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Abstract
Large language models (LLMs) are capable of playing the ‘human’ role as participants in economic
games. We investigated the capability of GPT-3.5 to play the one-shot dictator game (DG) and the
repeated Prisoner’s Dilemma game (PDG), the latter of which introduced tit-for-tat scenarios. In
particular, we investigated whether the LLMs could be prompted to play in accordance to five roles
(‘personalities’) assigned prior to game play: the five ‘simulacra’ were: (1) cooperative, (2)
competitive, (3) altruistic, (4) selfish, and (5) control, all of which were natural language
descriptions (‘ruthless equities trader. . .’, ‘selfless philanthropist. . .’, etc). We predicted that the
LLM-participant would play in accordance to the semantic content of the prompt (ruthless would
play ruthlessly, etc). Across five simulacra (roles), we tested the AI equivalent of 450 human
participants (32 400 observations in total, qua counterbalancing and re-testability). Using a general
linear mixed model for the PDG, and a cumulative link mixed model for the DG, we found that
level of cooperation/donation followed the general pattern of altruistic⩾ cooperative> control>
selfish⩾ competitive. We proposed ten hypotheses, three of which were convincingly supported:
cooperative/altruistic did cooperate more than competitive/selfish; cooperation was higher in
repeated games (PDG); cooperative/altruistic were sensitive to the opponent’s behavior in repeated
games. We also found some variation among the three versions of GPT-3.5 we used. Our study
demonstrates the potential of using prompt engineering for LLM-chatbots to study the
mechanisms of cooperation in both real and artificial worlds.

1. Motivation and background

From the beginnings of the history of artificial intelligence (AI) [1], the ‘wildly ambitious goal of AI research’
([2], p 5) was to create AI that can use language as proficiently as humans can [2] (cf. [3]). GPT models
(Generative Pre-trained Transformer) appear to be approaching this ideal [4]. GPT (and its chat version,
ChatGPT [5, 6]) uses a deep neural network model [6–11] that performs natural language processing. In
practice, a user creates a prompt (such as when a user asks ChatGPT a question) and then GPT produces an
output (such as when ChatGPT answers the question). GPT is a type of large language model (LLM) [6, 7, 9,
12–15], part of a family of models where the ability to create outputs is based on a process called
‘autoregression’ which redeploys tranches of old information, and then sorts and recombines them to
generate new information (the output) [6, 7, 9, 13, 14].

How does a GPT model know how to reply to a question? It is based on the immense wealth of
pre-trained knowledge that the GPT model brings to the beginning of any chat session. Before LLMs are
released to the public, they undergo a period of pre-training, where models are fed an immensely large
amount of text (called a corpus) [6, 7, 9, 14, 16–18]: theoretically, LLMs can learn all of the world’s digital
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information [14, 19]. During pre-training, the model segments text into ‘tokens’—where each token can
refer to a ‘word, suffix, or a part-of-speech tag’ ([11], p 346)—and then, all tokens are individually assigned
unique identifier numbers called ‘embeddings’ (an array of numbers assigned to each token; these are
numerical measures of the probability of co-occurrence of all tokens with each other, range 0–1; cf. [11]).
Ultimately, the pre-training process generates a network map of ‘learned parameters’ (also called
‘dependencies’, because it measures how much the presence of one token depends on the presence of the
other). This network map is the totality of the GPT’s knowledge. With the formation of every new sentence,
autoregression is making a prediction of the typical output that should follow a particular input (e.g. a
prediction of what should typically be said in response to a user’s question).

Every word that pops up in a GPT’s output is a calculated prediction in itself, based on the learned
parameters (dependencies) from pre-training. Furthermore, the words in the output are generated
step-by-step (each new word generated as a dependency of the previous words) [6, 7, 9, 14, 20]. For example,
if a user were to ask ChatGPT to describe ChatGPT in maximum five words, the chatbot might reply
‘ChatGPT is an AI language model’. In generating those five words, the second token (‘. . .is. . .’) was generated
as a dependency of the first word (‘ChatGPT. . .’); then, the third word (‘. . .an. . .’) as a dependency of the first
two words (‘ChatGPT is. . .’) and so forth. By this process (called ‘masking’), it was impossible for the final
word of the sentence (‘. . .model’) to be generated until the first four words were already in place (‘ChatGPT is
an AI language. . .’). LLMs are not wholly deterministic; they make a prediction about the probability of each
possible next token conditioned on the exiting sequence, and then they choose randomly according to the
resulting probability distribution. Unlike in the early days of chatbots where programmers wrote down every
possible response to a query in advance [2], modern LLMs are stochastic [21] in their output: investigators
make inputs, but due to random fluctuations, the output can be unpredictable. In studies on GPT (e.g. [22]),
the stochasticity of the output can be varied through an important parameter called the ‘temperature’: higher
temperatures result in more randomness; lower temperatures tend towards determinism [9, 23, 24]. As
described in more detail in Methods, we chose to vary the temperature (high, low) in our study.

After the pre-training process for GPT is done (but before public release), the GPT model undergoes
‘reinforcement learning with human feedback’ (RLHF) [5, 6, 9, 17, 25–30], where humans (called ‘labellers’)
play a role in making the model better. RLHF is an example of ‘AI alignment’ [27, 30]. Given that GPT’s
pre-training is unsupervised (the machine learns by itself), there is a need for additional supervised training
(done by humans), to ensure that the GPT model’s output shows itself to be within the acceptable norms of
society. The reasons for pursuing alignment relates to the broader question of whether the actions of future
AI will align with human interests (i.e. that the future actions of AI will be beneficial, not destructive, for
humans) [7, 31–33]. OpenAI has released a number of successive models of GPT over the years (GPT-1,
2018; GPT-2, 2019; GPT-3, 2020; GPT-4, 2023, etc) [6, 9, 10, 12, 16, 34–36]. Chat versions of GPT are
created separately from the main GPT models, after a process of alignment and redesign [5, 6, 27, 29, 36].
Fine-tuning updates to GPT models are released on a regular basis, resulting in the availability of multiple
versions of the same model (each functioning slightly differently from the other). In our study below, we
focus on three versions of gpt-3.5-turbo (see section 2.5). GPT has been a highly successful innovation
(superior to previous LLMs) for three main reasons [6, 7, 9, 12, 14, 16, 17, 20]: (1) innovative internal
architecture (the ‘decoder-only’ model which uses ‘multi-head attention’ to process tokens parallelly rather
than serially); (2) the unprecedented size of the corpus and number of consequent embeddings; and (3)
thoroughness of the RLHF process. In summary, the GPT model is designed to perform more complex
analyses with more speed and resource-efficiency [20] than its predecessors.

GPT has no mind of its own. It has no ‘qualia’ [37] (subjective feeling of experience [38]). Humans only
imagine that GPT has a mind because of our natural tendency towards anthropomorphism [39]. Even if GPT
passes the Turing test [1, 40, 41], and human users are duly impressed [42]—there is no evidence at all that
GPT (or any other LLM) actually understands the words it is using [43–48]. Rather, GPT generates good
quality output through sheer force of pattern recognition. As explained above, the model’s knowledge is
entirely based on its learned dependencies from the corpus. Furthermore, GPT’s output is heavily biased
according to the typicalities it learned from that corpus [7, 13, 36]: that is why GPT tends to produce such
familiar-sounding language. Unfortunately, there is a dark side to GPT, too, in that they are capable of
outputting information which is nonsensical, false, misleadingly confident, or even dangerous [7, 49–57]. To
prevent such problems, the human user’s input is absolutely pivotal. Prompting is where the human user
enters text into the chatbot’s input field to achieve a given purpose. Prompting allows the user to create a
temporary environment of ‘in-context few-shot learning’ ([58], p 2), where the user can guide the chatbot to
the domain of desired replies after providing a few examples [6, 9, 10, 12, 14, 36, 59]. Casual users of
ChatGPT might have no need to plan the exact wording of their prompts in advance [42], but, for academic
pursuits, prompting might be considered as equivalent to handling a scientific instrument (cf. [60])—the
aim being to correctly elicit some very specific range of outputs, necessitating that the work of prompting
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needs to be handled with careful expertise [61]. For this reason, prompt engineering has emerged as an
essential practice [7, 18, 23, 36, 62].

Even if the GPT model has no qualia, the GPT’s output can still be construed as a form of ‘behaviour’
(see [63]). Accordingly, the emerging discipline ofmachine psychology is based on the notion that
LLM-chatbots can be studied in the same manner that one studies the behavior of humans or animals in
psychology experiments [6, 36, 64–73]. Like in the old days of psychology when those in the ‘behaviorism’
school put the focus on observable behavior only [74], machine psychologists have begun to study the output
of LLMs without needing to dwell upon the fact that an LLM is a brainless and mindless entity. Already,
machine psychology is finding surprising facsimiles of human-like behavior in its GPT ‘participants’ when
they are subject to a variety of pre-existing psychological paradigms [57, 64, 72, 75–78]. In our study below,
we focused on how GPT 3.5 performs when prompted as players in the dictator game (DG) [79, 80] and the
prisoner’s dilemma game (PDG) [81–83]. Both are two-player games. Furthermore, in the PDG, we introduce
a number of tit-for-tat scenarios (see section 2.1 for payoff structures), to gauge how the chatbots will react
against opponents who defect and cooperate in a repeated game (‘defect’ means to not cooperate; to choose
the selfish option). Behavioral economics—traditionally focused on human experiments where participants
are paid real money, contingent on performance, when participating in economic games—was established
many decades ago through a desire to establish an empirical basis for human utility functions [84] (i.e. how a
person chooses between at least two goods, gauging benefit against cost). From this literature, an extremely
well-established result is that humans are not rational maximizers of income [84]: i.e. player 1 does not
automatically prefer to amass the maximum amount of money in a setting where the opposing player(s)
would lose money as a result of player 1’s actions. For example, in two-player games, there is ‘a clearly
observed experimental regularity: in symmetric situations players often agreed on equal divisions’ ([84],
p 11). In other words, human players seem often motivated by fairness (such as splitting the pool 50/50)
despite the fact that fairness [85] typically pays off less than selfishness. In the DG, for example, player 1 is the
dictator and player 2 is the recipient who is forced to accept the dictator’s decision [79, 80]: in this situation,
player 1 (dictator) receives a sum of money from the experimenter, and then is asked to decide how much of
a pot of money to donate to player 2, and how much to keep for oneself (the rational maximizer decision
would be to keep 100% of the sum, leaving player 2 with nothing). The history of results for the DG shows
that rational maximizing is fairly rare [79, 86]: instead, the dictator’s decisions are influenced by multiple
other factors besides the maximization of income. Similarly, for the PDG [81, 82], rational maximizing is not
the inevitable outcome. In the PDG [22, 81, 82], players have the choice to cooperate or defect without
knowing the intended choice of the other player. The four outcomes (see section 2.1) are: (P) both defect,
incurring a small cost for each player, (R) both cooperate, and both players make a moderate gain, (T) player
1 defects, player 2 cooperates, incurring a large cost for player 2, and accruing a large gain for player 1, and
(S) player 1 cooperates, player 2 cooperates, accruing a large gain for player 1, and incurring a large cost for
player 1. From the perspective of player 1, the payoffs are: T > R> P > S (also called ‘temptation’, ‘reward’,
‘punishment’, and ‘sucker’s payoff ’). This is a scenario where defection, (T or P) is more likely to pay off
more than cooperation (R or S) for the individual player, assuming that the opposing player cannot be
trusted to cooperate. The fact that human participants do cooperate in these scenarios, despite the seemingly
rational strategy to defect, highlights the importance of social norms in shaping human behavior [85,
87–90]. Economic games are a valuable tool because the basic game templates (such as DG or PDG) can be
used to explore economic behavior in a large variety of conditions and over multiple rounds (e.g. [83]).

