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Abstract. A new simplified formula is derived for the
absorption cross section of small dielectric ellipsoidal particles
embedded in lossy media. The new expression leads directly
to a closed form solution for the optimal conjugate match
with respect to the surrounding medium, i.e., the optimal
permittivity of the ellipsoidal particle that maximizes the
absorption at any given frequency. This defines the optimal
plasmonic resonance for the ellipsoid. The optimal conjugate
match represents a metamaterial in the sense that the
corresponding optimal permittivity function may have negative
real part (inductive properties), and can not in general be
implemented as a passive material over a given bandwidth. A
necessary and sufficient condition is derived for the feasibility of
tuning the Drude model to the optimal conjugate match at a
single frequency, and it is found that all the prolate spheroids
and some of the (not too flat) oblate spheroids can be tuned into
optimal plasmonic resonance at any desired center frequency.
Numerical examples are given to illustrate the analysis. Except
for the general understanding of plasmonic resonances in lossy
media, it is also anticipated that the new results can be useful for
feasibility studies with e.g., the radiotherapeutic hyperthermia
based methods to treat cancer based on electrophoretic heating
in gold nanoparticle suspensions using microwave radiation.

1. Introduction

Surface plasmon effects in gold nanoparticles is a
physical phenomena that has been observed in colored
glass objects since ancient times [1]. The most
fascinating and useful features of the plasmonic
resonances in metal nanoparticles is first of all the mere
existence of these resonances that may occur at free-
space wavelengths that are many order of magnitudes
larger than the structure itself, and secondly (and
contrary to intuition) that the corresponding resonance
frequencies are virtually independent of the size of
the particles (if they are sufficiently small), but does
depend on its shape and orientation, see e.g., [1, 2].
Today, new theory and applications of plasmonics
are constantly being explored in technology, biology
and medicin. The topic includes the study of
surface plasmonic resonances in small structures of
various shapes, possibly embedded in different media,
see e.g., [1–3]. The present study is restricted to
passive surrounding materials, but future applications
of plasmonics may even include amplifying (active)
media as described in e.g., [4].

The classical theories as well as most of the
recent studies on plasmonic resonance effects are
concerned with metal nanoparticles and photonics
where the exterior domain is lossless, see e.g.,
[1–5]. There are very few results developed

for absorption and plasmonic resonance effects in
particles or structures surrounded by lossy media.
As e.g., in [3] is given geometry independent
absorption bounds for the plasmonic resonances in
metal nanoparticles in vacuum, and an indication is
given about how their results can be extended to
lossy surrounding media. There exists a general Mie
theory for the electromagnetic power absorption in
small spherical particles surrounded by lossy media,
with explicit expressions and asymptotic formulas
for the corresponding absorption cross section, see
e.g., [5–8]. Even though these formulas are derived
for spherical geometry, they are in general quite
complicated and difficult to interpret. However, as
will be demonstrated in this paper, a new simplified
formula for the absorption cross section can be derived
which is valid for small ellipsoidal particles embedded
in lossy media, and which facilitates a definition of the
corresponding optimal plasmonic resonance.

A new potentially interesting application area
for the plasmonic resonance phenomena is with
the electrophoretic heating of gold nanoparticle
suspensions as a radiotherapeutic hyperthermia based
method to treat cancer [8–13]. In particular, gold
nanoparticles (GNPs) can be coated with ligands
(nutrients) that target specific cancer cells as well as
providing a net electronic charge of the GNPs [8, 11,
12]. The hypothesis is that when a localized, charged
GNP suspension has been taken up by the cancer
cells, it will facilitate an electrophoretic current and
a heating that can destroy the cancer under radio or
microwave radiation, and this without causing damage
to the normal surrounding tissues [8, 11, 13]. Hence,
the potential medical application at radio or microwave
frequencies provides a motivation for studying optimal
plasmonic resonances in lossy media. However, it
is also important to consider the complexity of this
clinical application with many possible physical and
biophysical phenomena to take into account, including
cellular properties and their influence on the dielectric
spectrum [9, 14], as well as thermodynamics and heat
transfer, see e.g., [10]. It is also interesting to note
that several authors have questioned whether metal
nanoparticles can be heated in radio frequency at all,
see e.g., [10, 12]. Based on the above mentioned results
[8, 10–13] as well as our own pre-studies in [15], we are
proposing that straightforward physical modeling can
be used to show that the most basic electromagnetic
heating mechanisms, such as standard Joule heating
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and inductive heating, most likely can be disregarded
for this medical application, whereas the potential
application remains with the feasibility of achieving
plasmonic (electrophoretic) resonances.

