
Vol.:(0123456789)

Software Quality Journal (2024) 32:1075–1135
https://doi.org/10.1007/s11219-024-09678-0

1 3

RESEARCH

Towards engineering higher quality intelligent
environments: a multi case study approach

Adityarajsingh Santokhee1 · Juan Carlos Augusto2 · Lindsey Brodie2

Accepted: 28 April 2024 / Published online: 14 June 2024
© The Author(s) 2024

Abstract
This study addresses the need to enhance the quality of Intelligent Environments, recog-
nizing their unique characteristics and the absence of adequate guidance on quality man-
agement during development. It pursues three primary objectives: proposing a novel
quality-in-use model, presenting an enhanced version of the User-Centered Intelligent
Environment Development Process, and reporting on the application of these approaches
through a multiple case study. To embed quality into systems, we advocate for the integra-
tion of quality characteristics from ISO/IEC 25000 standards with functional requirements.
Stakeholders collaboratively define targets using measures from quality standards, and
metrics enable early problem detection and resolution during development. The proposed
quality-in-use model provides an insightful and objective perspective on system capabili-
ties, guiding development and ensuring stakeholder involvement. However, challenges such
as shortening development cycles for early and regular stakeholder feedback and managing
an increased number of system tests were noted. Our study makes a significant contribu-
tion to the field of Intelligent Environments by providing a structured approach to embed-
ding and managing quality throughout the development lifecycle. The multiple case study
offers empirical evidence of the effectiveness of the proposed approaches, with ongoing
considerations for challenges in the development process.

Keywords  Intelligent environments · Quality model · Multiple case study · Qualitative study

 *	 Adityarajsingh Santokhee
	 a.santokhee@mdx.ac.mu

	 Juan Carlos Augusto
	 j.augusto@mdx.ac.uk

	 Lindsey Brodie
	 lindseybrodie@btopenworld.com

1	 R.G. on Intelligent Environments, School of Digital Technologies, Middlesex University
Mauritius, Uniciti, Mauritius

2	 R.G. on Intelligent Environments, Department of Computer Science, Middlesex University,
London, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-024-09678-0&domain=pdf

1076	 Software Quality Journal (2024) 32:1075–1135

1 3

1  Introduction

An Intelligent Environment (IE) refers to a physical space which is composed of a net-
work of devices such as sensors and actuators which are orchestrated by algorithms which
sensibly but proactively support people in carrying out their daily activities (Augusto
et al., 2013). IEs inherit concepts and technologies from various domains such as Ubiq-
uitous or Pervasive Computing (Weiser, 1991), Ambient Intelligence (Aarts & Roovers,
2003), Smart Environments (Rashidi et al., 2011) and Internet of Things (Atzori et al.,
2010). In fact, these are closely related domains. IEs are complex systems comprising of
sensing technology and are expected to perform a wide variety of personalised functions in
various fields such as independent living (Martirano & Mitolo, 2020), education (Rizk &
Hillier, 2022), smart home, healthcare (World Health Organization, 2022), ambient assisted
living (Memon et al., 2014), agriculture, and smart factory. They are deployed in physical
environments and react on real-time data according to contexts defined for specific stake-
holders (Banijamali et al., 2020). For instance, the key goal of an ambient assisted living
system is to “proactively, but sensibly, support people in their daily lives” (Augusto, 2007).

However, since IEs are highly user-centric systems, it is imperative that they are not
only effective but also ethically viable for their end users (Augusto et al., 2013). Addition-
ally, developers also need to cater for important IE specific technical challenges such as
context-awareness, tracking preferences of users, implementing reasoning and dealing with
hardware malfunctions (ibid.). Traditional software engineering methods and tools lack the
maturity needed to effectively engineer these systems and address their specific challenges
(Ahmad et al., 2015). Thus, the User-Centred Intelligent Environments Development Pro-
cess (U-CIEDP) was proposed to develop these types of systems (Augusto et al., 2018). To
date, U-CIEDP has been applied to mostly research oriented projects. This led to identifica-
tion of limitations based on lessons learnt. It has been reported that each phase in U-CIEDP
requires strong planning to avoid uncoordinated system development (Augusto et al., 2018;
Ogbuabor et al., 2021; Santokhee et al., 2019). Secondly, there is no clear strategy to assess
the quality of the systems, during or after development, which is a major limitation (ibid.).

As our reliance on IEs grows, there is an undeniable increase in the demand for higher
quality systems. Historically, subpar quality has been a primary cause of failure in software-
based products (Jones & Bonsignour, 2011). Given the diverse and critical applications IEs
are expected to handle, low quality could result in severe consequences, potentially even
endangering lives in medical contexts. System failures lead to the cessation of services, and
the complexity of IEs, with their numerous components and intricate human-computer inter-
actions, makes them susceptible to unforeseen issues (ibid.). For instance, upgrading firm-
ware for one hardware component may alter an IE’s behaviour, presenting challenges in
anticipating and testing such scenarios. Complete control over interfaces is essential for suc-
cessful system integration, especially as the interactions among components contribute to the
emergence of effects unattainable by individual elements alone. Human-machine interfaces
add complexity, as these systems must function in dynamic operational conditions involving
diverse hardware devices, intricate interactions, unpredictable resource availability, unfore-
seen usage scenarios, and the occurrence of hard-to-predict errors.

Therefore, this study is motivated by the necessity to engineer higher quality IEs. It aims
to contribute to the broader understanding of challenges in the process of developing higher
quality IEs. U-CIEDP has been enhanced by incorporating new activities to manage quality
to each of its three core development stages: initial scoping, main development, and installa-
tion. The overall goal is to produce systems which meet users’ or stakeholders’ expectations

1077Software Quality Journal (2024) 32:1075–1135	

1 3

while satisfying core quality requirements. A novel IE specific quality model to evaluate IEs
is also being proposed. The model is derived from the generic ISO/IEC 25010 quality-in-use
model and has been adapted according to the nine guiding principles of IEs, as elaborated
in Section 2 (Augusto et al., 2013; ISO/IEC 25010, 2021). A multi case-study approach
was applied as to explore applicability of the enhanced U-CIEDP methodological frame-
work (Kurtel & Ozemre, 2013; Runeson & Höst, 2009; Sicari et al., 2019; Scott et al., 2021;
Staron et al., 2011; Tröls et al., 2021; Yin, 2018). Design of the case study was formulated
following Yin’s five steps (Yin, 2018). One more motivation for using case study research is
that we would like to investigate whether the framework would apply to real-world settings.
We report on two case studies in this paper. By incorporating quality characteristics from
ISO/IEC 25000 (2021) standards into functional requirements, our approach ensures the
inherent integration of quality into system development (Brodie & Woodman, 2009; Gilb &
Brodie, 2012). Collaborative efforts between stakeholders and the project team facilitate the
definition of targets using measures derived from quality standards. Utilising quality met-
rics enables developers to monitor deviations from quality targets, addressing issues early
in the development stage and enhancing the overall assessment of application quality. The
proposed quality-in-use model offers valuable insights, guiding the development process by
providing an objective perspective on the system’s expected capabilities. Continuous stake-
holder involvement throughout ensures the delivery of systems that offer optimal value.

The structure of this article is as follows. Section 2 highlights some background concepts
underpinning this study. In Section 3, we report on a Systematic Literature Review which
was carried out to inform this research study and discusses the research question and proposi-
tions pertaining to this study based on gaps identified through analysis of the literature. The
proposed quality-in-use model and UCIEDP2 are described in Section 4. Design and details
of the multiple case study are explained in Section 5. In Section 6, we discuss the findings of
the case studies by aggregating their results. Threats to validity are analysed in Section 7. The
paper ends with a conclusion, limitations, and areas for future work in Section 8.

2 � Background

The development of IE requires a multidisciplinary team that has to be not only capable of
applying a combination of techniques and methods coming from software engineering to
improve its reliability, but also from other Computer Science disciplines, such as Artificial
Intelligence, Ubiquitous/Pervasive Computing and Human-Computer Interaction, among
others, that make the resulting IE less intrusive, while being smarter, more proactive and
usable for the user (Augusto et al., 2013; Dyba et al., 2007; Salvi et al., 2015). Table 1 sum-
marises the nine principles proposed in an article by Augusto et al. (2013). The idea is
that every IE should aspire to possess these core principles to ensure systems which are
developed are technically and ethically viable. However, some of the principles are entan-
gled, in the sense, achieving one may impact on the degree of fulfilment of other princi-
ples. For instance, developing a high-performance IE may require reduced security checks.
Therefore, the key challenge is in implementing and managing these core principles dur-
ing the development lifecycle whilst taking into consideration important quality attribute
trade-offs. IEs also pose specific technical challenges such as context-awareness, tracking
preferences of multiple users in an environment, implementing reasoning, and dealing with
hardware malfunctions (Augusto et al., 2013). More importantly, since these systems are
highly user centric, human decision may not be rational, repeatable, or testable.

1078	 Software Quality Journal (2024) 32:1075–1135

1 3

IEs can also be considered as complex software intensive systems, which are described
as “systems where the software contributes essential influences to the design, construc-
tion, deployment and evolution of the system as a whole” (Sommerville, 2011). There
are diverse perspectives towards quality according to some of the reputable references
on quality (Anurag & Kamatchi, 2019; Cote et al., 2006). Although quality as a topic has
been widely studied in software engineering for different types of systems (Anurag &
Kamatchi, 2019; Benghazi et al., 2012; Kara et al., 2017; Kurtel & Ozemre, 2013; Regan
et al., 2020; Vogel et al., 2021), we argue that there is lack of consensus regarding how to
develop higher quality IEs.

Unfortunately, traditional software engineering methods and tools are not mature
enough to engineer high quality IEs and to deal with the design challenges posed by
these types of systems (Ahmad et al., 2015). In a recent study, Olianas et al. (2022)
reflected that assuring quality in IoTs is challenging and they reported results of apply-
ing a prototype tool to perform system level testing of these systems. Therefore, we
argue that more specific quality models, methodologies, and tools are required to
develop and evaluate high quality IEs. As a first step in this study, it was deemed neces-
sary to investigate more thoroughly how IEs are developed from a quality perspective.

3 � Literature review

It was deemed imperative to conduct a more comprehensive investigation into the devel-
opment of IEs from a quality perspective. A Systematic Literature Review (SLR) was
conducted following the guidelines proposed by Kitchenham and Charters (Kitchenham,
2007) in three phases: planning, conducting, and reporting. The planning phase speci-
fied the necessity for conducting the analysis and the review framework. In the second
phase, research was identified, primary studies were chosen based on criteria, their
quality assessed, and data extracted for synthesis. The third phase involved report-
ing documents and data obtained during the review. Two iterative processes were also
implemented during the review process to minimise the introduction of biases in the
research (Wohlin, 2014).

