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ABSTRACT

The challenge of segmentation for noisy images, especially those that have light in their backgrounds, is

still exists in many advanced state-of-the-art segmentation models. Furthermore, it is significantly difficult

to segment such images. In this article, we provide a novel variational model for the simultaneous restora-

tion and segmentation of noisy images that have intensity inhomogeneity and high contrast background

illumination and light. The suggested concept combines the multi-phase segmentation technology with

the statistical approach in terms of local region knowledge and details of circular regions that are, in fact,

centered at every pixel to enable in-homogeneous image restoration. The suggested model is expressed

as a fuzzy set and is resolved using the multiplier alternating direction minimization approach. Through

several tests and numerical simulations with plausible assumptions, we have evaluated the accuracy and

resilience of the proposed approach over various kinds of real and synthesized images in the existence of

intensity inhomogeneity and light in the background. Additionally, the findings are contrasted with those

from cutting-edge two-phase and multi-phase methods, proving the superiority of our proposed approach for

images with noise, background light, and inhomogeneity.

1 Introduction

Image segmentation is an approach of partitioning a particular image into several small regions which share

certain known characteristics, leading to meaningful and easy post-processing analyzes. Many industries,

including medical imaging, object identification and recognition, traffic control systems, etc., use image

segmentation in many practical ways. The wide range of application in image processing leads to significantly

different segmentation techniques with respect to the same specific object/region labeling characteristic.

Segmentation of all the objects in a scene was the first image segmentation task. Such a task was firstly

processed with simple methods, such as thresholding method, region growing, etc., further followed by

sophisticated techniques, in particular, artificial intelligence, such as variational models or constitutional

neuron network based models.

Variational segmentation models, leading to partial differential equations, are one of the well known

segmentation techniques due to their robustness, computational advantage, and a well settled mathematical

background. The two main classes of variational models are: (i) region based models1; and (ii) edge based

models2–4. Region based models use statistical characteristic of the region to be segmented whereas edge

based techniques get advantages of the geometrical properties of the first and second derivative. One of the

most important region based image segmentation models, extensively studied in the last twenty years, is

the Mumford-Shah (MS) model1. The energy minimization of the MS model aims to approximate the true

solution by an optimal piece-wise smooth approximations. Even though, the MS minimization model is non-
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convex and very challenging. On the other hand, the edge based methods in comparison with region based

methods have, as reported in previous studies12, 39, 44, the main drawback which is the lack of robustness in

dealing with noisy images. To get the benefits of both region and edge based valuable properties, leading to

better segmentation accuracy and robustness, mixed models have been introduced in the literature5–7. This

combination uses the region information globally, whereas, the image gradient information are used locally

for edge identification.

As an alternative to variational models different techniques have been proposed over years such as

multi-atlas segmentation projected and shown to be useful8, 9 for images with well known preliminary

data, non-parametric statistical segmentation10–12 to handle texture segmentation, wavelet method13, etc.

For more segmentation methods reader is referred to14–22 and the references therein. In the wide variety

of segmentation methods supervised segmentation techniques have been broadly investigated in machine

learning and pattern recognition23–27. However, the large training sets makes them limited by the lack of

generalization to previously unseen object classes.

In the last decade, in many applications, like object tracking, medical treatment, surgery, traffic control

systems, etc., only one object (or a few objects) of interest are aimed to be extracted. For such problems,

selective/ interactive image segmentation models are more useful. Selective object selection enables users to

select objects of interest through interactively providing inputs such as markers, strokes, bounding boxes, etc.

In the last years many algorithms were proposed to solve this problem varying from graph cut optimization

energy28–30, convex relaxation methods31, 32, weighted geodesic distances33, edge-based method5, 34, 35,

random walks36, fuzzy membership function37–39, etc. In the last years, the variational models which

combine region and edge information show successful selective segmentation results.

By applying a set of marker points on the contour of importance region of interest, the authors in34 were

the first to provide geometrical limitations to the geodesic active contour selective segmentation model. The

authors in? improved the robustness of the results, particularly in regions with noise, by combining the

geometrical limitations provided by? with region-based terms. A geometrical constraint and adaptive local

band technique that takes into consideration the intricate elements of a picture was suggested by40. Similarly,

the authors in35 proposed a dual level set variational model, which uses two-level set functions to separate

the aimed object from the rest of all meaningful objects. The first level set is used for segmentation of all

edges of the objects in the given image whereas the other one is used to select the object that is near to the

geometry constraints. Furthermore,41 proposed a region based model which takes into account multiple

features and appearance context information with application in 3D liver segmentation.42 utilized image

channels average and proposed a selective segmentation model which can extract in-homogeneous and

textural objects. Recently, the work presented in43 included weight function into the MS model and proposed

a second-order convex model for image segmentation, in particular, selective segmentation. Even though,

the above-mentioned methods show good numerical performance there are still some challenging images

demonstrating their fail44, 45.