Recently, an optimal plasmonic resonance for the
sphere has been defined as the optimal conjugate match
with respect to the surrounding medium, i.e., the
optimal permittivity of the spherical suspension that
maximizes the absorption at any given frequency [13].
It has been demonstrated in [13] that for a surrounding
medium consisting of a weak electrolyte solution
(relevant for human tissue in the GHz range), a
significant radio or microwave heating can be achieved
inside a small spherical GNP suspension, provided
that an electrophoretic particle acceleration (Drude)
mechanism is valid and can be tuned into resonance at
the desired frequency.

In this paper, we generalize the results in [13] to
include small structures of ellipsoidal shapes embedded
in lossy media, and we provide explicit expressions for
the corresponding absorption cross section and optimal
conjugate match (optimal plasmonic resonance). We
investigate the necessary and sufficient condition
regarding the feasibility of tuning a Drude model
to optimal conjugate match at a single frequency,
and we discuss the relation between the optimal
conjugate match and the classical Frölich resonance
condition. A relative absorption ratio is defined to
facilitate a quantitative and unitless indicator for the
achievable local heating, and some general expressions
are finally given regarding the orientation of the
ellipsoid in the polarizing field. Numerical examples
are included to illustrate the theory based on simple
spheroidal geometries, and which at the same time
are relevant for the potential medical application with
electrophoretic heating of GNP suspensions in the
microwave regime. To this end, the usefulness of the
general theory involving arbitrary ellipsoidal inclusions
is with the possibility to investigate the sensitivity
or robustness of the achievable local heating with
respect to uncertainties regarding the geometry of the
associated GNP suspensions.

2. Optimal absorption in small ellipsoidal
particles surrounded by lossy media

2.1. Notation and conventions

The following notation and conventions will be used
below. Classical electromagnetic theory is considered
based on SI-units [16] and with time convention e−iωt

for time harmonic fields. Hence, a passive dielectric
material with relative permittivity ε has positive
imaginary part. Let µ0, ε0, η0 and c0 denote the
permeability, the permittivity, the wave impedance and
the speed of light in vacuum, respectively, and where

η0 =
√
µ0/ε0 and c0 = 1/

√
µ0ε0. The wavenumber of

vacuum is given by k0 = ω
√
µ0ε0, where ω = 2πf is the

angular frequency and f the frequency. The cartesian
unit vectors are denoted (x̂1, x̂2, x̂3) and the radius
vector is r = rr̂ where r̂ is the radial unit vector in
spherical coordinates. Finally, the real and imaginary
part and the complex conjugate of a complex number
ζ are denoted <{ζ}, ={ζ} and ζ∗, respectively.

2.2. Absorption and optimal resonances in spheres

Consider a small spherical region of radius r1 (k0r1 �
1) consisting of a dielectric material with relative
permittivity ε1 and which is suspended inside a
lossy dielectric background medium having relative
permittivity ε. Both media are assumed to be
homogeneous and isotropic. The absorption cross
section Cabs of the small sphere is given by

Cabs = Cext + Camb − Csca, (1)

where the scattering cross section Csca, the extinction
cross section Cext and the absorption cross section with
respect to the ambient material Camb, are given by

Csca =
16π

3
k0r

3
1={
√
ε}
∣∣∣∣ ε1 − εε1 + 2ε

∣∣∣∣2 , (2)