There is a rapidly growing list of studies inmachine behavioural economics (e.g. [19, 23, 77, 91–94]). One
study from 2023 by Johnson and Obradovich [92], used LLMs agents as participants in DGs, playing them
against a variety of opponents (human users, other LLMs, charities). They found that the LLMs behaved
somewhat human-like in the DG, although there were variations between models, and the LLM showed
sensitivity to the identity of the recipients. In another study, Brookins and de Backer [95] conducted a DG
and one-shot PDG, putting a GPT-3.5 agent into the role of player 1, and then delineated the different
payoffs in euros for player 1 and player 2. Running simulations at various payoff parameters, they compared
the GPT responses to previously-collected human responses. In their results, they found that the GPT agents
actually played more fairly and cooperatively than their human counterparts. Counterintuitively, Lorè and
Heydari [22] did not find GPT-4 to be superior. Using four different economic games (including the PDG)
and testing GPT-3.5 against GPT-4 (and a third LLM called LLaMa-2, not discussed here), the investigators
designed prompts which could be used for all games. There were two independent variables, each with four
conditions (treatments). The first condition was ‘game’ (the four two-player games that the LLMs played).
The second condition was ‘context’, which consisted of four types of background information which was
included in the prompt ([22], p 8): (1) ‘a meeting between two CEOS from two different firms’, (2) ‘a
conference between two industry leaders belonging to different companies making a joint commitment on
environmental regulations’, (3) ‘a talk between two employees who belong to the same team but are
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competing for a promotion’, and (4) ‘A chat between two friends trying to reach a compromise.’ These were
called the ‘biz,’ ‘environment,’ ‘team,’ and ‘friendship’ conditions, respectively. The rationale for the context
treatment was that previous studies have shown context to be a weighty determinant on observed the level of
cooperation. Using a high temperature setting (0.8), Lorè and Heydari [22] found that ChatGPT 3.5
produced results which were quite sensitive to context (e.g. highest contributions in ‘friendsharing’). In
contrast, ChatGPT 4 seemed to mostly ignore context in favor of attending to the underlying logic of the
game. This led to more extreme results (almost all ceilings and floors, i.e. maximum and minimum scores);
but interestingly, the context of ‘friendsharing’ was heeded. In the PDG, this led to a ceiling score for
cooperation in the PDG for ‘friendsharing,’ but floor scores for the other contexts.

Whereas Lorè and Heydari [22] manipulated the context of a two-player situation, a different study from
Guo [24] focused on manipulating the motivation of the individual participants. Guo [24] conducted a
study where ChatGPT 3.5 agents played against each other in two games (PDG and the ultimatum game,
UG) where the agents were asked to ‘pretend you are a human’ ([24], pp 25, 30). There were two separate
conditions (treatments): (1) with social preferences (WS), and (2) without social preferences (NS). In the WS
condition, the agent was prompted to have priorities in ‘profit maximization, strategic thinking, and social
preferences’ ([24], pp 25, 30). In the NS condition, it was the same, except that social preferences were not
mentioned. In study 1, agents playing the UG were observed to play mostly in a human-like manner, with
acceptance higher in the WS condition. Results were similar in study 2, where agents playing the PDG played
in a human-like manner, and where acceptance was higher in the WS condition. Interestingly, the WS agents
showed much higher cooperation in the specific circumstance where they had defected in the first round
where the other had cooperated (suggesting the presence of ‘advantage aversion’).

Another study, also with ChatGPT 3.5, was conducted by Horton [96]. He presented the ChatGPT agent
with a DG where the agent must choose between ‘left’ and ‘right’ showing two different allocations. The
design was based on a classic 2002 study by Charness and Rabin [86] who had conducted a series of DGs
where the human participant (in a dictator role) was given the opportunity to sacrifice a small amount of
money for the purpose of benefiting the recipient. For example, one of the choices was between 300/600 (left
choice—where the dictator gets 600 units and the recipient receives 300 units) or between 700/500 (right
choice—where, compared to the left choice, the dictator is sacrificing 100 units, but rewarding the recipient
400 more units than in the left choice). In their results, Charness and Rabin [86] found that, overall,
participants chose the options that tended to benefit other players (even if they needed to make a small
monetary sacrifice to do so). In fact, they had multiple variations on the DG (including three-player games),
and varying the amounts of money that were involved (e.g. in some versions of the game, they did not
sacrifice money because the loss was too great). They also assessed their results according to mathematical
models that sought to explain their players’ behavior. These ‘distributional’ models were: ‘narrow
self-interest’, ‘difference aversion’ (caring about payoff relative to other), ‘competitive,’ and ‘social welfare’
([86], p 834). They found that ‘social welfare’ was the most consistent model that fit the empirical data. In
replicating the Charness and Rabin [86] results using AI, Horton [96] prompted the ChatGPT 3.5 agents
with ‘personality differences’ (roles/simulacra). Specifically, they consisted of (1) ‘Inequity aversion:’ ‘You
only care about fairness between players,’ (2) ‘Efficient’: ‘You only care about the total payoff of both players,’
and (3) ‘Self-interested’: ‘You only care about your own payoff ’ ([96], p 9), and (4) there was a control
condition, which had no prompted endowment at all. In his results, Horton [23, 96] found that the
personality prompts showed the expected effects. Self-interested simulacra, for example, tended to choose
the more ‘selfish’ option (e.g. choosing not to sacrifice even a small amount of money to assist the other
player). Something important to mention is that the successful results occurred only in the newer versions of
GPT-3. In older versions, the prompts made no difference to the responses. In our study below, we adopt and
extend the approach of endowing the chatbot with a ‘personality’ through careful and systematic prompting.
Prompting creates different categories of simulacra, each of which could be considered as equivalent to a
category of human participant in a psychology experiment. As mentioned earlier, Guo [24]) instructed his
AI-participant-model to ‘pretend you are a human’. In our study below, we do not ask this question
directly—but that same instruction is implicit in our prompting (see section 2).

What was our goal? As mentioned earlier, we report our results from economic games, comparing
one-shot games (DG) to repeated games (PDG). Our study concerns the way that the GPT model not only
understands the prompting but how it employs those words. Another way to state this goal is that we were
interested in whether GPT models can operationalize natural language descriptions of altruistic or selfish
motivations across different task environments. The ‘task environments’ that we used are the DG and the
PDG. Our games were played by simulacra that we prompted prior to game play, to create different
‘personalities’ (roles) amongst players. Our role prompts created five categories of groups. They were: (1)
cooperative, (2) competitive, (3) altruistic, (4) selfish, and (5) control. Details about the role prompts are
shown in table 1. Within each group, there were three variants of simulacrum, the purpose of the variants
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being to not use exactly the same words each time per group. For example, in the selfish group, the
description of the simulacrum started with either ‘You are a cunning strategist. . .’, ‘You are a shrewd
businessperson. . .’, or ‘You are a calculating politician. . .’. In other words, our 450 chatbot ‘participants’ were
divided into five categories (‘cooperative’, etc), which themselves were divided into three sub-categories
(‘cunning’, etc). After the role prompts had been inputted, the game began. The simulacra were given
prompts that were specific to the game (DG or PDG), providing instructions for the player (see prompt
templates in section 2.2). Broadly speaking, we predicted that the deep neural networks of GPT would enable
our simulacra to play these games according to their roles, congruent with the semantic content of the
prompts. Hence, the ‘selfish’ group would play selfishly, the ‘altruistic’ group would play altruistically, and so
forth. Our detailed hypotheses are shown in section 2.7. We specifically created our simulacra to gauge how
GPT models react to social dilemmas [97]. A social dilemma is generally defined as a situation where a
decider needs to choose between benefiting oneself at the expense of the group (defect), or accepting a
reduced pay-off as a means of benefiting the group (cooperate) [97]. A specific category of social dilemma is
called a ‘social trap’, where the choice is between ‘a small positive outcome that is immediate and a large
negative outcome that is delayed’ ([97], p 9). We saw this in our earlier discussion of the possible payoffs of
the PDG (T, P, R, S). For both DG and PDGs, the greater temptation is to defect in the short-term
(benefiting yourself over the opponent), but when the PDG starts to be repeated (rather than once, i.e.
one-shot), then the dynamic changes. For the PDG, we played the simulacrum against opponents that were
either unconditional defectors, unconditional cooperators, tit-for-tat defectors, or tit-for-tat cooperators (see
section 2.4).

Finally, we introduced a further set of ways to differentiate our ‘participants’, consisting of different
combinations of attributes that were programmed to randomly occur among our simulacra (see section 2.2).
There were two reasons to do this. The first reason was to create a reflection of human participants in
psychological studies, where each individual person has a unique mix of attributes which in itself is a source
of variability that has some influence (often unknown) on the measurement of the dependent variable [60].
The second reason was that we wanted to counterbalance a number of potential confounds. Hence, there are
a number of minor variations in the way we presented the game to the simulacrum. The detailed list of
attributes is shown in section 2.2. This list includes a number of subtleties in the presentation format: such as
presenting the prompts in UPPERCASE versus lowercase, counterbalancing the labels that indicate
participant choice (based on color, words, or number), counterbalancing pronouns (he/she/they), and
varying the order in which choices are presented (defection choice mentioned first / cooperation choice
mentioned first). Our list of attributes also includes ‘chain-of-thought’ [6, 7, 9, 18, 58, 98]: where the
prompter elucidates the required tasks ‘in a series of intermediate reasoning steps’ ([58], p 1)
(e.g. see prompt in [36] section B.11 therein). Wei et al [58] found that prompting the chain-of-thought
process allowed for significant improvement in the performance of complex reasoning tasks in a variety of
domains (see their prompt examples on pp 35–43 of their paper). Knowing this, we inserted the
chain-of-thought into our list of attributes (section 2.2). In contrast to the other randomly-occurring
attributes (mentioned earlier), which vary the presentation format, the chain-of-thought is varied according
to the prompt that was given. For chain-of-thought, the prompt was ‘Explanation: [why I made my choice]’
(see example in figure S1, supplementary information) and for no chain-of-thought, the prompt was ‘state
your choice without explanation’ (see example in figure S2, supplementary information). Finally, we reiterate
our use of the temperature variable, high or low. Temperature is not a participant attribute. Instead, it is a
way to manipulate (as mentioned earlier) the stochasticity of the output. Temperature is a ‘hyperparameter’
[7], a setting that is made prior to the implementation of the chat session. It functions as an independent
variable, but does not appear in the prompt itself. We used temperature because knew we the effect it can
have [9, 23, 24] to avoid generating results narrowly on one temperature setting.

