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Abstract: An important feature of a Poisson limit theorem in [4] is the
absence of the traditional assumption (A.2). The purpose of this adden-
dum is to explain why assumption (A.2) is not required, and compare the
assumptions of the Poisson limit theorem in [4] with traditional ones. We
present details of the argument behind Theorem 3 in [4].
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Let {Xn,1, ..., Xn,n}n≥1 be a triangle array of dependent 0-1 random variables
(r.v.s) such that sequence Xn,1, ..., Xn,n is stationary for each n∈ IN. Set

S0=0, Sn=Xn,1 + ...+Xn,n (n≥1).

We denote by πλ a Poisson Π(λ) random variable.
A Poisson limit theorem states that as n→∞,

Sn ⇒ πλ (∃λ>0). (A.1)

Traditionally the formulation of a Poisson limit theorem for a sequence of
dependent 0-1 random variables involves the assumption that there exists the
limit

lim
n→∞

nIP(Xn,1 	=0) ∈ (0;∞), (A.2)

cf. the Gnedenko-Marcinkiewicz theorem or Leadbetter et al. [2].
An important feature of Theorem 3 in [4] is that it does not require assump-

tion (A.2).
The proof of Theorem 3 in [4] is brief and does not go into every detail. The

purpose of this addendum is to present those details. In particular, we clarify
the terms o(1) in [4], formulas (15), (16).

The argument is split into two propositions. First, we recall the definitions
of mixing coefficient αn(·), mixing condition Δ and class R.

Let Fl,m be the σ–field generated by {Xn,i}l≤i≤m. Set Z+=IN ∪{0}, and
let

αn(l) = sup | IP(AB)−IP(A)IP(B)|,
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where the supremum is taken over m≥ 1, A ∈F1,m, B ∈Fm+l+1,n such that
IP(A)>0.

Condition Δ ≡Δ({ln}) is said to hold if αn(ln)→ 0 as n→∞ for some
sequence {ln} of natural numbers such that 0≤ lnn.

Class R≡R({ln}). If condition Δ({ln}) holds, then there exists a sequence
{rn} of natural numbers such that

n�rn� ln≥0, nr−1
n α2/3

n (ln) → 0, rn(ln+1)−1αn(ln) → 0 (A.3)

as n→∞. For instance, one can take

rn =
[
max{

√
n(ln+1) ;n

√
αn(ln) ; 1} ∧ (ln+1)/

√
αn(ln)

]
.

We denote by R the class of all such sequences {rn}.
Proposition 1. If condition Δ({ln}) holds, then there exists a sequence {l̃n}
such that l̃n∈Z+ , 0≤ l̃nn and

αn(l̃n)n/(l̃n+1) → 0 (n→∞). (A.4)

In the case of independent r.v.s (A.4) holds with l̃n = 0. If {Xn,i} are m-

dependent r.v.s, them (A.4) holds with l̃n=m.

Proof of Proposition 1. If condition Δ({ln}) holds, then one may choose

l̃n = [n
√

αn(ln) ] ∨ ln ,

where [x] denotes the integer part of x. Clearly, 0≤ l̃nn as n→∞, and

αn(l̃n)n/(l̃n+1) ≤ αn(ln)n/([n
√

αn(ln) ]+1) ≤
√

αn(ln) → 0 (n→∞)

as required. �

We denote by M the class of sequences {ln} such that ln∈Z+ , 0≤ lnn
and (A.4) holds. Obviously, if {ln}∈M, then condition Δ({ln}) holds.

If {ln}∈M and rn = [
√
n(ln+1) ], then {rn}∈R: (A.4) yields (A.3).

Proposition 2. If {ln}∈M and

lim
n→∞

IP(Sn=0) = e−λ (∃λ≥0), (A.5)

then
n

ln+1
IP(Sln >0) ≤ λ+o(1) (n→∞). (A.6)

Proof of Proposition 2. Given l∈ IN, denote

S<j> = X(j−1)l+1 + ...+Xjl .
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According to (A.5),

e−λ + o(1) = IP(Sn=0) ≤ IP(S<1> = S<3> = ... = S<kl> = 0)

≤ IPkl(Sl=0) + αn(l)n/l (A.7)

as n→∞, where kl = 2[n/2l]−1.
Let l = ln+1 , where {ln}∈M. Taking into account (A.4) and (A.7),

e−λ + o(1) ≤ exp(−klIP(Sl>0)) (n→∞). (A.8)