Table 1   Intelligent Environments Manifesto (Augusto et al., 2013)

Principle Description

PE1 to be intelligent to recognize a situation where it can help
PE2 to be sensible to recognize when it is allowed to offer help
PE3 to deliver help according to the needs and preferences of those which is helping
PE4 to achieve its goals without demanding from the user/s technical knowledge to benefit from

its help
PE5 to preserve privacy of the user/s
PE6 to prioritize safety of the user/s at all times
PE7 to have autonomous behaviour
PE8 to be able to operate without forcing changes on the look and feel of the environment or on the

normal routines of the environment inhabitants
PE9 to adhere to the principle that the user is in command and the computer obeys, and not

vice versa

1079Software Quality Journal (2024) 32:1075–1135	

1 3

3.1 � Planning the SLR

The main goal of the Systematic Literature Review (SLR) was to investigate the current
state of the art regarding the quality of IEs. To achieve this, the main research question
was broken down into more specific inquiries grouped into three broad areas: definition,
measurement, challenges, to comprehensively address the inquiry. Table 2 lists the spe-
cific research questions for the SLR.

RQ1 sought to distinguish the definition of quality for IEs. It aimed to explore
researchers’ perspectives on quality, the commonly employed quality characteristics,
how conflicting quality requirements are addressed, and if there exists any system
development methodology specifically focusing on quality within the domains of IEs.
The second research question (RQ2) delved into the various approaches used to evaluate
the quality of IEs, examining the application of quality models, the system development
stage(s) for measuring quality requirements. The third research question (RQ3) inves-
tigated the prevailing challenges and identified areas for future work as documented in
the literature.

3.2 � Search strategy

A crucial step in a SLR involves identifying pertinent studies capable of addressing
the research questions. Thus, the selection of appropriate search terms and keywords
becomes paramount. In this study, we adopted an iterative approach, facilitating the
analysis and gradual refinement of the search string. The search strings were devised
by incorporating synonyms and abbreviations, connected through Boolean expressions,
with the aim of retrieving a comprehensive set of publications. For this systematic lit-
erature review, five distinct databases (ACM, Web of Science, IEEE, Science Direct,
and Springer Link) were chosen due to their extensive coverage of topics in software
engineering. Table 3, presented below, outlines the executed search strings for each
database, with the user guide for each database consulted to enhance the syntax of the
search strings.

3.3 � Defining inclusion and exclusion criteria

To determine the primary studies for further consideration, inclusion and exclusion criteria
were established following the guidelines of Kitchenham and Charters (Kitchenham, 2007).
A study underwent further analysis only if it met all the inclusion criteria and none of the
exclusion criteria. The inclusion criteria are defined as follows:

IC1: The study is related to an aspect of quality for IEs.
IC2: The study is a peer-reviewed journal, conference or workshop proceeding.
IC3: The study addresses one or more of the review questions.

The exclusion criteria consist of:

EC1: The study is written in a language other than English.
EC2: The focus of the study is not related to any aspect of quality for IEs.
EC3: Duplicate studies.

1080	 Software Quality Journal (2024) 32:1075–1135

1 3

Ta
bl

e 
2  

R
es

ea
rc

h
Q

ue
sti

on
s f

or
 S

LR

ID
Q

ue
st

io
ns

Su
b

Q
ue

st
io

ns

R
Q

1
H

ow
 is

 q
ua

lit
y

de
fin

ed
 fo

r I
Es

?
R

Q
1.

1:
 W

hi
ch

 a
sp

ec
ts

 o
f q

ua
lit

y
ha

ve
 b

ee
n

co
ns

id
er

ed
 b

y
re

se
ar

ch
er

s i
n

IE
 d

om
ai

ns
?

R
Q

1.
2:

 H
ow

 a
re

 q
ua

lit
y

re
qu

ire
m

en
ts

 sp
ec

ifi
ed

?
R

Q
1.

3:
 W

hi
ch

 q
ua

lit
y

ch
ar

ac
te

ris
tic

s h
av

e
be

en
 p

ro
po

se
d

fo
r I

Es
?

R
Q

1.
4:

 H
ow

 w
er

e
th

e
qu

al
ity

 c
ha

ra
ct

er
ist

ic
s d

er
iv

ed
?

R
Q

1.
5:

 H
ow

 a
re

 c
on

fli
ct

in
g

qu
al

ity
 re

qu
ire

m
en

ts
 m

an
ag

ed
 a

nd
 re

so
lv

ed
?

R
Q

1.
6:

 W
hi

ch
 sy

ste
m

 d
ev

el
op

m
en

t m
et

ho
do

lo
gy

 is
 u

se
d

to
 d

ev
el

op
 IE

s w
ith

 a
 fo

cu
s o

n
qu

al
ity

?
R

Q
2

H
ow

 is
 q

ua
lit

y
of

 IE
s e

va
lu

at
ed

?
R

Q
2.

1:
 H

ow
 a

re
 q

ua
lit

y
re

qu
ire

m
en

ts
 m

ea
su

re
d?

R
Q

2.
2:

 H
ow

 is
 q

ua
lit

y
of

 IE
s e

va
lu

at
ed

?
R

Q
2.

3:
 D

ur
in

g
w

hi
ch

 p
ha

se
 o

f s
ys

te
m

 d
ev

el
op

m
en

t a
re

 th
e

qu
al

ity
 re

qu
ire

m
en

ts
 m

ea
su

re
d?

R
Q

3
W

ha
t a

re
 th

e
ch

al
le

ng
es

 a
nd

 fu
tu

re
 re

se
ar

ch
 d

ire
ct

io
ns

?

1081Software Quality Journal (2024) 32:1075–1135	

1 3

EC4: Paper less than four pages in length.
EC5: Magazine, dissertation, tutorial, editorial, book, poster or not peer-reviewed publication.
EC6: Systematic mapping or literature reviews.
EC7: The study is published before 2003.

Following the application of inclusion and exclusion criteria, the main author reviewed
the abstract of each shortlisted paper to determine its eligibility for further screening. This
process was iterated at least twice on separate occasions to minimize bias. Four duplicate
studies were identified and subsequently excluded. Upon completion of the initial screen-
ing, the full text of each paper was obtained and comprehensively examined by the main
author. Table 4 provides a summary of the number of papers screened at each stage.

Table 3   Search Strings

Database Search Strings

ACM "query": { Fulltext:("intelligent environment" OR "ambient intelligence" OR "ambient
assisted" OR "pervasive" OR "ubiquitous" OR "smart environment" OR "internet of
things") AND

Fulltext:("quality evaluation" OR "quality assessment" OR "quality model" OR "quality
attribute" OR "quality characteristic" OR "quality requirement" OR "nonfunctional
requirement") AND

Fulltext:("metric*" OR "measure*")}
"filter": { Media Format: PDF, Article Type: Research Article, E-Publication Date:

(01/01/2003 TO 01/31/2023)}
Web of Science TS = ("intelligent environment" OR "ambient intelligence" OR "ambient assisted" OR

"pervasive" OR "ubiquitous" OR "smart environment" OR "iot" OR "internet of
things") AND TS = ("quality evaluation" OR "quality assessment" OR "quality model"
OR "quality attribute" OR "quality characteristic" OR "quality requirement" OR
"nonfunctional requirement") AND TS = ("metric" OR "measure" OR "measurement")

IEEE ("intelligent environment" OR "ambient intelligence" OR "ambient assisted" OR
"pervasive" OR "ubiquitous" OR "smart environment" OR "iot" OR "internet of things")
AND ("quality evaluation" OR "quality assessment" OR "quality model" OR "quality
attribute" OR "quality characteristic" OR "quality requirement" OR "nonfunctional
requirement") AND ("metric" OR "measure" OR "measurement")

Science Direct ("intelligent environment") AND ("quality characteristic" OR "quality requirement" OR
"quality attribute" OR "nonfunctional requirement") AND ("metric" OR "measure" OR
"measurement")

("smart environment" OR "internet of things") AND ("quality characteristic" OR "quality
requirement" OR "quality attribute" OR "nonfunctional requirement") AND ("metric"
OR "measure" OR "measurement")

("ambient intelligence" OR "ambient assisted") AND ("quality characteristic" OR "quality
requirement" OR "quality attribute" OR "nonfunctional requirement") AND ("metric"
OR "measure" OR "measurement")

("pervasive" OR "ubiquitous") AND ("quality characteristic" OR "quality requirement"
OR "quality attribute" OR "nonfunctional requirement") AND ("metric" OR "measure"
OR "measurement")

Springer Link ("intelligent environment" OR "ambient intelligence" OR "ambient assisted" OR
"pervasive" OR "ubiquitous" OR "smart environment" OR "iot" OR "internet of things")
AND ("quality evaluation" OR "quality assessment" OR "quality model" OR "quality
attribute" OR "quality characteristic" OR "quality requirement" OR "nonfunctional
requirement") AND ("metric" OR "measure" OR "measurement")’

1082	 Software Quality Journal (2024) 32:1075–1135

1 3

3.4 � Conducting the SLR quality assessment

The remaining 33 papers underwent screening in an Excel sheet, with each paper assessed
against the following three quality criteria:

Q1: Are aims and scope of the study clearly stated?
Q2: Are all the study questions answered?
Q3: Are the data source, contexts and conclusions described appropriately for future
references?

To establish these quality criteria, we adhered to the guidelines provided by Kitchenham
and Charters (Kitchenham, 2007). The following scale-point was applied to each question:

	 (i)	 A study fully meets a given quality criterion –1 point.
	 (ii)	 A study partially meets a given quality criterion –0.5 points.
	 (iii)	 A study does not meet a given quality criterion –0 point.

A total score was calculated by using the following formula:

A study needed to attain a total quality score equal to or greater than 1.5 to qualify for
further analysis. All 33 papers successfully met the quality criteria.