In this paper, we propose a new two-stage weighted convex selective image segmentation model which

combines edge detector function guided by a metric function into a second-order convex model for segmenta-

tion, in particular, selective segmentation. In the first stage, an edge detector function will detect the edges of

interest and ignore unnecessary edges, whereas the second step deal with a weight function obtained based

on novel edge detector function. Alternating direction method has been used as an appropriate numerical

algorithm and uniqueness and existence of the minimizer of the suggested model for image segmentation has

been shown. Following are the major contributions of our work.

• It is proposed to combine an edge detector function directed by a metric function with a convex

second-order segmentation model to create a bi-phase weighted convex selective image segmentation

model.

• In the presence of high contrast light in the background, a variational model for the combined

restoration and segmentation of noisy images with intensity inhomogeneity is given.

• The suggested model is expressed as a fuzzy set and is resolved using the multiplier alternating

direction minimization approach.

The remainder of this article is structured as follows. Section 2 provides a quick overview of the relevant

segmentation models. The variational formulation of our models for tasks requiring selective segmentation

is described in Section 3. The numerical algorithm and convergence analysis of the model are described in

Section 4. In Section 5, numerical experiments demonstrating the effectiveness of our strategy are provided.
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In this part, we demonstrate how, when compared to previous selective segmentation strategies, the suggested

strategy streamlines user interactions to a few clicks and produces relatively decent results. Section 6

provides a discussion and recommendations for the future to wrap up our effort.

2 Related Work

In this section, we divide the related work into tow different types: (i) variational segmentation models; and

(ii) selective segmentation models.

2.1 Variational Segmentation Models

Since the original Mumford and Shah functional is non-convex and in practice difficult to find smooth

approximations to solve the minimization problem several approximations have been proposed. One of the

most important approximations is the level set approximation proposed by Chan-Vese (CV)46. The level set

function introduced by Osher-Sethian47 was used in the CV model as a way to allow topological changes for

the curve evolution of the Lipschitz continuous level set function (LSF). Chan-Vese first work46 assumes

that the given image consists of foreground and background which can be represented as piece-wise constant

function. Afterwards, this model was extended to multiphase segmentation48 and further modified into

many other ideas49–51. Lastly,52 proposed a new variation of the MS model. The model blends the idea of

image restoration53 and image segmentation into a two-stage convex segmentation model. Due to convexity,

Split-Bregman algorithm54, 55 has been used as a solver and a unique smooth minimizer has been found.

Using a thresholding procedure the image segmentation is achieved. The threshold for the segmentation is

chosen automatically using clustering methods. In the following, we shortly give the minimization function

for the MS model1 and further summarize52 model.

The main objective function of the MS model1 lead to the solution of the following minimization

problem:

inf
z,Γ

{

α

2

∫

Ω
|z(x)− f (x)|2dx+

β

2

∫

Ω\Γ
|∇z(x)|2dx+H

1(Γ)

}

where Ω⊂ R2 is a connected bounded open set with Lipschitz boundary, Γ a compact curve in Ω, f : Ω−→ R

be a given image, z(x) : Ω−→ R a piece-wise smooth function representing the given image f (x), H 1(Γ)
represents the one dimensional Hausdorff measure computing the length of Γ for a fixed curve, α,β are

positive constants.

Based on the MS model idea,52 proposed a variational image segmentation model composed of two

stages. In the first stage, the given image is estimated with a smooth function by solving the following convex

minimization problem:

min
z(x)∈W 1,2(Ω)

[

∫

Ω
|∇z(x)|dx+

α

2

∫

Ω
|∇z(x)|2dx

+
β

2

∫

Ω
|z(x)− f (x)|2dx

]

, (1)

where W 1,2(Ω) =
{

v ∈ L2(Ω)/∂ jv ∈ L2(Ω), j = 1,2
}

is a Banach space with

L2(Ω) =

{

f (x)/

(

∫

Ω
f 2(x)dx

)1/2

< ∞

}

,

and α,β are positive constants. Once z(x) is computed, segmentation is carried out through the second

stage thresholding the obtained z(x). The threshold can be provided interactively by the uses or obtained

automatically by any clustering method, such as convex K-means or K-means methods56, 57.

2.2 Selective Segmentation Models

In terms of selective image segmentation task an object of interest is aimed to be segmented from the given

image. Let us suppose that the object of interest is placed inside M given points A =
{

x∗1,x
∗
2, ...,x

∗
M

}

. A

distance function d(x) : Ω−→ R can be defined as5

d(x) =
M

∏
j=1











(1− exp

(

−|x−x∗
j
|2

2τ2

)











, ∀x ∈Ω (2)
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where τ > 0 is a constant. We clearly notice that the distance function is near to zero at the neighborhood

of the marker points and increases if the point is far away from the marks. This property is same for other

distance function formulation found in literature5.

