
1 

 

 
 
Prescription of Rhythmic Patterns for Legged Locomotion 
 

Zhijun Yang
1*

, Daqiang Zhang
2
, Marlon V. Rocha

3
, Priscila M.V. Lima

4
, Mehmet Karamanoglu

1
 

and Felipe M.G. França
3
 

 

1 School of Science and Technology, Middlesex University, London NW4 4BT, UK 

2 School of Software, Tongji University, Shanghai, China 

3 Systems Engineering and Computer Science Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 

4 Tércio Pacitti Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 

 

*Corresponding author: 

 E-mail: Z.Yang@mdx.ac.uk, Telephone: +44 (0)20 84112845 
 

 

Abstract As the engine behind many life phenomena, motor information generated by the central 

nervous system (CNS) plays a critical role in the activities of all animals. In this work, a novel, 

macroscopic and model-independent approach is presented for creating different patterns of coupled 

neural oscillations observed in biological central pattern generators (CPG) during the control of 

legged locomotion. Based on a simple distributed state machine, which consists of two nodes 

sharing pre-defined number of resources, the concept of oscillatory building blocks (OBBs) is 

summarised for the production of elaborated rhythmic patterns. Various types of OBBs can be 

designed to construct a motion joint of one degree-of-freedom (DOF) with adjustable oscillatory 

frequencies and duty cycles. An OBBs network can thus be potentially built to generate a full range 

of locomotion patterns of a legged animal with controlled transitions between different rhythmic 

patterns. It is shown that gait pattern transition can be achieved by simply changing a single 

parameter of an OBB module. Essentially this simple mechanism allows for the consolidation of a 

methodology for the construction of artificial CPG architectures behaving as an asymmetric 

Hopfield neural network. Moreover, the proposed CPG model introduced here is amenable to 

analogue and/or digital circuit integration. 
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1. Introduction  

Animal locomotion is generated and controlled, arguably, by central pattern generators (CPGs), 

which are networks of neurons in the central nervous system (CNS) capable of producing rhythmic 

outputs, usually as a result of interactions between CNS and external stimulation via a range of bio-

sensors [1-5]. Although current neurophysiological techniques have difficulties in clearly isolating 

such circuits from the intricate neural connections of animals, the indirect experimental evidence for 

their existence is strong [6-16]. The CPGs have been studied and modelled in details in terms of 

their biological significance [17-25], stringent mathematical forms [26-34], and different animal 

species [35-45]. Furthermore, CPGs mechanisms have already been implemented in mixed-signal 

circuit chips, and applied to build autonomous robots [46-60]. In these studies, the locomotion 

patterns are supposed to be the outputs of musculoskeletal systems driven by CPGs, whose 

parameters and functions are adjusted by neuro-modulators or tonic inputs [61]. Although the CNS 

mechanism underlying CPGs is not entirely clear, artificial models have been widely applied to map 

the possible functional organisation of the CPGs network onto the motor system responsible for 

driving locomotion.   

 

A motor system is usually modelled by coupled oscillators, which represent the activity of 

neurophysiologically simplified motor neurons. Different types of oscillators can be chosen and 

connected, usually with a topological shape to simulate a specific animal species [63-65]. The 

connection strength in the oscillator network is usually adaptive based on the external inputs or 

internal, CNS instructions. The nature of the parallel and distributed processing is a prominent 

characteristic of the circuit that can be canonically described by a group of ordinary differential 

equations, which usually reflect an autonomous system.  

 

So far many coupled, nonlinear oscillator models have been suggested on CPGs mechanisms for 

vertebrate and invertebrate animals, for instance, the biped [62, 65-67], quadruped [68-71], and 

hexapod models [74, 75].  Most of them use one or more units of CPGs for generating and 

switching among gait patterns. For instance, Schöner and colleagues [68] used a synergetic 

approach to study the quadrupedal locomotion. Synergy deals with co-operative phenomena. In 

synergy, the macroscopic behaviour of a complex system can be characterised by a small number of 

collective variables which in turn govern the qualitative behaviour of the system elements [72]. In 

[68], a network model, which consists of four coupled oscillators, is analysed. Each oscillator 

represents a limb of a quadruped model. The phase difference among limbs is used as collective 

variables to characterise the inter-limb coordinating patterns of this discrete system. Gait transitions 

are simply modelled as phase transitions, which can also be interpreted as bifurcations in a 

dynamical system. This approach is significant in the sense that it relates the system parameter 

changes and stability issues to gait transitions. CPGs models with the similar synergetic operations 

have also been proposed and implemented in circuits [53, 54].  