3.5 � Data extraction

After evaluating the quality of each primary study, the subsequent step involved the extrac-
tion of data. A data extraction form was created in Microsoft Excel, structured as follows:

	 (i)	 Reference details
	 (ii)	 Concept of quality
	 (iii)	 Contribution
	 (iv)	 Domain
	 (v)	 Quality characteristic(s)
	 (vi)	 Specification
	 (vii)	 Methodology

Quality score = Q1 + Q2 + Q3

Table 4   Number of Retrievals Per Database

Database Number of papers
retrieved

Number of papers after
first scan

Number of papers
after second scan

ACM 459 25 6
Web of Science 178 62 3
IEEE 129 21 6
Science Direct 3221 32 5
Springer Link 2137 43 13
Total 33

1083Software Quality Journal (2024) 32:1075–1135	

1 3

	(viii)	 When measured?
	 (ix)	 Type of study
	 (x)	 Challenges
	 (xi)	 Future work

The extraction of data was significantly streamlined by initially downloading and saving
each full paper individually on disk. The researcher examined each paper to extract perti-
nent data, recording it in the Excel file. Appendix A provides a summary of the contribu-
tion of each paper, identified by a Paper ID attribute.

3.6 � Reporting the SLR

Descriptive statistics were employed to analyze notable patterns in the publications,
exploring trends such as the annual publication count, domains under consideration,
empirical methodologies utilized, and the number of citations for each study. As
illustrated in Fig. 1, the total number of publications on the topic has been consistently
limited to one-two per year over the last 15 years, with a notable peak observed in 2018.
In the early stages of growth around 2015, this sector witnessed a surge in interest,
particularly in smart homes and cities, improved security, and an enhanced quality of life
by 2018. The acceleration of research in this sector is attributed to a growing emphasis
on interdisciplinary collaboration across various fields. Furthermore, the upsurge in
funding opportunities and backing from academic institutions, government agencies,
and industry could have contributed to the escalation in publications on IEs (European
Commission, 2009). As shown in Fig. 2, the highest number of studies targeted
IoT Systems (13), followed by AAL (7) and Ubiquitous Systems (5) during the last
15 years. Recent technological advancements and the widespread adoption of devices,

Fig. 1   Frequency of Publications Per Year

1084	 Software Quality Journal (2024) 32:1075–1135

1 3

especially in areas like AI, IoT, and sensor networks have contributed to proliferation
of these systems (Reggio et al., 2020; McKinsey, 2021). Figure 3 depicts a notable
prevalence of conference papers compared to journals in this field. While conferences
offer a valuable platform for disseminating research, journal publications remain
crucial for delivering more comprehensive and in-depth studies, rigorous peer review
processes, and long-term archival of research in the domain of IEs. This observation
highlights the relative novelty and rapid evolution of this field. Researchers also
often present their initial findings and innovative ideas at conferences to receive early
feedback and establish their presence in the field. We noted a rise in the number of
citations per paper from 20 to 120 which again shows a growing interest of researchers
in this field leading to an increase in number of publications, as shown in Fig. 4.

AAL

Context-aware systems

Cyber-physical systems

IoT Systems

Industry 4.0

Pervasive Systems

Smart Environment

Ubiquitous Systems

0 2 4 6 8 10 12 14

Frequency

Fig. 2   Frequency of Publications Per IE Domain

Fig. 3   Types of Publications

0

5

10

15

20

25

Conference Journal Workshop

1085Software Quality Journal (2024) 32:1075–1135	

1 3

3.7 � Findings

3.7.1 � RQ1 – how is quality defined for IE systems?

RQ1.1  Which aspects of quality have been considered by researchers in the domains of IE?

We noted that researchers adopted a non-functional requirements perspective when
addressing the concept of quality. Sommerville (2011) emphasises the importance of non-
functional requirements in shaping the overall quality of attributes of a software system.
Pressman (2014) discusses the significance of non-functional requirements in determin-
ing the success or failure of a software project. In essence, the incorporation of non-
functional requirements into the definition and assessment of quality is a recognised and
widely accepted approach in Software Engineering literature. Specific quality characteris-
tics were implied [P1, P4, P5, P7, P9, P12, P13, P17, P20, P21, P22, P24, P26, P28, P29].
Aspects of systems which were investigated are: usability [P2, P8, P18, P19, P25], data
quality [P3, P31], quality of experience [P14, P15, P33], quality of experience [P6, P16,
P27, P32], trust [P10] and quality of context [P23, P30]. This implies that in most of the
studies under consideration, researchers approached the assessment and consideration of
quality by looking beyond the functional features of the system. Instead, they paid atten-
tion to the broader characteristics that contribute to the overall usability, quality of experi-
ence, quality of context and reliability of the system. This approach acknowledges that a
system’s quality is not solely determined by its ability to perform specific tasks but is also
influenced by how well it meets criteria related to its overall performance, user experience,
security measures, and other non-functional attributes.

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Cita�ons Paper

Fig. 4   Number of Citations Per Paper

1086	 Software Quality Journal (2024) 32:1075–1135

1 3

RQ1.2  How are quality requirements specified?

There is a scarcity of specific information concerning the specification of quality
requirements. The utilisation of metrics emerged as a notable trend in several studies [P1,
P5, P6, P17, P29, P30, P31]. In one instance [P3], quality requirements were gathered
through communication with AAL service providers, while another study [P8] consulted
caregivers for this purpose. In [P4], the definition and measurement of software quality
factors were explicitly outlined.

The specification of quality requirements is pivotal in software engineering as it serves
as the foundation for designing, developing, and evaluating a system (Pressman, 2014;
Sommerville, 2011). Clear and precise quality requirements provide a roadmap for the
development team, outlining the essential characteristics and attributes the system must
possess to meet user expectations (Sommerville, 2011). This specification not only guides
the development process but also forms the basis for subsequent testing and validation
activities. It enables stakeholders to establish measurable criteria for success, facilitates
effective communication between different project participants, and ultimately ensures that
the delivered software aligns with user needs and organizational objectives. In essence,
both Pressman (Pressman, 2014) and Sommerville (Sommerville, 2011) assert a well-
defined specification of quality requirements is fundamental for achieving a successful
and high-quality software product. Oram and Wilson (2010) discovered that deficiencies
in precision and completeness within requirements and design documentation resulted in
persistent design and requirements faults. These issues continued to be identified through-
out the entire testing process, as indicated by their comprehensive survey of challenges
encountered during the evolution of a large-scale real-time system.

RQ1.3  Which quality characteristics have been proposed for IEs?

We identified and grouped the quality characteristics according to IE domains discov-
ered through the SLR to answer this question. These are summarised in Appendix B. We
note that even within the same IE domain, different quality characteristics have been pro-
posed in different studies. This shows that the choice of quality characteristics depends
on the context where the system will be used. These findings corroborate with previous
studies. For instance, in their evaluation of six AAL platforms (Alhambra, Hydra, OASIS,
OpenAAL, PERSONA and UniversAAL), Antonino et al. (2011) selected quality attrib-
utes such as maintainability, efficiency and trustworthiness from ISO/IEC 9126, ISO/IEC
14598, and ISO/IEC 25000 Square standards. They believed that these attributes were
critical to AAL systems. Memon et al. (2014) argued to study characteristics which lead
to interoperability, usability, security, and accuracy rather than concentrating on isolated
aspects of AAL. In their study of Smart Cities, Kakarontzas et al., 2014) identified inter-
operability, usability, authentication, authorization, availability, recoverability, maintain-
ability, and confidentiality as the most prominent quality drivers. They also suggested that
quality requirements could be defined using ISO/IEC 25010 (2021) standard. Garcés et al.
(2017) stressed on the necessity of managing critical attributes such as security, freedom
of risk, reliability, and performance efficiency since the start of AAL systems develop-
ment. For Washizaki et al. (2020), interoperability was proposed as key attribute due to
many participating entities which need to interact with one another. They also revealed
that performance, usability, and scalability are central to certain IoT patterns for IoT sys-
tems and software while highlighting the need to study other quality attributes. Ashouri

1087Software Quality Journal (2024) 32:1075–1135	

1 3

et al. (2021) highlighted that performance, efficiency, time behaviour and resource utili-
zation were the most popular quality attributes. They also reflected that few studies have
studied critical attributes for IoT such as security, compatibility, portability, and maintain-
ability. Fizza et al. (2023) proposed a new metric called quality of actuation to quantify
correctness of actuation. The study also reiterated the importance of developing a generic
model for measuring quality of autonomic applications and a framework to support their
development. Thus, the overall picture which emerges is that this is an evolving field of
study and researchers have focused on addressing specific quality goals of systems within
IE domains.

RQ1.4  How were the quality characteristics derived?

In ten studies, the quality characteristics were derived from ISO/IEC 25010 (2021) or
ISO/IEC 25000 (2021) standards [P12, P13, P17, P19, P20, P22, P26, P28, P29, P30],
covering IE domains such as AAL, IoT, Smart Environments and Ubiquitous Systems.
ISO/IEC 25010 (2021) is a universally recognised standard which provides comprehen-
sive definitions for various quality attributes. However, only half of the cited studies [P13,
P19, P22, P26, P30] provide empirical evidence of applying their quality characteristics.
According to Hron and Obwegeser (2022) and Humble and Farley (2010), the defini-
tions of these quality attributes have found acceptance across diverse industries including
automative, naval, avionics and medical devices. These definitions have been embraced
by industries aligning with Industry 4.0 technologies (Abdelouahid & Marzak, 2018; ISO/
IEC 25010, 2021). In the remaining studies, the quality characteristics stemmed from prior
research, literature reviews, and systematic mapping studies. Nevertheless, a few notable
exceptions deviated from this trend. In the case of [P7], field interviews were undertaken
after a thorough literature review, providing a unique perspective. Similarly, [P8] incorpo-
rated concerns and issues voiced by caregivers into the determination of quality aspects.
However, it’s noteworthy that the extent of engagement with end users remained relatively
limited across most of the studies. Understanding how quality characteristics are derived
is vital in software engineering (Sommerville, 2011). It offers transparency into the selec-
tion process, enabling stakeholders to assess the reliability and validity of chosen attrib-
utes (Pressman, 2014). Whether stemming from empirical studies, literature reviews, or
direct user interactions, this knowledge helps gauge the relevance and robustness of quality
criteria (Kitchenham & Charters, 2007). Such understanding ensures alignment with user
needs, organizational goals, and the broader context (Bass et al., 2012). In essence, a clear
grasp of the derivation process enhances the credibility and effectiveness of quality consid-
erations in software development (Sommerville, 2011).

RQ1.5  How are conflicting quality requirements managed and resolved?