Cext = 6πk0r
3
1

[
4

9
<
{
ε1 − ε
ε1 + 2ε

}
={
√
ε}

+
2

3
=
{
ε1 − ε
ε1 + 2ε

}(
<{
√
ε} − (={

√
ε})2

<{
√
ε}

)]
, (3)

Camb =
8π

3
k0r

3
1={
√
ε}, (4)

see e.g., [5–8]. By algebraic manipulation of (1)
through (4), exploiting relations such as <{ζ} = (ζ +
ζ∗)/2, ={ζ} = (ζ−ζ∗)/2i and ={ζ} = 2<{

√
ζ}={

√
ζ},

it can be shown that the absorption cross section can
also be expressed in the simplified form

Cabs = 12πk0r
3
1

|ε|2

<{
√
ε}
={ε1}
|ε1 + 2ε|2

, (5)

see also [13]. In particular, from (5) it can be shown
that the optimal conjugate match εo1 = −2ε∗ is the
maximizer of Cabs for =ε1 > 0, and which defines the
optimal plasmonic resonance for the sphere in a lossy
surrounding medium [13].

The polarizability of the sphere is given by

α = 3V
ε1 − ε
ε1 + 2ε

, (6)

where V = 4πr31/3 is the volume of the spherical
particle, see e.g., [5]. By inserting (6) into (1) through
(4), the following expression can be obtained

Cabs = k0={
√
ε}
(

2V − 4

9V
|α|2 +

2

3
<{α}

−={
√
ε}

<{
√
ε}
={α}

)
+ k0<{

√
ε}={α}. (7)
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Alternatively, (6) can be rewritten as

1

ε1 + 2ε
=

α

3V (ε1 − ε)
, (8)

and inserted into (5) to yield

Cabs =
k0
V

|ε|2

<{
√
ε}
={ε1}

∣∣∣∣ α

ε1 − ε

∣∣∣∣2 . (9)

At this point, it is emphasized that both expressions
(7) and (9) have been derived based on the spherical
assumption via (6). When ε is real valued the
expression (7) reduces to the well known expression
for the absorption cross section of small particles of
arbitrary shape that are surrounded by lossless media,
i.e., Cabs = Cext = k0

√
ε={α}, see [5]. On the other

hand, the expression (9) is in a more simple form
which is well suited for the derivation of the optimal
plasmonic resonance in connection with (6). It should
be noted that the denominator ε1 − ε in (9) does not
represent a pole of Cabs at ε1 = ε, its significance is
instead to cancel the corresponding zero that is present
in the polarizability α given by (6).

2.3. Absorption in homogeneous ellipsoids

To derive the polarizability of a small homogeneous
structure or a particle, it is assumed that the excitation
is given by a constant static electric field E0 = E0x̂j ,
with the polarization defined by the direction of the
jth cartesian axis. The fundamental equations to be
solved are given by

∇×E(r) = 0,

∇ ·D(r) = 0,

D(r) = ε0ε(r)E(r),

lim
r→∞

E(r) = E0,

(10)

where E(r) and D(r) are the electric field intensity
and the electric flux density (electric displacement),
respectively, and where ε(r) denotes the complex
valued relative permittivity which is assigned the
appropriate constant values inside and outside the
structure. The equations in (10) are solved by
introducing the scalar potential Φ(r) where E(r) =
−∇Φ(r), and where Φ(r) satisfies the Laplace equation
∇2Φ(r) = 0, together with the continuity of Φ(r)
as well as the continuity of the normal derivative
ε(r) ∂

∂nΦ(r) at the boundary of the structure. Finally,
the scalar field must satisfy the asymptotic requirement
limr→∞Φ(r) = −E0xj . The resulting dipole moment
relative the background is then given by

p =

∫
V

ε0(ε1 − ε)E1(r)dv, (11)

where E1(r) denotes the electric field inside the
structure and the letter V is used to denote the domain
of the structure as well as its volume.