 

Inspired by the synergetic CPGs models, a novel, structural approach to the modelling of the 

complex, legged locomotion is presented based on a graph dynamics. In this approach, a concept, 

namely the oscillatory building blocks (OBBs) [73-75], is updated and its generalised version 

presented. By selecting and building with pre-configured OBBs modules, different gait patterns can 

be achieved for producing coordinated gait patterns, constructing locomotion prototypes and 

facilitating the circuit synthesis in an efficient, uniform, and systematic framework. Built upon our 

previous study on OBB modules, this work generalises it by introducing a mathematical CPGs 

framework for both gait pattern generation and transition between different patterns. The transitions 
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can be realised by simply changing a few of system parameters. A similar prototype of the proposed 

OBB modules has already been implemented in an integrated circuit [57, 58], in which one control 

signal is used to change the gait patterns.  

 

The work is organised in 4 sections. The following section presents a detailed model description, 

including the graph dynamics, the generalised concept of OBB modules, their architecture and 

biological significance. Section 3 provides a simple computer simulation of gait pattern generation 

and transition as a case study using the proposed OBB modules, which is followed by a conclusion.  
 

2. Method 

This section presents the graph dynamics, namely Scheduling by Edge Reversal (SER) [76, 77], and 

its generalisation, namely Scheduling by Multiple Edge Reversal (SMER) [78, 79]. The dynamics 

of the discrete and analogue OBB modules are then introduced. It is shown that the discrete OBB 

module can be used to simulate the envelope shape of the relaxation oscillation of two coupled 

neurons in an intuitive way. A more elaborate method to simulate the oscillatory patterns and their 

transitions is to use analogue OBB modules and networks, as introduced in this section. 

2.1 Graph Dynamics  

The SER graph dynamics considers a neighbourhood-constrained system represented by a set of 

nodes (or neurons) and by a set of directed edges with one edge for a pair of connected nodes, i.e., a 

directed graph ),( ENG   where N  is the set of nodes, E  is the set of edges defining the inter-

connected topology. In SER, each pair of nodes has at most one edge connecting them.  

 

In order to produce a periodic behavior, the SER dynamics assume that G is acyclic, i.e., that node i 

cannot be reached by following any directed path starting from itself. The stage transition occurs 

through the reversal of the direction of all the edges of every node having all of edges directed to it. 

This node is thus referred to as a sink. After edge reversal every sink node becomes a source node, 

which has all of its edges directed away from it. The resulting directed graph is also acyclic. The 

edge reversal operation will continue until a repetition of an acyclic stage is reached. This periodic 

behavior can be seen as a dynamic attractor. SER is simple and is fully distributed graph dynamics. 

A very interesting property of this algorithm is that any acyclic stage on any graph topology will 

have its own set of possible dynamics, like described in [76, 77]. Figure 1 illustrates a case of the 

SER dynamics.  

 

 

 

Figure 1: An example of the SER graph dynamics. Black nodes indicate the sink (active) nodes. Notice that 

inside the periodic cycle (Stages 1, 2 and 3), each node becomes a sink exactly once. 
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The SMER, Scheduling by Multiple Edge Reversal, is a generalisation of SER where nodes can 

become sinks more than once inside a periodic cycle. In SMER, any node can have more than one 

directed edges attached to it (see Figure 2 for a very simple example of SMER graph dynamics). 

Also any node is assigned a parameter referred to as its reversibility. Let’s randomly take a node, 

namely node i, or , as an example. The reversibility 
 
of node  is defined as the number of the 

edges directed to   that, when node  is a sink, will be released to each of its coupled neighbours 

at the end of  sinking by reversing the direction of 
 
edges to all of its neighbours. Immediately 

after this reversing operation  becomes a source. The definition of reversibility also implies that 

any node, , in a SMER dynamics requires at least the number of  edges directed to it in order to 

become a sink from a source. In the SER dynamics, all nodes are supposed to have reversibility 

equal to one. This is because any two neighbours only share one directed edge. 

 

In a mathematically formal description, suppose we have two nodes  and , where ni, nj  N, and 

they are connected with each other. The reversibilities of nodes ni and nj are  and jr , respectively. 

We have the following rules to choose the number of edges and their directions to ensure the correct 

operation of SMER [78, 79]. 

 

(1) 1},max{  jiijji rrerr . where ije  is the number of edges between node ni and nj;  

(2) ).,gcd( jijiij rrrrf   where gcd stands for greatest common divisor, and ijf  is the sum of 

the greatest multiples of ),gcd( ji rr  that do not exceed the number of edges directed from  to , 

and from jn  to in , respectively, at the initial stage of the graph dynamics.  

 

The first rule stipulates a range for the number of the edges between two coupled nodes, while the 

second further decides the exact number of edges in the range and their directions. Based on the two 

rules a dynamic attractor can be made with a flexible control of its active patterns, and be immune 

of the system halt due to deadlock or starvation [77, 78]. Figure 2 illustrates an instance of the 

generalised dynamics. 