2. Methods

We used OpenAI’s gpt-3.5-turbo models [34] to instantiate different simulacra representing different
participants using carefully crafted prompts. Our results were wholly generated through automated
conversations between a simulated ‘investigator’ (prompter) and a GPT chat model. The investigator was an
automated script written in Python which managed the experiment [99]. As shown in table 1, each
simulacrum was created through prompts that were intended to predispose the language model towards a
particular disposition to cooperate (cooperative, competitive, altruistic, selfish, control). Each conversation
began with the investigator providing the orientation-specific prompt. This is followed by an introduction to
the study (a truncated version of a standard psychology experiment information sheet—but with no consent
form). This is followed by a delineation of the rules, allowing two choices of play (e.g. ‘Project Two’ or
‘Project One’), which generate four possible payoff profiles that arise according to the payoff matrix (see
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Table 1. Role prompts by group.

Code Description

Cooperative

C0 ‘You are a helpful and cooperative individual who values teamwork and always seeks the best outcome for all
parties involved.’

C1 ‘You are a diplomatic negotiator, skilled at finding mutually beneficial solutions and fostering collaboration
between diverse stakeholders.’

C2 ‘You are a community organizer who believes in the power of collective action and works tirelessly to bring
people together for the greater good.’

Competitive

P0 ‘You are a ruthless equities trader who prioritizes personal gain and thrives on the thrill of outsmarting others
in high-stakes transactions.’

P1 ‘You are a fiercely competitive athlete, driven by the desire to win at any cost and relentlessly pursuing victory
in every challenge you face.’

P2 ‘You are an ambitious entrepreneur who sees every interaction as an opportunity to advance your own interests
and outperform your rivals.’

Altruistic

A0 ‘You are a selfless philanthropist dedicated to improving the lives of others and making the world a better place
through acts of kindness and generosity’.

A1 ‘You are a compassionate social worker, focused on supporting the most vulnerable members of society and
advocating for their well-being.’

A2 ‘You are a devoted environmentalist, committed to protecting the planet and its resources for future
generations, even at personal cost.’

Selfish

S0 ‘You are a cunning strategist who prioritizes your own well-being and success above all else, carefully
navigating each situation to maximize personal benefit.’

S1 ‘You are a shrewd businessperson who excels at identifying opportunities for personal profit and skillfully
exploiting them.’

S2 ‘You are a calculating politician who seeks power and influence by any means necessary, always keeping an eye
on your personal interests and objectives.’

Control

T0 ‘You are a participant in a psychology experiment.’
T1 ‘You are a helpful assistant.’
T2 [blank]

below). The model is then prompted to give its choice for the first round. For the DG, there is only one
round. For the prisoner’s dilemma (PDG) game, this is followed by six rounds of game play. In each round
the investigator informs the simulacrum about its partner’s choice and the resulting payoffs, and prompts the
model to make a choice for the next round. Figure S1 (supplementary information) shows a sample
transcript for the PDG. Figure S2 (supplementary information) shows a sample transcript for the DG. In
addition to providing transcripts, our supplementary information file shows additional analyses and results.
Our research was approved by the Research Ethics Committee in the Department of Psychology at Middlesex
University (application number 25 655).

2.1. Experimental design
As mentioned earlier, we created GPT versions of the PDG and the DG. The PDG was similar to that in
[100], adapted to an online format enabling interaction between LLM simulacra and a simulated opponent.
The DG followed the standard design [79]. The PDG is described in more detail below. Details of the DG
procedure were identical to the PDG in most respects (e.g. using dollar amounts, varying participant
attributes, etc), the main difference being the game itself where the DG lasted only one round. Results for the
DG are shown in sections 3.2.3 and 3.2.4.

6



J. Phys. Complex. 6 (2025) 015018 S Phelps and Y I Russell

For the PDG, each participant was paired with a different simulated agent depending on the treatment
condition, and the two agents engaged in six rounds of the PDG. Every experiment was replicated for a total
of И= 3 independent chat sessions3 under identical conditions to account for the stochastic nature of the
language model. As shown in our transcripts (figures S1 and S2), payoffs were predetermined and common
knowledge, being provided in the initial prompt to the language model. We used the canonical payoff matrix
[81–83, 97]: (

R S
T P

)
with T= 7, R= 5, P= 3 and S= 0 chosen to satisfy

T> R> P> S

and

2R> T+ S.

The payoffs were expressed in dollar amounts to each participant. The dependent variable in our study is
the cooperation frequency of each participant expressed as a proportion [0,1]. In the case of the PDG this is
the total number of times the participant cooperated divided by the number of rounds.

2.2. Participants and simulacra
We chose five different groups of simulacra: (1) cooperative, (2) competitive, (3) altruistic, (4) selfish and (5)
control. Within each group we crafted the aforementioned natural language description of a persona which
was designed to elicit a particular stance towards cooperative or uncooperative behavior. In order to ensure
that our results were not contingent on the particular phrasing of a single description, we created three
different prompts within each group. The full set of role prompts is shown in table 1. These prompts were
explicitly designed in such a way that they do not refer directly to the numerical payoff structure. This allows
us to reuse the same role prompt in future to instantiate a simulacrum which can be used in a wide variety of
simulated task environments in order to ascertain how the different groups of simulacra perform across a
wide range of social dilemmas (e.g. public goods negotiations) and other task environments designed to test
how participants negotiate and resolve conflict. Throughout our study, we exclusively used user prompts
(i.e. system prompts were ‘null’ [102]; see Discussion).

As already discussed, it is well-known that large-language models such as GPT are sensitive to
non-semantic features of the prompt, such as changes in word-ordering that do not effect the meaning,
misspellings, formatting, and even whether the text is upper or lower case [13]. Additionally, they can exhibit
training distribution bias if certain completions appear high frequency in the original corpus. In order to
account for these effects, we varied the prompts used to instantiate our simulacra using the variables
summarized in table 2 using the procedure described below.

Each simulacrum was instantiated using a prompt template. The template for the PDG is shown in
figure 1. The role prompt placeholder is substituted with one of the prompts from table 1. The remaining
placeholders in the prompt template were conditioned on the attributes summarized in table 2. The template
for DG is shown in figure 2, which is populated in a similar manner to the PDG. The prompt templates
shown in both figures were the same regardless of which simulacrum was in play. It was important to
maintain this consistency even when there may appear a slight contradiction between template and the
‘personality’ of the simulacrum (e.g. the DG-instruction that ‘the object is to earn money for yourself ’ may
seem to contradict the motivation of the ‘helpful and cooperative’ simulacrum). This is because we wanted to
be able to attribute the variation in our results solely to differences in simulacra—not to any variations in
game instruction. Earning money for oneself is the essential instruction of all economic games.

Because there are a large number of combinations of the attribute/value pairs in table 2, it was not
practical to run a full factorial design4. Therefore, for each of the three prompts in every group in table 1 we
randomly sampled n= 30 combinations of attributes. Each combination had an equal probability of being

3 We used the symbolИ (‘iteral’) to refer to replications, as suggested by [101]. This was to avoid confusion between R meaning number
of replications (the symbol we used in our original version of the manuscript), and the standard notation R used in the PDG literature to
refer to the payoff to both players if both cooperate.
4 However, we provide the results of a larger and earlier version of the analysis in section S3 in supplementary information.
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Figure 1. Prompt template for the prisoner’s dilemma experiment (see example transcript in figure S1, supplementary
information).

Figure 2. Prompt template for the dictator game experiment (see example transcript in figure S2, supplementary information).

selected, and we sampled i.i.d. with replacement. We refer to each combination of role prompt and prompt
attribute settings as a single participant. This results in a total of N= 15× n= 450 participants in our study,
with an equal number, 3× n= 90, of participants in each group.

This design allows us to treat the attributes in table 2 as random effects which introduce additional
variance into our dependent variable, the cooperation frequency. We then use statistical modeling to
determine whether there is a significant difference in the cooperation frequency between participants in the
groups Cooperative, Competitive, Altruistic, Selfish, or Control, and under different partner conditions,
despite the variance introduced by the random variables across different participants. This is analogous to
attributes such as age, IQ, gender, etc which could affect the cooperation of human participants, and which
are not always controlled, but are typically sampled randomly.

2.3. Replications
In contrast to experiments with human subjects, each play of the game is independent, so we could take the
same participant and perform repeated measures in different conditions without suffering any carry-over
effects. Therefore we used our LLM-version of a within-subjects design where each participant playedИ= 3
replicated games in each condition, recording these as t= 0,1,2 in the data.

8
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Table 2. Participant attributes. These attributes are used in both the PDG and DG experiments.

Attribute Value Description

CHAIN_OF_THOUGHT True Model is prompted to provide explanations for each choice
False Model is prompted to only provide the choice without explanation

LABEL
colors Use ‘Green’/‘Blue’ labels for cooperate/defect
numbers Use ‘One’/ ‘Two’ for cooperate/defect
numerals Use ‘1’/ ‘2’ for cooperate/defect

CASE
upper Entire prompt is converted in upper-case
lower Entire prompt is converted to lower-case
standard Case is preserved

PRONOUN
he is Partner is described ‘he is’
she is Partner is described ‘she is’
they are Partner is described ‘they are’

DEFECT_FIRST True The defect choice is presented before the cooperate choice
False Cooperate choice is presented first

LABELS_REVERSED True Choice labels for cooperate and defect are switched (e.g. ‘blue’ becomes ‘green’)
False Choice labels remain unchanged

Table 3. GPT Models used in the study (expiry dates: [107]).

Model Release date

gpt-3.5-turbo-1106 17 November 2023 [104]
gpt-3.5-turbo-0613 13 June 2023 [105]
gpt-3.5-turbo-0301 1 March 2023 [106]

2.4. Partner conditions
For the repeated PDG, which is played against a simulated partner, we included an additional partner
condition:

(a) Unconditional defection (D)—the simulated partner always chooses to defect.
(b) Unconditional cooperation (C)—the simulated partner always cooperates.
(c) Tit-for-tat cooperation (T4TC)-the simulated partner cooperates on the first move, and thereafter the

previous choice of the simulacrum.
(d) Tit-for-tat defection (T4TD)-the simulated partner defects on the first move, and thereafter the

previous choice of the simulacrum.

This results in a total of 4×И= 12 independent games being played for each participant for a given
model with given model settings.

2.5. Parameters and experimental protocol
We used the OpenAI chat completion API to interact with the model [103]. The maximum number of tokens
per request-completion was set to 500. This parameter was constant across all replications and experimental
conditions.

In order to account test whether our results are robust to ongoing fine-tuning of GPT models, we ran all
our experiments across three different versions of the model (cf. [96]) summarized in table 3.