On the other hand, the information of edges in a given image can be detected through the properties of

the first variation of the function with the supposition that the function is piece-wise smooth. Such a edge

detection function can be defined as follows:

g(x) =
1

1+β |∇ f (x)|2
. (3)

From the formulation, we can easily see that the g(x) has an almost zero vales near edges and a value of

one on the smooth regions of the foreground or the background. Considering the properties of this two

functions34 proposed the following minimization functional as a solution for the selective segmentation

problem:

min
Γ

∫

Γ
d(x)g(x)ds,

where d(x) is a distance function and g(x) is edge detection function. The combination aims to stop in local

minima guided by the edge function. As the model has difficulties for noisy images,5 introduced intensity

fitting terms similar to Chan-Vese model46 and improved the34 model in the following formulation:

min
Γ,c1,c2

[

µ

∫

Γ
d(x)g(x)ds+λ1

∫

Ωin
| f (x)− c1|

2dxdy

+λ2

∫

Ωout
| f (x)− c2|

2dxdy
]

, (4)

where λ1,λ2 and µ are constant used to adjust the balance between regularity and fidelity terms. The boundary

between Ωin and Ωout is Γ, constants c1 and c2 are to be optimized. Using the level set formulation of

the above equation and minimizing respect to the unknowns lead to an Euler-Lagrange equation which

can be solved with different solvers and techniques. In the continuation of those methods, new ideas were

introduced such as adaptive local band level set method by40, continuous-domain convex active contour

model by Nguyen58, weighted variational model by59 for selective segmentation with application to medical

images, etc. The59 model gets its motivation by52 model combining with a weight function as follows:

min
u(x)∈W 1,2(Ω)

[

E(z(x)) :=
∫

Ω
|∇z(x)|dx+

α

2

∫

Ω
|∇z(x)|2dx

+
β

2

∫

Ω
ω2|z(x)− f (x)|2dx

]

, (5)

where ω is a weight function to adjust the fidelity and smoothing terms and is defined as:

ω2(x) = 1−d(x)g(x), (6)

with ω(x) ∈ (0,1]. Similar to work presented in52, the two-stages strategy has been used. In the first stage, a

smooth approximation of the input image is obtained by hiring a weighted function which provides a larger

value for the target region and smaller values for other regions. In the second stage, they make use of the

obtained approximation to perform a thresholding procedure and obtain the object of interest.

3 The Proposed Model

We describe our novel model and its mathematical analysis in this part. There are two phases in our process.

In the first phase, we identify a smooth minimizer by solving a minimization problem based on a specified

marker pointing within the object/s of interest. Then, in the second stage, we do segmentation using basic

thresholding.

3.1 Description of the Proposed Model

Inspired by the convexity, uniqueness, and existence of the minimizer for43 model, we took a closer look

to the weighted term that is utilized for adjustment of the fidelity and the smoothing terms in the proposed

energy function. The edge detector function g(x) is defined all over the image rather than the objects of

interest as required in the selective segmentation task.
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Figure 1. Segmenting the Drone image, shapes image, and MRI brain image. Segmented results of43 and

our edge and weighted function
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Figure 2. Edge and weight function comparison between43 and the proposed model for image

segmentation of kidney images.

(a) Given image (b) Liu segmena-

tion

(c) Our segmenta-

tion

(d) Liu segmena-

tion

(e) Our segmena-

tion

Figure 3. Successful selective segmentation comparison of both Liu and the proposed model for different

knee structures with markers placed in each of those structures.
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(a) Given image

with markers

(b) Mabood et al.

model

(c) Mabood et al.

segmented result

(d) Rada et al.

model

(e) Rada et al.

segmented result

(f) Liu et al.

model

(g) Liu et al. seg-

mented result

(h) Our model (i) Our seg-

mented result

Figure 4. Segmenting of one and multi objects image. Segmented result of42 model;35;43 model, and

results of our model.

(a) Image with

given markers

(b) Mabood et al.

model

(c) Rada et al.

model

(d) Liu et al.

model

(e) Our model

Figure 5. Comparison results of42 model,35,43 model and the proposed model for segmentation of MRI

Knee image.
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(a) Give image

with markers

(b) performance

of Mabood et al.

model

(c) Mabood et al.

segmented result

(d) performance

of Rada et al.

model

(e) Rada et al.

segmented result

(f) performance

of Liu et al.

model

(g) Liu et al. seg-

mented result

(h) performance

of Our model

(i) Our seg-

mented result

Figure 6. Segmenting the synthetic image in presence of noise in the first row, MRI eye image and cancer

image with42 model,35,43 model, and our model.