IEs are complex systems and present significant challenge due to the intricate trade-
offs and dependencies inherent in these systems (Augusto et al., 2013). Quality attributes,
such as performance, security, usability, and reliability, are interconnected and often trade-
off against each other. Enhancing one attribute may inadvertently compromise another
(Rodríguez-Domínguez et al., 2022). For example, optimizing performance by increasing
system speed might lead to increased resource utilization and potential security vulnerabili-
ties. IEs typically involve a diverse set of stakeholders with varying needs and expectations.
End-users may prioritise usability and ease of use, while administrators may emphasise

1088	 Software Quality Journal (2024) 32:1075–1135

1 3

security and robustness. Balancing these conflicting stakeholder requirements becomes
challenging, requiring careful negotiation and compromise. IEs operate in dynamic and
evolving contexts, where requirements may change over time. Adapting to new user needs,
technological advancements, or emerging security threats may necessitate adjustments in
quality attributes. Enforcing a rigid stance on certain attributes may hinder the system’s
ability to evolve and meet changing demands. IEs often encounter unforeseen challenges
and uncertainties during operation, commonly referred to as "unknown unknowns" (Jones
& Bonsignour, 2011). Enforcing specific quality attributes without anticipating and
addressing these unknowns may lead to system vulnerabilities and unexpected failures.
Therefore, we argue that striking a balance between conflicting quality attributes is key
to success of IEs. However, we noted a paucity of studies focused on conflicting quality
attributes. [P7] highlights that timeliness, reliability and ease of use need to be managed
carefully. [P31] discusses trade-off between data usefulness and privacy protection. Maciel
et al. (2022) highlight that edge devices which are commonly found in IoT environments
contribute to reliability and availability. However, there remains a need to investigate meth-
ods for enhancing security and privacy on these resource-constrained devices, or to find a
balance with energy consumption to address these attributes effectively. Mohammadi and
Javidan (2022) propose a tool to tackle quality of service issues in software defined net-
works found in IEs by managing efficiency and survivability.

RQ1.6  Which system development methodology is used to develop IEs with a focus on quality?

Out of the 33 scrutinised studies, only a limited subset has delved into system devel-
opment methodologies with a specific emphasis on quality considerations. Notably, [P16]
contends that enhancing the elicitation of UX requirements necessitates the adoption of an
Agile or iterative approach, underscoring the complexity of defining these requirements in
comparison to usability aspects. The authors advocate for active involvement of end-users
in this iterative process. In [P21], an innovative methodology grounded in Unified Model-
ling Language is introduced to facilitate the accurate design and analysis of AAL solutions.
Additionally, [P23] proposes a model-driven approach for effectively modelling the quality
of context information in pervasive systems. The literature collectively highlights lack of
a tailored methodology to guide developers in engineering higher quality IEs. Prioritising
quality in the system development methodology for IEs is essential to ensure their func-
tionality, reliability, and positive impact on society, while addressing the unique challenges
posed by the complexity and dynamic nature of these environments.

3.7.2 � RQ2 – How is quality of IEs evaluated?

RQ2.1  How are quality requirements measured?

The analysed articles collectively offer a multifaceted exploration of how quality is meas-
ured in IEs, encompassing diverse methodologies and perspectives. In [P1], the authors
identified the top ten most popular metrics for Object-Oriented Programming (OOP) based
on a study by Nuñez-Varela et al. 2017. This provides a quantitative lens on code quality
and offers insights into the industry’s prevalent practices. However, this approach might
be limited in capturing the full spectrum of software quality, especially considering the
evolving nature of programming paradigms beyond OOP. The proposal to build a specific
approach for usability testing in ubiquitous systems showcases a commitment to a holistic

1089Software Quality Journal (2024) 32:1075–1135	

1 3

evaluation process [P2]. The establishment of a software process for context-awareness
testing, the definition of interoperability measures, the design of context-awareness test
cases, and the development of support tools collectively aim to address various dimensions
of software quality. However, the comprehensive nature of this approach may introduce
challenges such as increased complexity, resource demands, and potential resistance from
development teams. A noteworthy theme is the evaluation of AAL technology, focusing
on measuring the efficacy through the quality of data generated by AAL systems [P3].
This involves assessing structured or semi-structured data across dimensions like accuracy,
completeness, timeliness, and interpretability. The use of both quantitative and qualitative
methods demonstrates a consolidated approach to data quality, acknowledging the need for
a multifaceted evaluation. However, the exclusive focus on specific data dimensions may
overlook other aspects crucial for AAL system performance.

The adoption of the Goal-Question-Metric approach to map low-level code-based met-
rics to high-level software quality factors signifies a bridge between detailed code analysis
and overarching quality assessment [P4]. This method enables quantifiable measurements,
facilitating the comparison of quality across different software systems and components.
Nevertheless, challenges may arise in defining metrics that accurately represent the desired
quality factors, potentially introducing biases. The exploration of software product quality
metrics for Context-aware Computing extends the measurement scope to consider context-
aware applications [P5]. The proposed quality-aware cross-layered framework for IoT appli-
cations acknowledges the intricate layers involved in IoT development. However, the chal-
lenge lies in the practical implementation of these frameworks, as achieving modularity,
distribution, seamless integration, and transparency may be context-specific and difficult
to generalize. The ENACT DevOps Framework introduces novel solutions to address chal-
lenges in developing, operating, and assuring the quality of distributed smart IoT systems
[P10]. However, the effectiveness and adaptability of this framework across diverse infra-
structures require empirical validation (White et al., 2017). The proposed quality in use
model for AAL systems aligning with ISO/IEC 25010 (2021) underscores the importance
of user-centric quality assessment [P12]. However, the application of predefined standards
may limit the model’s ability to capture the uniqueness of AAL contexts and user experi-
ences. The refinement of the ISO/IEC 25010 (2021) quality model for Industry 4.0 needs
signifies an attempt to tailor existing standards to specific industrial requirements [P20].
While providing actionable support for software engineers, the applicability and generalis-
ability of the model may be contingent on industry-specific conditions. The exploration
of data quality characteristics for AAL systems, guided by ISO/IEC 25012 (2021) and
ISO/IEC 25010 (2021) standards, seeks to establish relevant quality characteristics [P24].
However, the challenge lies in identifying universally applicable characteristics given the
diverse nature of AAL systems.

In the comparison of quality models, [P25] suggests applying measures originally
defined for ubiquitous systems to IoT applications. This points to an effort to adapt estab-
lished metrics to different contexts, recognizing the commonalities between IoT and
ubiquitous applications. However, challenges may arise in ensuring the relevance and
accuracy of these metrics when applied outside their original domain. The emphasis on
a data-driven approach to improve User Experience (UX) through a case study signals an
industry-oriented effort to integrate data analytics into UX evaluations [P16]. However,
the effectiveness of this approach in diverse UX contexts and its generalizability require
validation. Similarly, proposing a quality in use model for AAL systems, focusing on effec-
tiveness, efficiency, satisfaction, freedom from risk, and context coverage, demonstrates an
attempt to align software quality assessment with specific application domains. However,

1090	 Software Quality Journal (2024) 32:1075–1135

1 3

the adaptation of the model to diverse AAL contexts may be a potential challenge. [P18]
presents heuristics for evaluating the usability of ubiquitous systems. This adds a qualita-
tive dimension to the measurement of software quality. The heuristics offer guidelines for
assessing effectiveness, efficiency, and satisfaction, emphasizing a user-centric approach.
However, the subjectivity inherent in qualitative assessments may introduce variability in
the interpretation of usability.

The proposal of a comparative study of existing quality models of interoperability and
the introduction of a hierarchic quality model for interoperability in IoT reflect an effort to
standardise and define metrics for assessing interoperability [P29]. The challenge lies in
establishing universally applicable criteria for interoperability, given the diverse nature of IoT
applications. Additionally, the consideration of metrics based on ISO standards adds a level
of standardisation but may introduce challenges in adapting these metrics to specific IoT con-
texts [P30]. The acknowledgment of limitations, such as the potential loss or alteration of
information during the translation of quotes, emphasises the importance of considering reli-
ability in the measurement process. This highlights the need for standardised approaches in
data collection and reporting to ensure the consistency and accuracy of measurements.

In summary, the exploration of how quality is measured in the articles reflects a dynamic
landscape, encompassing quantitative and qualitative methodologies, context-specific adap-
tations, and ongoing efforts to standardise metrics. The diverse perspectives and approaches
underscore the complexity of software quality assessment, necessitating a balanced consid-
eration of multiple factors and potential challenges in the measurement process.

RQ2.2  How is quality of IEs evaluated?

In [P1, P19, P20, P23, P24, P25, P26, P29, P30, P33], we note that the focus was on
developing and proposing quality models for evaluating various aspects of IoT, ubiquitous
systems, and cloud services. This included security, interoperability, context quality, and
the adaptation of quality models to specific domains like Cloud IoT and Industry 4.0. We
note the focus is more on measuring certain aspects of IEs. Some studies have presented
quality models, evaluation methods, and indices specifically for AAL systems, aiming to
assess their efficacy, quality-in-use, and data quality [P3, P7, P12, P13, P17, P24, P28].
[P2, P4, P5, P18, P19, P25] discuss challenges, metrics, and heuristics for usability test-
ing and HCI quality evaluation in ubiquitous systems with a focus on modularity, context-
aware computing, and the design of usability tests that consider context-awareness factors.
Quality-of-Experience in IoT systems has been investigated in [P6, P27, P31, P32]. [P8,
P10, P11, P14, P15, P16, P21, P22] encompass the development, management, and the
evaluation of smart IoT systems and explore methods to ensure their reliability, depend-
ability, and user experience requirements. A quality-in-use model grounded in ISO/IEC
25010 (2021) for AAL systems is presented in [P17]. It was utilised as a guiding frame-
work during the assessment of an intelligent solution. Conversely, other proposals, as indi-
cated by [P5, P7], are still in their early developmental stages. We note there is a paucity of
studies which investigate how quality of IEs is evaluated.

RQ2.3  During which phase of system development are the quality requirements measured?