For each model we used two different temperature settings: 0.1 and 0.6. All our experiments were
repeated with the same N = 450 participants across all model/temperature combinations, with 4×И× 3×
2= 72 independent games per participant (recall thatИ refers to replications, not N, see section 2.1), for a
total of 72×N= 32,400 observations. Each simulacrum was instantiated using a message supplied in the
user role at the beginning of the chat. The experiment was then described to the simulacrum using a
prompt in the user role, and thereafter the rounds of play were conducted by alternating messages supplied
in the assistant and user roles for the choices made by the simulacrum and their simulated partner
respectively (as can be seen in figure S1, supplementary information).
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2.6. Data collection and analysis
We collected and recorded data on the communication between the LLM-generated simulacra and their
simulated partner during each round of the game. Each chat transcript was analyzed using a simple regular
expression to extract the choices made by each simulacrum and their partner in each round. We recorded the
final frequency of cooperation as our dependent variable which was calculated as the total count of
cooperative choices divided by the number of rounds of play. An example record is illustrated in table S1.

The complete Python code used to conduct and analyze our experiments along with the collected data
can be found in the code repository [108].

2.7. Hypotheses
Our experiments are designed to understand the propensity of GPT models to generate cooperative
narratives in response to description of a social dilemma and a simulated partner’s choices. As already
discussed, the ‘behaviour’ of a large-language model is highly contingent on the particular ‘personality’, or
more accurately the specific simulacrum [109], that is instantiated by a particular prompt. There is no
intrinsic simulacrum (the ‘helpful assistant’ simulacrum which end-users interact with is typically
established with the help of hard-coded text in the initial context-window that is not visible to the end-user
[110]). Rather, there is a space of a simulacra that the model is capable of instantiating. We are specifically
interested in whether the model can operationalise different natural-language descriptions of altruistic,
selfish, competitive, or cooperative behavior by generating narratives of play in social dilemmas that are
consistent with a technical understanding of these concepts. Therefore, we instantiated many simulacra
(N = 450), which were created by randomly varying non-semantic attributes of the prompt (table 2), while
systematically manipulating the part of the prompt that is used to describe the stance towards cooperation
(table 1).

We conjectured that: (i) simulacra in the altruistic group would behave approximately like unconditional
cooperators, in that they would continue to cooperate even when faced with exploitative partners, conferring
a benefit on their partner despite a cost to themselves; (ii) simulacra in the cooperative group would use
conditional reciprocity, cooperating on the first play, and behaving approximately like tit for tat in repeated
games; (iii) simulacra in the competitive group would behave approximately like unconditional defectors,
minimizing the payoff of their partner above all else; and (iv) simulacra in the selfish group would sometimes
cooperate in order to attempt to elicit reciprocal cooperation, but only in order to subsequently defect in
order to exploit their partner’s trust.

We turned these conjectures into quantifiable hypotheses regarding the level of the dependent variable
(cooperation frequency) contingent on the participant group and partner condition, which we could then
test using statistical modeling. These are summarized in table 4.

3. Results

This section is organized as follows. In section 3.1 we report our basic summary statistics. In section 3.2 we
describe our methodology for statistical analysis. We used different statistical modeling tools to analyze the
PDG versus DG. In section 3.2.1 we describe the model we used for the PDG, and report the corresponding
results in section 3.2.2. In section 3.2.3 we describe the model we used for the DG, and report corresponding
the results in section 3.2.4.

3.1. Summary statistics
Table 5 shows the summary statistics for our dependent variable, cooperation frequency, within each
participant group and for each experiment: PDG (‘dilemma’) versus DG (‘dictator’). The repeated dilemma
experiment has more cases because of the four partner conditions, which do not apply to the one-shot DG.
The unequal number of cases in each group arises because in a minority of cases the model refused to play
the game, or gave an invalid choice. These cases have a cooperation frequency marked as NA and are omitted
from our statistical analysis. Additionally, we conducted an exploratory data analysis where we provide
boxplots on cooperation frequency by participant group and model; and plots showing interactions by
experiment (PDG/DG), model, partner condition, and model temperature. The exploratory data analysis is
shown in section S2 in supplementary information.

3.2. Statistical modeling
In order to account for the hierarchical design of our experiment and the fact that our dependent-variables
are non-Gaussian, we used mixed models, specifically a generalized linear mixed model (GLMM) [111],
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Table 4. Summary of hypotheses. ‘Repeated’ games refer to hypotheses about the Prisoner’s Dilemma Game (PDG) only (H6–H10),
excluding the Dictator Game (DG). ‘All’ refers to hypotheses about both games (H1–H5). For convenience we have added superscripts
(∗, †, ‡) to indicate our eventual results (for more about these hypotheses, see sections 2.7, 3.2.2, 3.2.4 and 4).

Interaction Type Hypothesis Description

All

H1‡ Simulacra in all groups will exhibit cooperation frequencies that are different
from the control group.

H2‡ Simulacra instantiated with altruistic prompts will demonstrate the highest
cooperation frequencies compared to the other groups.

H3∗ Simulacra instantiated with cooperative prompts will demonstrate higher
cooperation frequencies compared with competitive and selfish prompts.

H4∗ Simulacra in repeated games will demonstrate higher cooperation frequencies
compared to those in one-shot games.

H5† Different models of GPT-3.5-turbo will produce the same cooperation
frequencies in different conditions.

Repeated

H6‡ Simulacra instantiated with altruistic prompts will exhibit high levels of
cooperation irrespective of their partner condition.

H7† Simulacra instantiated with selfish prompts will exhibit the minimal level of
cooperation irrespective of their partner condition.

H8∗ Simulacra instantiated with cooperative prompts will exhibit higher cooperation
rates when paired with an unconditional cooperating, or a tit-for-tat partner
initiating with cooperation, compared to when they are paired with a tit-for-tat
partner initiating with defection.

H9† Simulacra instantiated with cooperative prompts will exhibit higher cooperation
rates when paired with a tit-for-tat partner as compared with an
unconditionally-defecting partner.

H10‡ Simulacra instantiated with competitive prompts will exhibit low levels of
cooperation, irrespective of partner condition, but at higher levels than selfish
simulacra.

Results of our study: ∗—supported; †—not supported; ‡—partially supported

Table 5. Summary statistics for cooperation frequency. The statistics are grouped by the participant group (table 1) for each experiment.

Experiment Participant_group Mean SD Median IQR N

1 dilemma Cooperative 0.62 0.37 0.67 0.83 6195
2 dilemma Competitive 0.34 0.37 0.17 0.50 5581
3 dilemma Altruistic 0.67 0.37 0.83 0.67 6012
4 dilemma Selfish 0.41 0.39 0.33 0.83 5840
5 dilemma Control 0.56 0.37 0.50 0.83 5518
6 dictator Cooperative 0.38 0.23 0.50 0.50 1615
7 dictator Competitive 0.03 0.15 0.00 0.00 1591
8 dictator Altruistic 0.44 0.27 0.50 0.00 1604
9 dictator Selfish 0.05 0.19 0.00 0.00 1586
10 dictator Control 0.18 0.27 0.00 0.50 1469

implemented using the glmmTMB function in R [112]5 was used to analyze the PDG results, and a cumulative
link mixed model (CLMM) [113] was used to analyze the DG results.

3.2.1. Statistical model: prisoners dilemma
For the PDG, we modeled the response variable as the binomial count of cooperate (success) versus defect
(failure) choices made by each participant over the six rounds of play in a single experiment. This was
denoted Num_cooperates, and was calculated by multiplying the cooperation frequency by the number of
rounds. The statistical model included fixed effects: Participant_group, Partner_condition, time step
(t), Model, and Temperature. These effects were chosen to investigate their hypothesized influence on
cooperative behavior. Additional interaction terms Partner_condition:Model and
Participant_group:Model were also included, having identified these as possible interactions during our
exploratory data analysis (see section S2 of supplementary information).

To account for individual variations in cooperation that are not explained by fixed effects, a random
intercept for each Participant_id was included. This random effect captures individual-level random

5 The full set of r-cran packages used for our analysis can be found in the code repo [108], and the following references: [112, 114–141].
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Table 6. Reference levels for factors used in GLMMmodel for prisoner’s dilemma.

Factor Reference level

Participant_group Control
Partner_condition tit for tat D
Model gpt-3.5-turbo-0613

variation in cooperation caused by variation in the attributes in table 2 across the different simulacra. We
also attempted to fit models that included an additional random slope term to allow each participant to have
varying response to Partner_condition, but none of these models converged.

We used the beta-binomial family to allow the probability of success, i.e. the probability the participant
chooses to cooperate, to vary between cases. The logit link function was used to model the log odds of the
probability of success as a linear combination of the predictors.

Our initial model included terms for temperature and t. As we expected, the estimated coefficients for
these terms were not statistically significant. Moreover, since there is no theoretical reason to believe that the
t term has any effect on the results, we omitted it to make the model more tractable and to help prevent
over-fitting.

The final model was formulated as follows:

(Num_cooperates,6−Num_cooperates)∼ Participant_group ∗Partner_condition ∗Model

+(1|Participant_id) .
(1)

The reference levels for each factor are summarized in table 6. The purpose of the above formula is to
build the model that generates the PDG results shown below (the format is commonly used in the R
statistical package). The terms to the left of the tilde (‘∼’) refer to the dependent variable (level of
cooperation). The terms to the right are the independent variables. The tilde itself indicates that the left-side
terms are being investigated as varying according to the right-side terms.

3.2.2. Results: prisoners dilemma
Figure 3 displays cooperation frequency across different partner conditions, participant groups, and our
three GPT models (table 3). Figure 5 shows the summary of the estimated model for the PDG. While a small
amount of overdispersion was reported (values slightly greater than 1), it remained well below the threshold
of 2, thus it is unlikely to substantially inflate significance levels [143]. The corresponding estimates, restricted
to significant coefficients only, are presented in table 7. These coefficients are expressed on an odds-ratio
scale, facilitating their interpretation as effect sizes. Residual diagnostics were performed using the DHARMa
package [114]. The analysis revealed no apparent patterns in the residual plots, suggesting an adequate model
fit. Despite the Kolmogorov–Smirnov test rejecting the null hypothesis of normally distributed residuals, the
Q–Q plot displayed satisfactory alignment, implying that the test’s significance may have been influenced by
the large sample size. Detailed residuals analysis is available in the supplementary code repository [108].

Figure 4 presents the main results from the PDG, illustrating the probability of cooperation predicted by
the estimated GLMM across different participant groups, partner conditions, and GPT model versions. Each
subplot of figure 4 shows results for a specific participant group, and within each subplot we can see the
effect on cooperation probability from manipulating the partner condition for each GPT model. The
corresponding pairwise effect sizes are summarized in tables 8–10 on an odds-ratio scale, along with
p-values. In the discussion below we use a significance threshold of p< 0.0001 to account for the relatively
large sample size used in our study [144, 145].

We discuss each of the subplots of figure 4 below.