V

ε1

ε

∼ 1.6 nm ∼ 5 nm

a ∼ 1µm

Figure 1. A small ellipsoidal region with permittivity ε1
and volume V , surrounded by a lossy background material
with permittivity ε. The figure also illustrates some typical
dimensions of coated gold nanoparticles constituting the
ellipsoidal suspension with spatial dimension a, see also [9, 17].

Consider now a small ellipsoidal region consisting
of a dielectric material with relative permittivity ε1
and volume V , and which is suspended inside a
lossy dielectric background medium having relative
permittivity ε, see Figure 1. Both media are assumed
to be homogeneous and isotropic. Let the largest
spatial dimension of the ellipsoid be denoted a and
assume that k0a � 1. A solution to the electrostatic
problem (10) for the ellipsoid is provided by [5], and it
is shown that when the applied field is aligned along
one of the axes of the ellipsoid the resulting electric
field E1 is constant inside the particle and parallel to
the applied field E0. From the analytical solution of
this problem, the polarizability αj of the ellipsoid is
then finally obtained from the definition

p = ε0εαjE0. (12)

The resulting formula for the polarizability of the
ellipsoid with semiaxes ai parallel to the cartesian axes
x̂i, i = 1, 2, 3, and excitation E0 = E0x̂j is given by

αj = 3V
ε1 − ε

3ε+ 3Lj(ε1 − ε)
, (13)

where

Lj =
3V

8π

∫ ∞
0

dq

(a2j + q)f(q)
, (14)

for j = 1, 2, 3 and where V = 4πa1a2a3/3 and f(q) =√
(q + a21)(q + a22)(q + a23), see [1, 5]. Here, L1, L2 and

L3 are geometrical factors satisfying L1 +L2 +L3 = 1.
Note that p is the additional dipole moment added

to the background polarization. This is obvious from
the expression (13) implying that p = 0 when ε1 = ε.
Note also that ε1−ε is the additional permittivity inside
the particle with respect to the background. Hence, the
total polarization of the medium inside the particle can
be written

P1 = ε0(ε1 − 1)E1 = ε0(ε− 1)E1 + ε0(ε1 − ε)E1, (15)
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and the additional polarization P = ε0(ε1−ε)E1 yields
the additional dipole moment relative the background

p =

∫
V

ε0(ε1 − ε)E1dv = ε0(ε1 − ε)VE1, (16)

where E1 is a constant vector. By comparison of (12)
and (16), and exploiting that E0 and E1 are parallel,
it is found that the interior field of the particle is given
by

E1 =
εαj

V (ε1 − ε)
E0. (17)

The Poynting’s theorem gives the total power loss
inside the particle as

Wloss =
1

2
ωε0={ε1}

∫
V

|E1|2 dv

=
1

2
k0η
−1
0 ={ε1}

1

V

|ε|2|αj |2

|ε1 − ε|2
|E0|2, (18)

where (17) has been used. The power density of a plane
wave in a lossy medium is given by P = 1

2<{E0H
∗
0}

where H0 = E0/η and η = η0/
√
ε. Hence, the

absorption cross section is finally obtained as

Cabs =
Wloss

|E0|2 1
2η
−1
0 <{

√
ε}

=
k0
V

|ε|2

<{
√
ε}
={ε1}

∣∣∣∣ αj
ε1 − ε

∣∣∣∣2 , (19)

which is identical to the formula given in (9).

2.4. Optimal plasmonic resonances for the ellipsoid

Consider the real valued function

g(ε1) =
=ε1

|ε1 − εo1∗|2
, (20)

where ε1 is a complex variable with ={ε1} > 0 and εo1 a
constant with ={εo1} > 0. Take the complex derivative
of g(ε1) with respect to ε∗1 to yield

∂

∂ε∗1
g(ε1) =

i

2

1

|ε1 − εo1∗|2
ε1 − εo1
ε∗1 − εo1

, (21)

showing that ε1 = εo1 is a stationary point. It has
furthermore been shown in [13] that g(ε1) is a strictly
concave function with a local maximum at ε1 = εo1, and
hence we refer to εo1 as the optimal conjugate match.