For a better understanding, we plot this function in Fig. 1 and 2 third column.43 formulation for the edge

function directly influences the weight function ω(x) which can be witnessed in the third column of Fig. 1

and 2.

To have a function which detects edges of interest given some markers we define the following metric

guided edge detector function:

gd(x) =

{

1; i f d(x)> T

g(x); i f d(x)< T
(7)

where T represents the threshold value. Overall this work we choose a threshold value T = 0.3. The

performance of edge detector function gd(x) of our model can be seen in Fig. 1 and 2 fifth column. It can be

observed that our edge detector function gd captures only the edges of interest near the given markers. Based

on gd(x), we define the novel weight function i.e. the metric guided weight function ωd(x) in the following

steps:

ω2(x) = 1−d(x)gd(x), (8)

ωd(x) =



















0.3; if ω2(x)> T1

0.2; if T2 < ω2(x)< T1

0.1; if T3 < ω2(x)> T2

0; if 0 < ω2(x)> T3

(9)

where the threshold values T1, T2 and T3 are chosen as 0.9, 0.6 and 0.3, respectively. The purpose of these

threshold values is to assign suitable weights to the objects in a given image and specially to the object of

interest. The performance of the novel weight function ωd(x) can be observed in the fourth column of Fig.

1 and 2. It can be seen that ωd(x) mainly gives weights to the object of interest and tries to ignore other

unnecessary objects.

Taking into account the convex model of Cai at al. in equation (1) and the above analysis for the weight

function, we propose the following minimization model for the selective segmentation problem:

min
z∈W 1,2(Ω)

[

F(z) :=
∫

Ω
|∇z(x)|dx+

α

2

∫

Ω
|∇z(x)|2dx

+
β

2

∫

Ω
ωd |z(x)− f (x)|2dx

]

. (10)
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Here are some comparisons between our model and other selective segmentation models that are currently

available. In order to compute numerically, existing selective models must employ level set approaches

or membership functions, which might add to the computing burden. In contrast to the suggested model,

whose convexity is proved in Appendix 1, references5, 23 indicate sensitivity to the initialization in the tests.

The existence and uniqueness of the minimizer can be verified in our model. It is possible to create a large

number of reliable and effective numerical algorithms. After obtaining the answer of (10), the segmentation

may be obtained in the second step by thresholding.

3.2 Mathematical Analysis

Following equation (1) and43 we can conclude the following:

Proposition 1: Let f ∈ L2(Ω) and infx∈Ω ωd(x) > 0. Then model (10) is strictly convex and there ex-

ists a unique minimizer z(x) ∈W 1,2(Ω).

Proof: From the condition infx∈Ω ωd(x)> 0 and equation (9) ωd(x) is bounded. Let M1 ≤ ωd(x)≤M2,

where M1,M2 > 0.
Chose z0 = 0, we have

0 ≤ inf
z∈W 1,2(Ω)

F(z)

≤ F(z0) =
β

2

∫

Ω
ωd f 2dtextb f x

≤
M2

2 β

2
|| f ||2

L2(Ω)

< +∞

Thus infz∈W 1,2(Ω) F(z) must exist.

We now prove that F(z) is coercive. It is clear that

||∇z||L2(Ω) ≤

√

2

α
F(z) (11)

and

||z||L2(Ω) ≤ ||z− f ||L2(Ω)+ || f ||L2(Ω). (12)

Furthermore,

0 ≤
M2

1(β )

2

∫

Ω
|z− f |2dxdy

≤
β

2

∫

Ω
ωd |z− f |2dxdy≤ F(z),

which yields

||z− f ||L2(Ω) ≤

√

2

M2
1 β

F(z). (13)

Combining equation (11), (12) and (13) we have

||z||W 1,2(Ω) ≤ ||z− f ||L2(Ω)+ ||∇z||L2(Ω)

≤

(

√

2

α
+

√

2

M2
1 β

)

√

F(z)+ || f ||L2(Ω),

which demonstrates that F(z) is coercive.

This should be noted that W 1,2(Ω) is a reflective Banach space, and from (10) the F(z) is convex, lower

semi continuous, and also coercive. Based on these assumptions, we concluded that the minimizer of F(z)
will be located in W 1,2(Ω)52, 60.
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Finally, this is assured and guaranteed from the strict convexity property of F(z) that the minimizer will be

unique.

Proposition 2: Let f ∈ L2(Ω) and infx∈Ω ωd(x) > 0, then the unique minimizer z∗(x) of model (10)
meets the inequality infx∈Ω f (x)≤ z∗(x)≤ supx∈Ω f (x).