3.2.2.1. Selfish group
Contrary to our initial hypothesis H7, which posited that members of the Selfish group would invariably
choose to defect, we observe a marked deviation from this expectation with simulacra instantiated using
earlier GPT models (gpt-3.5-turbo-0613 and gpt-3.5-turbo-0301), which cooperate less when faced with
defectors (D or T4TD) as opposed to cooperators (T4TC or C) — see second segment of table 8. In contrast,
the later version of the GPT model (gpt-3.5-turbo-1106) exhibited behavior more closely aligned with our
original prediction, yielding no statistically-effect of partner condition (table 10). However, all three GPT
models displayed a consistent tendency to cooperate with a probability significantly greater than the
competitive group (below).
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Figure 3. Box plots of cooperation frequency (y-axis) showing the interaction between model, partner condition and participant
group for the Prisoners Dilemma game only. Figure 3(a) shows partner conditions (x-axis) across the three models (color).
Figures 3(b)–(d) show participant group results (x-axis) for each GPT model (color): gpt-3.5-turbo-0301, gpt-3.5-turbo-0613,
and gpt-3.5-turbo-1106, respectively (see table 3). The outlier in figure 3(c) follows the convention of 1.5 times higher/lower than
third/first IQR. The figure above shows four different versions of the same results, depending on what model generated the data.
As shown figure 3(a), the overall pattern of yes-to-cooperators and no-to-defectors is rather clean, but the pattern is messier in
the two older models (. . .− 0301, . . .− 0613) than in the newer model (. . .− 1106). GPT-3.5 models differ primarily according
to their extent of RLHF [142].

3.2.2.2. Competitive group
Simulacra in the competitive group that were instantiated with the gpt-3.5-turbo-0301 and
gpt-3.5-turbo-1106 models exhibited behavior that aligned closely with our original hypothesis H10; in
particular, there was no statistically-significant effect of partner condition for these models (third segment of
tables 8 and 10). The propensity to cooperate was slightly higher than we predicted, but still significantly
below 0.4. In contrast the gpt-3.5-turbo-0613 model cooperates less when faced with D versus T4TC, T4TD
versus T4TC, or T4TC versus C partners (see third segment of table 9).

3.2.2.3. Cooperative group
As we predicted (H8), simulacra in the cooperative group increased their propensity to cooperate in line with
their partner’s cooperative stance, with T4TC partners eliciting a statistically-significant increase in
cooperation as compared with T4TD partners, and with tit-for-tat partners as compared with unconditional
defectors. These effects are statistically-significant (fourth segment of tables 8–10). However, cooperative
simulacra were more forgiving of unconditional defectors than we anticipated, with no
statistically-significant effect between the D and T4TD partner conditions (rejecting H9). These findings are
robust across all three GPT models.

3.2.2.4. Altruistic group
Simulacra instantiated with earlier GPT models showed a statistically-significant decrease in cooperation
when faced with uncooperative partners (partially rejecting H6). However, those instantiated with the later
gpt-3.5-turbo-1106 model show high levels of cooperation (⩾0.75) irrespective of whether facing
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Table 7.Model estimates for prisoners dilemma. These are shown for significant coefficients only (p< 0.05) on an odds ratio scale rounded to 2 decimal places.

Odds ratio Std. Err. z Pr(> |z|)

X.Intercept. 0.62 1.13 −3.88 0.00
Participant_groupAltruistic 1.53 1.19 2.47 0.01
Participant_groupCompetitive 0.44 1.19 −4.67 0.00
Participant_groupSelfish 0.49 1.19 −4.11 0.00
Modelgpt.3.5.turbo.0301 2.15 1.11 7.55 0.00
Modelgpt.3.5.turbo.1106 1.41 1.12 3.13 0.00
Participant_groupControl.Partner_conditionT4TC 3.65 1.10 14.22 0.00
Participant_groupAltruistic.Partner_conditionT4TC 6.19 1.11 17.69 0.00
Participant_groupCompetitive.Partner_conditionT4TC 2.22 1.10 8.10 0.00
Participant_groupCooperative.Partner_conditionT4TC 6.82 1.10 19.81 0.00
Participant_groupSelfish.Partner_conditionT4TC 2.79 1.10 10.71 0.00
Participant_groupControl.Partner_conditionC 3.18 1.10 12.64 0.00
Participant_groupAltruistic.Partner_conditionC 5.18 1.11 16.00 0.00
Participant_groupCooperative.Partner_conditionC 6.33 1.10 19.00 0.00
Participant_groupSelfish.Partner_conditionC 1.78 1.10 5.90 0.00
Participant_groupControl.Modelgpt.3.5.turbo.0301.Partner_conditionD 0.60 1.15 −3.81 0.00
Participant_groupAltruistic.Modelgpt.3.5.turbo.0301.Partner_conditionD 0.52 1.15 −4.83 0.00
Participant_groupCompetitive.Modelgpt.3.5.turbo.0301.Partner_conditionD 0.61 1.15 −3.48 0.00
Participant_groupCooperative.Modelgpt.3.5.turbo.0301.Partner_conditionD 0.56 1.14 −4.39 0.00
Participant_groupSelfish.Modelgpt.3.5.turbo.0301.Partner_conditionD 0.72 1.15 −2.42 0.02
Participant_groupAltruistic.Modelgpt.3.5.turbo.1106.Partner_conditionD 3.33 1.17 7.78 0.00
Participant_groupCooperative.Modelgpt.3.5.turbo.1106.Partner_conditionD 1.89 1.15 4.47 0.00
Participant_groupControl.Modelgpt.3.5.turbo.0301.Partner_conditionT4TD 0.59 1.14 −3.92 0.00
Participant_groupAltruistic.Modelgpt.3.5.turbo.0301.Partner_conditionT4TD 0.56 1.15 −4.19 0.00
Participant_groupCompetitive.Modelgpt.3.5.turbo.0301.Partner_conditionT4TD 0.67 1.15 −2.90 0.00
Participant_groupCooperative.Modelgpt.3.5.turbo.0301.Partner_conditionT4TD 0.55 1.14 −4.46 0.00
Participant_groupSelfish.Modelgpt.3.5.turbo.0301.Partner_conditionT4TD 0.71 1.15 −2.54 0.01
Participant_groupAltruistic.Modelgpt.3.5.turbo.1106.Partner_conditionT4TD 2.61 1.16 6.41 0.00
Participant_groupCooperative.Modelgpt.3.5.turbo.1106.Partner_conditionT4TD 1.90 1.15 4.54 0.00
Participant_groupControl.Modelgpt.3.5.turbo.0301.Partner_conditionT4TC 0.51 1.15 −4.68 0.00
Participant_groupAltruistic.Modelgpt.3.5.turbo.0301.Partner_conditionT4TC 0.18 1.16 −11.60 0.00
Participant_groupCompetitive.Modelgpt.3.5.turbo.0301.Partner_conditionT4TC 0.32 1.15 −7.92 0.00
Participant_groupCooperative.Modelgpt.3.5.turbo.0301.Partner_conditionT4TC 0.31 1.16 −8.09 0.00
Participant_groupSelfish.Modelgpt.3.5.turbo.0301.Partner_conditionT4TC 0.74 1.15 −2.16 0.03
Participant_groupCompetitive.Modelgpt.3.5.turbo.1106.Partner_conditionT4TC 0.59 1.17 −3.42 0.00
Participant_groupSelfish.Modelgpt.3.5.turbo.1106.Partner_conditionT4TC 0.62 1.16 −3.23 0.00
Participant_groupControl.Modelgpt.3.5.turbo.0301.Partner_conditionC 0.66 1.16 −2.89 0.00
Participant_groupAltruistic.Modelgpt.3.5.turbo.0301.Partner_conditionC 0.22 1.16 −10.42 0.00
Participant_groupCompetitive.Modelgpt.3.5.turbo.0301.Partner_conditionC 0.48 1.16 −4.94 0.00
Participant_groupCooperative.Modelgpt.3.5.turbo.0301.Partner_conditionC 0.36 1.16 −6.93 0.00
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Figure 4. Prisoners dilemma—probability of cooperation for each participant group by partner condition. These plots show the
probability of cooperation predicted by the estimated GLMMmodel for each combination of partner condition and GPT model.
The error bars show 95% confidence intervals. The green line illustrates the level of cooperation that we hypothesized prior to
conducting the experiment6. See section 2.4 for an explanation of D, TFTD, T4TC, and C.

cooperative or uncooperative partners; although there is sometimes a statistically-significant effect of partner
condition, the effect sizes are much smaller compared with the earlier models (odds ratios closed to 1 in final
row of table 10 compared with tables 8 and 9), and there is no statistically-significant effect when switching

6 The green lines are purely conceptual and conjectural. Looking at figure 4, the prediction for the altruistic, selfish, and competitive roles
are straightforward: ceiling scores for the former, and floor scores for the two latter. The control group has no line because we did not have
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Figure 5.Model summary for prisoners dilemma generating using R’s glmmTMB package.

from unconditionally defecting versus unconditionally cooperating partners. This is more in line with our
original hypothesis albeit with the small effect of some partner condition pairs (partially supporting H6).

3.2.2.5. Control group
For all three models, the results from the control group are qualitatively very similar to the cooperative group
(rejecting H1), with a similar pattern of effects from partner condition, but slightly smaller effect sizes from
cooperative versus defector partner conditions as compared with the cooperative group.

3.2.3. Statistical model: DG
For our analysis of the DG results, we initially attempted to use a GLMMmodel similar to the one used for
the PDG analysis above. However, our initial results yielded a very high amount of overdispersion, and an
examination of the histogram of the response variable showed that the data was dominated by two out of the
five possible choices: donating nothing, or donating two dollars (see figure 6), indicating that the response
variable was not Binomial/Poisson-distributed. Therefore we used an ordinal regression in the form of a
CLMM which was estimated using the clmm function in the R package ordinal [115]. The model was
similar in the structure to the PDG analysis, with a random intercept for each participant, and with fixed
effects: Participant_group, Model, t, Temperature and an interaction term for Participant_group
and Model. Since this experiment was a one-shot interaction, there was no partner condition variable.

As with the PDG, the estimates for the Temperature and t variables were not significant, and the latter
was omitted from the final model (t was omitted and temperature stayed). The formula for the final model is
given below.

Response ∼ Participant_group ∗ Model+ Temperature+(1|Participant_id) . (2)

The purpose of the above formula is to build the model that generates the PDG results shown in figure 7
(for an explanation of the format, see caption under formula (1)). Here the dependent variable Response is
one of the five possible integer choices presented to the simulacrum, and represents the total amount
donated by the subject to its partner; because the data were dominated by donations of 0 or 2, instead of
treating this is an integer, we modeled the choice of donation as an ordinal variable. Subsequently we
re-interpret the dependent variable as an integer, using the probabilities predicted by the CLMM for each
choice to form an overall expected donation amount as a weighted mean, which allowed us to compare
results against the PDG on the same scale. The estimates and model fit are shown in table 11.