The absorption cross section (19) for the ellipsoid
with polarizability (13), is given by

Cabs = k0V
|ε|2

<{
√
ε}

1

L2
j

={ε1}∣∣∣ε1 − εLj−1
Lj

∣∣∣2 . (22)

By comparison of (20) and (22), it is immediately seen
that the optimal conjugate match for the ellipsoid is
given by

εo1 = −ε∗ 1− Lj
Lj

, (23)

and which hence defines the optimal plasmonic
resonance for the ellipsoid in a lossy surrounding
medium. The sphere is a special case of the ellipsoid
with L1 = L2 = L3 = 1/3 yielding εo1 = −2ε∗,
and which reproduces the corresponding result given
in [13].

The notion of the optimal resonance defined in
(23) as being “plasmonic” is motivated by the fact
that a “normal” lossy background medium would have
<{ε} > 0 and hence <{εo1} < 0, which is a typical
feature of plasmonic resonances and which can be
achieved e.g., by tuning a Drude model. If we consider
the optimal conjugate match εo1 in (23) as a function
of frequency, then it represents a metamaterial in the
sense that it has a negative real part (a dielectric
medium with inductive properties), and which can not
in general be implemented as a passive material over
a fixed bandwidth, see also [13, 18]. However, as will
be shown below, in many cases a Drude model can be
tuned to optimal plasmonic resonance at any desired
center frequency.

2.5. Tuning the Drude model for the ellipsoid in a
lossy surrounding medium

A generalized Drude model for the permittivity of the
ellipsoidal particle is given by

ε1(ω) = ε(ω) + i
σ1
ωε0

1

1− iωτ1
, (24)

where ε(ω) corresponds to the background material
and where the static conductivity σ1 and the relaxation
time τ1 are the parameters of the additional Drude
model. It is assumed that the background material is a
“normal” material with <{ε(ω)} > 0 and ={ε(ω)} > 0
over the bandwidth of interest. The Drude parameters
may correspond to e.g., an electrophoretic mechanism
where σ1 = N q2/β and τ1 = m/β, where N is the
number of charged particles per unit volume, q the
particle charge, β the friction constant of the host
medium and m the mass of the particle, see e.g., [8].
The Drude parameters can be tuned to the optimal
conjugate match by solving the equation

ε(ωd) + i
σ1
ωdε0

1

1− iωdτ1
= εo1(ωd), (25)

where εo1(ωd) is given by (23) and ωd = 2πfd > 0 is
the desired resonance frequency. This means that the
following two equations corresponding to the real and
imaginary parts of (25) must be satisfied

σ1τ1
ε0(1 + ω2

dτ
2
1 )

= <{ε} − <{εo1},

σ1
ε0ωd(1 + ω2

dτ
2
1 )

= ={εo1} − ={ε}.
(26)

To find a solution to (26), it is necessary and sufficient
that both equations have a right-hand side that is
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positive. For a “normal” surrounding material with
<{ε} > 0, it is readily seen from (23) that <{εo1} < 0
and hence that <{ε} − <{εo1} > 0. For the imaginary
part, the requirement that ={εo1} − ={ε} > 0 together
with (23) leads directly to the condition

Lj <
1

2
. (27)

When the condition (27) is fulfilled, the system (26)
can be solved to yield the following tuned Drude
parameters

τ1 =
1

ωd

<ε(ωd)−<εo1(ωd)

=εo1(ωd)−=ε(ωd)
,

σ1 = ε0 (<ε(ωd)−<εo1(ωd))
1 + ω2

dτ
2
1

τ1
,

(28)

see also [13].
Consider the interpretation of the condition (27)

in the case with spheroidal shapes. Choose for example
the a3 axis as the direction of the applied electric field
E0 = E0x̂3, and let L3 = 1− 2L where L = L1 = L2.
The ellipsoid is then a prolate spheroid when L3 < 1/3,
a sphere when L3 = 1/3 and an oblate spheroid when
L3 > 1/3. The interpretation of (27) is that the sphere
and the prolate spheriod can always be tuned by a
Drude model to match the optimal value εo1(ωd) at
any desired center frequency ωd for which <ε(ωd) > 0.
An oblate spheroid, however, can only be tuned into
optimal plasmonic resonance using the Drude model
(24), when the shape is not too flat and L3 <

1
2 . This

result agrees well with intuition, since polarizability
(and hence resonance) is enhanced by prolongation of
the particle shape in the direction of the polarizing
field.