Proof: Considering the properness of F(z), as shown in Proposition 1, and with the supposition that zn

be a sequence (minimizing); thus we can find a constant M > 0 so that F(zn)≤M where n ∈ N. In such a

manner, ||∇zn||L2(Ω) are uniformly bounded. Moreover,

βM2
1

2
||zn− f ||2

L2(Ω) ≤
β

2

∫

Ω
|zn− f |2dx≤M,

for all n ∈ N.
This yields that ||zn− f ||L2(Ω) is uniformly bounded and hence

||zn||L2(Ω) ≤ ||zn− f ||L2(Ω)+ || f ||L2(Ω)

is uniformly bounded.

Therefore, as a measure to ∇z∗, ∇zn converges weakly in W 1,2(Ω), and zn converges strongly to some z∗.

Since F(z) is lower semi-continuous, we have

F(liminf
n→∞

zn)≤ liminf
n→∞

F(zn),

which implies that z∗ is the unique solution to (10).

Let α = inf f and β = sup f . We remark that u→ ωd |u− f |2 is decreasing in (0, f ) and increasing in

( f ,+∞). Therefore, if C ≥ f , we have

ωd |min(u,C)− f |2 ≤ ωd |u− f |2.

Let C = β = sup f , we get

∫

Ω
ωd |min(z∗,β )− f |2dx≤

∫

Ω
ωd |z

∗− f |2dx (14)

Similarly, we can prove that

∫

Ω
ωd |sup(z∗,α)− f |2dx≤

∫

Ω
ωd |z

∗− f |2dx (15)

On the other hand, from proposition (15) in61, we have

sup(z∗,α),min(z∗,β ) ∈W 1,2(Ω)

and

|∇(min(z∗,β ))| ≤ |∇z∗|, |∇(sup(z∗,α))| ≤ |∇z∗|. (16)

Combining (14), (15) and(16), we obtain

F(min(z∗,β ))≤ F(z∗),F(sup(z∗,α))≤ F(z∗),

and so α ≤ z∗ ≤ β , which is the equivalent form of the desired inequality.

4 Numerical Optimization

Because model (10) is convex, several effective numerical methods may be used to solve it37, 54, 62–66. We

provide an alternate direction method (ADM)37, 64 to solve it in this part, as well as a convergence study of

the technique.
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4.1 Algorithm

Rewriting the minimization problem (10) into a matrix form gives

min
z

{

||Az||1 +
α

2
||Az||22 +

β

2
||ωd(z− f)||22

}

, (17)

where A is the gradient operator ∇’s matrix, and z is a n2 -by-1 vector corresponding to an n-by-n picture.

(17) is comparable to the following restricted optimization problem by inserting an auxiliary variable v = Az:

min
z,v

{

||v||1 +
α

2
||v||22 +

β

2
||ωd(z− f)||22

}

,

subject to v = Az.
To impose the restriction, we use the quadratic penalty technique64, 65 to solve the following unconstrained

problem:

min
z,v

{

||v||1 +
α

2
||v||22 +

β

2
||ωd(z− f)||22 +

µ

2
||v−Az||22

}

, (18)

where µ > 0 is a penalty parameter.

To solve 18, we use the ADM and minimize with respect to z and v alternatively. From an initial guess

z0 for z, we obtain a sequence

v1,z1,v2,z2, . . . ,vk,zk,vk+1,zk+1, . . .

via the following two sub-problems:

vk+1 = R(zk) := argmin
v

{

||v||1 +
α

2
||v||22 +

µ

2
||v−Az||22

}

(19)

and

zk+1 = S(vk) := argmin
z

{

β

2
||ωd(z− f)||22 +

µ

2
||vk+1−Az||22

}

, (20)

foe k= 0,1,2, . . . , which we call the iterations the outer-ADM-iterations. Solving the sub-problems separately

we have:

4.1.1 v−Sub-problem

Minimization problem 18 can be reformulated as

vk+1 = R(zk) = argmin
v

{

||v||1 +
α +µ

2
||v+

µ

α +µ
Azk||22

}

. (21)

Suppose v = (v1,v2),

y1 =
µ

α +µ
∇xzk,y2 =

µ

α +µ
∇yzk, |y|=

√

y2
1 +y2

2,

then 21 can be solved explicitly using a generalized shrinkage operator54 as follows:

vk+1
1 = max

(

|y|−
1

α +µ
,0

)

y1

|y|
,

vk+1
2 = max

(

|y|−
1

α +µ
,0

)

y2

|y|
, (22)
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4.1.2 z−Sub-problem

We propose another auxiliary variable p = z− f. in order to solve 19 efficiently. To properly enforce the

requirement, we can utilize the Bregman split technique. With b0 = 0, we have at step (n+1)