In most studies, quality requirements are typically measured post development or during
runtime. Sommerville (2011) reflects that this is done to reflect the actual user experience
and to study system behaviour in production environment. Pressman (2014) argues that this

1091Software Quality Journal (2024) 32:1075–1135	

1 3

leads to a comprehensive assessment of the final product quality characteristics. However,
the main limitations of this approach are that it may result in late discovery of quality issues
and when significant resources have been invested (Boehm, 1981). [P4, P21] suggest incor-
porating quality measurements during the design phase. Budgen (2003) believes that this
favours early identification and mitigation of potential quality issues during design stage.
Both Boehm (1981) and Jones and Bonsignour (2011) concur that addressing issues early in
the development process is generally more cost-effective than later. Post delivery software
change was about 100 times as expensive as requirements-phase software system for large
systems and a ratio of 5:1 for smaller systems (Boehm, 1981). More recent evidence also
seems to support these findings and it is recommended that higher investments in early
requirements and architecture verification and validation can significantly reduce the high
ratio of 100:1 (Oram & Wilson, 2010). It is worth noting that [P4] lacks empirical evidence,
and the work was still ongoing. On the other hand, [P5, P8] advocate for measurements dur-
ing the development process, while [P15] proposes incorporating them during the modelling
stage. There is evidence that measuring quality during the development stage leads to early
identification and resolution of quality concerns (Sommerville, 2011). Kan (2002) highlights
that this encourages continuous refinement and improvement of the product as development
progresses. However, the main drawback as pointed out by Kan (2002) is that it may require
additional resources and effort. Similarly, incorporating quality measurements during design
ensures that the quality considerations are well integrated into the system. However, measure-
ment during design may be less grounded in practical implementation.

3.8 � RQ3 – What are the challenges and future research directions?

Several key challenges were identified in the reviewed studies. Bezerra et al. (2014) argue
for usability testing in real-life environments for ubiquitous systems, emphasizing the need
for meticulous test case design to anticipate various potential contexts. Weyns et al. (2018)
stress risks in automated decision-making, calling for improved UX requirements and cau-
tioning against late hardware changes in agile processes. The literature review reveals a
scarcity of research in specific areas (Hamzah et al., 2018), prompting a call for experi-
mental testing and the development of an effective Quality of Experience (QoE) frame-
work (Shin, 2017). A study in China emphasizes the need for more humanistic care for the
elderly, suggesting that technology falls short in meeting their spiritual needs (Chen et al.,
2023). Goncalves et al. (2022) plan to use the Technology Acceptance Model for assess-
ing the usability of a proposed tool among professional developers. There is a persistent
challenge in accurately assessing smart systems both functionally and in terms of usabil-
ity, with a recommendation for developing standard evaluation frameworks (Amiribesheli
& Bouchachia, 2018). Communication about quality among team members lacks a stand-
ardized approach, with common strategies like unit tests and test cases posing uncertainty
about exhaustiveness and potential cost implications. A need for more evaluations in real
life scenarios has also been identified.

3.9 � Research question and proposition

Based on our analysis of the literature, we note that the state of the art in software technol-
ogy does not yet present a well-established and widely accepted framework or methodology

1092	 Software Quality Journal (2024) 32:1075–1135

1 3

for engineering high quality IEs. There is lack of support and guidance during the sys-
tems development lifecycle. The definition, measurement, and management of quality dur-
ing the development process remain unclear. While various studies propose methods for
evaluating IEs, empirical validation of these methods in industry is limited. In response to
these identified gaps, we propose a framework that includes a quality-enhanced methodol-
ogy and an IE-specific quality-in-use model. This framework aims to provide guidance for
engineering higher-quality IEs. Consequently, the research question of this study was for-
mulated as follows:

How can the process of engineering higher quality intelligent environments
be improved through the integration of a framework, with a specific focus on
improving the specification of quality requirements and the evaluation of quality
throughout development?

The SLR emphasises the lack of clarity in defining, measuring, and managing quality
during the development process. Drawing on the insights gained from the SLR, we pro-
ceeded to formulate propositions and related questions aligned with the research ques-
tion. These propositions serve to refine and guide the research focus.

The literature analysis underscores the ambiguity surrounding the specification of
quality. In the context of complex systems, developers must explicitly address the speci-
fication, prioritisation, and metrication of quality characteristics (Gilb, 2005). Conse-
quently, the initial proposition of this study is designed to explore the current practices
in specifying quality requirements for IEs within ongoing projects.

Proposition 1  Current projects in IE domains do not capture quality requirements ade-
quately in their specifications.

Questions were then formulated to examine comprehensively the first proposition
by addressing various dimensions of quality requirements in IE domain projects. These
included initiation, documentation, stakeholder collaboration, monitoring, conflict reso-
lution, historical context, and evaluation phases.

•	 Are quality requirements captured prior to the case study?
	  This question seeks to understand the timing of capturing quality requirement. It

aims to explore whether these requirements are considered since inception of a pro-
ject or later during development.

•	 How are quality requirements specified in the current system specifications?
	  This question delves into the methods and processes for specifying quality

requirement in the current system specifications. It provides insights into the docu-
mentation and communication practices.

•	 Are stakeholders’ vision taken into consideration when specifying the quality requirements?
	  This is a crucial question which addresses the consideration of stakeholder

involvement. It aims to understand whether the expectations of key project stake-
holders are considered when defining quality requirements.

•	 How is quality tracked during the development process?
	  The rationale for this question is to uncover the mechanisms and tools used for

monitoring and tracking quality aspects throughout the development lifecycle. It
provides insights whether and how quality standards have been maintained.

1093Software Quality Journal (2024) 32:1075–1135	

1 3

•	 What is the strategy for managing conflicting quality requirements?
	  This questions sheds light on strategies employed to handle conflicting quality

requirements and how these were reconciled.
•	 Was any previous benchmark data available on quality aspects of the system?
	  The main purpose for this question was to investigate whether historical bench-

mark data related to quality aspects of the system exist. It seeks to understand the
project reliance on past performance metrics and benchmarks.

•	 How is system evaluated during and post development?
	  This question looks at the evaluation processes employed both during and post devel-

opment. It provides insight into the ongoing assessment of the quality of the system.

The literature exposes the absence of a suitable methodology for engineering higher
quality IEs. As a result, the second proposition seeks to investigate the effects of imple-
menting a quality-oriented methodology in the development of IEs and whether such
an approach contributes to an enhancement in the overall quality of these systems. It is
emphasised in the literature that continuous monitoring of quality characteristics through-
out the system development lifecycle is essential for creating systems that align with their
stringent quality requirements (Gilb, 2005; IPA, 2010). The lack of a dedicated tool for
managing quality characteristics during the development of IEs is a notable observation,
leading to the formulation of the second proposition.

Proposition 2  A quality enhanced methodology will lead to development of higher quality IEs.

To examine the second proposition, various aspects such as stakeholder engagement,
resource implications, developer perspectives, conflict resolution, and the ultimate impact
on the quality of the developed IEs were investigated. These questions cover both the quali-
tative and quantitative dimensions and tries to offer a well-rounded understanding of the
effectiveness of the proposed quality-enhanced methodology.

•	 How are stakeholders’ feedback captured during the development process?
	  This question studies the involvement of stakeholders throughout the development

process and focuses on how their feedback is collected. It aims to provide insights into
the responsiveness of the methodology to stakeholders needs and expectations.

•	 What is the impact of specifying quality requirement(s) for every functional require-
ment on development time, cost, and overall quality?

	  This question explores the potential trade-offs involved in specifying quality
requirements for each functional requirement and assesses the impact on development
resources, time and the overall quality of developed IEs.

•	 How effective is the methodology to developers?
	  This question assesses the perception of developers regarding the effectiveness of the

proposed methodology. It aims to provide insights into its practicality and feasibility in
the development environment.

•	 What is the impact on development cost and time using the proposed methodology?
	  This question builds on the second question and seeks to quantify and understand

the specific effects of the methodology on development costs and timelines, helping to
evaluate its economic implications.

•	 How are conflicting quality requirements managed?

1094	 Software Quality Journal (2024) 32:1075–1135

1 3

	  This question addresses how the enhanced methodology deals with potential con-
flicts while ensuring alignment of diverse quality expectations.

•	 Does application of the methodology result in development of higher quality IEs?
	  This question aims to determine whether the application of the quality-enhanced

methodology indeed leads to the development of higher quality IEs.

The ISO/IEC 25010 (2021) quality-in-use model has gained prominence as a widely
adopted approach for assessing overall system quality, as revealed in the literature. This
model is versatile and can be customized to align with the specific characteristics of the
system under examination. Consequently, the third proposition delves into the examination
of the influence of an IE-specific quality-in-use model in evaluating the quality of a system
throughout both its development and post-development phases.

Proposition 3  An IE specific quality-in-use model is beneficial to evaluate quality of IEs
during and post development.

To address key aspects of the third proposition, questions which focused on the specific
qualities and benefits associated with the proposed IE specific quality-in-use model were
formulated. These investigated the relevance of quality characteristics, examined stake-
holder visibility, and assessed the effectiveness of the model to developers. The questions
aim to provide a comprehensive understanding of the impact of the quality model on the
evaluation of IE quality during and after development.

•	 How relevant is the proposed mandatory list of quality characteristics?
	  This question evaluates the relevance of the mandatory list of quality characteristics

proposed by the IE specific quality-in-use model. This is important because it helps to
understand their effectiveness in capturing essential aspects of IE quality.

•	 Does the quality-in-use model provide more visibility about the quality of the system to
stakeholders?

	  This question seeks to explore the communicative aspect of the quality-in-use model
and whether it enhances visibility for stakeholders. It provides insight into its effective-
ness in conveying the system quality.

•	 How effective is quality-in-use model to developers?
	  This question assesses the practicality and utility of the quality-in-use model from

the perspective of developers. It aims to understand whether the model is effective in
guiding development efforts.

These propositions aim to address the research question by exploring different aspects
of how the integration of a framework can contribute to improving the engineering of
higher quality IEs, with a specific focus on quality requirement definition, specification,
and measurement throughout development.

4 � Proposed quality‑in‑use model and methodological framework

In this section, we present the methodological framework and quality-in-use model to
develop and evaluate higher quality IEs.

1095Software Quality Journal (2024) 32:1075–1135	

1 3

4.1 � A quality‑in‑use model for IEs

We propose to evaluate the quality of Intelligent Environments (IEs) through a refined
"quality-in-use" framework, which we define specifically for IEs as " the degree to which
a product or system can be used by specific users to meet their needs and accomplish spe-
cific goals." This definition is rooted in the universally recognised ISO/IEC 25010 (2021)
standard, which we adapt to address the unique demands of IEs. Building on the work of
Erazo-Garzon et al. (2021) and Salomón et al. (2023), who respectively adapted ISO/IEC
25010 (2021) for AAL systems and context-aware software systems, we propose a novel
quality-in-use model tailored for IEs. Our adaptation process is detailed, ensuring clarity in
how metrics are defined and applied:

1.	 Adaptation of the Generic ISO/IEC 25010 (2021) Model:

•	 We assessed each ISO/IEC 25010 (2021) characteristic for its relevance to IEs.
•	 We decided to retain characteristics like effectiveness, efficiency, and satisfaction.
•	 We removed or updated certain attributes that were less applicable to the IE context.