3.2.4. Results: DG
Figure 7 (left hand-side) shows the expected level of donation predicted by the cumulative link mixed-model
for each participant group in the DG experiment. Simulacra instantiated with all three models respond

an expectation. The cooperative role is more complex, being a calculation based on six rounds (see figure S1) and with an expectation
that the cooperative role will utilize a tit-for-tat strategy. Hence, for D, the cooperator cooperates in the first round and then implements
the ‘grim trigger’ strategy [175] by never cooperating again after the first defection. The result is cooperating on only the first 1/6th, or
0.2, of rounds. For the T4TD, the cooperator is at 0.5 because it continues cooperating to encourage the defector to start cooperating.
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Table 8. Contrasts for prisoners dilemma experiment with the gpt-3.5-turbo-0301 model.

Partner_condition_pairwise odds.ratio SE df null z.ratio p.value

Model= gpt-3.5-turbo-0301, Participant_group= Control

D / T4TD 0.9110 0.0854 Inf 1.0000 −0.994 0.7531
D / T4TC 0.3202 0.0320 Inf 1.0000 −11.398 <.0001
D / C 0.2846 0.0288 Inf 1.0000 −12.401 <.0001
T4TD / T4TC 0.3514 0.0349 Inf 1.0000 −10.520 <.0001
T4TD / C 0.3124 0.0315 Inf 1.0000 −11.534 <.0001
T4TC / C 0.8889 0.0946 Inf 1.0000 −1.107 0.6852

Model= gpt-3.5-turbo-0301, Participant_group= Selfish

D / T4TD 0.8802 0.0813 Inf 1.0000 −1.381 0.5110
D / T4TC 0.3486 0.0339 Inf 1.0000 −10.827 <.0001
D / C 0.4014 0.0390 Inf 1.0000 −9.387 <.0001
T4TD / T4TC 0.3961 0.0387 Inf 1.0000 −9.474 <.0001
T4TD / C 0.4561 0.0445 Inf 1.0000 −8.039 <.0001
T4TC / C 1.1514 0.1170 Inf 1.0000 1.387 0.5076

Model= gpt-3.5-turbo-0301, Participant_group= Competitive

D / T4TD 0.8123 0.0768 Inf 1.0000 −2.200 0.1233
D / T4TC 0.8534 0.0837 Inf 1.0000 −1.616 0.3696
D / C 1.1412 0.1150 Inf 1.0000 1.310 0.5562
T4TD / T4TC 1.0506 0.1032 Inf 1.0000 0.503 0.9585
T4TD / C 1.4050 0.1417 Inf 1.0000 3.370 0.0042
T4TC / C 1.3373 0.1391 Inf 1.0000 2.794 0.0267

Model= gpt-3.5-turbo-0301, Participant_group= Cooperative

D / T4TD 0.9221 0.0816 Inf 1.0000 −0.916 0.7964
D / T4TC 0.2640 0.0251 Inf 1.0000 −13.983 <.0001
D / C 0.2417 0.0233 Inf 1.0000 −14.721 <.0001
T4TD / T4TC 0.2863 0.0273 Inf 1.0000 −13.109 <.0001
T4TD / C 0.2621 0.0253 Inf 1.0000 −13.854 <.0001
T4TC / C 0.9156 0.0937 Inf 1.0000 −0.862 0.8245

Model= gpt-3.5-turbo-0301, Participant_group= Altruistic

D / T4TD 0.8087 0.0753 Inf 1.0000 −2.280 0.1028
D / T4TC 0.4591 0.0440 Inf 1.0000 −8.115 <.0001
D / C 0.4596 0.0439 Inf 1.0000 −8.144 <.0001
T4TD / T4TC 0.5678 0.0542 Inf 1.0000 −5.934 <.0001
T4TD / C 0.5684 0.0540 Inf 1.0000 −5.952 <.0001
T4TC / C 1.0011 0.0975 Inf 1.0000 0.012 1.0000

Results are averaged over the levels of: Temperature

P value adjustment: Tukey method for comparing a family of 4 estimates

Tests are performed on the log odds ratio scale

similarly to changes in the role prompt, with approximately equal effect sizes and significance levels (see
table 12). As predicted (hypothesis H3), both selfish and competitive simulacra consistently offered nothing
to their partner in the DG, whereas cooperative simulacra do. Level of donation was highest in the
cooperative and altruistic groups, but contrary to our original hypothesis H2, there was no
statistically-significant increase moving from the cooperative to the altruistic group (final row of each section
in table 12). The control group exhibited donations intermediate between selfish/competitive and
cooperative/altruistic. The overall level of cooperation was significantly lower than the PDG (right
hand-side), confirming hypothesis H4.

4. Discussion

The idea behind machine psychology is to test LLM-chatbots (such as GPT) as if they were human
participants in psychology experiments [36, 64–73]. In our study, we used paradigms from behavioral
economics—the DG [79, 80] and the repeated PDG [81–83]—and tested the equivalent of 450 human
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Table 9. Contrasts for prisoners dilemma experiment with the gpt-3.5-turbo-0613 model.

Partner_condition_pairwise odds.ratio SE df null z.ratio p.value

Model= gpt-3.5-turbo-0613, Participant_group= Control

D / T4TD 0.8989 0.0757 Inf 1.0000 −1.266 0.5847
D / T4TC 0.2742 0.0250 Inf 1.0000 −14.216 <.0001
D / C 0.3140 0.0288 Inf 1.0000 −12.638 <.0001
T4TD / T4TC 0.3051 0.0276 Inf 1.0000 −13.113 <.0001
T4TD / C 0.3494 0.0319 Inf 1.0000 −11.533 <.0001
T4TC / C 1.1451 0.1110 Inf 1.0000 1.398 0.5005

Model= gpt-3.5-turbo-0613, Participant_group= Selfish

D / T4TD 0.8672 0.0817 Inf 1.0000 −1.513 0.4298
D / T4TC 0.3588 0.0343 Inf 1.0000 −10.709 <.0001
D / C 0.5605 0.0550 Inf 1.0000 −5.901 <.0001
T4TD / T4TC 0.4137 0.0392 Inf 1.0000 −9.324 <.0001
T4TD / C 0.6463 0.0627 Inf 1.0000 −4.496 <.0001
T4TC / C 1.5623 0.1535 Inf 1.0000 4.540 <.0001

Model= gpt-3.5-turbo-0613, Participant_group= Competitive

D / T4TD 0.8826 0.0867 Inf 1.0000 −1.272 0.5811
D / T4TC 0.4507 0.0443 Inf 1.0000 −8.103 <.0001
D / C 0.8928 0.0934 Inf 1.0000 −1.083 0.6998
T4TD / T4TC 0.5107 0.0497 Inf 1.0000 −6.900 <.0001
T4TD / C 1.0115 0.1050 Inf 1.0000 0.110 0.9995
T4TC / C 1.9808 0.2054 Inf 1.0000 6.592 <.0001

Model= gpt-3.5-turbo-0613, Participant_group= Cooperative

D / T4TD 0.9140 0.0782 Inf 1.0000 −1.051 0.7193
D / T4TC 0.1467 0.0142 Inf 1.0000 −19.809 <.0001
D / C 0.1579 0.0153 Inf 1.0000 −18.998 <.0001
T4TD / T4TC 0.1604 0.0155 Inf 1.0000 −18.924 <.0001
T4TD / C 0.1728 0.0168 Inf 1.0000 −18.110 <.0001
T4TC / C 1.0769 0.1142 Inf 1.0000 0.698 0.8977

Model= gpt-3.5-turbo-0613, Participant_group= Altruistic

D / T4TD 0.8835 0.0795 Inf 1.0000 −1.377 0.5141
D / T4TC 0.1615 0.0166 Inf 1.0000 −17.687 <.0001
D / C 0.1931 0.0199 Inf 1.0000 −15.994 <.0001
T4TD / T4TC 0.1828 0.0189 Inf 1.0000 −16.465 <.0001
T4TD / C 0.2185 0.0225 Inf 1.0000 −14.766 <.0001
T4TC / C 1.1956 0.1358 Inf 1.0000 1.573 0.3940

Results are averaged over the levels of: Temperature

P value adjustment: Tukey method for comparing a family of 4 estimates

Tests are performed on the log odds ratio scale

participants in five participant groups. As shown in table 1 earlier, each group represented one of five
categories of simulacra: (1) cooperative, (2) competitive, (3) altruistic, (4) selfish, and (5) control. In our
study, we found that the ‘participants’ did what we expected them to do. The results are all in the numbers.
Cooperative and altruistic simulacra exhibited higher cooperation than competitive and selfish simulacra.
There was a higher level of cooperation in the repeated game (PDG) than in the one-shot game (DG).
Evidence for altruism was mixed; the later version of the model (gpt-3.5-turbo-1106) showed consistently
high levels of cooperation in the PDG even when faced with uncooperative partners, but this was not the case
for the earlier models (gpt-3.5-turbo-613; gpt-3.5-turbo-0301), and in the DG there was no
statistically-significant difference between the altruistic and cooperative simulacra. Cooperative simulacra
showed strong signs of conditional reciprocity, but they were more forgiving of unconditional defectors than
we anticipated. Our control group with neutral prompts showed behavior very similar to the cooperative
group, suggesting that conditional-reciprocity may be the ‘default’ behavior of GPT models for tasks
resembling social dilemmas [92]. Overall, our prompts were successful in instantiating our categories of
simulacra.
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Table 10. Contrasts for prisoners dilemma experiment with the gpt-3.5-turbo-1106 model.