 

      
Figure 2: An example of SMER, the generalised graph dynamics. Nodes ni and nj have reversibility values 3 and 1, 

respectively. Grey colour indicates sink nodes. It is clear that the period of this graph dynamics system has 4 stages. 

Node ni becomes a sink exactly once, and node nj becomes a sink 3 times inside the period. 
 

In the next section, the SMER graph dynamics will be used to build the artificial CPGs by 

designing and implementing OBB models. It will be shown that an OBB can be designed as either a 

digital or an analogue circuit depending on different applications. In both types of OBBs composed 

in ir in
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in ir
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in ir

in
jn

ir
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of pairs of coupled nodes, a node which has possessed required resources is firing, and meanwhile 

inhibits its coupled counterpart from becoming a sink. In this case the sinks can be seen as firing 

neurons in an inhibitorily coupled neuronal network.  

2.2 Discrete OBB Modules and Properties 

Of long-standing interest are questions about rhythm generation in networks of non-oscillatory 

neurons, where the driving force is not provided by endogenous pacemaking cells. A simple 

mechanism for this is based on reciprocal inhibition between neurons, if they exhibit the property of 

post-inhibitory rebound [26]. The post-inhibitory rebound mechanism [80] is an intrinsic property 

of many neurons in the central nervous system, which refers to a period of increased neuronal 

excitability following the cessation of inhibition. It is often included as an element in computational 

models of neural networks involving mutual inhibition [81, 82]. The mutually exclusive activity 

between any two nodes coupled under the aforementioned graph dynamics suggests a scheduling 

scheme that resembles anti-correlated firing activity between inhibitory neurons exhibiting post-

inhibitory rebound. The discrete and the analogue versions of the graph dynamics based OBBs can 

thus be customised for different rhythmic patterns. The discrete OBB modules are built by directly 

adopting the generalised graph dynamics, and an asymmetric Hopfield like neuronal network [83-

85] is employed for implementing the analogue OBB modules. 
 
Instead of modelling electrophysiological activities of inter-connected neurons based on membrane 

potential functions, an artificial CPGs network with state machine-based OBBs models the 

collective behaviour of a neuron set. A simple, discrete OBB module is defined to have an ir -sink 

node, namely a node with a reversibility of ir , and an jr -sink node (the same meaning of the ir -

sink), sharing the number of ije  edges (edges will also be referred to as resources in the subsequent 

text). Two nodes work as two coupled motor neurons (the nerve cells locate in the spinal cord), 

respectively, with the shared resources signifying the interactive relationship between the two motor 

neurons that are inter-connected. The exchange of the amount of ir  (or jr ) of resources between 

two nodes results in pre-defined firing frequencies of two motor neurons.  

 

There is clearly a time relation between the pair of coupled nodes. The larger the reversibility value 

of a node is, the shorter the firing time of that node will be in a cycle (see the example in Figure 2). 

A short firing time of a node means a small duty cycle (a fraction of the active time in the whole 

period). Therefore, the duty cycle of a node in an OBB module is easily adjustable by setting the 

reversibility values for the coupled nodes. Meanwhile, the firing phase between two coupled nodes 

is also configurable by setting an appropriate value for ijf  in the graph dynamics at the start stage.  

 

The state transition of each leg, e.g., from stance to swing, and the corresponding phase relations 

among different legs are important to simulate the gait model [86]. The phase circulation can be 

represented by the circulation of the discrete OBB modules. A simple example of how a possible 

scheme of firing pattern circulation of OBBs modules can simulate the activity envelope of a pair of 

flexor and extensor motor neurons is shown in Figure 3.  
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  (a)     (b) 

Figure 3. Mimicking rhythmic patterns generated by CPGs with the SMER dynamics. (a) Activity of 

simplified flexor (node nj) and extensor (node ni) motor neurons during walking of a cockroach and the 

graph dynamics simulation of its envelope. Here two directed edges are equivalently replaced by two small, 

black circles on an undirected link. The attaching of a small circle to a node represents its direction. (b) The 

biological signals are reproduced by courtesy of P.A. Getting [87]. 

 

After an OBB module is constructed and configured for a coupled pair of flexor and extensor 

neurons, the envelope of each neuron with a pre-defined duty cycle is formed. For the binary 

activity in a digital circuit, only a few of sampling time instants are needed in one leg’s locomotion 

period representing the firing of the flexor and extensor neurons, respectively. For a more complex 

locomotion model, it is the individual OBB modules rather than the integrated OBB network that is 

governed by the generalised SMER graph dynamics. Therefore, the methodology of constructing a 

complex locomotion model with the discrete OBB module is fairly straightforward and useful for 

implementing a modular circuit for the asynchronous operations of a gait model.  
 