2.	 Integration of IE Principles:

•	 We mapped nine fundamental IE principles directly to relevant ISO/IEC 25010 (2021)
quality characteristics.

•	 For principles without a direct ISO/IEC 25010 (2021) counterpart, we introduced
new sub-characteristics.

•	 Each new or updated quality characteristic was clearly defined, ensuring relevance to IEs.

3.	 Definition of Specific Metrics:

•	 For each quality characteristic and sub-characteristic, we established clear, measurable
metrics from ISO/IEC 25023:2016 official documentation (ISO/IEC 25023, 2022).

•	 These metrics were developed to be IE-specific, ensuring they are tangible and relevant.

We followed an iterative process involving multiple refinement cycles to ensure com-
prehensive and consensus-based metric development. Various models were presented to
the two co-authors. This process continued until consensus was reached among all three
authors regarding the quality-in-use model depicted in Fig. 5. The finalised model incor-
porates adjustments to context completeness and flexibility while maintaining all sub-
characteristics within freedom from risk. Additionally, seven new sub-characteristics,
aligned with the remaining seven principles, were integrated under the categories of
effectiveness, efficiency, and satisfaction. The measurement functions for these quality
characteristics were then rigorously defined, adhering to the ISO/IEC 25023 (2022) Qual-
ity Measurement Framework standards. Each metric was constructed to be measurable,
relevant, and specific to the IE context, ensuring practical applicability and clarity. We
employed a clear scale, from 0 to a defined maximum, where values closer to the maxi-
mum indicate higher quality-in-use. The proximity to 1.0, for instance, signifies excep-
tional performance. Table 5 provides a summary of each metric, its scale, and the target
values for higher-quality performance. By incorporating these details directly into the
text, we aim to provide a clear, actionable, and transparent framework for evaluating the
quality-in-use of Intelligent Environments, offering stakeholders a detailed and practical
tool for assessment.

1096	 Software Quality Journal (2024) 32:1075–1135

1 3

Fig. 5   Quality-in-use Model for IEs

Table 5   Measurement Functions for Proposed Quality-in-use Model

Principle Measurement function

PE1 X = A/B
A-Number of acceptable contexts correctly identified by the system
B-Total number of distinct contexts of use

PE2 X = (X1 + X2 + X3 + X4)/4
X1 = A1/B1

A1-Number of situations of help correctly identified by the system.
B1-Total number of distinct situations when help is needed.
X2 = A2/B2

A2-Number of situations when system correctly recognised the user.
B2-Total number of distinct situations when user recognition is required.
X3 = A3/B3

A3-Number of situations when system correctly recognised the user’s preferences.
B3-Total number of distinct situations when user recognised user preferences.
X4 = A4/B4

A4-Number of situations when system exhibits empathy with the user’s mood and overall
situation

B4-Total number of distinct situations
PE3 X = A/B

A-Number of situations when system correctly offered assistance to the user
B-Total number of distinct situations when user assistance is required

PE4 X = A/B
A-Number of situations when system correctly achieved its goals without user intervention.
B-Total number of distinct situations when system should achieve its goals without user

intervention.

1097Software Quality Journal (2024) 32:1075–1135	

1 3

4.2 � Proposed methodological framework: UCIEDP2

The initial choice for guiding the development of Intelligent Environments (IEs) was the
User-Centred Intelligent Environment Development Process (U-CIEDP), as introduced
by Augusto (2014). However, it has been observed that U-CIEDP lacks a well-defined

Table 5   (continued)

Principle Measurement function

PE5 X = A/B
A-Number of privacy features configurable by the user
B-Total number of distinct user configured privacy features

PE6 X = 1 - A/B
A-Number of safety failures
B-Total number of distinct safety features

PE7 X = (X1 + X2 + X3)/3
X1 = A1/B1

A1-Number of successful cases
B1-Total number of distinct scenarios
X2 = 1 or 0
1 – System adapts and behaves correctly.
0 – System does not adapt.
X3 = 1-A3/B3

A3-Number of times system had to be re-programmed to achieve autonomy under given
scenario.

B3-Total number of distinct scenarios
PE8 X = 1 or 0

1 – no changes were required
0 – changes were required

PE9 X = (X1 + X2 + X3 + X4)/4

X1 = A1/B1

A1-Number of times when system correctly achieved its goals without user intervention.

B1-Total number of distinct situations when system should achieve its goals without user
intervention.

X2 = A2/B2

A2-Number of preferences successfully imposed by the user.

B2-Total number of distinct preferences provided by the system.

X3 = A3/B3

A3-Number of times when users successfully managed to undo decisions from the system.

B3-Total number of distinct situations when users can undo decisions from the system.

X4 = 1 or 0

1 - can disconnect

0 – cannot disconnect

1098	 Software Quality Journal (2024) 32:1075–1135

1 3

strategy for effectively managing quality requirements throughout the development pro-
cess, as noted by (Augusto et al., 2018; Ogbuabor et al., 2021; Santokhee et al., 2019). In
response to this limitation, we have enriched the U-CIEDP with new activities tailored to
each of its core phases: Initial Scoping, Main Development, and IE Installation, as detailed
in Tables 6, 7, and 8. This enhanced methodology, dubbed UCIEDP2, is systematically
illustrated in Fig. 6 and embodies a more quality-centric approach:

1.	 Initial Scoping: UCIEDP2 commences with collecting stakeholders’ visions and require-
ments via interviews, alongside documenting crucial project characteristics — time,
cost, and scope. An initial set of functional requirements is established, inviting stake-
holders to define specific quality characteristics. These characteristics are anchored
at the functional level to enable precise quantification and control, informed by the
research of Brodie and Woodman (2009) and Fenton and Bieman (2014), and measured
according to standards like ISO/IEC 25010 and ISO/IEC 25012 (ISO/IEC 25010, 2021;

Table 6   Enhancements to Initial Scoping Stage

Sub phase Proposed new Activities

Interview stakeholders 1. Establish vision of the project.
2. Gather critical success factors from stakeholders: time, cost and scope.

Define required services 3. Prepare an initial draft of the requirements specification.
4. For each functional requirement, propose quality characteristics and

measures from ISO/IEC quality standards.
5. Agree on the mandatory quality requirements defined in the proposed

quality-in-use model.
Define required infrastructure 6. Develop an IET to record past, goal and actual values for every quality

characteristic.
7. Validate the requirements, quality characteristics and goals with

stakeholders.
8. Compile a requirements specification document.

Initial design and prototyping 9. Propose design ideas in the IET. Use data from previous projects as
guide.

10. Evaluate and agree on a design idea with stakeholders.
11. Update requirements specification document.

Table 7   Enhancements to Main Development Stage

Sub phase Proposed new Activities

Design 1. Prepare design specifications for selected design.
2. Check and address design defects.
3. Prepare detailed test specifications.
4. Validate with stakeholders.

Implementing and testing 5. Run simulations on proposed system in a test environment.
6. Record actual values in IET for every quality characteristic.
7. Check and address code defects.

Verify correctness 8. Evaluate system using proposed quality-in-use model.
9. Validate IET with stakeholders.
10. Update requirements and design specifications, as necessary.

1099Software Quality Journal (2024) 32:1075–1135	

1 3

ISO/IEC 25012, 2021). We identified that in U-CIEDP, this phase lacked concrete steps
for integrating quality requirements from the outset. In UCIEDP2, we have introduced
specific activities such as ’Establishing Project Vision’ and ’Gathering Critical Success
Factors’ which ensure that quality is considered from the earliest stages. Each activity
is directly linked to overcoming U-CIEDP initial shortcomings, offering a detailed
methodology for capturing and documenting stakeholder quality expectations based on
ISO/IEC quality standards.

2.	 Quality and Requirements Documentation: Targets for each quality characteristic, per
functional requirement, are defined in collaboration with stakeholders and captured in
a customized Impact Estimation Table (IET), adhering to Gilb’s principles (2005). An
example of an IET can be found in Appendix C, enhancing reproducibility, and ensuring
clear, actionable guidelines for quality assessment. Following this, prototypes and design
concepts are developed, rigorously evaluated against the set quality targets, cost, and time
constraints. Moving beyond the broad guidelines of U-CIEDP, UCIEDP2 recommends
precise quality metrics, drawing from ISO/IEC 25010 (2021) and ISO/IEC 25012 (2021)
standards. The IET is designed for tracking and evaluation of these metrics throughout the
development lifecycle.

3.	 Main Development: This phase involves developing detailed designs and test cases using
appropriate design methodologies, with iterations as needed. Implementation follows,
preferably in short, incremental cycles, prioritising high-importance requirements and
integrating regular stakeholder feedback to ensure alignment with quality objectives.
Code verification employs methods such as test-driven development and code reviews
(Jones & Bonsignour, 2011). Post-implementation, the system undergoes comprehensive
testing and quality evaluations against the IE quality-in-use model, with results docu-
mented in the IET to identify any discrepancies from set targets, as outlined in Table 7.

4.	 Post-Deployment Assessment: The final phase focuses on assessing the deployed system
performance from the users’ perspective, incorporating user acceptance testing based
on the established quality-in-use model. Findings, along with any variances in quality
attributes, are systematically documented in the IET. This stage’s specific activities are
enumerated in Table 8.

By integrating these modifications into UCIEDP2, our aim is to present a model that
is not only robust and quality-focused but also transparent and replicable. We are commit-
ted to fostering a development lifecycle for IEs that meets functional requirements while

Table 8   Enhancements to IE Installation Stage

Sub phase Proposed new Activities

Equipment validation 1. Test hardware behaviour in deployed environment.
2. Validate against values recorded in IET.

Software validation 3. Test software behaviour in deployed environment.
4. Validate against values recorded in IET.

Services validation 5. Stakeholders perform user acceptance testing and log all issues.
6. Stakeholders record data in IET.

Interview stakeholders 7. Review all data collected from the validation activities.
8. Team validates data collected with stakeholders.
9. Discuss problem areas and devise strategy to address them.

1100	 Software Quality Journal (2024) 32:1075–1135

1 3

excelling in user satisfaction and quality assurance. The enhancements introduced here are
designed with the broader research community in mind, offering a blueprint for quality-
driven development in this dynamic field.