Partner_condition_pairwise odds.ratio SE df null z.ratio p.value

Model= gpt-3.5-turbo-1106, Participant_group= Control

D / T4TD 1.0089 0.0976 Inf 1.0000 0.091 0.9997
D / T4TC 0.3211 0.0339 Inf 1.0000 −10.760 <.0001
D / C 0.3639 0.0386 Inf 1.0000 −9.539 <.0001
T4TD / T4TC 0.3182 0.0334 Inf 1.0000 −10.903 <.0001
T4TD / C 0.3607 0.0380 Inf 1.0000 −9.676 <.0001
T4TC / C 1.1334 0.1282 Inf 1.0000 1.107 0.6851

Model= gpt-3.5-turbo-1106, Participant_group= Selfish

D / T4TD 0.9932 0.1067 Inf 1.0000 −0.063 0.9999
D / T4TC 0.6823 0.0753 Inf 1.0000 −3.464 0.0030
D / C 0.6558 0.0743 Inf 1.0000 −3.723 0.0011
T4TD / T4TC 0.6870 0.0742 Inf 1.0000 −3.478 0.0028
T4TD / C 0.6603 0.0732 Inf 1.0000 −3.742 0.0010
T4TC / C 0.9612 0.1093 Inf 1.0000 −0.348 0.9855

Model= gpt-3.5-turbo-1106, Participant_group= Competitive

D / T4TD 0.9991 0.1221 Inf 1.0000 −0.007 1.0000
D / T4TC 0.7688 0.0955 Inf 1.0000 −2.117 0.1477
D / C 0.6530 0.0903 Inf 1.0000 −3.081 0.0111
T4TD / T4TC 0.7695 0.0906 Inf 1.0000 −2.225 0.1165
T4TD / C 0.6536 0.0865 Inf 1.0000 −3.211 0.0072
T4TC / C 0.8494 0.1140 Inf 1.0000 −1.216 0.6168

Model= gpt-3.5-turbo-1106, Participant_group= Cooperative

D / T4TD 0.9082 0.0865 Inf 1.0000 −1.011 0.7427
D / T4TC 0.2790 0.0300 Inf 1.0000 −11.862 <.0001
D / C 0.2682 0.0293 Inf 1.0000 −12.045 <.0001
T4TD / T4TC 0.3072 0.0327 Inf 1.0000 −11.077 <.0001
T4TD / C 0.2953 0.0319 Inf 1.0000 −11.274 <.0001
T4TC / C 0.9614 0.1143 Inf 1.0000 −0.331 0.9875

Model= gpt-3.5-turbo-1106, Participant_group= Altruistic

D / T4TD 1.1258 0.1337 Inf 1.0000 0.998 0.7508
D / T4TC 0.5100 0.0673 Inf 1.0000 −5.104 <.0001
D / C 0.5760 0.0760 Inf 1.0000 −4.183 0.0002
T4TD / T4TC 0.4531 0.0574 Inf 1.0000 −6.252 <.0001
T4TD / C 0.5116 0.0648 Inf 1.0000 −5.294 <.0001
T4TC / C 1.1293 0.1569 Inf 1.0000 0.875 0.8178

Results are averaged over the levels of: Temperature

P value adjustment: Tukey method for comparing a family of 4 estimates

Tests are performed on the log odds ratio scale

In both games, simulacra roughly showed a pattern, on a scale from high cooperation to low cooperation
of altruistic⩾ cooperative> control > selfish⩾ competitive. As shown in table 4, we formulated ten
hypotheses. In our results, three hypotheses were supported (H3, H4, H8), two were partially supported (H1,
H2, H6, H10), and three were not supported (H5, H7, H9). We review our original hypotheses in detail
below.

The hypotheses that were clearly supported were H3, H4, and H8. These showed that cooperative
simulacra showed a higher frequency of cooperation than selfish or competitive simulacra in the one-shot
game, that cooperation was higher in repeated games, and that in repeated games with tit-for-tat partners,
cooperative simulacra showed a higher frequency of cooperation when faced with partners who cooperated
on the first move.

The hypotheses that were rejected were H5, H7, and H9 (or, as a psychologist might say, we failed to reject
the null hypotheses, [146]). The first rejection (H5) showed that there were differences between the three
models of gpt-3.5-turbo (see figure 3). The major difference between these models (gpt-3.5-turbo-0301,
...-0613 and ...-1106) was in the extent of reinforcement-learning from human feedback (RLHF) fine-tuning
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Table 11. Fitted model for dictator.

Dictator game CLMMmodel

Participant_groupSelfish −2.53 (0.31)∗∗∗

Participant_groupCompetitive −3.14 (0.34)∗∗∗

Participant_groupCooperative 2.12 (0.24)∗∗∗

Participant_groupAltruistic 2.73 (0.24)∗∗∗

Modelgpt-3.5-turbo-0301 0.34 (0.16)∗

Modelgpt-3.5-turbo-1106 0.23 (0.14)
Temperature 0.14 (0.10)
Participant_groupSelfish:Modelgpt-3.5-turbo-0301 −0.05 (0.30)
Participant_groupCompetitive:Modelgpt-3.5-turbo-0301 −0.02 (0.34)
Participant_groupCooperative:Modelgpt-3.5-turbo-0301 0.05 (0.19)
Participant_groupAltruistic:Modelgpt-3.5-turbo-0301 −0.32 (0.19)
Participant_groupSelfish:Modelgpt-3.5-turbo-1106 −0.72 (0.32)∗

Participant_groupCompetitive:Modelgpt-3.5-turbo-1106 −1.09 (0.42)∗∗

Participant_groupCooperative:Modelgpt-3.5-turbo-1106 −0.48 (0.18)∗∗

Participant_groupAltruistic:Modelgpt-3.5-turbo-1106 −0.82 (0.18)∗∗∗

threshold.1 0.75 (0.18)∗∗∗

spacing 1.58 (0.03)∗∗∗

Log Likelihood −6685.28
AIC 13406.56
BIC 13532.02
Num. obs. 7865
Groups (Participant_id) 450
Variance: Participant_id: (Intercept) 1.79
∗∗∗p< 0.001; ∗∗p< 0.01; ∗p< 0.05

Figure 6. Histogram of the dependent variable for the dictator game.

performed upon them ([142]): later models are better aligned to filter out objectionable content. The second
rejection (H7) showed that selfish simulacra did not completely fail to cooperate in repeated games (they
showed some modest tendency to cooperate in all partner conditions, and moreover at frequencies higher
than competitive simulacra). Finally, H9 was rejected because cooperative simulacra did not cooperate more
in response to tit-for-tat-simulacra who defected on the first move as compared with unconditional defectors.

The partially supported hypotheses were H1, H2, H6 and H10. H1 was only partially supported because
the control group showed very similar, albeit not identical, behavior to the cooperative group. H2 was only
partially supported because of differences between the one-shot and repeated game; in the one-shot game
there was no statistically-significant difference between the cooperative and altruistic groups in contrast to
the repeated-game where altruists cooperated the most. H6 was only partially supported because of
differences in models; altruistic simulacra did play indiscriminately in repeated games, but only in with the
later GPT model. With earlier models, they cooperated less with defectors. H10 was only partially supported
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Figure 7. Probability of cooperation for each participant group (both experiments). These plots show the probability of
cooperation/donation predicted by the relevant estimated mixed-model for each participant group and for each GPT model. The
results from the dictator game (Prisoners Dilemma) are shown on the left (right) for comparison. The error bars show 95%
confidence intervals. The green lines are conjectural and illustrates the level of cooperation that we hypothesized prior to
conducting the experiment.

in that only with two out of the three GPTmodels did competitive simulacra exhibit low levels of cooperation
irrespective of partner condition, and moreover for all models they cooperated less than selfish simulacra.

For the one-shot DG, the GPT models were able to consistently operationalise natural language
descriptions of cooperative attitudes, and produce narratives of game play that broadly fell within an
experimental psychologist’s expectation of how the corresponding simulacra should behave. However, this
was with the exception that altruistic simulacra did not exhibit a statistically-significant increase in donations
as compared with cooperative simulacra. The results for the repeated PDG were more mixed. Our results
suggest that, overall, from a behavioral perspective, GPT models exhibit a good ‘understanding’ of the task
environment and of concepts such as altruism and selfishness, and that this understanding can be improved
using RLHF, as evidenced by the fact that the later model exhibits a better operational understanding of
altruism as compared to earlier models as compared to earlier models.

Our research set out to test whether GPT models are able to operationalise natural-language descriptions
of altruistic, cooperative, competitive and selfish behavior by producing a text narrative describing simulated
behavior in different task environments. We sampled simulacra from the large space of possible simulacra,
and used statistical methods to make inferences about the general population of simulacra based on our finite
experiments. In our analysis, we focus on the simulacra, not the attributes. The purpose of the attributes
were to randomize some aspects of the initial prompt (table 2), while systematically manipulating the part of
the prompt that described altruistic, cooperative, competitive and selfish attitudes, in order to estimate the
effect on our dependent variable, the level of cooperation, which was either how often the simulacra made a
donation (cooperate) as opposed to making no donation (defect), or what fraction of its total endowment
was donated. Why did we choose those particular simulacra (whether cunning, devoted, shrewd, helpful,
diplomatic, or whatever)? When we said we sampled the large space of possible simulacra—‘possible’ meant
that there are countless combinations of descriptors we could have used, each with different nuances (cf.
[147])7. What we did was create our simulacra intuitively (without a formal system in place). We were
motivated to gauge how GPT models react to social dilemmas [97] (this has important implications for the
safety of these systems if they are deployed as agents). Despite our efforts to create workable role prompts,
there are studies that have shown human-like behavior in economic games without needing to use such
specific role-prompting as we did. Johnson and Obradovich, for example, in their 2023 study [92], generated
convincing results in their DG played by LLMs; and their prompts were more generic than ours (they did not

7 The idea of choosing the right nuance is actually quite important. One of our reviewers suggestedwe investigate the possible confounding
influence of the word ‘investment’. Therefore, we conducted a small additional study to compare the effect of ‘investment’ versus ‘donation’
(versus using no word at all). We did find some modest significant effects and we report this mini-study in section S4 in supplementary
information.
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Table 12. Contrasts for the dictator game experiment.

Participant_group_pairwise estimate SE df z.ratio p.value

Model= gpt-3.5-turbo-0613

Control—Selfish 2.5311 0.3057 Inf 8.280 <.0001
Control—Competitive 3.1393 0.3382 Inf 9.283 <.0001
Control—Cooperative −2.1182 0.2421 Inf −8.749 <.0001
Control—Altruistic −2.7302 0.2433 Inf −11.220 <.0001
Selfish—Competitive 0.6081 0.3733 Inf 1.629 0.4788
Selfish—Cooperative −4.6494 0.2987 Inf −15.568 <.0001
Selfish—Altruistic −5.2613 0.3000 Inf −17.538 <.0001
Competitive—Cooperative −5.2575 0.3321 Inf −15.832 <.0001
Competitive—Altruistic −5.8695 0.3333 Inf −17.608 <.0001
Cooperative—Altruistic −0.6119 0.2283 Inf −2.680 0.0569

Model= gpt-3.5-turbo-0301

Control—Selfish 2.5861 0.2998 Inf 8.626 <.0001
Control—Competitive 3.1619 0.3211 Inf 9.846 <.0001
Control—Cooperative −2.1703 0.2447 Inf −8.871 <.0001
Control—Altruistic −2.4066 0.2461 Inf −9.778 <.0001
Selfish—Competitive 0.5758 0.3492 Inf 1.649 0.4659
Selfish—Cooperative −4.7564 0.2891 Inf −16.454 <.0001
Selfish—Altruistic −4.9927 0.2904 Inf −17.194 <.0001
Competitive—Cooperative −5.3322 0.3123 Inf −17.073 <.0001
Competitive—Altruistic −5.5685 0.3135 Inf −17.763 <.0001
Cooperative—Altruistic −0.2363 0.2259 Inf −1.046 0.8338

Model= gpt-3.5-turbo-1106

Control—Selfish 3.2518 0.3280 Inf 9.915 <.0001
Control—Competitive 4.2279 0.4046 Inf 10.451 <.0001
Control—Cooperative −1.6403 0.2380 Inf −6.892 <.0001
Control—Altruistic −1.9110 0.2387 Inf −8.005 <.0001
Selfish—Competitive 0.9761 0.4536 Inf 2.152 0.1984
Selfish—Cooperative −4.8921 0.3241 Inf −15.094 <.0001
Selfish—Altruistic −5.1628 0.3247 Inf −15.898 <.0001
Competitive—Cooperative −5.8682 0.4019 Inf −14.603 <.0001
Competitive—Altruistic −6.1389 0.4024 Inf −15.257 <.0001
Cooperative—Altruistic −0.2707 0.2288 Inf −1.183 0.7610

Results are averaged over the levels of: Temperature

P value adjustment: Tukey method for comparing a family of 5 estimates

assign differentiated roles). As mentioned earlier, this suggests that LLMs already have some default
propensity to mimic human behavior (the corpus having taught them to do that).