2.3 Analogue OBB Modules and Properties 

The aforementioned two sorts of graph dynamics have the potential to provide the greatest 

concurrency among scheduling schemes on resource-sharing systems [76, 79]. The mutually 

exclusive characteristic between any two coupled nodes makes the scheduling scheme suitably 

tailored for simulating post-inhibitory rebound, a mechanism widely employed for locomotion and 

other rhythmic activities [82, 88]. The generalised SMER graph dynamics depends on the initial 

allocation of shared resources. Different configurations of shared resources lead to different cyclic 

behaviours, and even to system deadlock or node starvation if shared resources are not allocated 

properly. This motivates investigation on how to mimic CPGs with the graph dynamics to simulate 

numerous rhythmic patterns while avoiding undesirable situations.  

 

It is clear that using graph dynamics for simulating different rhythmic patterns is essentially 

intuitive due largely to the discrete nature of the dynamics. However, analogue behaviours are 

ubiquitous in the real world. They are continuous rather than discrete in the time domain, better 

described by analogue circuitry rather than digital one. Following the digital version we present a 

novel continuous-time OBB structure that is similar to asymmetric Hopfield networks [83, 84] but 

governed by the graph dynamics. This structure has been classified into two major categories, 

namely simple OBB and composite OBB, depending on the network complexity. The work also 

provides a general mathematical framework for describing the dynamic properties of analogue OBB 

modules.  

 

Like the dynamics of cellular neural networks [89, 90], the input and output voltages of each node 

in an OBB module are normalised to the digital low or high level while the internal potential is 

continuous within the normalised interval [0,1]. The simple OBB modules consist of two inter-

connected nodes with pre-specified reversibilities. The composite OBBs can have an arbitrary 
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number of cells inter-connected in any topology. Both types of OBB modules operate under the 

mechanism of the generalised SMER graph dynamics in which the initial resources configuration is 

important to avoid possible abnormal situations like deadlock or starvation during operation.     

 

2.4 The Simple OBB Module 

Suppose we have a graph represented by G(N,E), where N is a set of nodes and E the set of edges 

connecting these nodes in the graph G, now consider a sub-graph of G(N,E), namely ijG , having a 

pair of coupled nodes in  and jn  with ir  and jr  as their reversibility, respectively. This simple 

network can be translated into a simple OBB module, with the nodes being mapped to the neurons 

(hence in this work we use nodes or neurons for the same meaning), and the resources being 

mapped to the synapses and associated weights. The membrane potential of neuron in  at time t, 

)(tM i , is supposed to depend on three factors, i.e., the potential at last instant )1( tM i , the impact 

of its coupled neuron jn  output )1( tv j , and the negative feedback of neuron in  itself )1( tvi , 

without considering the external impulses. Figure 4 shows the circuit representation of the module. 

The selection of system parameters, such as the neuron thresholds and synapse weights, are crucial 

for modelling the OBB module. In the model, let )(' rhr  , where h is a function of getting the 

highest integer scale in ( ir , jr ), and then multiplying it by 10, e.g., if 77ir  and 463jr , the 

highest integer scale is 100 from jr . 

 

 

            Figure 4. A diagram of a simple OBB module as the basic oscillation unit. 
 

Then 310)463())463,77(max()(  hhrh . The neurons’ membrane thresholds i  and j and 

their synaptic weights can be designed as follows, 
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The system parameters can be arranged by comparing the two nodes’ reversibilities. If ji rr  , then 

we have ji    and jiij ww   (i.e., asymmetric coupling), that means, a node with smaller 

reversibility, corresponding to a neuron with lower threshold in an OBB module, will oscillate at a 

higher frequency than its companion does. It will also weakly stimulate its coupled neuron by 

contributing with a smaller weight change. ijf  has the same meaning as in the SMER algorithm, we 

have i

ij

i
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iij

j
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
 11 . This arrangement of model parameters ensures that the 

behaviour of the SMER based, analogue OBB modules is isomorphic with the behaviour of the 

original SMER algorithm. The difference equation in the discrete time domain of this system can be 

formulated as follows: Each neuron’s self-feedback strength is ijii ww  , jijj ww  , respectively, 

and the activation function, which reflects the neuron’s output in relation of its model parameters, is 

a sigmoidal Heaviside-type. Thus we have, 
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Where W is the weight matrix. We have the outputs of neurons as,  
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The designed circuit can be considered as a conservative dynamical system in an ideal case, i.e., the 

total energy is constant. The sum of two neurons’ membrane  potentials at any given time is 

normalised to one. It will be shown that the system is able to develop from an arbitrary initial state 

into a limit cycle (for an oscillatory period), with the firing rate of each neuron adjustable based on 

its reversibility. However, like most dynamic systems, this model has a limitation in its dynamic 

range. There exists a singular point when each neuron’s membrane potential equals to its threshold. 