If λ = 0 in (A.5), then (A.8) yields IP(Sl > 0)n/l → 0 as n→∞, and (A.6)
holds. If λ>0 in (A.5), then (A.8) entails (A.6). �

The argument of the proof of Proposition 2 shows that the following analogue
of (A.6) holds true if {rn}∈R and (A.5) holds:

n

rn+1
IP(Srn >0) ≤ λ+o(1) (n→∞). (A.6∗)

We are now in a position to clarify the terms o(1) in [4], formulas (15), (16).
Let {ln} ∈ M, {rn} ∈ R. Splitting {Xn,1, ..., Xn,n} into blocks of length

r := rn separated by sub-blocks of length l := ln (Bernstein’s blocks approach,
cf. [2, 3]), we get

|IP(Sn=0)−IP[n/r](Sr=0)| ≤ (IP(Sl>0) + αn(l))n/r. (A.9)

Here IP[n/r](Sr = 0) can be replaced with exp
(
−[nr ]IP(Sr>0)

)
at a cost of

adding extra term 4r/e2(n−r) to the right-hand side of (A.9), cf. (33∗) in [4].
Similarly,

∣∣∣IE exp (itSn)−
(
1 + IP(Sr>0)IE

{
eitSr−1|Sr>0

})[n/r] ∣∣∣
≤ 2 (IP(Sl>0) + 8αn(l))n/r (A.10)

(we have applied the Volkonskiy-Rozanov inequality [5], see also (14.66) in [3]).
Since lnrnn , (A.4) and (A.6) imply that the right-hand sides of (A.9)

and (A.10) are o(1) as n→∞. Taking into account (A.6∗), we conclude that
relations (15) and (16) in [4] hold true. �

Theorem 3 in [4] states that (A.5) together with condition (10) in [4] are
necessary and sufficient for (A.1), while traditional sufficient for (A.1) conditions
are (D′) and (A.2), cf. Theorem 5.2.1 in [2]. Recall condition (D′):

lim
n→∞

n

rn∑

i=2

IP (Xn,i 	=0, Xn,1 	=0) = 0 (D′)

for any sequence {rn} of natural numbers such that n � rn � 1, cf. [2, 3].
Condition (D′) means that there is no asymptotic clustering of rare events.
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Note that (A.5) may hold while condition (D′) fails to hold (see, for instance,
Example 5.1 in [3]). On the other hand, if (D′) and (A.2) hold and {r=rn}∈R,
then

IP(Sr>0) ∼ rIP(Xn,1 	=0) (n→∞) (A.11)

in view of inequality (13) in [4]; relations (A.2), (A.9) and (A.11) yield (A.5).
Poisson approximation was apparently introduced by de Moivre [1], problems

5–7.

Acknowledgments

The author is grateful to the reviewer for a helpful remark that led to simplifi-
cation of the proof of proposition 1.

References

[1] de Moivre A. (1712) De Mensura Sortis. – Philosophical Transactions, v. 27,
213–264. Transl: Hald A. (1984) A. de Moivre: ‘De Mensura Sortis’ or ‘On
the measurement of chance’. — International Statistical Review, v. 52, No
3, 229–262. MR0867173

[2] Leadbetter M.R., Lindgren G. and Rootzen H. (1983) Extremes and re-
lated properties of random sequences and processes. — New York: Springer.
MR0691492

[3] Novak S.Y. (2011) Extreme value methods with applications to finance. —
London: Chapman & Hall/CRC Press, ISBN 9781439835746. MR2933280

[4] Novak S.Y. (2019) Poisson approximation. — Probability Surveys, v. 16,
228–276. MR3992498

[5] Volkonskiy V.A. and Rozanov Yu.A. (1959) Some limit theorems for random
functions I. — Theory Probab. Appl., v. 4, No 2, 178–197. MR0121856

https://www.ams.org/mathscinet-getitem?mr=0867173
https://www.ams.org/mathscinet-getitem?mr=0691492
https://www.ams.org/mathscinet-getitem?mr=2933280
https://www.ams.org/mathscinet-getitem?mr=3992498
https://www.ams.org/mathscinet-getitem?mr=0121856

	Acknowledgments
	References

