS rules. The translation will be made
available in the lower part of the main panel of the LFPUBS Rule Translation tab. The
specifications generated from LFPUBS rules can be directly copied and merged with

the current specifications. Finally, the other function is that of translating current

281

] M Specification File Editor

Main Menu | Start || Step
General Database vera
Database Configurations
Datobase type: | BOSTGRESG -
Driver: <Driver>
Ip: locakhost
port: <part>
Username <user>
Password: |essesssess
Status Discomnected Refresh
Create/Drop Database
Database name: | <name>
Cheds | Create Drop
Status: Does not exist.
Clear Tables
[Events Table [Internal Events Table
[Resuts Table
[] sensors Table [] Actuators Table
[sensor Implementation Table] Actuator Implementation Table
Check. Select Al Clear Selected

Figure A.2: Screenshot of the database and SSH configurations panel of the M
IDE (mreasoner-gui) application.

|£| M Specification File Editor

Main Menu | Start Stop

General Database Vera

S5H Configurations
Hostname: | |<hostriame >
Port: 22

Username: | <username:>
Password: |esssesssss

Start

Figure A.3:

(mreasoner-gui) application.

Restart

282

Stop

Screenshot of the SSH configurations panel

of the M IDE

specifications into NuSMYV ones, for verification purposes. For this, click on the main
menu, verification, export to NuSMYV. Select the desired place for the NuSMV model
and click save.

Once the specifications and configurations are loaded, the system can be simulated

or deployed by pressing the start button, next to the main menu, as shown in Figures
A.4and A.S.

Figure A.4: Screenshot of the main window of the M IDE (mreasoner-gui) ap-
plication, just immediately after executing a specification by pressing the start

button.

B Development

If there is an intention to extend the reasoner in any way, any of its parts can be down-

loaded from [212] [231] [206] [208] [205] and extended using any Java IDE.

A.3 Mobile platform

While the stationary platform provides an integrated development environment for

its execution, the mobile platform is just a set of libraries, which can be used as part of

283

5] Datobose Resuls - New il - 8 x
MinMenu | stt | Sop

General Database MSpecfcaton e bt Database Resls | LFPL56 Rl Trandations
Database Confiuratons

ferston system.. cookeOn aMichen cabret keteOn vateT.. ookl homd pattend patiem i patim 2 potem3 pattemd patens e .
Database toe: | BOSTERESAL)

orver: g postaresa orver

3 Jocabost

¢
3
3
¢
3
3
¢
3
3
¢
3
3
¢
3
3
¢
3

resteorop Datsbace:

Clear Tables Interns Events

Dlevens ase el Events Tae ieraton sate e

o - ‘ |
[CResstsTae o cookernaten: i 3 |

[semsore Tae: [actstore Tabie:

[Sesor nplementaton Tabe (] Actustr Inpiementaton Table:

Creck Seectal GosrSaecizd

Figure A.5: Screenshot of the database window panel of the M IDE (mreasoner-

gui) application, after executing a specification by pressing the start button.

the development of a regular Android application. Any Android development plat-
form can be used. For the development of these libraries, with regard to this thesis,
Android Studio v3.0.1 has been used. There are two main libraries in this frame-

work: Android Context Library and Android Context Reasoner. The first library,

ContextReceivers 1
L +notifyAllReceivers +updateValue «abstract»
Al ContextObserver
IContektReceiver /\
AReceiver BReceiver AObserver BObserver

Figure A.6: Main structure of the modified observer pattern in the Android Con-
text Library.

developed by Dean Kramer, it is related to the acquisition of information from the

284

sensors. The main package contains the elements for providing a modified observer
structure, as shown in Figure A.6. Additionally, it also contains the main types of ob-
servers: Pull and Push Observers, and its different implementations (SensorObserver,
BroadcastObserver, LocationObserver and BluetoothLEObserver). There is another
division of packages inside the main package: Environment, Hardware, Personal and
Utility. Each package contains related observers. If any observer which is not in the
library is required, it is recommended to continue the development in the library it-
self, as this would increase the reusability of the library. The second library is related
to the modelling and reasoning of context. It was also developed by Dean Kramer,
and later refactored for facilitating the automation of code generation, as part of the
contribution of this thesis. The main package of this library is located in org.poseidon_-
project.context. This library also contains a mobile version of CSPARQL, a SAT solver,
the Tellu client API for connecting to the navigational services, and contains the cus-

tom code for including different situations of interest.

285

A.4 Code generation rules

For spatial reasons, some code generation rules introduced in Chapter 8 have been
omitted from the main text. This section introduces the different code generation rules

that have been omitted from the main document.

A Pull observer

1 [for MobileSensor]

2 package package edu.casetools.icase.custom.observers;

3

4 import android.content.Context;

s import java.lang.Override;

6 import uk.ac.mdx.cs.ie.acontextlib.PullObserver;

7

8§ public class [MobileSensor.name]Observer extends PullObserver {
9 public static final String NAME = "[MobileSensor.name]Observer";
10

11 public [MobileSensor.name]Observer(Context c) {

12 super (c,10000," [Observer.name] ") ;

15 @Override
16 public void checkContext() {
17 // Object object) {

18 //

19 /* // Include your main code to observe context here
20 // This is an example of checking the external

21 //storage of the phone

22 long v = Environment.getExternalStorageDirectory()
23 .getUsableSpace() ;

24 if (mCurrentSpace != v) {

25 sendToContextReceivers("sensor.external_storage_remaining",
26 v / SIZE_MB);

27 mCurrentSpace = v;

28 }

29 */

30}

286

31}
32 [end for]

Listing A.1: Pseudo-code rules for code transformation of Pull type of observers.

B Push observer

1 [for MobileSensor]

2 package package edu.casetools.icase.custom.observers;
3

4 import android.content.Context;

s import java.lang.Override;

6 import uk.ac.mdx.cs.ie.acontextlib.PushObserver;

-

8 public class BadtemperatureContext extends PushObserver {
9 public static final String NAME = "[MobileSensor.name]QObserver";
10

11 public BadtemperatureContext(Context c) {

12 super(c);}

13

14 public void checkContext() {

15 checkContext (data) ;

16}

17

18 ©O0verride

19 public void resume() {

20 return start();}

21

22 @0verride

23 public void stop() {

24 return stop();}

25}

26 [end for]

Listing A.2: Pseudo-code rules for code transformation of Push type of observers.

287

B.1 Bluetooth low energy observer

1 [for MobileSensor]

2 package package edu.casetools.icase.custom.observers;

3 import android.content.Context;

4 import java.lang.Override;

s import uk.ac.mdx.cs.ie.acontextlib.BluetoothLEDevice;

6

7 public class [MobileSensor.name]Observer extends BluetoothLEDevice {
8 public static final String NAME = "[MobileSensor.name]QObserver";

9

10 public [MobileSensor.name]Observer (Context c) {

11 /* //This is an example of a heart rate measuring

12 //bluetooth wristband:

13 super (c, UUID.fromString(HEART_RATE_SERVICE),
14 UUID.fromString (HEART_RATE_MEASUREMENT)) ;

15 */

16

17 @0verride

18 public void checkContext() {

19

20 /* BluetoothGattCharacteristic characteristic =

21 (BluetoothGattCharacteristic) data;

22

23 int flag = characteristic.getProperties();

24 int format = -1;

25

26 if ((flag & 0x01) '= 0) {

27 format = BluetoothGattCharacteristic.FORMAT_UINT16;

28 } else {

29 format = BluetoothGattCharacteristic.FORMAT_UINTS;

30 }

31

32 final int heartRate = characteristic.getIntValue(format, 1);
33 sendToContextReceivers("sensor.heartrate", heartRate); */
34}

35}

36 [end for]

288

Listing A.3: Pseudo-code rules for code transformation of Bluetooth Low Energy type of ob-

SEIVers.

B.2 Android sensor framework observer

1 [for MobileSensor]

2 package package edu.casetools.icase.custom.observers;

3 import android.content.Context;

4 import java.lang.Override;

s import uk.ac.mdx.cs.ie.acontextlib.SensorContext;

6

7 public class [MobileSensor.name]Observer extends SensorContext {

8§ public static final String NAME = "[MobileSensor.name]Observer";

9 public [MobileSensor.name]Observer (Context c) {

10 /* //This is an example of a super call for the light sensor:
11 super(c, Sensor.TYPE_LIGHT,

12 SensorManager.SENSOR_DELAY_NORMAL, Exercisetime)); */

13 7

14 @0verride

15 public void checkContext() {

16 /* float[] values) {

17 //Include your code here

18 //This is an example for the light sensor in Android
19 long value = Math.round(values['['/]0]);

20 long difference = Math.abs(mCurrentValue - value);
21 long threshold;

22 if (value > mCurrentValue) {

23 threshold = mContextDifferenceHigher;

24 } else {

25 threshold = mContextDifferencelLower;

26 }

27 if (difference >= threshold) {

28 mCurrentValue = value;

29 sendToContextReceivers("sensor.light_lumens",
30 mCurrentValue) ;

31 mContextDifferenceHigher = value * 2;

32 mContextDifferencelLower = value / 2;

33 } */

289

34}
35}
36 [end for]

Listing A.4: Pseudo-code rules for code transformation of Android Sensor Framework type of

observers.