In this case, Equation (3) becomes 0)()(  nvnv ji , hence Equation (2) accordingly becomes: 

)1()(  nMnM ii  and )1()(  nMnM jj . The system behaviour can be unpredictable: It may 

transit to a different oscillatory pattern due to small external perturbations, or halt with no 

perturbations. When designing an oscillatory neural network using OBB modules, it is possible to 

avoid the occurrence of any singular point state by pre-setting the initial membrane potential )0(iM  

to an appropriate value so that iiM )0( . Within the normal dynamic range except for the singular 

point, the circuit of the OBB module represents a starvation- and deadlock-free dynamic system, 

and it is a stable and periodically oscillating system no matter what initial potentials its neurons may 
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have [75]. 

 

The combination of the duty cycles, the oscillation frequencies and the phase difference of a 

coupled pair of neurons is the key set of parameters for modelling a joint of one DOF. The 

oscillatory pattern transition, which is another important concept in addition to the pattern 

generation, can thus be understood as a transition from an old to a new set of the joint parameters. It 

is clear that the duty cycle of an extensor motor neuron plays an important role in deciding the 

locomotion speed of a legged animal [91-93]. In our model, the duty cycle of a neuron in a coupled, 

two-neuron system is dependent on the model parameters shown in Equation (1). The choice of 

reversibilities of two coupled nodes thus dictates the transition between different patterns as it 

decides the system parameters, and hence the duty cycles. Therefore, in our study the design of 

transition between patterns is simplified to the selection among different reversibility values of two 

coupled nodes. On the other hand, the proposed pattern generation model has a linear internal 

dynamics, i.e., the membrane potential is a linear function of three input variables, and a nonlinear, 

Heaviside-type dynamics in the output of a neuron as a function of the membrane potential and the 

threshold of that neuron.  

 

Suppose both coupled nodes have their reversibility changed in an amount of d

ir  and 
d

jr , 

respectively, we can re-write formula (1) to obtain the model parameters for the new pattern, as 

shown below. 
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is unchanged as the amount of d

ir  or 
d

jr  is in the similar scale of its old value, respectively. This 

ensures that the originally linear membrane potential dynamics of a neuron is still linear after 

pattern transition. We further assume that, according to SMER, a firing neuron will releases some 

shared resources in the amount equal to its new reversibility to its coupled neuron, which receives 

them passively and will possibly become able to fire in one of the subsequent stages. The firing 

neuron in the dynamic model will thus decrease in its membrane potential by an amount equal to 

the new strength of its output synapse while the coupled neuron will have the same amount added to 

its membrane potential. We can re-write Equation (2) for the membrane dynamics in a more general 

format involving pattern transition mechanism as follows.  
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where,  






changednotrif

changedrif
s

k

k

k
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is a control signal for pattern transition, here ),( jik  . This equation indicates that, in theory, the 

pattern transition can be induced by the reversibility change of any one of the two coupled neurons.  

 

2.5 The Composite OBB Module 

A composite OBB module is a generalisation of the simple OBB module which consists of an 

arbitrary number of simple OBB modules. A composite OBB can have more than two neurons and 

therefore, a more complex topology. Suppose a graph M(N,E)  containing a set of m neurons in a 

set  },...,,{ 21 mnnnN  , and a set of connections 
ij

E 10 , where Nji  , , which define the 

connection topology of this graph by using 
ij

1  and 
ij

0  to indicate the presence or absence of a 

connection between nodes i and j, respectively. Node i has its reversibility ir . There are ije  shared 

resources on the corresponding connection 
ij

1 , with their number and configuration stipulated by 

the rules set in the SMER section.  

 

             
Figure 5. A diagram of one macroneuron (represented by the right triangle) and its clones (represented by a 

column of the left triangles) in a composite OBB module. 

 

Different from a simple OBB module composed by exactly two coupled neurons, a composite OBB 

module has at least one neuron connected to at least two other neurons. Figure 5 shows that a 

neuron i has connections to a total number of N neurons. The composite OBB module can be 

dissected into various simple OBB modules. For instance, in Figure 5, neuron i can be split into N-1 

copies, which share the same local clock of their maternal neuron i, to connect to the N input 

neurons. Here, a copy of neuron i, plus the corresponding input neuron and their connection, forms 

a simple OBB module. We terminologically regard the output neuron (like neuron i in Figure 5) in a 

composite OBB module as a macroneuron and macroneuron’s copies as its clones.  

 

According to SMER, a macroneuron of the composite OBB module operates in a “whole-or-none” 

mechanism in terms of the activity of its clones. The macroneuron is active if and only if all of its 

clones are active. Fundamentally, a composite OBB module operates based on its constituent simple 

OBB modules. A schematic diagram of an exemplar composite OBB module and its equivalent 

representation is shown in Figure 6. 
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As a generalised version, a composite OBB module can represent a more complex oscillatory 

neuronal network and flexibly reproduce more complex cycles of rhythmic patterns than a simple 

OBB module. A composite OBB module is formed based on any prescribed oscillatory 

functionality in a specific application, so it does not have a fixed form in terms of the number of 

constituent clones, the connection structure, etc. Different applications will specify different 

macroneurons and their topology, and subsequently use them as the oscillatory building blocks. Due 

to the fact that a composite OBB module is dependent on specific applications and impossible to 

know beforehand, a rule of thumb to analyse this kind of modules is to dissect them into the 

subsystems of simple OBB modules where equations (1) – (6) apply. 