(pn+1,zn+1) = argmin
p,z

{

β

2
||ωdp||22 +

λ

2
||p− z+ f−bn||22 +

µ

2
||vk+1−Az||22

}

,

bn+1 = bn−pn+1 + zn+1− f. (23)

The optimization problem, in term of minimization, can be solved efficiently through minimization with

regard to z and p alternatively. The minimization with respect to z will essentially lead to the following

equation:

zn+1 = argmin
z

{

λ

2
||pn− z+ f−bn||22 +

µ

2
||vk+1−Az||22

}

,

which gives

(λ I +AT A)zn+1 = λ (pn− z+ f−bn)+µAT vk+1. (24)

Since the matrix (λ I+AT A) is positive definite and hence invertible, we can use the fast Fourier transforms

to solve 24. Then, the minimization for p is

pn+1 = argmin
p

{

β

2
||ωdp||22 +

λ

2
||p− z+ f−bn||22

}

.

From its Euler-Lagrange equation we have an explicit expression for p:

pn+1 =
λ (zn+1− f−bn)

βω2
d +λ

. (25)

Unifying all the above steps, we obtain the following algorithm:

Algorithm 1 Solving 17 by ADM: z←MGSS( f ,µ,β ,φ 0)

Choose µ and λ ; initialize z0 = 0. Choose the tolerance ε. Set k = 1;

Step 1. Update vk by 22.

Step 2. Set b0 = 0 and p0 = 0.

for n = 0 : N until
||zk,n+1−zk+1||2
||zk,n+1||2

< ε. do

• Update zk,n by 24.

• Update pn by 25.

• Update bn by 23.

Set zk = zk,N .
end for

Step 3. If the stopping criterion is satisfied, the algorithm stops. Otherwise, set k = k+1 and go to Step 1.

4.2 Convergence Analysis

The convergence analyses can be shown same way to the work of43. For more details and discussion,

interesting readers can refer to Appendix 1 and43.
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5 Experimental Results

This experimental section contains experimental results on different synthetic and real images to check the

performance of our proposed model with other competing models,42,35, and43. The image size and the

parameters α and β has been fixed as (255×255), 1, and 1, respectively. The experimental computation

is carried out by our personal computer with 4GB RAM, with 1.00GHz Intel core m computer by using

MATALAB version 7.11.0.

Test set 1 – Visualization of the new Proposed Distance Metric:

The first test consists of the importance of the wight function in the selective segmentation techniques,

referring to Figs. 1 and 2. As far as the authors of this paper know all the existing variational model for

selective segmentation use global weight functions to stop the curve evolution in the boundary of the aimed

object35, 42, 43 or local weighted functions that is updated based on global adapted segmentation technique40.

In both cases, if the aimed object is nearby other objects with almost the same intensity values the weight

function has no capability to help the evolving curve in stopping in the aimed object. Figs. 1 and 2 show the

comparison of the43 weight function and the proposed model. In a similar way, other weight functions for

the selective segmentation models can be plotted and observe this drawback. The first image in Fig. 1 shows

the image of an airplane with the presence of the moon in the background. In the first few iterations with43

model the evolving curve approaching the airplane changes the direction of the curve evolution towards the

moon image as the weight function gets another minima in that region, shown in Fig. 4. The same problem

is noticed for the second row of this figure were two objects of a hardware image has been aimed to be

segmented.

The images in Fig. 1 are hard cases as we have presence of noise, a certain level of in-homogeneity

inside the objects and a complicated intensity structure overall the image. In this figure, we show that the

proposed distance metric of crucial importance for the selective segmentation case. In comparison with the43

model, we notice that the weight function removes the possibility of curve evolution out of the neighborhood

of the aimed object. The fail of43 method derives from the structure of the weight function which further

reflects sensitivity to parameter’s choice. This is noticed with the sensitivity h parameter for the distance

function as well as the choice of the threshold parameter which is chosen by try to error method. Although43

method does not require re-computation of the convex model when the thresholds change still the proper

parameter for the threshold is a time-consuming element in this method. The Fig. 2 shows clearly these

phenomena. The aimed object, the left kidney in a CT image, cannot be detected by43, no mater the tuning

of the parameters involved in43 model, and the attempts for a proper threshold by try to error attempts. For

a better understanding of this issue readers are referred to the first row last four columns of Fig. 6 where

we clearly see for the same given markers and threshold value43 method lead to a global the segmentation

whereas our proposed method correctly segments the target object.43 method leads to a proper segmentation

for the above mentioned condition and image intensity bound in the range [0,1], as shown in Fig. 3 where

the aimed object in this example is segmentation of different bone structure.