B.3 Broadcast observer

1 [for MobileSensor]

2 package package edu.casetools.icase.custom.observers;
3

4 import android.content.Context;

s import java.lang.Override;

6 import uk.ac.mdx.cs.ie.acontextlib.BroadcastContext;
-

8§ public class [MobileSensor.name]Observer extends BroadcastContext {

9

10 public static final String NAME = "[MobileSensor.name]Observer";
11 /* //Include your variables here

12 //This is an example for checking the battery level

13 private int mBatteryLevel; */

14

15 public [MobileSensor.name]Observer(Context c) {

16 /* //This is an example of a battery level measuring observer
17 super (c, "Intent.Action_ BATTERY_ CHANGED",NAME); */

18}

19

20 @0verride

21 public void checkContext() {

22 /* //Bundle bundle) {

23 // Include your variables here

24 //This is an example for checking the battery level

25 int rawlevel = bundle.getInt(BatteryManager.EXTRA_LEVEL, -1);
26 int scale = bundle.getInt(BatteryManager .EXTRA_SCALE, -1);

27 if (rawlevel >= 0 && scale > 0) {

28 mBatteryLevel = (rawlevel * 100) / scale;

29

30 //Send the receiver the context update

290

31 sendToContextReceivers("sensor.battery_level",

32 mBatteryLevel) ;
33 r o*/

34}

35 }

36 [end for]

Listing A.5: Pseudo-code rules for code transformation of Broadcast type of observers.

B.4 Location observer

1 [for MobileSensor]

2 package package edu.casetools.icase.custom.observers;

3

4 import android.content.Context;

s import java.lang.Override;

6 import java.lang.String;

7 import uk.ac.mdx.cs.ie.acontextlib.LocationContext;

8

9 public class [MobileSensor.name]Observer extends LocationContext {
10 public static final String NAME = "[MobileSensor.name]Observer";
11

12 public [MobileSensor.name]Observer (Context c, String provider) {
13 super (c,provider, " [MobileSensor.name]") ;

14}

15

16 @0verride

17 public void checkContext() {

18 // 0Object object) {

19 // sendToContextReceivers("device.current_loc", object);

20 }

21}

22 [end for]

Listing A.6: Pseudo-code rules for code transformation of Location type of observers.

291

C Custom situation of interest class

1 [forEach SituationOfInterest where detects(DetectionPlan,

2 SituationOfInterest) and

3 (DetectionPlan.toBeImplemented = TRUE)]

4 package edu.casetools.icase.custom.situations;

s import android.content.SharedPreferences;

6 import java.util.Map;

7 import eu.larkc.csparqgl.core.engine.CsparqglQueryResultProxy;

8 import org.poseidon_project.context.reasoner.SituationOfInterest;
9 import org.poseidon_project.context.ContextReasonerCore;

10 import org.poseidon_project.context.logging.Datalogger;

11 import org.poseidon_project.context.reasoner.AbstractContextMapper;
12 import org.poseidon_project.context.reasoner.ReasonerManager;

13 public class [SituationOfInterest.name]S0I extends

14 SituationOfInterest {

15 public [SituationOfInterest.name]S0I(){
16 super (" [SituationOfInterest.name]");
17 }

18 [for DetectionPlan where aggregateComposition(DetectionPlan,

19 ContextAttribute) and isPrimary(ContextAttribute)]

20 [forEach ContextAttribute where

21 trace (ContextAttribute,ContextState)]

22 [for ContextState where

23 produce (RDFModellingRule, ContextState)]

24 private static final String [ContextState.name]Query =
25 "[generateModellingRule (RDFModellingRule)]";
26 [generateModellingRuleGetter

27 (ContextState,RDFModellingRule)]

28 [end forl

29 [end forEachl]

30 [generateNextLevelReasoningRules(ContextAttribute,
31 DetectionPlan)]

32 [end forl

33 @0verride

34 public boolean registerSituationOfInterest(

35 ReasonerManager mReasonerManager,

36 AbstractContextMapper contextMapper, SharedPreferences

37 mRuleSettings, Datalogger mLogger, String logTag,

292

38
39
40
41
42
43
44
45
46
47
48
49
S0
S1
S2
53
54
SS
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Map parameters) {

boolean okExit = true;

[registerModellingRule()]
CsparglQueryResultProxy cl =
mReasonerManager .registerCSPARQLQuery (getBatteryLOWQuery()) ;
CsparqlQueryResultProxy c2 =
mReasonerManager.registerCSPARQLQuery (getBatteryOkQuery()) ;

okExit = contextMapper.registerModellingRule(
getBatteryLOWQuery (), cl, okExit);

okExit = contextMapper.registerModellingRule(
getBatteryOkQuery (), c2, okExit);

mLogger . logVerbose (DataLogger .REASONER, logTag,

"Registered [SituationOfInterest.name] Situation of Interest");

[addObserverRequirements ()]
return contextMapper.addObserverRequirement ("engine",
"BatteryContext",okExit) ;
[for DetectionPlan where aggregateComposition(DetectionPlan,
ContextAttribute) and isPrimary(ContextAttribute)]
[forEach ContextAttribute where
trace(ContextAttribute,ContextState)]
[for ContextState where
produce (RDFModellingRule, ContextState)]
private static final String [ContextState.name]Query =
" [generateModellingRule (RDFModellingRule)]";
[generateModellingRuleGetter (ContextState,
RDFModellingRule)]
[end for]
[end forEach]
[generateNextLevelReasoningRules (ContextAttribute,
DetectionPlan)]
[end for]
}
@0verride

public boolean unRegisterSituationOfInterest(ContextReasonerCore

mReasonerCore, ReasonerManager mReasonerManager,

AbstractContextMapper contextMapper,

293

77 DataLogger mLogger, String logTag) {

78 boolean okExit = contextMapper.removeObserverRequirement (
79 "engine", "BatteryContext");

80

81 okExit = contextMapper.unregisterModellingRule(
82 getBatteryLOWQuery () ,okExit) ;

83 okExit = contextMapper.unregisterModellingRule(
84 getBatteryOkQuery () ,okExit) ;

85 mReasonerCore.removeContextValue ("BATTERY") ;

86 mLogger . logVerbose (DataLogger .REASONER, logTag,
87 "Unregistered battery");

88

89 return okExit;

90 }

91 }

92 [end forEach]

Listing A.7: Pseudo-code rules for transforming stereotypes in the Situation Detection Dia-

gram to the java class for custom situations of interest in the Android Context Reasoner.

1 [function def: generateModellingRule(RDFModellingRule)]

2 [for ContextState where produce(RDFModellingRule,ContextState)]
3 REGISTER QUERY [ContextState.name]_query AS

4 [end for]

5 PREFIX ex: <[RDFModellingRule.ontology]>

CONSTRUCT { ex: [for MobileSensor where
feedsInWindow(MobileSensor ,RDFModellingRule)]

N

8 [MobileSensor.name] [end for]

9 [RDFModellingRule.predicatel

10 [for ContextState where produces(RDFModellingRule,ContextState)]
11 [ContextState.name] [end for]

12 FROM STREAM [feedsInWindow.stream] \[RANGE [feedsInWindow.for]
13 STEP [feedsInWindow.every]\]

14 WHERE {

15 [for MobileSensor where feedsInWindow(MobileSensor,
16 RDFModellingRule)]

17 [MobileSensor.data] . {

18 [for (i=1;i<4;it++)]

19 SELECT ([RDFModellingRule.method] AS subgres_[i])
20 WHERE{ [MobileSensor.data]

294

21
22
23
24
25
26
27
28
29
30
31

FILTER(
[getTripleFromString (RDFModellingRule.methodTripleVar)])
}

}
[end for]
[end for]
[getFiltersFromString (RDFModellingRule.logicalEvaluations)]

3

[end function def]

32 [function def: generateModellingRuleGetter(ContextState,
33 RDFModellingRule)]

34
35
36
37
38
39
40
41
42
43

public String get[ContextState.name]Query(String value){
String query = new String([ContextState.name]Query) ;
[forEach PreferenceSensor where feeds(PreferenceSensor,
RDFModellingRule)]
query.replace("$$[PreferenceSensor.name]", value);
[end forEach]
return query;

3

[end function def]

44 [function def: generateNextLevelReasoningRules(ContextAttribute,

45 DetectionPlan)]

46
47
48
49
S0
51
52
53
54
SS
56
57
58
59

[forEach ContextAttribute2 where
derive(ContextAttribute,ContextAttribute2) and
aggregateComposition(DetectionPlan,ContextAttribute2)]

[for ContextState where trace(ContextState,ContextAttribute?2)]

[forEach AntecedentGroup where

produces (AntecedentGroup,ContextState)]

[forEach Consequent where same(AntecedentGroup,Consequent)]
private static final String new[ContextAttribute2.name] =
"[getAntecedents (AntecedentGroup)] implies
[Consequent .name]";
public String getNew[ContextAttribute2.name] (){

return new[ContextAttribute2.name] ;
}
[end forEach]

295

60 [end forEachl]

61

62 [end for]

63 [generateNextLevelReasoningRules (ContextAttribute2,
64 DetectionPlan)]

65 [end forEach]
66 [end function def]

68 [function def: getAntecedents(AntecedentGroup)]
69 [for AntecedentGroup where

70 produce (AntecedentGroup,ContextAttribute)]

71 [forEach Antecedent in AntecedentGroup]

72 [getSign(Antecedent.value)] [Antecedent.name] [useAnd()]
73 [end forEach]

74 [forEach PastOperator in AntecedentGroup]

75 [getSign(PastOperator.value)] [PastOperator.name]

76 \ [[getSymbol (PastOperator.type)]

77 [pastOperator (PastOperator)]\]

78 [useAnd ()]

79 [end forEach]

80 [end forl

81 [end function def]

82

83 [function def: pastOperator(PastOperator)]

84 [if PastOperator is ImmediatePastOperator]

85 [PastOperator.bound]

86 [else if PastOperator is AbsolutePastOperator]
87 [PastOperator.lowbound] - [PastOperator.uppbound]
88 [end if]

89 [end function def]

Listing A.8: Pseudo-code functions appearing in Listing A.7.