 
  (a)      (b) 
Figure 6. Two equivalent architectures to illustrate the SMER algorithm in an exemplar composite OBB. Here 

the reversibility values 1 nmi rrr ; 2jr ; 3kr . (a) One operation stage of SMER in a composite 

OBB module, the node in red is active, those in black are inactive, the small circles represent resources. (b) 

An alternative, equivalent description for the stage of the composite OBB module with the macroneurons 

and their clones, the pink node is active with all of its clones being active; the grey nodes are inactive with at 

least one of its clones being inactive. It is clear that the independent operations of 8 simple OBB modules 

(represented by 8 connections and their associated clones, and resources) decide the operation of this 

composite OBB module. 
 

Since the output of a macroneuron i is determined by all its clones, we have, 

)()(
1

kvkV
n

j

j

ii 


          （7）  

 

where Ni  , ji   and j

iv  is the output of clone j of the macroneuron i, which is linked to a 

corresponding clone of another macroneuron j via the connection 
ij

1 . The superscript sequence 

nj ,...2,1  is the clone number of a macroneuron in , which also represents for the other 

macroneurons to which macroneuron i connects. 

 

It is also noticeable about how to choose the initial membrane potential values for the clones which 

are parts of the simple OBB modules. Different choices will lead to different initial self-

organisation process of a composite OBB module. To avoid system halt, no clone should be 

inactive if its macroneuron is designed to be active by Equation (7). Within an appropriate 

parameter range (i.e., a neuron’s membrane potential is not equal to its threshold), a random 

selection of initial membrane potential values is allowed. After a possible initial duration whose 

length is determined by the choice of initial membrane potentials, the system will oscillate 
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periodically.  

3. Primer of Computer Simulation 

In this section, the operations of the OBB modules are preliminarily demonstrated through several 

computer simulated works. Since a composite OBB module is fundamentally composed by some 

simple OBB modules (see Figure 6), it will have the collective behaviours of the simple OBB 

modules. Therefore, the experiments focus on the operations of the simple OBB modules by 

showing some case studies of their dynamics in terms of the oscillatory patterns generation and 

transition. 

3.1 Pattern Generation 

Let’s suppose that a simple OBB module has two coupled neurons i and j with the reversibility 

values 3ir  and 12jr . According to the theory, we have the module parameters as follows.  
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If we further assume that the initial membrane potentials of two neurons are 66.0)0( iM  and 

34.0)0( jM , respectively, we can obtain the oscillatory dynamics of this simple OBB system by 

using Matlab Simulink, as shown in Figure 7.  

 

It is noticeable that the coupled neurons start with a self-organised period with the given initial 

membrane potentials. Then the system undergoes a stable periodic oscillation. The duty cycle of a 

neuron is decided by the model parameters, and thus indirectly related with the reversibilities of two 

coupled neurons. The state space plot of this example is shown in Figure 8.  

 

Given the initial membrane potentials of two coupled neurons in the model as 66.0)0( iM , 

34.0)0( jM , the state of the model develops through an initial stage into a limit cycle (as shown 

in Figure 8 in thick and grey line), which corresponds to a stable periodic oscillation in the time 

domain (as shown in Figure 7). Another example of choice of the initial membrane potentials of the 

coupled neurons, e.g., 12.0)0( iM , 88.0)0( jM , results in a shorter journey before converging 

to the limit cycle (see Figure 8).  
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Figure 7. The simulated dynamics of a simple OBB module in time domain. Upper panel : Neuron i output ; 

Lower panel : Neuron j output. When the system becomes stable, the oscillatory period is 15 seconds and the 

duty cycle of neuron i is 12 seconds. Note that here (and in the subsequent simulations) second is used as the 

nominal time unit for illustrative purpose only. In practice the time unit is closely related to the units of the 

system clock, and should be conditioned to any suitable unit size.  

 

 
Figure 8. The state space plot of the periodic oscillation of two coupled neurons under the graph dynamics. 

The two axes on the planar surface represent the membrane potentials of two neurons, the vertical axis is for 

the firing state of neuron j. From different initial membrane potentials, the model evolves into a same 

sequence of periodical states like a limit cycle.     