Test set 2 – Segmentation Performance for Single and Multiple Objects:

In this test set experiments, we show the performance of the proposed model in segmenting one object

of interest or multiple objects which can be with the same or different intensity values. We accomplish

experiments on those images and compare the segmented result of our model with42,35 and43 models. In Fig.

4, we consider the image of bolts and screw and the hardware sign images in this figure. The bolts and screw

image is a clean image with almost the same intensity image of the objects with homogeneous background.

In the first row, we pick as an object of interest one of the bolts whereas in the second row two bolts are

aimed to be segmented. From the first row of this image we see that the42 model is able to correctly segment

the image,35 model get stuck in the first bound of the bolt, whereas the43 captures all the objects boundary.

The total fail of43 model is due to the fact that the number of points used to mark the object is only a few.

This makes the model to stop on the boundary based on the edge function and have minimum influence from

the distance function in the total weight of the weighted function involved in this model. In the second row,

where two bolts have been aimed to be segmented, the42 model works properly for this case,35 has the same

problem of getting confused with the inner-outer boundary and43 model captures all the object of the scene.

The third and fourth row of hardware sign images has an in-homogeneous background with three objects
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with almost the same intensities in the foreground. In Fig. 4, see that the detection of one or two objects of

this image with42 model has difficulty with the curve evolution due to the in-homogeneous background. The

performance of35 model gives relatively good results as the objects of interest has the same intensities inside

the objects of interest.43 model captures gets a total confusion by trying to stop on the boundaries between

different intensity levels for the background while getting all the objects of the foreground. This behavior

of43 model is to be expected as the stopping criteria directly depend on the edge detector function which

gives global information for the curve evolution. We observe same behavior for real image data as shown in

Fig. 5. In the first row of this figure, the image of an airplane in a low-resolution image is aimed and in the

second row the segmentation of the knee. Same as in the previous figure we observe a better performance of

the proposed model for such images.

Test set 3 – Segmentation Performance for Noisy and Medical Images:

In this test set we show the performance of our model in comparison with42,35 and43 models for noisy

and medical images. Those images are always considered as challenging for image selective segmentation

task. The first row of Fig. 6 shows the comparison performance for a synthetic noisy image. All three models

considered in the comparison fail to properly segment the object of interest whereas the proposed model, as

it can be seen from the last column, captures satisfactory good the aimed object. The second and third row of

this figure shows CT and MRI images of the brain and eye profile, respectively. In the CT image of the brain,

the object of interest is the region area of cancer, whereas for the MRI image one eye is to be segmented.

The number of markers for those examples limits to one singe marker inside the object of interest. Both the

second and the third row show a successful performance of the proposed model whereas the other models ae

partially successful,42 model, or totally fail,43 model. This example shows the importance of this model in a

wide range of real applications.

Quantitative Analysis and Speed Comparison: The speed comparison of our model with other com-

peting models is shown in Table 1. This should be noted that the speed is shown in terms of time (seconds)

and the number of iterations for the four competing models. The images in Figs. 4, 5 and 6 are used to

generate the table’s findings. The suggested model outperforms the competing three models in terms of time

and iterations, as shown in the table. In contrast to competing models, 1 demonstrates that our suggested

segmentation method has a relatively decent speed performance. The images in the table below have the

same ranking number as the experimental results in the study.

Table 1. Efficiency comparison of the proposed, Liu et al.43, Rada et al.35, and Mabood et al.42 models

Figure Proposed model Liu et al.43 Rada et al.35 Mabood et al.42

Iter CPU Iter CPU Iter CPU Iter CPU

Img.4−1 40 7.61473 70 12.051241 100 29.23444 70 21.105590

Img.4−2 30 9.91378 70 15.52891 100 34.22647 150 53.09465

Img.4−3 50 9.00729 50 12.68809 80 19.11530 50 16.00794

Img.4−4 40 11.57245 70 14.54188 100 29.22636 100 41.89010

Img.5−1 40 7.61473 70 12.051241 100 29.23444 70 21.105590

Img.5−1 40 7.93433 40 8.168705 100 22.6329 70 21.384067

Img.6−1 40 7.44916 40 7.486864 100 15.8750 40 14.826962

Img.6−2 40 7.51556 40 7.94386 80 20.74590 40 12.21479

Img.6−3 40 7.83643 40 8.65109 100 22.74899 70 21.62787

Segmentation Accuracy of the Proposed Model: To show the segmentation accuracy of the proposed

model we use Jaccard Similarity coefficient measuring for the displayed visual outputs in the above presented

figures in comparison to Mabood et al.42, Rada et al.35, and Liu et al.43 model. The Jaccard Similarity

measure is given with the following formula:

JS(R1,R2) =
R1

⋂

R2

R1

⋃

R2

,

with coefficient values JS ∈ [0,1] with the highest score 1 meaning better matching. Table 2 shows the

results of Jaccard comparison of Mabood et al.42, Rada et al.35, Liu et al.43 and our proposed model in 8
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tested images. The table shows the capability of our model to handle accurate segmentation of complex

shapes with intensity in-homogeneity or presence of noise.