A.5 NuSMYV specification counter-example

1 -- specification AG !(atKitchen = FALSE & waterTapOn = TRUE) is false
2 -— as demonstrated by the following execution sequence
3 Trace Description: CTL Counterexample

4 Trace Type: Counterexample

296

o
S

-> State: 1.1 <-

time = 0

cookerOn = FALSE

atKitchen = FALSE

cabinet = FALSE

kettleOn = FALSE

waterTapOn = FALSE
cookerUnattended = FALSE
hazard = FALSE

pattern_0 = FALSE

pattern_1 = FALSE

pattern_2 = FALSE

pattern_3 = FALSE

pattern_4 = FALSE

pattern_5 = FALSE
time_context = FALSE
time_context_aux = FALSE
cookerUnattended_aux = FALSE
pattern_O_aux = FALSE
hazard_aux = FALSE
pattern_1_aux = FALSE
pattern_2_aux = FALSE
pattern_3_aux = FALSE
pattern_4_aux = FALSE
pattern_5_aux = FALSE
kettleOn_aux = FALSE
atKitchen_sip_120.counter = 0
atKitchen_sip_120.1live = FALSE
cookerUnattended_sip_60.counter = 0O
cookerUnattended_sip_60.1live = FALSE
pattern_O_sip_12.counter = 0
pattern_O_sip_12.1ive = FALSE
pattern_1_sip_22.counter = 0
pattern_1_sip_22.live = FALSE
pattern_2_sip_18.counter = 0
pattern_2_sip_18.live = FALSE
pattern_3_sip_9.counter = 0
pattern_3_sip_9.live = FALSE
pattern_4_sip_11.counter = 0
pattern_4_sip_11.live = FALSE
pattern_5_sip_123.counter = 0
pattern_5_sip_123.1live = FALSE
kettleOn_sip_120.counter = 0
kettleOn_sip_120.1live = FALSE

-> State: 1.2 <-

time = 1

297

wn
(O8]

atKitchen = TRUE
waterTapOn = TRUE

atKitchen_sip_120.counter = 1
-> State: 1.3 <-

time = 2

atKitchen = FALSE

atKitchen_sip_120.counter = 0

Listing A.9: A counter example for the specification of Line 3 in Listing A.9.

298

APPENDIX B s

APPENDIX B

Itisimportant to note that the work done during this PhD dissertation led to a number
of published articles that, whilst not derived directly from this thesis, are based on work

that is related to that presented by this dissertation:

* (2018) RC-ASEF: An open-source tool-supported requirements elicitation frame-
work for context-aware systems development.
Unai Alegre-Ibarra, Juan Carlos Augusto, and Carl Evans.
24™ Conference on Knowledge Acquisition and Management (IEEE).

* (2018) Perspectives on engineering more usable context-aware systems.
Unai Alegre-Ibarra, Juan Carlos Augusto, and Carl Evans.
Journal of Ambient Intelligence and Humanized Computing (Springer).

* (2018) A survey on the evolution of the notion of context-awareness.
Juan Carlos Augusto, Asier Aztiria-Goenaga, Dean Kramer, and Unai Alegre-
Ibarra.
Applied Artificial Intelligence (Taylor & Francis).

* (2017) Is ‘Context-Aware Reasoning= Case-Based Reasoning™.
Nawaz Khan, Unai Alegre-Ibarra, Dean Kramer, and Juan Carlos Augusto.
International and Interdisciplinary Conference on Modeling and Using Con-
text (Springer).

* (2017) The user-centred intelligent environments development process as a guide
to co-create smart technology for people with special needs.
Juan Carlos Augusto, Dean Kramer, Unai Alegre-Ibarra, Alexandra Covaci,
and Adityarajsingh Santokhee.
Universal Access in the Information Society (Springer).

* (2016) Co-creation of Smart Technology with (and for) People with Special Needs.

Juan Carlos Augusto, Dean Kramer, Unai Alegre-Ibarra, Alexandra Covaciand

299

Adityarajsingh Santokhee.

Proceedings of the 7th International Conference on Software Developmentand

Technologies for Enhancing Accessibility and Fighting Info-exclusion (ACM).
* (2016) Engineering context-aware systems and applications: A survey.

Unai Alegre-Ibarra, Juan Carlos Augusto, and Tony Clark.

Journal of Systems and Software 117, 55-83 (Elsevier).

300

BIBLIOGRAPHY

Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgako-
poulos, “Context aware computing for the internet of things: A survey,” Com-

munications Surveys € Tutorials, IEEE, vol. 16, no. 1, pp. 414—454, 2014.

OMG, “OMG Systems Modeling Language (OMG SysML), Version 1.3,”
Tech. Rep., Object Management Group, 2012.

Dean Kramer and Juan Carlos Augusto, “Supporting context-aware engineer-
ing based on stream reasoning,” in International and Interdisciplinary Confer-

ence on Modeling and Using Context. Springer, 2017, pp. 440-453.

Dean Kramer, “CoMo Context Modeller library,” https://github.com/
deankramer/ContextModeller, [Online; Last accessed 25-June-2018].

“Modelio Store,” http://store.modelio.org/resource/modules.

html, [Online; Last accessed 25-June-2018].

Mark Weiser, “The computer for the 21st century,” Scientific american, vol.

265, no. 3, pp. 94-104, 1991.

Bill Schilit, Norman Adams, and Roy Want, “Context-aware computing ap-
plications,” in Mobile Computing Systems and Applications, 1994. WMCSA
1994. First Workshop on. IEEE, 1994, pp. 85-90.

Anind K. Dey, “Understanding and Using Context,” Personal and Ubiquitous
Computing, vol. S, pp. 4-7, 2001.

Thomas Kleinberger, Martin Becker, Eric Ras, Andreas Holzinger, and Paul
Miiller, “Ambient intelligence in assisted living: enable elderly people to handle
tuture interfaces,” in International Conference on Universal Access in Human-

Computer Interaction. Springer, 2007, pp. 103-112.

301

https://github.com/deankramer/ContextModeller
https://github.com/deankramer/ContextModeller
http://store.modelio.org/resource/modules.html
http://store.modelio.org/resource/modules.html

[10]

[11]

[12]

[13]

J Augusto, Maurice Mulvenna, Huiru Zheng, Haiying Wang, Suzanne Martin,
P McCullagh, and Jonathan Wallace, “Night optimised care technology for
users needing assisted lifestyles,” Bebaviour € Information Technology, vol. 33,
no. 12, pp. 1261-1277, 2014.

Hong Sun, Vincenzo De Florio, Ning Gui, and Chris Blondia, “Promises and
challenges of ambient assisted living systems,” in Information Technology: New
Generations, 2009. ITNG 09. Sixth International Conference on. Ieee, 2009, pp.
1201-1207.

Jose Bravo, Diego Lépez-De-Ipifia, Carmen Fuentes, Ramén Hervds, Rocio
Pefia, Marcos Vergara, and Gregorio Casero, “Enabling NFC technology for
supporting chronic diseases: A proposal for alzheimer caregivers,” Ambient
Intelligence, pp. 109-125, 2008.

Ilia Adami, Margherita Antona, and Constantine Stephanidis, “Ambient As-
sisted Living for People with Motor Impairments,” Disability Informatics and
Web Accessibility for Motor Limitations, pp. 76-104, 2013.

Juan Carlos Augusto, Terje Grimstad, Reiner Wichert, Eva Schulze, Andreas
Braun, Gro Marit Redevand, and Vanda Ridley, “Personalized smart environ-
ments to increase inclusion of people with down’s syndrome,” in International

Joint Conference on Ambient Intelligence. Springer, 2013, pp. 223-228.

Vernor Vinge, “The coming technological singularity: How to survive in the
post-human era,” in Proceedings of a Symposium Vision-21: Interdisciplinary
Science € Engineering in the Era of CyberSpace, beld at NASA Lewis Research
Center (NASA Conference Publication CP-10129).—1993,1993.

Amnon H Eden, Eric Steinhart, David Pearce, and James H Moor, “Singularity

hypotheses: an overview,” in Singularity Hypotheses, pp. 1-12. Springer, 2012.

Thomas Erickson, “Some problems with the notion of context-aware comput-

ing,” Communications of the ACM, vol. 45, no. 2, pp. 102-104, 2002.

302

[18]

[22]

[24]

[25]

Anind K. Dey and Gregory D. Abowd, “Towards a better understanding of
context and context-awareness,” in [n HUC *99: Proceedings of the Ist inter-
national symposium on Handbeld and Ubiguitous Computing. 1999, pp. 304
307, Springer-Verlag.

Karen Henricksen and Jadwiga Indulska, “Modelling and using imperfect con-
text information,” in Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual Conference on. IEEE, 2004, pp.
33-37.

Jason Pascoe, Nick Ryan, and David Morse, “Issues in developing context-
aware computing,” in Handbeld and ubiquitous computing. Springer, 1999,
pp- 208-221.

Seyed Hossein Siadat and Minseok Song, “Understanding Requirement En-
gineering for Context-Aware Service-Based Applications,” Journal of Software

Engineering and Applications, vol. 5, no. 8, pp. 536-544, 2012.

Karen Henricksen and Jadwiga Indulska, “Developing context-aware pervasive
computing applications: Models and approach,” Pervasive and mobile comput-

ing, vol. 2, no. 1, pp. 37-64, 2006.