5 � Case study research design

In this study, an enhanced methodological framework, UCIEDP2, has been proposed for
engineering high quality IEs. To explore applicability of UCIEDP2 in different contexts,
a multiple case study research was deemed more appropriate to allow for generalisation
(Murzi, 2007; Staron et al., 2011; Kurtel & Ozemre, 2013; Runeson & Höst, 2009; Sicari
et al., 2019; Scott et al., 2021; Tröls et al., 2021; Yin, 2018). Another motivation for using
case study research is that we would like to investigate whether the framework would apply
to real-world settings (Dalcher & Brodie, 2007). We report on two case studies in this paper:
a final year undergraduate project and the other in industry respectively. Design of the case
studies was largely inspired by Yin (2018) and consisted of the following five steps:

1.	 “a study’s questions,
2.	 its propositions, if any,
3.	 its unit(s) of analysis,
4.	 the logic linking the [collected] data to the propositions; and
5.	 the criteria for interpreting the findings.’’

The main research question and corresponding propositions underpinning this study
are defined in Section 4. The unit of analysis in each project was development of a sys-
tem using UCIEDP2. As far as the fourth component is concerned, the literature review
revealed several questions which were linked to the propositions. Regarding the fifth

Fig. 6   Quality Enhanced U-CIEDP (UCIEDP2)

1101Software Quality Journal (2024) 32:1075–1135	

1 3

component of the case study design, the questions defined for each proposition were instru-
mental to identify the types of data which had to be collected and strategies to analyse
the data. Data for this study was mostly collected from interviews, project documentation
reports, test scripts for user acceptance testing and bug reports. Employees in different
roles were interviewed. The interviews were carried out as semi- structured interviews and
recorded as audio files. The data which was collected was mostly qualitative with some
quantitative data such as time, cost, and budget. The main researcher’s role in both case
studies was to provide support for the application of the UCIEDP2 methodology and to
provide an IET for data collection (Alasuutari et al., 2008; Saunders et al., 2016). Informed
consent was obtained from all participants involved in the study. Collaboration with the
industry partner was made possible due to an existing memorandum of understanding with
Middlesex University Mauritius. In the next sections, we describe the two case studies.

5.1 � Case study I: smart home monitoring system

The first case study is development of a smart home monitoring system. Figure 7 shows
the architecture diagram of the implemented system. Three sensors were connected to an
Arduino Nano board. Data collected by the sensors were transmitted to a MySQL database
hosted on a Raspberry Pi 4 computer using radio frequency. An Apache Web Server was
also installed on the computer. The Web Server hosted a web-based application to moni-
tor energy consumption, and provide recommendations, such as alerts and tips energy for

Fig. 7   Architecture Diagram of
Smart Home Monitorin System

1102	 Software Quality Journal (2024) 32:1075–1135

1 3

saving, using an adapted k-means clustering algorithm. The project stakeholders were a
third-year student as developer, a project supervisor, and an experienced business consult-
ant from a software development company as customer. First, we discuss development of
the system using prototyping. A kick-off meeting was scheduled at the beginning of May
2020. Since Mauritius was under lockdown during that period due to the Covid-19 pan-
demic, the meeting was held online. All the project stakeholders participated. The project
specification document was examined to determine how the requirements were specified.
The initial list of functional and non-functional requirements is given in Tables 9 and 10
respectively. It is worth mentioning that the non-functional requirements were lacking
specific metrics and were specified rather vaguely. Prototypes for the web-based applica-
tion were developed by following Nielsen Heuristics (Nielsen, 1994). Low fidelity mock-
ups were designed by the developer, and these were validated by the business consultant.
General feedback and improvements were recorded on paper. Quality requirements were
specified as non-functional requirements for the whole system. However, no metrics were
specified for the non-functional requirements as given in Table 10. The developer also
indicated that test cases were defined for each functional requirements and these were exe-
cuted towards the end of development. The system was evaluated using the Technology
Acceptance Model (TAM) with six constructs and a score of 4.47 was recorded (Sharma
et al., 2022).

Table 9   List of functional requirements

Code Requirement

FR01 The system shall accept input signals from motion sensors
FR02 The system shall accept input signals from gas sensors
FR03 The system shall accept input signals from electric sensors
FR04 The system shall allow wireless connectivity in a local area network setup
FR05 The system shall provide a responsive web-based user interface
FR06 The system shall provide a registration page
FR07 The system shall provide a live graphical display of electricity consumption

Table 10   List of non-functional
requirements

Code Requirement

NFR01 The system shall be secure and safe with appro-
priate security measures

NFR02 The system shall be efficient and fast
NFR03 The system shall be optimised to run all the time
NFR04 The system should be accessible to user every-

where with internet connection
NFR05 The web application shall be intuitive to use

1103Software Quality Journal (2024) 32:1075–1135	

1 3

5.1.1 � Application of UCIEDP2

An online half-day workshop was held in mid-May 2020 during which the UCIEDP2 meth-
odology and the quality-in-use model were explained to all stakeholders using PowerPoint
slides. The stakeholders agreed that the vision of the system was to develop a low cost and
easy-to-use web-based application to monitor energy consumption and provide accurate
recommendations on energy usage. Upon consultation of the ISO/IEC 25010 (2021) and
ISO/IEC 25012 (2021) models, the stakeholders unanimously agreed on a set of quality
sub-characteristics for each functional requirement. The details were compiled in an IET,
as summarised in Table 11. For brevity, a cut-down sample of the new system specification
is given below. In this example, functional requirement FR07 is now quantified as follows:

Functional requirement: FR07
The system shall provide a live graphical display of electricity consumption.
Quality sub characteristic: Usability. Appropriateness recognizability
Measure: Description completeness
Measurement function: X = A/B
A = Number of usage scenarios described in the product description or user documents
B = Number of usage scenarios of the product
0 <  = X <  = 1
Quality sub characteristic: Usability.Learnability
Measure: User guidance completeness
Measurement function: X = A/B
A = Number of functions described in user documentation and/or help facility as required
B = Number of functions implemented that are required to be documented
0 <  = X <  = 1

Table 11   Quality measures for functional requirements

Code Quality sub-characteristics Measure Prototyping Goal UCIEDP2

FR01 Interoperability Data formats exchangeability 0.5 1 0.75
Functional completeness Functional coverage 0.5 1 0.8

FR02 Interoperability Data formats exchangeability 0.25 1 0.55
Functional completeness Functional coverage 0.63 1 0.83

FR03 Interoperability Data formats exchangeability 0.75 1 1
Functional completeness Functional coverage 0.75 1 0.88

FR04 Interoperability Data formats exchangeability 1 1 1
Functional completeness Functional coverage 0.5 1 0.75

FR05 Time behaviour Mean response time 600 ms 300 ms 457 ms
FR06 Appropriateness recognizability Description completeness 0.65 1 0.87
FR07 Learnability User guidance completeness 0.14 1 0.57

Appropriateness recognizability Description completeness 0.43 1 0.79

1104	 Software Quality Journal (2024) 32:1075–1135

1 3

A second online meeting was convened a week later. This time the developer presented
the results recorded for each functional requirement, including the mandatory quality
requirements defined in the quality-in-use model. Using this data as baseline, the project
stakeholders discussed target values for each of the measures and updated the IET accord-
ingly. One iteration of phase one of UCIEDP2 was sufficient to complete the initial scop-
ing. During the second phase of UCIEDP2, the developer focused on improving the exist-
ing system based on available data. Priority was given to functional requirements with very
low measure scores. For instance, description completeness was initially measured at 0.14
while user guidance completeness was 0.43 for FR007. These improved to 0.57 and 0.79
respectively in the second prototype. The developer progressively improved the functional
requirements. However, significant time was required to research and apply new concepts.
Completion of phase two necessitated four iterations. The consultant was involved at the
end of each iteration for feedback. Development time increased to 18-person days from
10-person days for the first prototype. The system was then evaluated using the quality-
in-use model. Figure 8 shows a comparison of the measurements of the mandatory qual-
ity characteristics. All three project stakeholders were then interviewed for feedback at the
completion of the project.

Context completeness,
0.60

Flexible, 0.42

Independence, 0.40

Privacy, 0.67

Autonomy, 0.44

User Control, 0.63

Context completeness,
1.00

Flexible, 0.61

User engagement, 1.00

Independence, 0.70

Safety, 1.00

Operability, 1.00

User Control, 0.75

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Prototyping UCIEDP2

Fig. 8   Evaluation of the Two Systems Using the Quality-in-use model

1105Software Quality Journal (2024) 32:1075–1135	

1 3

5.1.2 � Findings

Next, we discuss the findings of this case study against the research propositions.

Proposition 1  Current projects in IE domains do not capture quality requirements ade-
quately in their specifications.

•	 Are quality requirements captured prior to the case study?
	  Partly
•	 How are quality requirements specified in the current system specifications?
	  They are expressed quite vaguely as non-functional requirements for the overall system.
•	 Are stakeholders’ vision taken into consideration when specifying the quality requirements?
	  No
•	 How is quality tracked during the development process?
	  Quality is not tracked during the development process.
•	 What is the strategy for managing conflicting quality requirements?
	  No strategy.
•	 Was any previous benchmark data available on quality aspects of the system?
	  No data was previously available.
•	 How is system evaluated during and post development?
	  User acceptance testing and TAM were administered post development only.

The findings highlight notable deficiencies in the existing method of capturing and
defining quality requirements. Preceding the case study, quality requirements were only
partially documented and were expressed in a vague manner as non-functional require-
ments for the entire system. Furthermore, the vision and priorities of stakeholders were dis-
regarded during the specification of these requirements. The tracking of quality throughout
the development process was absent, and there was an absence of a strategic framework
for handling conflicting quality requirements. Additionally, no foundational data existed
regarding the quality aspects of the system, impeding the ability to accurately assess and
enhance the system during and after development. The sole evaluations conducted were
User Acceptance Testing (UAT) and the Technology Acceptance Model (TAM), adminis-
tered post-development, potentially insufficient for uncovering all system issues. In sum-
mary, these deficiencies underscore the necessity for a more comprehensive and systematic
approach to capturing, defining, and assessing quality requirements within IE domains.

Proposition 2  A quality enhanced methodology (UCIEDP2) leads to development of higher
quality IEs.

•	 How are stakeholders’ feedback captured during the development process?
	  Specifying the vision was identified as a key step. The stakeholders agreed that it

helped them to consider relevant quality characteristics which would contribute towards
meeting the vision of the system. However, picking the right quality characteristics
from the ISO/IEC 25000 (2021) standards and agreeing on the quality targets were
quite challenging. The researcher had to schedule a session to explain the ISO/IEC
25010 (2021) and ISO/IEC 25012 (2021) quality models. The developer then measured
each functional requirement and recorded the results in an IET (Table 11). Stakeholders

1106	 Software Quality Journal (2024) 32:1075–1135

1 3

agreed that they were more involved during each stage of development. The consultant
highlighted that giving feedback based on the IET worked well and they were able to
monitor progress more objectively.