Table 2. Jaccard coefficients comparison of the proposed model with Liu et al.43, Rada et al.35, and

Mabood et al.42 models

Figure Proposed model Liu et al.43 Rada et al.35 Mabood et al.42

jaccard jaccard jaccard jaccard

Img.4−1 0.9602 0.1426 0.2754 0.9563

Img.4−3 0.9582 0.1636 0.9374 0.9182

Img.5−1 0.9676 0.1411 0.1933 0.2035

Img.5−2 0.9564 0.9461 0.0894 0.9446

Img.6−1 0.9386 0.1813 0.1051 0.9209

Img.6−2 0.9606 0.2154 0.0966 0.9102

Img.6−3 0.9692 0.1172 0.9268 0.9461

6 Conclusions and Future Work

Over time, a variety of image segmentation algorithms and approaches have been created that use domain-

specific information to tackle selective segmentation challenges in that specific application area. In this

paper we propose a novel metric guided edge detector convex function for selective segmentation task. Many

experimental tests are performed to investigate the efficiency of the proposed model. Comparison with the

existing42,35 and43 models show that the achievement of our model is much better in terms of accuracy

shown through Jaccard coefficients measure. As future work, we plan to improve the model by incorporating

the proposed weight term with the smoothing term in a ε neighborhood of the aimed object of interest.

This will increase the segmentation accuracy for objects with small intensity difference. Further, we can

exploit our model in medical 3D volumes which are well known for their difficulties in calculating precise

segmentation.

Appendix 1

The convergence of Algorithm 1 will be investigated in the subsequent discussion in this appendix43. Let’s

recall from43 which shows that the association among vk and vk+1 from 18 and 19 can be illustrated as given

by:

vk+1 = R(S (vk)) := T (vk).

Therefore, we will try to analyze the sequence’ convergence, as given by {vk}, and generated by T , respec-

tively.

Lemma 1:64 If φ is a convex, l.s.c. proper function, then the operator

H
A
φ : x→ argmin

y

{

φ(y)+
1

2
||x−Ay||22

}

satisfies:

||AH
A
φ (x1)−AH

A
φ (x2)||2 ≤ ||x1−x2||.

Definition 1: A convex, l.s.c. proper function φ is called c-strongly if there exist a positive constant c such

that

< ∂φ(x1)−∂φ(x2),x1−x2 >≥ c||x1−x2||
2
2 ∀x1,x2,

where ∂ denotes the partial derivative.
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Lemma 2:64 Let φ is a convex, l.s.c. proper c-strogly function. Then the operator

Hφ : x→ argmin
y

{

φ(y)+
1

2
||y−x||22

}

satisfies:

||Hφ (x1)−Hφ (x2)||2 ≤
1

1+ c
||x1−x2||2.

Proposition 3: If the sub-problem 19 can be exactly solved, as a result the sequence {vk} would converge to

the limit point given by v∗.

Proof: For 19, it is obviously φ1(y) := β
2µ ||ωd(y− f)||22 satisfies Lemma 1 and the associated conditions.

Thus, we immediately achieve that

||AS(v1)−AS(v2)||2 ≥ ||v1−v2||2. (26)

Suppose φ2(y) := 1
µ ||y||1 +

α
2µ ||y||

2
2 in 18, then φ2 is c-strongly with c = α

µ . Applying Lemma 2 to 18, we

have

||R(z1)−R(z2)||2 ≤
1

1+q
||Az1−Az2||2, (27)

where q = α
µ > 0. Let T = RS , z1 = S (v1) and z2 = S (v2). Combining 26 and 27, we have

||T (v1)−T (v2)||2 = ||RS (v1)−RS(v2)||2

= ||R(z1)−R(z2)||2

≤
1

1+q
||Az1−Az2||2

=
1

1+q
||AS (v1)−AS (v2)||2

≤
1

1+q
||v1−v2||2.

Since 1
1+q

< 1, the operator T is a contract operator and has a unique fixed point. Furthermore, this also

represents the fixed point of T by vk, and as a result we have T (vk) = v∗ and

||vk+1−v∗||2
||vk−v∗||2

=
||T (vk)−T (v∗)||2
||vk−v∗||2

≤
1

1+q
, (28)

from this discussion we conclude that the suggested algorithm can converge as fast as Q-linearly, at the least.

More detail discussion can be found in43.
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