2.6. Relation to the Fröhlich condition

The result (23) generalizes the classical Fröhlich
condition [1] in the sense that (23) gives the condition
for an optimal plasmonic resonance of a small
homogeneous ellipsoid, which is not an approximation
and which is valid for a surrounding lossy medium.
Hence, the Fröhlich condition for the ellipsoid can be
obtained from (23) in a sequence of approximations as
follows. First, the criterion (23) is approximated as

<{ε1} =
Lj − 1

Lj
<{ε}, (29)

assuming that the imaginary parts of both ε and ε1 are
small. Using the following form of the Drude model

ε1(ω) = ε(ω)−
ω2
pτ

2
1

1 + ω2τ21
+ i

ω2
pτ1

ω(1 + ω2τ21 )
, (30)

where ωp is the plasma frequency given by ω2
p =

σ1/(ε0τ1), the equation (29) can be solved to yield the
following Fröhlich resonance frequency

ω0 =

√
ω2
p

Lj
<{ε}

− 1

τ21
≈ ωp

√
Lj
<{ε}

, (31)

where the last approximation is valid when ω0τ1 �
1. For a lossless surrounding medium with real
valued ε, the Fröhlich resonance frequency for a sphere
consisting of a Drude metal is given by ω0 = ωp/

√
3ε,

see [1].

2.7. Relative absorption ratio

The absorption cross section of a small volume with
respect to the ambient material is given by Camb =
2k0V ={

√
ε}, and which is valid for volumes of arbitrary

shape, see also (4). A unitless relative absorption ratio
for the ellipsoid can now be defined as

Fabs =
Cabs

Camb
=
|ε|2

={ε}
1

L2
j

={ε1}∣∣∣ε1 − εLj−1
Lj

∣∣∣2 , (32)

where (22) has been used, as well as the relationship
={ε} = 2<{

√
ε}={

√
ε}. By inserting the optimal

conjugate match (23) into (32), the following optimal
relative absorption ratio is obtained for excitation
along the aj axis of the ellipsoid

F o
abs =

|ε|2

4(={ε})2
1

Lj(1− Lj)
. (33)

The relative absorption ratio given by (32) and
(33) can be useful as a quantitative unitless measure
showing how much more heating that potentially can
be obtained in a small resonant region in comparison
to the ambient local heating. It is important to note,
however, that a complete system analysis would take
into account not only the local heating capabilities,
but also the significance of the frequency dependent
penetration (skin) depth of the bulk material, see also
[13].

2.8. General polarization

Finally, a general expression is given for the absorption
cross section of a small homogeneous ellipsoidal
particle with arbitrary orientation with respect to the
applied field. Consider a small ellipsoidal region with
its semiaxes ai aligned along the cartesian unit vectors
x̂i, i = 1, 2, 3, and an applied electric field given by
E0 = E01x̂1 + E02x̂2 + E03x̂3. Due to the linearity of
the fundamental equations (10), it is straightforward to
generalize the expressions on absorption cross section
given in sections 2.3 and 2.4 above. The polarizability
(13) can now be expressed in terms of the diagonal
polarizability dyadic α = α1x̂1x̂1 + α2x̂2x̂2 + α3x̂3x̂3

where p = ε0εα ·E0, and the interior field E1 is given
by

E1 =
ε

V (ε1 − ε)
α ·E0, (34)
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instead of (17). The total power loss inside the particle
is now given by