Bin Guo, Daqging Zhang, and Michita Imai, “Toward a cooperative program-
ming framework for context-aware applications,” Personal and Ubiquitous

Computing, vol. 15, no. 3, pp. 221-233, 2011.

Svein Hallsteinsen, Kurt Geihs, Nearchos Paspallis, Frank Eliassen, Geir Horn,
Jorge Lorenzo, Alessandro Mamelli, and George Angelos Papadopoulos, “A de-
velopment framework and methodology for self-adapting applications in ubi-
quitous computing environments,” Journal of Systems and Software, vol. 85,

no. 12, pp. 2840-2859, 2012.

Benjamin Bertran, Julien Bruneau, Damien Cassou, Nicolas Loriant, Emilie

Balland, and Charles Consel, “DiaSuite: A tool suite to develop Sense/Com-

»

pute/Control applications,” Science of Computer Programming, vol. 79, pp.

39-51, 2014.

303

[26]

[30]

Juan Carlos Augusto, “User-Centric Software Development Process,” in /-
telligent Environments (IE), 2014 International Conference on. IEEE, 2014, pp.
252-255.

Davy Preuveneers and Paulo Novais, “A survey of software engineering best
practices for the development of smart applications in Ambient Intelligence,”
Journal of Ambient Intelligence and Smart Environments, vol. 4, no. 3, pp. 149-
162, 2012.

Iara Augustin, Adenauer C Yamin, Luciano Cavalheiro da Silva,
Rodrigo Aratjo Real, Gustavo Frainer, and Cldudio FR Geyer, “ISA-
Madapt: abstractions and tools for designing general-purpose pervasive
applications,” Software: Practice and Experience, vol. 36, no. 11-12, pp.
1231-1256, 2006.

Aekyung Moon, Hyoungsun Kim, Hyun Kim, and Soowoo Lee, “Context-
aware active services in ubiquitous computing environments,” ETRI journal,

vol. 29, no. 2, pp. 169-178, 2007.

Achilleas Achilleos, Kun Yang, and Nektarios Georgalas, “Context modelling
and a context-aware framework for pervasive service creation: A model-driven

approach,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 281-296, 2010.

Lei Tang, Zhiwen Yu, Hanbo Wang, Xingshe Zhou, and Zongtao Duan,
“Methodology and Tools for Pervasive Application Development,” Interna-
tional Journal of Distributed Sensor Networks, vol. 2014, 2014.

Tomds Ruiz-Lépez, Carlos Rodriguez-Dominguez, Marfa José Rodriguez, Ser-
gio F Ochoa, and José Luis Garrido, “Context-Aware Self-adaptations: From
Requirements Specification to Code Generation,” in Ubiguitons Computing
and Ambient Intelligence. Context-Awareness and Context-Driven Interaction,

pp- 46-53. Springer, 2013.

Tom Gross, “Towards a new human-centred computing methodology for co-
operative ambient intelligence,” Journal of Ambient Intelligence and Human-

ized Computing, vol. 1, no. 1, pp. 31-42, 2010.

304

[34]

[37]

[38]

[41]

Juan Carlos Augusto and Miguel] Hornos, “Software simulation and veri-
fication to increase the reliability of Intelligent Environments,” Advances in

Engineering Software, vol. 58, pp. 18-34, 2013.

Saul Greenberg, “Context as a dynamic construct,” Human-Computer Inter-

action, vol. 16, no. 2, pp. 257-268, 2001.

“DiaSuite,” http://diagen.gforge.inria.fr/diasuite/
repository/release/diasuite/, [Online; Last accessed 25-June-
2018].

Middlesex University Research Group on the development of Intelligent En-
vironments, Fraunhofer-Gesellschaft Institute, and Tellu, “POSEIDON,”
http://www.poseidon-project.org/, [Online; Last accessed 25-June-
2018].

Dean Kramer, Alexandra Covaci, and Juan Carlos Augusto, “Developing Nav-
igational Services for People with Down’s Syndrome,” in Intelligent Environ-
ments (IE), 2015 International Conference on. IEEE, 2015, pp. 128-131.

POSEIDON Project, “POSEIDON Deliverable 2.1 - Report on require-
ments,” Tech. Rep., PersOnalized Smart Environments to increase Inclusion

of people with DOwn’s syNdrome, 2015.

Eamonn Slevin, I Lavery, David Sines, and] Knox, “Independent travel and
people with learning disabilities: the views of a sample of service providers on
whether this nee is being met,” Journal of Learning Disabilities for Nursing,
Health, and Social Care, vol. 2, no. 4, pp. 195-202, 1998.

Dean Kramer and Tellu, “Poseidon Application,” https://play.google.
com/store/apps/details?id=no.tellu.poseidon, [Online; Last ac-

cessed 25-June-2018].

Tellu, “POSEIDON,” https://play.google.com/store/apps/
details?id=no.tellu.poseidon.routecreator, [Online; Last

accessed 25-June-2018].

305

http://diagen.gforge.inria.fr/diasuite/repository/release/diasuite/
http://diagen.gforge.inria.fr/diasuite/repository/release/diasuite/
http://www.poseidon-project.org/
https://play.google.com/store/apps/details?id=no.tellu.poseidon
https://play.google.com/store/apps/details?id=no.tellu.poseidon
https://play.google.com/store/apps/details?id=no.tellu.poseidon.routecreator
https://play.google.com/store/apps/details?id=no.tellu.poseidon.routecreator

[43]

[44]

Alexandra Covaci, Dean Kramer, Juan Carlos Augusto, Silvia Rus, and An-
dreas Braun, “Assessing Real World Imagery in Virtual Environments for
People with Cognitive Disabilities,” in Intelligent Environments (IE), 2015 In-
ternational Conference on. IEEE, 2015, pp. 41-48.

Unai Alegre-Ibarra, Juan Carlos Augusto, and Carl Evans, “Perspectives on en-
gineering more usable context-aware systems,” Journal of Ambient Intelligence

and Humanized Computing, 2018.

Unai Alegre-Ibarra, Juan Carlos Augusto, and Tony Clark, “Engineering
context-aware systems and applications: A survey,” Journal of Systems and Soft-

ware, vol. 117, pp. 55-83, 2016.

Mary Bazire and Patrick Brézillon, “Understanding context before using it,” in

Modeling and using context, pp. 29-40. Springer, 2005.

Bill N Schilit and Marvin M Theimer, “Disseminating active map information

to mobile hosts,” Nerwork, IEEE, vol. 8, no. 5, pp. 22-32, 1994.

Peter] Brown, “The stick-e document: a framework for creating context-aware

applications,” Electronic Publishing-Chichester-, vol. 8, pp. 259-272,1995.

Anind K Dey, “Context-aware computing: The CyberDesk project,” in
Proceedings of the AAAI 1998 Spring Symposium on Intelligent Environments,
1998, pp. 51-54.

Richard Hull, Philip Neaves, and James Bedford-Roberts, “Towards situated
computing,” in Wearable Computers, 1997. Digest of Papers., First Interna-
tional Symposium on. IEEE, 1997, pp. 146-153.

Nick Ryan, Jason Pascoe, and David Morse, “Enhanced reality fieldwork: the

context aware archaeological assistant,” Bar International Series, vol. 750, pp.
269-274,1999.

International Organisation for Standardisation, “ISO 13407: Human-centred
design processes for interactive systems,” Tech. Rep., International Standards

Organization, 1999.

306

Albrecht Schmidt, Ubiguitous computing-computing in context, Ph.D. thesis,

Lancaster University, 2003.

Andreas Zimmermann, Andreas Lorenz, and Reinhard Oppermann, “An op-
erational definition of context,” in Modeling and using context, pp. 558-571.

Springer, 2007.

Prodromos Makris, Dimitrios N Skoutas, and Charalabos Skianis, “A survey on
context-aware mobile and wireless networking: On networking and computing
environments’ integration,” IEEE communications surveys & tutorials, vol. 15,

no. 1, pp. 362-386, 2013.

Stephen S Yau, Huan Liu, Dazhi Huang, and Yisheng Yao, “Situation-aware
personalized information retrieval for mobile internet,” in Computer Software
and Applications Conference, 2003. COMPSAC 2003. Proceedings. 27th An-
nual International. IEEE, 2003, pp. 639-644.

Virpi Roto et al., Web browsing on mobile phones: Characteristics of user exper-

tence, Ph.D. thesis, Helsinki University of Technology, 2006.

Juan Ye, Simon Dobson, and Susan McKeever, “Situation identification tech-
.
niques in pervasive computing: A review,” Pervasive and mobile computing,

vol. 8, no. 1, pp. 36-66, 2012.

Arthur H Van Bunningen, Ling Feng, and Peter MG Apers, “Context for ubi-
quitous data management,” in Ubiguitous Data Management, 2005. UDM
2005. International Workshop on. IEEE, 2005, pp. 17-24.

Karen Henricksen, 4 framework for context-aware pervasive computing applica-
tions, Ph.D. thesis, Computer Science, School of Information Technology and

Electrical Engineering, University of Queensland, 2003.

John McCarthy and Patrick] Hayes, “Some philosophical problems from the
standpoint of artificial intelligence,” Readings in artificial intelligence, pp.
431-450, 1969.

307

[64]

Ray Reiter, “The situation calculus ontology,” Electronic News Journal on

Reasoning about Actions and Changes, 1997.

Christos Anagnostopoulos and Stathes Hadjiefthymiades, “Advanced infer-
ence in situation-aware computing,” IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, vol. 39, no. S, pp. 1108-1115, 2009.

Tomds Ruiz-Lépez, Un enfoque dirigido por modelos para el desarrollo de servi-
cios para sistemas ubicuos basado en propiedades de calidad, Ph.D. thesis, Uni-
versidad de Granada, 2014.