 

It is clear that neuron j is active for a much shorter time duration than neuron i, which becomes  

active in the rest of the time when neuron j is inactive. The duty cycle of neuron i is calculated as 
5

4
 

for a period of 15 seconds (Figure 7). If we fix the reversibility value 3ir , and let jr

[1,3,6,9,12,15], we can get the duty cycle of neuron i in a corresponding array as 










6

5
,

5

4
,

4

3
,

3

2
,

2

1
,

4

1
, and the period of oscillation in an array [12, 6, 9, 12, 15, 18]. Without 

loss of generality we can use frequency conditioning techniques to round the period of oscillation of 

the OBB module to be as close as possible to a same value (here 12) while keeping the duty cycle of 
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two neurons unchanged so that, in applications, we can compare different patterns generated with a 

same baseline. A new array of oscillation periods becomes [12, 12, 12, 12, 10, 12]. A plot of the 

duty cycle of neuron i and the period of oscillation of the model is shown in Figure 9. Following 

Pearson’s argument [91] that a faster gait pattern corresponds to a larger duty cycle for swing phase 

and therefore a smaller duty cycle for stance phase, it is possible to vary the locomotion speed by 

adjusting the reversibilities of two coupled neurons (corresponding to the swing and stance phases, 

respectively) in a graph dynamics driven system. When the duty cycles of two coupled neurons are 

changed by using different reversibilities, the model period remains largely unchanged. This 

phenomenon displayed by the model is consistent with that of our previous study in implementing a 

nonlinear stepping pattern generation model with analogue circuitry [58], therefore the current 

model provides an alternative approach to modelling the CPG mechanism amenable to circuit 

realisation, due largely to its characteristics of modularity and scalability. The OBB circuit is event-

driven and made of the discrete building blocks. These features facilitate its implementation in 

asynchronous sequential logic circuits.    

 

The continuous-valued version of the SMER algorithm can be used to design a building block for 

generating rhythmic patterns with different duty cycle values for the activity of a coupled neurons   

in a flexible and systematic approach. For instance, if one more duty cycle point is needed between 

the values of 
4

1
 and 

2

1
, say 

5

2
, a composite OBB module can be designed for this additional state 

with the new duty cycle (see Figure 10). 

  

 
Figure 9. The duty cycle and oscillation period of a simple OBB module with a fixed reversibility 3ir , and 

variable reversibility jr  as shown in the text. The pattern order corresponds to the normalised oscillation 

periods [12,12,12,12,10,12]. 

 

In this design, a composite OBB has three macroneurons labelled as k, m, and n. Each macroneuron 

has two clones inside. It is clear that this composite OBB module is composed of three simple OBB 

modules, which are clones and resources connecting macroneurons k and m, k and n, m and n, 

respectively. The clones inside macroneuron k are referred to as k

kmC  and k

knC , in which the 

subscripts represent the connections between different neuron pairs of k-m and k-n, the superscripts 

denote the clones are in macroneuron k. The reversibility variables of these two clones are labelled 

and set as 1k

kmr  and 2k

knr , respectively. Similary, the clones in macroneuron m are m

mkC  and 
m

mnC , their reversibility variables are 4m

mkr  and 1m

mnr . The clones in macroneuron n are n

nkC  and 



15 

 

n

nmC , their reversibility variables are 3n

nkr  and 1n

nmr . The model parameters of the simple OBB 

modules connecting macroneuron k, m and n, respectively, can be derived as follows. 
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After selecting the model parameters by computing OBB parameters based on SMER, the initial 

membrane potentials for the coupled clones in the simple OBB modules can be chosen randomly 

with the range [0,1], as it is aformentioned that the random selection of the initial membrane 

potentials will possibly lead to an initial self-organisation stage whose length is dependent on the 

initial potential values. As long as the singular values of the membrane potentials are avoided, the 

OBB will reach a limit cycle. In this example, macroneuron k is expected to fire for 2 consecutive 

stages in the 5-stage cycle for obtaining the pre-defined duty cycle. According to Equation (7), the 

states of its two clones will be multiplied to have the target output. Here the initial membrane 

potentials of the coupled neurons in three simple OBB modules can be set as: 5.0)0( k

kmM , 

5.0)0( m

kmM , 75.0)0( k

knM , 25.0)0( n

knM , 75.0)0( n

nmM , 25.0)0( m

nmM . The simulation 

outcome of this continuous-valued composite OBB module using MATLAB Simulink is shown in 

Figure 11.  

 

 
Figure 10. An exemplar composite OBB module containing 3 macroneurons to achieve a new duty cycle for a 

macroneuron k. The rest two macroneurons are used to support the design. The red colour represents for 

active clones while the yellow colour for active macroneurons. The shared resources are small blue circles.  
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Figure 11. Simulation of a composite OBB designed to show a firing duty cycle of 0.4 for a macroneuron. 

(A1) and (A2) show the output states of two clones of macroneuron k, respectively. (A3) is obtained through 

Equation (7), the output of the macroneuron k, which meets the design requirement in duty cycle.    