Wloss =
1

2
ωε0={ε1}

∫
V

|E1|2 dv

=
1

2
k0η
−1
0 ={ε1}

|ε|2

V |ε1 − ε|2
3∑
j=1

|αj |2|E0j |2, (35)

and the corresponding absorption cross section

Cabs =
Wloss

|E0|2 1
2η
−1
0 <{

√
ε}

=
k0
V

|ε|2

<{
√
ε}
={ε1}

3∑
j=1

|E0j |2

|E0|2

∣∣∣∣ αj
ε1 − ε

∣∣∣∣2 , (36)

where |E0|2 = |E01|2 + |E02|2 + |E03|2. By using (13),
the absorption cross section and the relative absorption
ratio finally becomes

Cabs = k0V
|ε|2

<{
√
ε}

3∑
j=1

|E0j |2

|E0|2L2
j

={ε1}∣∣∣ε1 − εLj−1
Lj

∣∣∣2 , (37)

and

Fabs =
Cabs

Camb
=
|ε|2

={ε}

3∑
j=1

|E0j |2

|E0|2L2
j

={ε1}∣∣∣ε1 − εLj−1
Lj

∣∣∣2 . (38)

It is immediately seen that the two expressions
in (37) and (38) are strictly concave functions in
terms of the complex variable ε1 for ={ε1} > 0
(a positive combination of concave functions is a
concave function, etc) and the corresponding optimal
plasmonic resonance is therefore well-defined and
unique. However, it is no longer possible to obtain a
simple closed form expression for the optimal conjugate
match εo1 as in (23).

3. Numerical examples

To illustrate the theory, a numerical example is con-
sidered with parameter choices relevant for the appli-
cation with microwave absorption in gold nanoparti-
cle suspensions, see e.g., [8, 12, 13]. Hence, the reso-
nant frequency is chosen here as fd = 1 GHz to mimic
a typical system operating in the microwave regime,
see e.g., [17]. The typical characteristics of human tis-
sue are used to determine the lossy ambient medium
parameters. Information about the dielectric prop-
erties of biological tissues can be found in e.g., [14]
giving measurement results of most organs including
brain (grey matter), heart muscle, kidney, liver, in-
flated lung, spleen, muscle, etc. From these measure-
ment results we conclude that human tissue can be
realistically modelled by using a conductivity in the
order of 1 S/m and a permittivity similar to water at
a frequency of 1 GHz. Hence, a simple conductivity-
Debye model for saline water is considered here where

the surrounding medium is a weak electrolyte solution
with relative permittivity

ε(ω) = ε∞ +
εs − ε∞
1− iωτ

+ i
σ

ωε0
, (39)

where ε∞, εs and τ are the high frequency permittivity,
the static permittivity and the dipole relaxation time in
the corresponding Debye model for water, respectively,
and σ the conductivity of the saline solution. In
the numerical examples below, these parameters are
chosen as ε∞ = 5.27, εs = 80, τ = 10−11 s and
σ ∈ {0.1, 1} S/m.

In Figures 2 and 3 are shown the calculated
relative absorption ratios (32) for the ellipsoid
with optimal, tuned Drude and mismatched Drude
parameters, respectively. The optimal parameter εo1 is
given by (23), the tuned Drude parameter εtD1 is given
by (24) and (28), and the mismatched Drude parameter
εmD
1 is again the Drude parameter given by (24) and

(28), but which is constantly mismatched to the sphere
using εo1 = −2ε∗. A spheroidal shape is considered with
the geometrical factors L3 = 1− 2L and L = L1 = L2,
and where the applied electric field E0 = E0x̂3 is
aligned along the a3 axis of the spheroid. The relative
absorption ratios (32) in the three cases described
above are denoted F o

abs(L3), F tD
abs(L3) and FmD

abs (L3)
corresponding to the parameters εo1(L3), εtD1 (L3) and
εmD
1 = εtD1 (1/3) respectively. The parameter choices

in Figures 2 and 3, are L3 = 0.1 (prolate spheroid),
L3 = 1/3 (sphere) and L3 = 0.499 (oblate spheroid)
which is close to the limiting case L3 = 1/2 expressed
in (27).