“Google Now,” https://www.google.co.uk/landing/now/, 2014,
[Online; Last accessed 25-June-2018].

Jason Pascoe, “Adding generic contextual capabilities to wearable computers,”
in Wearable Computers, 1998. Digest of Papers. Second International Sym-
posium on. IEEE, 1998, pp. 92-99.

Louise Barkhuus and Anind Dey, “Is context-aware computing taking control
away from the user? Three levels of interactivity examined,” in UbiComp 2003:

Ubiguitous Computing. Springer, 2003, pp. 149-156.

Alan M Turing, “Computing machinery and intelligence,” Mind, vol. 59, no.
236, pp. 433-460, 1950.

John R Lucas, “Minds, machines and Gédel,” Philosophy, vol. 36, no. 137, pp.
112-127,1961.

Drew McDermott, “Artificial intelligence meets natural stupidity,” ACM
SIGART Bulletin, , no. 57, pp. 4-9, 1976.

John R Searle, “Minds, brains, and programs,” Bebavioral and brain sciences,
vol. 3, no. 03, pp. 417-424, 1980.

Rodney A Brooks, “Intelligence without representation,” Artificial intelli-
gence, vol. 47, no. 1-3, pp- 139-159, 1991.

308

https://www.google.co.uk/landing/now/

[81]

Hubert L Dreyfus, What computers still can’t do: a critique of artificial reason,
MIT press, 1992.

J.A. Fodor, The Mind Doesn’t Work that Way: The Scope and Limits of Com-
putational Psychology, Bradford book. MIT Press, 2001.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, An-
dreas Stolcke, Dong Yu, and Geoffrey Zweig, “Achieving human parity in con-

versational speech recognition,” arXiv preprint arXiv:1610.05256, 2016.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
et al., “Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation,” arXzv preprint arXiv:1609.08144,
2016.

Fei-Yue Wang, Jun Jason Zhang, Xinhu Zheng, Xiao Wang, Yong Yuan, Xiaox-
iao Dai, Jie Zhang, and Liuging Yang, “Where does AlphaGo go: from Church-
Turing thesis to AlphaGo thesis and beyond,” IEEE/CAA Journal of Automat-
ica Sinica, vol. 3, no. 2, pp. 113-120, 2016.

Dharmendra S Modha, Rajagopal Ananthanarayanan, Steven K Esser, An-
thony Ndirango, Anthony J Sherbondy, and Raghavendra Singh, “Cognitive
computing,” Communications of the ACM, vol. 54, no. 8, pp. 62-71, 2011.

Lucy A Suchman, Plans and situated actions: the problem of human-machine

communication, Xerox Corporation, Palo Alto Research Center, 1985.

Leila Takayama, “The motivations of ubiquitous computing: revisiting the
ideas behind and beyond the prototypes,” Personal and Ubiguitons Computing,
vol. 21, no. 3, pp. 557-569, 2017.

Paul Dourish, “What we talk about when we talk about context,” Personal and

ubiquitous computing, vol. 8, no. 1, pp. 19-30, 2004.

309

[82]

Matthew Ball, Vic Callaghan, and Michael Gardner, “An adjustable-autonomy
agent for intelligent environments,” in Intelligent Environments (IE), 2010

Sixth International Conference on. IEEE, 2010, pp. 1-6.

Gerhard Fischer, “Context-aware systems: the’right’information, at
the’right’time, in the’right’place, in the’right’way, to the’right’person,” in Pro-
ceedings of the International Working Conference on Advanced Visual Interfaces.
ACM, 2012, pp. 287-294.

Betty HC Cheng, Rogerio De Lemos, Holger Giese, Paola Inverardi, Jeff
Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan
Cukic, et al., “Software engineering for self-adaptive systems: A research
roadmap,” in Software engineering for self-adaptive systems, pp. 1-26. Springer,
20009.

Rogério De Lemos, Holger Giese, Hausi A Miller, Mary Shaw, Jesper An-
dersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas,
Thomas Vogel, etal., “Software engineering for self-adaptive systems: A second
research roadmap,” in Software Engineering for Self-Adaptive Systems II, pp.
1-32. Springer, 2013.

Brian Y Lim, “Improving trust in context-aware applications with intelligibil-
ity,” in Proceedings of the 12th ACM international conference adjunct papers on
Ubiguitous computing-Adjunct. ACM, 2010, pp. 477-480.

Brian Y Lim and Anind K Dey, “Toolkit to support intelligibility in context-
aware applications,” in Proceedings of the 12th ACM international conference

on Ubiguitous computing. ACM, 2010, pp. 13-22.

Asier Aztiria, Juan Carlos Augusto, Rosa Basagoiti, Alberto Izaguirre, and Di-
ane] Cook, “Learning frequent behaviors of the users in intelligent environ-
ments,” Systems, Man, and Cybernetics: Systems, IEEE Transactions on, vol. 43,
no. 6, pp. 1265-1278, 2013.

Gerhard Fischer, “End-user development and meta-design: Foundations for

cultures of participation,” in End-user development, pp. 3—14. Springer, 2009.

310

[90]

[97]

Jadwiga Indulska and Peter Sutton, “Location management in pervasive sys-
tems,” in Proceedings of the Australasian information security workshop confer-
ence on ACSW frontiers 2003-Volume 21. Australian Computer Society, Inc.,
2003, pp. 143-151.

Klaus Pohl, Requirements engineering: fundamentals, principles, and tech-

nigues, Springer Publishing Company, Incorporated, 2010.

Bashar Nuseibeh and Steve Easterbrook, “Requirements engineering: a
roadmap,” in Proceedings of the Conference on the Future of Software Engin-
eering. ACM, 2000, pp. 35-46.

Suzanne Robertson and James Robertson, Mastering the requirements process:

getting requivements right, Addison-Wesley, 2012.

Annie I Anton, “Goal-based requirements analysis,” in Requirements En-
gineering, 1996., Proceedings of the Second International Conference on. IEEE,
1996, pp. 136-144.

Anthony Finkelstein and Andrea Savigni, “A Framework for Requirements
Engineering for Context-Aware Services,” in In Proc. of 1 st International
Waorkshop From Software Requirements to Architectures (STRAW), 2001, pp.
200-1.

Katsunori Oyama, Hojun Jaygarl, Jinchun Xia, Carl K Chang, Atsushi Takeu-
chi, and Hiroshi Fujimoto, “Requirements analysis using feedback from
context awareness systems,” in Computer Software and Applications, 2008.
COMPSAC08. 32nd Annual IEEE International. IEEE, 2008, pp. 625-630.

Katsunori Oyama, Atsushi Takeuchi, and Hiroshi Fujimoto, “CAPIS model
based software design method for sharing experts’ thought processes,” in Com-
puter Software and Applications Conference, 2006. COMPSAC 06. 30th Annual
International. IEEE, 2006, vol. 1, pp. 307-316.

Russell L Ackoff, “From data to wisdom,” Journal of applied systems analysis,
vol. 16, no. 1, pp. 3-9, 1989.

311

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Luciano Baresi, Liliana Pasquale, and Paola Spoletini, =~ “Fuzzy goals for
requirements-driven adaptation,” in Requirements Engineering Conference

(RE), 2010 18th IEEE International. IEEE, 2010, pp. 125-134.

Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas, “Goal-directed
requirements acquisition,” Science of computer programming, vol. 20, no. 1,

pp- 3-50, 1993.

Robert Darimont, Emmanuelle Delor, Philippe Massonet, and Axel van Lam-
sweerde, “GRAIL/KAOS: an environment for goal-driven requirements en-
gineering,” in Proceedings of the 19th international conference on Software en-
gineering. ACM, 1997, pp. 612-613.

Axel Van Lamsweerde and Emmanuel Letier, “From object orientation to
goal orientation: A paradigm shift for requirements engineering,” in Radical
Innovations of Software and Systems Engineering in the Future, pp. 325-340.
Springer, 2004.

Alistair Sutcliffe, “Scenario-based requirements engineering,” in Requirements
engineering conference, 2003. Proceedings. 11th IEEE international. 1EEE,
2003, pp. 320-329.

Norbert Seyft, Florian Graf, Paul Griinbacher, and Neil Maiden, “Mobile dis-

covery of requirements for context-aware systems,” in Requirements Engineer-

ing: Foundation for Software Quality, pp. 183-197. Springer, 2008.

Norbert Seyff, Florian Graf, Neil Maiden, and Paul Griinbacher, “Scenarios
in the wild: Experiences with a contextual requirements discovery method,”
in Requivements Engineering: Foundation for Software Quality, pp. 147-161.
Springer, 2009.

Alistair Sutcliffe, Stephen Fickas, and McKay Moore Sohlberg, “PC-RE: a
method for personal and contextual requirements engineering with some ex-

perience,” Requirements Engineering, vol. 11, no. 3, pp. 157-173, 2006.

Wassiou Sitou and Bernd Spanfelner, “Towards requirements engineering for

context adaptive systems,” in Computer Software and Applications Conference,

312

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

2007. COMPSAC 2007. 31st Annual International. IEEE, 2007, vol. 2, pp.
593-600.

Carl Evans, Lindsey Brodie, and Juan Carlos Augusto, “Requirements Engin-
eering for Intelligent Environments,” in Intelligent Environments (IE), 2014
International Conference on. IEEE, 2014, pp. 154-161.

Tomis Ruiz-Lépez, Manuel Noguera, MarfA José Rodriguez, José Luis Gar-
rido, and Lawrence Chung, “REUBI: A requirements engineering method for
ubiquitous systems,” Sczence of Computer Programming, vol. 78, no. 10, pp.
1895-1911, 2013.