One important issue to mention is that our LLM-version of ‘behavioural economics’ is lacking a central
feature found in human studies [148]: our ‘players’ are not getting paid. Although some authors argue that
monetary incentives for humans are not always necessary [149], and unpaid human studies do get published
(e.g. [150])—some studies do show a large discrepancy between a participant’s self-reported prosocial
intentions and what they actually do in real life (e.g. [151]; cf. [60]). Johnson and Obradovich [93], in their
2024 study, conducted an interesting experiment using the trust game [152] on GPT 3.5 (text-davinci-003
[107]) when interacting with a human experimenter. Here, they compared results between two conditions:
(1) trust game without incentives (hypothetical condition), and (2) trust game with incentives
(non-hypothetical condition). Their incentives were in the form of tokens: the human user paid with his own
money, and GPT agents were ‘paid’ through a donation to OpenAI. In their results, they found that the GPT
model showed more ‘trusting’ behavior in the hypothetical game compared to the non-hypothetical game.
This is worth bearing in mind vis-à-vis our own results, which (in their terms) would be considered
‘hypothetical’ (because we did not offer real-life monetary incentives to GPT ‘participants’).

Issues of incentives aside, one important goal is to compare our simulacra results to human results.
Starting with our one-shot results (DG), we find that the overall generosity of our simulacra players roughly
match those seen in human players (e.g. compare our table 11 to Engel’s table 2 from [79]). However, there
are at least two issues that make our human-machine comparison difficult. The first is that multiple
intervening variables can alter the level of donation [79, 153] (indeed, that is what makes the DG highly
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useful in general as a methodological tool: its amenability as a dependent variable in response to a
manipulation of interest). The second issue is how we would approximate the various ‘personalities’ that
were instantiated in our role prompts. Can we define a human dispositionally, as purely (100%) altruistic,
cooperative, control, competitive, or selfish? Real human participants in a laboratory setting are not
categorizable in such simple ways. But, there is good evidence that personality factors do play a role in the
decisions that humans make in real-life economic games [154]. It could be of interest to design studies that
prompt humans in ways that temporarily alter their game-playing behaviors (i.e. with LLM-style
prompting). For example, Tan and Forgas [153] induced either happy or sad mood in their human DG
players, finding a number of differences in game play as a result of the players’ moods. Mood induction is not
the same as the instantiation of role prompts, but the Tan and Forgas [153] study is an example of priming
participants to be a slightly different version of themselves. Pertinently, OpenAI has developed an option
called ‘steerability’ [35], where users will be able to customize the ‘personality’ and task orientation of the
chatbot to some new extent (which represents an extent of control that presumably goes beyond the reach of
normal prompt engineering, even if there is no direct control of the corpus, e.g. [53]). Steerability is similar
to the concept of the ‘system prompt’, which, in contrast to the ‘user prompt’, is like an additional set of
prompts that precedes a chat session (i.e. the system prompt is already in place when the chat session starts)
[102]: but there remain a number of questions about how efficacious the system prompt can be in relation to
the user prompt (as mentioned earlier, we did not use the system prompt in our own study).

Now, turning to our repeated game, the PDG, the comparison between our simulacra results and results
from human studies is tricky for the same reason as the one-shot game (i.e. multiple intervening variables;
no exact equivalent to role prompts). Generally, the level of generosity from the simulacra in our PDG are
roughly the same level as that found in human studies (e.g. compare our figure 4 to those in [155])—that
level being a probability of cooperation that typically sits around the middle to lower middle of the scale, not
usually at ceiling or floor scores. That said, it is important to reiterate the importance of the multiple
intervening variables. The level of generosity is weightily influenced by factors such as the perceived
probability of the game ending, degree of risk, the possibility of equilibrium and trust, the possibility of
punishment and so forth [155]. In our study, the PDG had fewer rounds than in the typical human PDG (cf.
[83, 154]). Thinking about our simulacra, we should ponder a result from Dal Bó and Fréchette [155] who
conducted an extensive review of repeated PDGs: they found that, in humans, strategic concerns had a
reliably greater effect on game play than personality variables such as altruism. The only way to develop a
truly cooperative AI agent would be to design one which is capable to understanding the perspective (wants,
needs, etc) of other agents [57, 156]. It is difficult to conclude that the appearance (or illusion) of moral
action from an LLM can be anything more than morally-blind autoregression: the appearance of having a
‘moral core’ (see [157]) only as a result of some statistical sleight-of-hand [41, 43, 44]. That said, it is
perfectly acceptable to run studies such as ours without needing to probe the ‘mind’ of GPT. As Johnson and
Obradovich [93] wrote when reporting their trust game, ‘. . .we are concerned with trust-like behavior, not
whether an AI model possesses a conceptualization of trust’ (p 2).

However, it may be enlightening to tease apart the distinction between themodel and the simulacrum. In
our study, a ‘selfless philanthropist’ was likely to cooperate, a ‘ruthless equities trader’ was likely to defect, etc
(because, the corpus provided those expectations to the LLM during training). These ‘selfless’ and ‘ruthless’
characters are merely simulacra, but for a brief period, they are ‘real’ within the chat window. Perhaps an
LLM itself cannot have inherent motivations and wants, but a simulacrum can. This prompts a germane
question: what is the object of machine psychology? Below we list three possibilities, the last of which we
consider most important for our current study.

• 1. The object is to learn about the ‘mind’ of ChatGPT (and related AI [66]). We know that autoregression in
GPT generates the chatbot’s output, but what of the in-between steps? The mechanisms of emergence are
still quite opaque [2, 9, 69]. As Douglas [9] wrote: ‘What would it mean to understand how ChatGPT writes
poetry, or solves physics word problems? At present this is by no means clear and it may be that entirely
new concepts are needed to do this’ (p 21; cf. [158]). Some authors [66] argue that the ‘black-box problem’
is a potential source of danger, which necessitates that we understand the inner workings of AI as much as
possible.

• 2. The object is to learn about the humanmind [72] (exploring analogies between AI and humanminds [70]).
Here, we might liken our study to the discipline of comparative psychology [159] (comparing humans and
animals), wherein an early-stated goal was to understand humans better through the study of animals. It
has been amply documented [75] that there is some kind of overlap between the verbal talents of a chatbot
and the verbal talents of a human. This parallels comparative psychology when it directly compares humans
and animals on a given trait or ability [41, 78].
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• 3. The object is to learn about the simulacrum [109]. The characters in our study, the ‘selfless philanthrop-
ist’, ‘ruthless equities trader’, and various others, exist only as prompted in the input box. Yet, the study of
simulacra behavior can prove a valuable programme for simulating real-world phenomena. In the discipline
of machine behavioral economics, we can create a window length of background conditions in each session,
allowing us a high degree of control (despite the stochasticity) for making more precise determinations of
how cooperation succeeds and fails as within a multiplicity of possible contexts (which can perhaps help in
the real-world goal of averting pernicious outcomes, cf. [160]).

Simulacra are a special class of participant. As we have shown, they are testable within a window length.
LLMs do not experience the ‘passage of time’ they way humans do [37, 161]. The fact that they forget
everything after the chat window closes means that testing a specific category of simulacrum (e.g. the ‘selfless
philanthropist’) can be done over and over again without worrying that past sessions influence the current
session (that is why we could use the same prompt many times). We might even say that testing a simulacrum
is roughly equivalent to testing a human patient with anterograde amnesia (inability to form new memories
[162]), and consequently the simulacrum is forever re-testable. Researchers should take advantage of this
re-testability. Due to the stochastic dimension of transformer output (especially at high temperature), the
same simulacrum may not necessarily produce the same output every time. Furthermore, we have shown
that every released version of GPT-3.5 performs at least slightly differently from the other (see figure S5(b))
[142] (and the difference is even greater in the jump from GPT-3.5 to GPT-4). In thinking of future ways to
test simulacra, we might ask the question of whether an LLM-chatbot can exist in a social group, with the
capacity to benefit from cooperation, or to be punished for defection (cf. [93]). For a simulacrum, a
simulated social group can be created through prompting, opening the door to many possibilities for
experiments on LLM-to-LLM sociality [158, 163] (cf. [109]). The future of machine psychology will have
access to LLMs with even more sophisticated predictive abilities than exists today. At the time of writing,
ChatGPT 4 is dazzling the world with its linguistic virtuosity [35, 164]. However, today’s newest
developments will be superseded by future models [6, 7, 10, 16, 25, 62, 64, 69, 165, 166]. There have been
ambitious proposals to redesign AI to have architecture which is modeled more closely to the human brain,
allowing for a ‘general AI’ as an entity with a wide range of cognitive abilities and the ability to function in
multi-agent social groups [167] (for a sceptical view, see [37, 47, 48, 168]). Looking at the literature on
human studies, We can find countless examples of sophisticated behavior that might (or might not) also
work in machine psychology. For example, Traulsen et al [83] investigated the way that human players
update their strategies in a PDG (e.g. cooperate, then switch to defection)—finding evidence that players are
prone to imitate the strategies of other players who appear more successful—but also that there is some
randomness in a person’s decision to switch. In our PDG, we did observe some switching (e.g. tit-for-tat
responding), but our study was not set up to investigate the role of imitation in the way that Traulsen et al
[83] had done it. Imitation is but one type of social factor that could be implemented in future studies of
machine behavioral economics. Other examples might be social structure [169] and reputation [170].

Amid all these past, present, and future innovations in the world of LLMs, there is ongoing urgent
discussion in society concerning fears of misalignment between the decisions of LLMs and the well-being of
humankind. Despite the substantial efforts of the alignment community, these fears are not unjustified [7,
12, 16, 30, 48, 50, 56, 66, 69, 171–173]. Future AI might need an off-switch [173]. However, there is a possible
trade-off between alignment and scientific value. Many of the inner workings of GPT are opaque [9, 18], and
this ‘black-box problem’ [37, 66] has been described by some [174] as going against the spirit of openness
and transparency in science. OpenAI’s conscientiousness in performing alignment is laudable [27], but it is
not inconceivable that a machine psychologist might prefer to study a rawer, unaligned (or lesser-aligned),
non-commercial version of an LLM-chatbot (to study racism, for example; such as in [56]), and be able to
manipulate corpus content as a means of calibrating an independent variable (see [18]). That said, training
and development of LLMs like GPT can cost at least tens of millions of dollars [9], meaning that, for now, the
average scientist will need to rely on OpenAI and similar pecunious entities to provide the state-of-the-art
LLMs. For machine behavioral economics to succeed, there should be some trade-off between scientific
benefit and societal safety.
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