From these examples, it is seen how the increased
conductivity and losses (Figures 2b and 3b) limits the
usefulness of the local heating. But even in the latter
example, where σ = 1 S/m, the potential of local
heating amounts to a relative absorption ratio of about
10:1. In the case with the mismatched Drude model, it
is interesting to see how a prolongation of the spheroid
lowers the resonance frequency, and a flattening of the
spheroid yields a higher resonance frequency.

In Figures 4 and 5 are finally shown a study of the
mismatch that results from an uncertainty regarding
the polarization of the applied field. Here, (32) is used
to calculate F o

abs(L3) corresponding to the optimal
parameter εo1(L3), and F tD

abs(L3) corresponding to the
tuned Drude parameter εtD1 (L3), as before. The general
expression (38) is then used to calculate FmD

abs (L3, θ)
corresponding to the mismatched Drude parameter
εmD
1 = εtD1 (L3) when there is a mismatch polarization

angle θ with E03 = cos θ, E01 = sin θ, E02 = 0 and
θ ∈ {π8 ,

π
4 ,

3π
8 ,

π
2 }. The results for the prolate spheroid

(L3 = 0.1) and the oblate spheroid (L3 = 0.499) are
shown in Figures 4 and 5, respectively. It is interesting
to observe how an increasing mismatch polarization
angle θ ∈ [0, π/2] generates a double resonance that
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shifts from the single (optimal) resonance at θ = 0 to
another single (suboptimal) resonance at θ = π/2.
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Figure 2. Optimal and tuned absorption ratios with F o
abs(L3)

corresponding to the optimal parameter εo1(L3) and F tD
abs(L3)

corresponding to the tuned Drude parameter εtD1 (L3). The
geometrical factors are L3 = 0.1 (prolate spheroid), L3 = 1/3
(sphere) and L3 = 0.499 (oblate spheroid). In a) the surrounding
medium is a saline solution with σ = 0.1 S/m and in b) σ =
1 S/m.

4. Summary

A new general formula has been derived for the
absorption cross section of small ellipsoidal particles
that are surrounded by lossy media. The new formula
is expressed explicitly in terms of the polarizability
of the particle and can be used to define an optimal
plasmonic resonance for a given surrounding medium.
The new formula can be derived from general Mie
scattering theory for a spherical particle in a lossy
medium which generalizes to particles of ellipsoidal
shape in the limiting case with small particles.
The formula can furthermore be derived directly
from the knowledge about the static solution to
the ellipsoidal polarizability problem. A canonical
example is presented based on the polarizability of a
homogeneous spheroid. The example shows how an
optimal plasmonic resonance can be designed based on
a tuned Drude model and illustrates the typical shape
dependent resonance frequency of the surface plasmon.
The numerical example is furthermore motivated
by the medical application with radiotherapeutic
hyperthermia based on electrophoretic heating of gold
nanoparticle suspensions using microwave radiation.
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Figure 3. Optimal and mismatched absorption ratios with
F o
abs(L3) corresponding to the optimal parameter εo1(L3) and

FmD
abs (L3) corresponding to the mismatched Drude parameter

εmD
1 = εtD1 (1/3) tuned to a sphere (L3 = 1/3). The geometrical

factors are L3 = 0.1 (prolate spheroid), L3 = 1/3 (sphere) and
L3 = 0.499 (oblate spheroid). In a) the surrounding medium is
a saline solution with σ = 0.1 S/m and in b) σ = 1 S/m.
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Figure 4. Optimal, tuned and mismatched absorption
ratios with F o

abs(L3) corresponding to the optimal parameter

εo1(L3), F tD
abs(L3) corresponding to the tuned Drude parameter

εtD1 (L3), and FmD
abs (L3, θ) corresponding to the mismatched

Drude parameter εmD
1 = εtD1 (L3) tuned to a prolate spheroid

with L3 = 0.1, and with mismatched polarization angle θ where
E03 = cos θ and E01 = sin θ and θ ∈ {π

8
, π
4
, 3π

8
, π
2
}. The

surrounding medium is a saline solution with σ = 0.1 S/m.
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