Michael Jesse Chonoles and James A Schardt, UML 2 for Dummies, John
Wiley & Sons, 2011.

Alberto Rodrigues da Silva, “Model-driven engineering: A survey supported
by the unified conceptual model,” Computer Languages, Systems € Structures,
vol. 43, pp. 139-155, 2015.

“Object Management Group’s official website,” https://www.omg.org/,
[Online; Last accessed 25-June-2018].

R Geoft Dromey, “From requirements to design: Formalizing the key steps,”
in Software Engineering and Formal Methods, 2003. Proceedings. First Interna-
tional Conference on. IEEE, 2003, pp. 2-11.

Tadao Murata, “Petri nets: Properties, analysis and applications,” Proceedings
of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

Armand Hatchuel and Benoit Weil, “A new approach of innovative Design:
an introduction to CK theory.,” in DS 31: Proceedings of ICED 03, the 14th
International Conference on Engineering Design, Stockholm, 2003.

Terry Halpin and Tony Morgan, Information modeling and relational data-
bases, Morgan Kaufmann, 2010.

“Unified Modelling Language,” http://www.omg.org/, [Online; Last ac-
cessed 25-June-2018].

313

https://www.omg.org/
http://www.omg.org/

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

OMG, “OMG Universal Modeling Language (UML), Version 2.5,” Tech.
Rep., Object Management Group, 2015.

Sinan Si Alhir, Guide to Applying the UML, Springer Science & Business Media,
2006.

Marcos Vinicius Linhares, Alexandre Jose da Silva, and Rémulo Silva De Oli-
veira, “Empirical evaluation of SysML through the modeling of an industrial
automation unit,” in 2006 IEEE Conference on Emerging Technologies and Fact-
ory Automation. IEEE, 2006, pp. 145-152.

Rubén Fuentes-Ferndndez, Jorge] Gdmez-Sanz, and Juan Pavén, “Under-
standing the human context in requirements elicitation,” Regquirements en-

gineering, vol. 15, no. 3, pp. 267-283, 2010.

Manzoor Ahmad, Jean-Michel Bruel, Régine Laleau, and Christophe Gnaho,
“Using RELAX, SysML and KAOS for ambient systems requirements model-
ing,” Procedia Computer Science, vol. 10, pp. 474-481, 2012.

Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Jean-Michel
Bruel, “RELAX: a language to address uncertainty in self-adaptive systems re-

quirement,” Requirements Engineering, vol. 15, no. 2, pp. 177-196, 2010.

Eric SK Yu, “Towards modelling and reasoning support for early-phase require-
ments engineering,” in Requirements Engineering, 1997., Proceedings of the
Third IEEE International Symposium on. IEEE, 1997, pp. 226-235.

John Mylopoulos, Lawrence Chung, and Brian Nixon, “Representing and us-
ing nonfunctional requirements: A process-oriented approach,” IEEE Trans-

actions on Software Engineering, vol. 18, no. 6, pp. 483-497, 1992.

Hugo Estrada, Alicia Martinez Rebollar, Oscar Pastor, and John Mylopoulos,
“An empirical evaluation of the i* framework in a model-based software gen-
eration environment,” in International Conference on Advanced Information

Systems Engineering. Springer, 2006, pp. 513-527.

314

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

U2TP Consortium, “UML 2.0 Testing Profile, Version 2.0,” Tech. Rep., Ob-
ject Management Group, 2017.

Quan Z Sheng and Boualem Benatallah, “ContextUML: a UML-based model-
ing language for model-driven development of context-aware web services,” in
Mobile Business, 2005. ICMB 2005. International Conference on. IEEE, 2005,
pp- 206-212.

James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley Professional, 2005.

Estefanfa Serral, Pedro Valderas, and Vicente Pelechano, “A model driven de-
velopment method for developing context-aware pervasive systems,” in Ubz-

quitous Intelligence and Computing, pp. 662-676. Springer, 2008.

Estefania Serral, Pedro Valderas, and Vicente Pelechano, “Towards the model
driven development of context-aware pervasive systems,” Pervasive and Mobile

Computing, vol. 6, no. 2, pp. 254-280, 2010.

J. Miller and J. Mukerji, “MDA Guide Version 1.0.1,” Tech. Rep., Object
Management Group (OMG), 2003.

Ricardo Tesoriero, José A Gallud, Maria Dolores Lozano, and Victor M Ruiz
Penichet, “CAUCE: Model-driven Development of Context-aware Applica-
tions for Ubiquitous Computing Environments.,” Journal of Universal Com-

puter Science, vol. 16, no. 15, pp- 2111-2138, 2010.

Andrea Sindico and Vincenzo Grassi, “Model driven development of context
aware software systems,” in International workshop on context-oriented pro-

gramming. ACM, 2009, p. 7.

José Ramén Hoyos, Jestis Garcfa-Molina, and Juan Antonio Botia, “MLCon-
text: a context-modeling language for context-aware systems,” Electronic Com-
munications of the EASST, vol. 28 (2010), 2010.

315

[136]

[137]

[138]

[139]

[140]

[141]

Anind K Dey, Timothy Sohn, Sara Streng, and Justin Kodama, “iCAP: Inter-
active prototyping of context-aware applications,” in Pervasive Computz’ng, pPp-
254-271. Springer, 2006.

Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman,
“Practical trigger-action programming in the smart home,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2014,
pp- 803-812.

Justin Huang and Maya Cakmak, “Supporting mental model accuracy in

trigger-action programming,” in Proceedings of the 2015 ACM International

Joint Conference on Pervasive and Ubiquitous Computing. ACM, 2015, pp.

215-225.

Henry Lieberman, Fabio Paterno, Markus Klann, and Volker Wulf, End-User
Development: An Emerging Paradigm, vol. 9 of Human-Computer Interaction

Series, Springer Netherlands, Dordrecht, 2006.

Alessandro A Nacci, Bharathan Balaji, Paola Spoletini, Rajesh Gupta, Dona-
tella Sciuto, and Yuvraj Agarwal, “BuildingRules: a trigger-action based system
to manage complex commercial buildings,” in Proceedings of the 2015 ACM In-
ternational Joint Conference on Pervasive and Ubiguitous Computing and Pro-
ceedings of the 2015 ACM International Symposium on Wearable Computers.
ACM, 2015, pp. 381-384.

Gabriella Lucci and Fabio Paterno, “Understanding end-user development of
context-dependent applications in smartphones,” in Human-Centered Soft-

ware Engineering, pp. 182-198. Springer, 2014.

[142] Jongmyung Choi, “Context-driven requirements analysis,” in Computational

Science and Its Applications—-ICCSA 2007, pp. 739-748. Springer, 2007.

[143] Jongmyung Choi and Youngho Lee, “Use-Case Driven Requirements Ana-

lysis for Context-Aware Systems,” in Computer Applications for Bio-technology,
Multimedia, and Ubiquitous City, pp. 202-209. Springer, 2012.

316

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Brecht Desmet, Jorge Vallejos, Pascal Costanza, Wolfgang De Meuter, and
Theo D’Hondt, “Context-oriented domain analysis,” in Modeling and Us-

ing Context, pp. 178—191. Springer, 2007.

Carlos Rodriguez-Dominguez, Tomds Ruiz-Lépez, Kawtar Benghazi, and
José Luis Garrido, “Designing a Middleware-Based Framework to Sup-
port Multiparadigm Communications in Ubiquitous Systems,” _Ambient

Intelligence-Software and Applications, p. 163, 2012.

Tomds Ruiz-Lépez, Carlos Rodriguez-Dominguez, Manuel Noguera, and
Maria José Rodriguez, “A Model-Driven Approach to Requirements Engineer-
ing in Ubiquitous Systems,” in Ambient Intelligence-Software and Applications,
pp- 85-92. Springer, 2012.

Javier Munoz, Vicente Pelechano, and Joan Fons, “Model driven development
of pervasive systems,” in International Workshop on Model-Based Methodolo-
gies for Pervasive and Embedded Software (MOMPES). Citeseer, 2004, vol. 1,
pp. 3-14.

Modeliosoft, “Modelio,” https://www.modelio.org/, [Online; Last ac-
cessed 25-June-2018].

“Papyrus,” https://eclipse.org/papyrus/, [Online; Last accessed 25-
June-2018].

“Eclipse,” https://eclipse.org/, [Online; Last accessed 25-June-2018].

Object Management Group, “UML Profile for MARTE: Modeling and Ana-
lysis of Real-Time Embedded Systems,” Tech. Rep., Object Management
Group, 2011.

Object Management Group, “Service oriented architecture Modeling Lan-

guage (SoaML) Specification,” Tech. Rep., Object Management Group, 2012.

Van (Open Group) Haren, TOGAF Version 9.1, Van Haren Publishing, 2011.

317

https://www.modelio.org/
https://eclipse.org/papyrus/
https://eclipse.org/

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

Alessandra Bagnato, Andrey Sadovykh, Etienne Brosse, and Tanja EJ Vos, “The
OMG UML Testing Profile in Use—An Industrial Case Study for the Future In-
ternet Testing,” in Software maintenance and reengineering (csmr), 2013 17th

european conference on. IEEE, 2013, pp. 457-460.

Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana, “Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language,” Tech. Rep., W3C, 2017.

Thomas Strang and Claudia Linnhoff-Popien, “A Context Modeling Survey,”
in In: Workshop on Advanced Context Modelling, Reasoning and Management,
UbiComp 2004 - The Sixth International Conference on Ubiguitous Computing,
Nottingham/England. 2004, pp. 31-41, Springer-Verlag.

Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber, and
Letizia Tanca, “A Data-oriented Survey of Context Models,” SIGAMOD Rec.,
vol. 36, no. 4, pp. 19-26, Dec. 2007.

Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska, Daniela
Nicklas, Anand Ranganathan, and Daniele Riboni, “A survey of context mod-
elling and reasoning techniques,” Pervasive and Mobile Computing, vol. 6, no.

2, pp. 161-180, 2010,

Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg, “A survey on
context-aware systems,” International Journal of Ad Hoc and Ubiguitous Com-

puting, vol. 2, no. 4, pp. 263-277, 2007.

Daniele Riboni and Claudio Bettini, “Context-aware activity recognition
through a combination of ontological and statistical reasoning,” in Interna-
tional Conference on Ubiquitous Intelligence and Computing. Springer, 2009,
pp- 39-53.

Hristijan Gjoreski, Context-based Reasoning in Ambient Intelligence, Ph.D.
thesis, PhD Thesis, IPS Jozef Stefan, Ljubljana, Slovenia, 2015.

318

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

Unai Alegre-Ibarra, Juan Carlos Augusto, and Asier Aztiria, “Temporal Reas-
oning for Intuitive Specification of Context-Awareness,” in Intelligent Envir-
onments (IE), 2014 International Conference on. IEEE, 2014, pp. 234-241.

Antony Galton and Juan Carlos Augusto, “Stratified causal theories for reason-
ing about deterministic devices and protocols,” in Temporal Representation and
Reasoning, 2002. TIME 2002. Proceedings. Ninth International Symposium on.
TEEE, 2002, pp. 52-54.

Unai Alegre-Ibarra, “Context-awareness in intelligent environments,” M.S.

thesis, Mondragon University faculty of engineering, 2014.

M. Estibalitz Aranbarri-Zinkunegi, “Improving the Pattern Learning System
integrating the reasoning system,” M.S. thesis, Mondragon University faculty

of engineering, 2017.

Dean Kramer, “AContextLib library,” https://github.com/
deankramer/aContextLib, [Online; Last accessed 25-June-2018].

Dean Kramer and Unai Alegre-Ibarra, ,” https://github.com/ualegre/
aContextReasoner, 2015, [Online; Last accessed 25-June-2018].

“C-SPARQL,” http://streamreasoning.org/resources/c-sparql,
[Online; Last accessed 25-June-2018].

Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, EMANUELE DELLA
VALLE, and Michael Grossniklaus, “C-SPARQL: a continuous query lan-
guage for RDF data streams,” International Journal of Semantic Computing,

vol. 4, no. 01, pp. 3-25, 2010.

Edsger W Dijkstra, “The humble programmer,” Commaunications of the ACM,
vol. 15, no. 10, pp. 859-866, 1972.

[171] Juan Carlos Augusto, “Increasing reliability in the development of intelligent

environments,” in Intelligent Environments 2009: Proceedings of the Sth Inter-
national Conference on Intelligent Environments, Barcelona 2009. 10S Press,

2009, vol. 2, p. 134.

319

https://github.com/deankramer/aContextLib
https://github.com/deankramer/aContextLib
https://github.com/ualegre/aContextReasoner
https://github.com/ualegre/aContextReasoner
http://streamreasoning.org/resources/c-sparql

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

Juan Carlos Augusto, Huiru Zheng, Maurice Mulvenna, Haiying Wang, Wil-
liam Carswell, and P Jeffers, “Design and modelling of the nocturnal AAL
care system,” in Ambient Intelligence-Software and Applications, pp. 109-116.
Springer, 2011.

Gerard] Holzmann, “The model checker SPIN,” IEEE Transactions on soft-
ware engineering, vol. 23, no. 5, pp. 279-295, 1997.

Davy Preuveneers and Yolande Berbers, “Consistency in Context-Aware Beha-
vior: a Model Checking Approach.,” in Intelligent Environments (Workshops),
2012, pp. 401-412.

Liliana D’Errico and Michele Loreti, “Context aware specification and verific-
ation of distributed systems,” in Trustworthy Global Computing, pp. 142—159.
Springer, 2012.

Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese, “KLAIM: A ker-
nel language for agents interaction and mobility,” Software Engineering, IEEE
Transactions on, vol. 24, no. 5, pp. 315-330, 1998.

Yepang Liu, Chang Xu, and SC Cheung, “Afchecker: Effective model checking
for context-aware adaptive applications,” Journal of Systems and Software, vol.
86, no. 3, pp. 854-867, 2013.

Michele Sama, Sebastian Elbaum, Franco Raimondi, David S Rosenblum, and
Zhimin Wang, “Context-aware adaptive applications: Fault patterns and their
automated identification,” Software Engineering, IEEE Transactions on, vol.
36, no. 5, pp. 644-661, 2010.

JoonSeok Park, Mikyeong Moon, Seongjin Hwang, and Keunhyuk Yeom,
“CASS: A context-aware simulation system for smart home,” in Software En-
gineering Research, Management € Applications, 2007. SERA 2007. Sth ACIS
International Conference on. IEEE, 2007, pp. 461-467.

Zhimin Wang, Sebastian Elbaum, and David S Rosenblum, “Automated gen-
eration of context-aware tests,” in Software Engineering, 2007. ICSE 2007. 29th
International Conference on. IEEE, 2007, pp. 406-415.

320

[181] Julien Bruneau, Wilfried Jouve, and Charles Consel, “DiaSim: A parameter-
ized simulator for pervasive computing applications,” in Mobile and Ubiguit-
ous Systems: Networking € Services, MobiQuitous, 2009. MobiQuitous’ 09. 6th
Annual International. IEEE, 2009, pp. 1-10.

[182] Lian Yu, Wei Tek Tsai, Yanbing Jiang, and Jerry Gao, “Generating Test Cases
for Context-Aware Applications Using Bigraphs,” in Software Security and Re-
liability, 2014 Eighth International Conference on. IEEE, 2014, pp. 137-146.

[183] Roberto Cavada, Alessandro Cimatti, Gavin Jochim, Keighren, Emanuele
Olivetti, Marco Pistore, Marco Roveri, and Andrei Tchaltsev, “NuSMV 2.6

User Manual,” .

[184] John M Bryson, Michael Quinn Patton, and Ruth A Bowman, “Working with
evaluation stakeholders: A rationale, step-wise approach and toolkit,” Evalu-

ation and program planning, vol. 34, no. 1, pp. 1-12, 2011.

[185] John M Bryson, “What to do when stakeholders matter: stakeholder identific-
ation and analysis techniques,” Public management review, vol. 6, no. 1, pp.
21-53, 2004.

[186] Simon Jones, Sukhvinder Hara, and Juan Augusto, “e-FRIEND: an Ethical
Framework for Intelligent Environment Development,” in Ethics and Inform-

ation Technology. Springer, 2015, vol. 17, pp. 11-25.

[187] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos, No#n-
functional requivements in software engineering, vol. 5, Springer Science &
Business Media, 2012.

[188] R Edward Freeman, Strategic management: A stakeholder approach, Boston:
Pitman/Ballinger, 1984.

[189] ISO25000 Software Product Quality, “ISO25010,” http://is025000.
com/index.php/en/iso-25000-standards/iso-25010, [Online; Last
accessed 25-June-2018].

321

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

[190]

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]

David Maulsby, Saul Greenberg, and Richard Mander, “Prototyping an in-
telligent agent through Wizard of Oz,” in Proceedings of the INTERACT 93
and CHI’93 conference on Human factors in computing systems. ACM, 1993,
pp- 277-284.

Hyun-Seok Min, “Traceability Guideline for Software Requirements and
UML Design,” International Journal of Software Engineering and Knowledge
Engineering, vol. 26, no. 01, pp. 87-113, 2016.

Michel dos Santos Soares and Jos Vrancken, “Requirements specification and
modeling through SysML,” in Systems, Man and Cybernetics, 2007. ISIC. IEEE
International Conference on. IEEE, 2007, pp. 1735-1740.

Matthew Hause, Andrew Stuart, David Richards, and Jon Holt, “Testing safety
critical systems with SysML/UML,” in Engineering of Complex Computer Sys-
tems (ICECCS), 2010 15th IEEE International Conference on. IEEE, 2010, pp.
325-330.

Unai Alegre-Ibarra, “Requirements for Context-Aware Systems Engineering
(RCASE) Tool,” https://github.com/ualegre/rcase, 2016, [Online;
Last accessed 25-June-2018].

Alegre-Ibarra Unai and Julian Hallett, “POSEIDON questionnaires
on the situations of interest,” https://www.dropbox.com/sh/
velul2rmos8d3en/AABnIVZZWNfdpDg4jrTqcKYaa?d1=0, [Online;
Last accessed 25-June-2018].

Weiping Wang, Qiang Chang, Qun Li, Zesen Shi, and Wei Chen, “Indoor-
Outdoor Detection Using a Smart Phone Sensor,” Sezsors, vol. 16, no. 10, pp.
1563, 2016.

Citymapper Limited, “Citymapper Transport Application, Official Website,”
https://citymapper.com/, 2011, [Online; Last accessed 25-June-2018].

Uber Technologies Inc., “Uber APL” https://developer.uber.com/,
2009, [Online; Last accessed 25-June-2018].

322

https://github.com/ualegre/rcase
https://www.dropbox.com/sh/velul2rmos8d3en/AABnIVZZWNfdpDq4jrTqcKYaa?dl=0
https://www.dropbox.com/sh/velul2rmos8d3en/AABnIVZZWNfdpDq4jrTqcKYaa?dl=0
https://citymapper.com/
https://developer.uber.com/

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

J Augusto, Dean Kramer, Unai Alegre-Ibarra, Alexandra Covaci, and Aditya-
rajsingh Santokhee, “The user-centred intelligent environments development
process as a guide to co-create smart technology for people with special needs,”

Universal Access in the Information Society, pp. 1-16, 2017.