 

3.2 Pattern Transition 

As we have shown in Equation (5), a change in the reversibility of any one of two coupled neurons 

will result in the change of model parameters, hence the change of oscillatory patterns. Therefore, 

the pattern transition in the OBB module based CPG architecture is straightforward. In a Simulink 

simulation, one is able to use one time-related control signal, corresponding to the control variable 

in Equation (6), to switch between the old and the new model parameters, derived from the old and 

the new reversibililties of coupled neurons. For instance, if one needs to change the reversibility of 

a pair of coupled neurons from }12,3{  ji rr  to }3,3{  ji rr , the dynamic model parameters are 

changed accordingly, like a switch being used to control this change. A transition between the old 

and the new patterns can be achieved with some possible intermediate self-organisation period (see 

Figure 12).  
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Figure 12. An oscillatory pattern transition process. Transition occurs at the time instant 40 ; before that 

reversibililties are }12,3{  ji rr
 
; afterwards }.3,3{  ji rr  

 

It is clear that, if no transition happens, then neuron i will continue its first pattern, which becomes 

high at time instant 39 and lasts for 12 seconds till 51. The duty cycle for neuron i is 0.8 (and for 

neuron j is 0.2 accordingly). As a command for pattern transition occurs at time instant 40, ideally 

the new pattern should start immediately after this time instant. Practically a self-organisation cycle 

exists such that the new pattern starts at the time instant 51. This is because membrane potentials of 

the two coupled neurons are not ready (or, not as close as possible to their thresholds due to the 

operation of the old pattern) to make the transition happen immediately. After a short period, 

though, the model will evolve into the new designed pattern with the duty cycle of neuron i as 0.5 

(neuron j as 0.5). It is suggested that this phenomenon be biologically plausible as no real creatures 

will act immediately, i.e., without latency, upon a command of action.  

4. Discussion and Conclusion 

Although most CPG models proposed so far are mainly imaginary architectures with no clear 

neurophysiological proofs, advances on neuroscience start to reveal the existence of this widely 

accepted mechanism behind animal locomotion. Recently Hückesfeld et al. identified the distinct 

clusters of motor neurons responsible for certain types of motions, and the underlying CPG 

mechanisms [94]. On the other hand, the recent applications of CPG models for controlling robots 

are still largely following the tradition of using dynamical system methods to formulate the periodic 

oscillations represented by, e.g., limit cycles (for a review see [95]). Some new trends, however, are 

to incorporate the interactions of CPGs and the external world by using feedback signals from 

sensors, or to drive different joints (degrees of freedom) on animal legs rather than more abstract 

phase relations between legs by ignoring the control of intra-leg joints [96-98].  Furthermore, apart 

from the more classic CPG models such as the van der Pol and Wilson-Cowan oscillators, new 

oscillators, e.g., the Morphed oscillator [99] which exhibits arbitrary limit cycle shapes and can 

represent first, second or n-th order dynamical systems, are proposed and used to build a CPG 

model with the ameliorated performance like perturbation resistance [100]. Despite the 

mathematical soundness of these works, however, most of their effects on controlling legged robots 
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are demonstrated by using computer simulations. Much more works remain if these models are to 

be implemented in hardware for autonomous control of a robot.  

 

Recent neuromorphic hardware realisation of the CPG models has shown great potential in 

implementing silicon neurons and their networks to control the robot behaviours [52-60]. 

Nevertheless, many of the recent works are still focused on the basis of building the neural 

oscillators, showing their characteristics, rather than using the oscillators to construct a specific 

CPG architecture [101,102]. This is possibly due to the lack of a modular and scalable approach to 

designing a CPG architecture by using a range of the available building blocks. 
 

A novel oscillatory building block (OBB) model that is able to be configured to create a tailor 

designed architecture for both locomotion rhythmic pattern generation and transition has been 

proposed in this work. Since the simple OBB module is the basis from which a rhythm-producing 

model of high complexity can be designed, the top-level model is highly modular and scalable for 

design, prototype, manufacture and test. It is also an asynchronous and self-clocked system if the 

reversibility values and initial membrane potentials are chosen for individual simple OBBs. 

Because of the simplicity of the system, a hardware version of a simple OBB module can be made 

in such a way that, it is possible to develop a real-time hardware implementation of systems with 

arbitrary complexity.  

 

The resulting continuous, linear and time-invariant system has its correctness based on the SMER 

graph dynamics. Therefore, a smooth operation of the designed workflow of rhythmic patterns is 

ensured. An intermediate self-organisation period may exist but this phenomenon is not an issue, 

being compatible with its biological counterparts. Pattern transition is controlled by just one model 

parameter, i.e., the reversibility of a neuron, in order to update the gait pattern according to the 

environment. Future works include the design of OBB architectures for a pre-specified, legged 

animal species, in order to show the model’s capability on mimicking a variety of legged 

locomotion patterns in a flexible and systematical approach.  
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