Unai Alegre-Ibarra, “Official repository of the Design for Context-Aware
Systems Engineering (DCASE) tool,” https://github.com/ualegre/
dcase, [Online; Last accessed 25-June-2018].

Lukasz Golab and M Tamer Ozsu, “Processing sliding window multi-joins in
continuous queries over data streams,” in Proceedings of the 29th international
conference on Very large data bases-Volume 29. VLDB Endowment, 2003, pp.
500-511.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella,
“Nusmv 2: An opensource tool for symbolic model checking,” in International

Conference on Computer Aided Verification. Springer, 2002, pp. 359-364.

Michel dos Santos Soares and Jos LM Vrancken, “Model-Driven User Require-
ments Specification using SysML.,” JSI¥, vol. 3, no. 6, pp. 57-68, 2008.

Modeliosoft, “UML Testing Profile for Modelio,” http://store.
modelio.org/resource/modules/utp.html, [Online; Last accessed 25-

June-2018].

Unai Alegre-Ibarra, ,” https://github.com/ualegre/m2nusmv, 2016,
[Online; Last accessed 25-June-2018].

Unai Alegre-Ibarra, ,” https://github.com/ualegre/mreasoner-gui,
2014, [Online; Last accessed 25-June-2018].

Asier Aztiria-Goenaga and M. Estibalitz Aranbarri-Zinkunegi, “Learning
Frequent Patterns of User Behaviour (LFPUBS),” https://github.com/
estibalitz/1fpubs, [Online; Last accessed 25-June-2018].

323

https://github.com/ualegre/dcase
https://github.com/ualegre/dcase
http://store.modelio.org/resource/modules/utp.html
http://store.modelio.org/resource/modules/utp.html
https://github.com/ualegre/m2nusmv
https://github.com/ualegre/mreasoner-gui
https://github.com/estibalitz/lfpubs
https://github.com/estibalitz/lfpubs

[208]

[209]

Unai Alegre-Ibarra and Estibaliz Aranbarri-Zinkunegi, ,” https://github.
com/ualegre/1fpubs2m, 2016, [Online; Last accessed 25-June-2018].

Eclipse, “Eclipse IDE for Java Developers,” https://www.eclipse.org/
downloads/packages/eclipse-ide-java-developers/neon3, [On-

line; Last accessed 25-June-2018].

[210] JUnit Team, “JUnit Official Website,” https://junit.org/junit5/, [On-

[211]

[212]

[213]

[214]

[215]

[216]

[217]

line; Last accessed 25-June-2018].

Modeliosoft, “JUnit Model Tester for Modelio,” http://store.modelio.
org/resource/modules/junit html, [Online; Last accessed 25-June-

2018].

»

Unai Alegre-Ibarra, , https://github.com/ualegre/

mreasoner—core, 2014, [Online; Last accessed 25-June-2018].

Vera Control Ltd., “Vera official webpage,” http://getvera.com/, [On-
line; Last accessed 25-June-2018].

Unai Alegre-Ibarra, ,” https://github.com/ualegre/vera-manager,
2016, [Online; Last accessed 25-June-2018].

Fabio Somenzi, “CUDD: CU Decision Diagram Package, Release 3.0.0,” in
bttp://vlsi.colorado.edu. Department of Electrical, Computer, and Energy En-
gineering, University of Colorado at Boulder, 2015.

Center for Information Technology at FBK-IRST Embedded Systems Unit,
Model Checking group at Carnegie Mellon University, Mechanized Reason-
ing Group at University of Genova, and The Mechanized Reasoning Group
at University of Trento, “NuSMV Official Webpage,” http://nusmv.fbk.
eu/, [Online; Last accessed 25-June-2018].

Dean Kramer, ,” https://github.com/deankramer/aContextLib,
2016, [Online; Last accessed 25-June-2018].

324

https://github.com/ualegre/lfpubs2m
https://github.com/ualegre/lfpubs2m
https://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/neon3
https://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/neon3
https://junit.org/junit5/
http://store.modelio.org/resource/modules/junit.html
http://store.modelio.org/resource/modules/junit.html
https://github.com/ualegre/mreasoner-core
https://github.com/ualegre/mreasoner-core
http://getvera.com/
https://github.com/ualegre/vera-manager
http://nusmv.fbk.eu/
http://nusmv.fbk.eu/
https://github.com/deankramer/aContextLib

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

“Documentation on Android Sensors,” https://developer.android.
com/guide/topics/sensors/sensors_overview.html, [Online; Last

accessed 25-June-2018].

Terry Winograd and Fernando Flores, Understanding computers and cognition:
A new foundation for design, Norword, NJ: Ablex Publishing Corporation,
1986.

Paul Dourish, “Seeking a foundation for context-aware computing,” Human-

Computer Interaction, vol. 16, no. 2-4, pp. 229-241, 2001.

Bonnie A Nardi, Context and consciousness: activity theory and human-

computer interaction, Mit Press, 1996.

Dag Svanaes, “Context-aware technology: a phenomenological perspective,”

Human-Computer Interaction, vol. 16, no. 2-4, pp. 379-400, 2001.

CL Oguego, Juan Carlos Augusto, A Mufioz, and Mark Springett, “Using
argumentation to manage users’ preferences,” Future Generation Computer

Systems, vol. 81, pp. 235-243, 2018.

POSEIDON project, “Poseidon applications download guide,” http: //www .
poseidon-project.org/secondary-users/app/, 2017.

Mikel Mateo, ,” https://github.com/mmateom/Weight-Manager,
2017, [Online; Last accessed 25-June-2018].

Unai Alegre-Ibarra, “Official repository of the Requirements for Context-
Aware Systems Engineering (RCASE) tool,” https://github.com/
ualegre/rcase/raw/master/rcase/target/RCase_0.4.7. jmdac,

2016, [Online; Last accessed 25-June-2018].

Unai Alegre-Ibarra, “Official repository of the Ontologies for Context-Aware
Systems Engineering (OCASE) tool,” https://github.com/ualegre/
ocase, 2015, [Online; Last accessed 25-June-2018].

325

https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
http://www.poseidon-project.org/secondary-users/app/
http://www.poseidon-project.org/secondary-users/app/
https://github.com/mmateom/Weight-Manager
https://github.com/ualegre/rcase/raw/master/rcase/target/RCase_0.4.7.jmdac
https://github.com/ualegre/rcase/raw/master/rcase/target/RCase_0.4.7.jmdac
https://github.com/ualegre/ocase
https://github.com/ualegre/ocase

[228]

[229]

[230]

[231]

Modeliosoft, “Modelio Module Installation Guide,” https://www.
modelio.org/downloads/download-modelio.html, [Online; Last ac-

cessed 25-June-2018].

“Modelio: Quickstart guide,” https://www.modelio.org/
quick-start-pages-35.html, [Online; Last accessed 25-June-2018].

“Modelio: Official website,” http://store.modelio.org/resource/
modules/sysml-architect-open-source.html, [Online; Last accessed

25-June-2018].

Unai Alegre-Ibarra, ,” https://github.com/ualegre/mreasoner, 2016,
[Online; Last accessed 25-June-2018].

326

https://www.modelio.org/downloads/download-modelio.html
https://www.modelio.org/downloads/download-modelio.html
https://www.modelio.org/quick-start-pages-35.html
https://www.modelio.org/quick-start-pages-35.html
http://store.modelio.org/resource/modules/sysml-architect-open-source.html
http://store.modelio.org/resource/modules/sysml-architect-open-source.html
https://github.com/ualegre/mreasoner

	Contents
	List of Figures
	List of Tables
	Opening
	Introduction
	Introduction
	Supporting a software development methodology for context-aware systems
	Problem statement
	Objectives
	Case Study
	Document structure

	Conceptualisation
	Introduction
	Context in context-aware computing
	Reflections on the context conceptualisation
	Perspectives on context for the engineering of more usable context-aware systems
	Conclusions

	State of the art
	Introduction
	Requirements engineering
	Model-driven engineering
	Implementation support
	Conclusions

	Requirements stage
	RC-ASEF: Requirements for the context-aware systems engineering framework
	Introduction
	Establish scope
	Stakeholder analysis
	Establish objectives
	Elicit requirements
	Evaluate
	Conclusions

	SRC-ASEF: Situational requirements for the context-aware systems engineering framework
	Introduction
	Main activities
	Apply evaluation procedure
	Example
	Conclusions

	Design stage
	DC-ASEF: Design for the context-aware systems engineering framework
	Introduction
	General system design
	Context-aware feature design
	Context information design
	Apply evaluation procedure
	Conclusions

	VC-ASEF: Verification for the context-aware systems engineering framework
	Introduction
	The M language
	Mapping M to NuSMV
	Usage illustration
	Evaluation
	Conclusions

	Implementation, deployment and maintenance stages
	IDMC-ASEF: Implementation, deployment and maintenance for the context-aware engineering framework
	Introduction
	Code generation
	Implement system
	Deploy & run
	Maintenance tasks
	Tool support
	Model to text transformations
	Conclusions

	Evaluation and critical reflection
	Conclusions and future work
	Introduction
	Reflecting on the objectives and future lines

	Appendixes
	Appendices
	Appendix A
	Modelio
	Stationary platform
	Mobile platform
	Code generation rules
	NuSMV specification counter-example

	Appendix B
	Bibliography