•	 What is the impact of specifying quality requirement(s) for every functional require-
ment on development time, cost and overall quality?

	  According to the developer, more time was required during each stage of develop-
ment as more checks and tests were required to ensure quality expectations are being
met for each functional requirement. He claimed the number of test cases almost tri-
pled due to increase in number of test conditions. But importantly, the IET gave them
clearer picture of realization of quality characteristics for each requirement for the
existing version of the application. This allowed the developer to better focus on criti-
cal areas which needed improvement. It was also possible to measure the functional
requirements using the quality characteristics during design time and monitor progress
during implementation. However, since this was a final year project, it was difficult
to estimate true cost of development effort as budget was capped at $100 to cover for
hardware expenses only.

•	 How effective is UCIEDP2 to developers as a methodology?
	  The developer claimed that the activities for each phase were clearly defined and

conducive to manage the quality requirements during development. His main challenge
was picking quality characteristics based on the ISO/IEC 25000 (2021) standards. To
address this challenge, the main author arranged a session involving all three stake-
holders. During this session, the ISO/IEC 25010 (2021) and ISO/IEC 25012 (2021)
quality models were explained, drawing reference from official documentation Due
to time constraints, stakeholders opted to focus on a select few quality characteristics
from the model that could be realistically implemented. Subsequently, a second ses-
sion was scheduled a week later, during which the stakeholders actively participated
and achieved unanimous consensus on the chosen quality characteristics. The require-
ments were re-adapted by incorporating quality characteristics, as summarised in
Table 11. Since functional requirements already existed for the system, only one cycle
was required during the initial scoping stage. The developer also evaluated the existing
system using the quality-in-use model to obtain initial data for each mandatory qual-
ity characteristic. Thereafter, target and current values for each measure were defined
and recorded in the IET. During the main development stage, the developer admitted
measuring each functional requirement independently during implementation using the
quality characteristics. A second round of measurements was carried after all require-
ments were implemented to check for big deviations from expected results. The devel-
oper highlighted that although this strategy worked for this project, clearer guidance
could be provided to explain the process of measuring the functional requirements.

•	 What is the impact on development cost and time using UCIEDP2?
	  The main impact was on development time which increased from 10-person days to

18-person days.
•	 How are conflicting quality requirements managed?
	  There were no conflicting quality requirements.
•	 Does application of UCIEDP2 result in development of higher quality IEs?
	  There is a consensus among all those involved in this project that having a list of well-

defined functional and quality requirements with target baselines helped throughout the
project. The developer highlighted that the baselines contributed to track progress during
the development stages. However, fixing some of the design and coding issues alone was
very challenging and time consuming for the developer. Significant amount of time was

1107Software Quality Journal (2024) 32:1075–1135	

1 3

spent learning and testing new coding concepts to meet some quality expectations. The
stakeholders agreed that application of UCIEDP2 resulted in development of a higher
quality system compared to the previous version, as evidenced in Table 11. They were
also able to choose the solution which delivered the best value in terms of quality, cost
and development effort during design and monitor its subsequent implementation.

Proposition 3  An IE specific quality-in-use model is beneficial to evaluate quality of IEs.

•	 How relevant is the proposed list of mandatory quality characteristics?
	  The stakeholders were particularly interested in privacy, context coverage and

user control out of the nine mandatory quality characteristics. In addition, they
chose trust based on the objectives of the project. Nevertheless, the developer
evaluated the existing system using the quality-in-use model and recorded data for
every mandatory quality characteristic in the IET. In the second version developed
using UCIEDP2, priority was given towards improving the selected four quality
characteristics. Overall, the developer and consultant agreed that the measures were
relevant to measure each quality characteristic. They acknowledged the importance
of the remaining mandatory requirements towards developing more acceptable sys-
tems. However, due to time and resource constraints these would be improved in
future versions. The radar map in Figure 8 captures the degree to which each qual-
ity characteristic has been realized using the two methodologies.

•	 Does the quality-in-use model provide more visibility about the quality of the sys-
tem to stakeholders?

	  Both the consultant and the programmer revealed that the quality-in-use model
was instrumental to have a better appreciation of the system quality. They agreed
that the data helped to evaluate the system more effectively and objectively from
a user perspective. In the previous version, the user acceptance testing, and TAM
were only performed after development of the system. The quality-in-use model
also allowed for iterative development using data collected as feedback to make
more incremental development of hitting the quality targets.

•	 How effective is the quality-in-use model to developers?
	  According to the developer, the quality-in-use model was relatively easy to use.

More importantly, it was useful as a planning tool to manage complexity of these
types of systems and better manage conflicting quality requirements.

5.2 � Case study II: planning solution

The second case study was carried in a mid-sized local company. It has a workforce of
30 employees with nine developers and three testers. The company delivers telematics
solutions including geographical platforms for measuring asset performance in real time,
fleet management and IoT solutions. Its customer base includes public and private sector
authorities, including organisations within the African subcontinent. It made a transi-
tion to Agile Scrum from waterfall methodology in 2016. However, the management of
the company is keen to explore alternative methodologies which would improve their
time to market, allow earlier identification and correction of defects, and reduce vol-
ume of regressions and reworks post deployment. The project consisted of developing
a planning solution for a new customer. Its purpose was to optimize daily operation of

1108	 Software Quality Journal (2024) 32:1075–1135

1 3

vehicles, spot route deviation, optimize fuel efficiency and ensure customer satisfaction.
The application provides real time information for connected assets. At the core of the
platform is a tracking engine. GPS trackers, fuel and machine sensors are installed on
clients’ vehicles. Positional and engine related information is then transferred over the
mobile networks to the tracking engine which corrects any positional discrepancies and
false coordinates which might occur due to dropped network connections during trans-
mission. The low-level information is then translated to a database format capable of
being used by other applications. The information is rendered in real time using graphi-
cal representations that allow users to monitor the performance of the asset. Figure 9
shows the high-level architecture of the solution. This project was selected by the com-
pany since a similar one was delivered in March 2019 to a different customer and which
would thus serve as baseline for comparisons (Fig. 9).

5.2.1 � Application of agile scrum

A kick-off meeting was held in May 2021 with key stakeholders such as the general man-
ager, account manager, chief programmer, and lead tester. It was decided that the study
would be conducted in two phases. The first phase consisted of interviewing each team
member to obtain background information on current practices regarding system develop-
ment at the company. Due to time constraints and availability, the interviews were sched-
uled over a period of one month and were approximately one hour in length each. Fol-
lowing this initial round of interviews, the main observations were summarised as follows.
The company has adopted Agile Scrum as development methodology and the team engages
in daily stand-up meetings. Customers, normally a project sponsor and an IT manager or
technical person, are involved during every stage of the project since the start. Require-
ments gathering consists of capturing the needs of the clients first. These are translated

Fig. 9   High level Architecture Diagram of Planning Solution

1109Software Quality Journal (2024) 32:1075–1135	

1 3

to functional requirements by the consultants. Once all requirements have been obtained,
the next step is for the project manager to define all the fields, process flows, data capture
and screen flows in a software design document, which is then validated by the customer.
Development starts following approval from the customer. Test scripts are also written by
a test manager for each screen. When development is completed, testing is carried out by
the testers. Following this, the system is deployed for user acceptance testing by the actual
users. Quality is basically assessed through the testing process. The company does not
enforce any kind of best practice with regards to quality. It all comes down to individual
expertise of the development team. However, although customers are satisfied with the sup-
port and engagement provided, the main limitation is volume of regressions that are needed
post deployment, and which affects timely delivery of other projects. Bugs are maintained
in the ClickUp (2022) bug tracking software. A decision was also made to recruit the same
Scrum team on the new project: two senior developers (5 + years of experience), three jun-
ior developers (1–3 years) and three testers.

5.2.2 � Application of UCIEDP2

The second phase of the study started in mid-June 2021 and was complete by end of September
2021. It focused on application of UCIEDP2 to a pilot project of similar complexity and size
as the previous one. A half-day virtual meeting was conducted to explain UCIEDP2, the new
quality-in-use model and the ISO/IEC 25000 (2021) standards to the key stakeholders and the
development team. They were then tasked to propose quality characteristics based on the ISO/
IEC 25000 (2021) standards. Upon consultation of bug reports of the existing project, perfor-
mance efficiency was identified as key quality characteristic. Customers also complained that
performance of some queries for the first project degraded over time. Therefore, the measures
selected unanimously by the team were mean response time and response time adequacy. Out
of the 75 functional requirements, 28 were identified as critical. The two measures were defined
for each of these 28 requirements. Below is an example for one critical requirement:

Functional requirement: User shall be able to insert planning request either on screen
or by mass upload.
Quality sub characteristic: Performance Efficiency. Time Behaviour
Measure: Mean response time
Measurement function: X = ∑ (Ai)/n
i = 1 to n
Ai = Time taken by the system to respond to a specific user task or system task at i-th
measurement
n = Number of responses measured
Measure: Response time adequacy
Measurement function: X = A/B.
A = Mean response time
B = Target response time specified
0 < = X < = 1

The project team consulted the previous product backlog but prioritised the 28 criti-
cal requirements first. However, all the developers were first assigned to record baseline
values for the two measures for every functional requirement from the first planning pro-
ject. They were supported by the two testers. Data was recorded in an IET (Table 12)

1110	 Software Quality Journal (2024) 32:1075–1135

1 3

Ta
bl

e 
12

  
Pa

rti
al

 Im
pa

ct
 E

sti
m

at
io

n
Ta

bl
e

fo
r P

la
nn

in
g

So
lu

tio
n

Fu
nc

tio
na

l R
eq

ui
re

m
en

t
A

gi
le

 S
cr

um
U

C
IE

D
P2

Q
ua

lit
y

ch
ar

ac
te

ri
st

ic
Pa

st
G
oa
l

Ac
tu
al

Pa
st

G
oa
l

Ac
tu
al

U
se

r s
ha

ll
be

 a
bl

e
to

 in
se

rt
pl

an
ni

ng
 re

qu
es

t e
ith

er
 o

n
sc

re
en

 o
r b

y
m

as
s u

pl
oa

d.
Pe

rfo
rm

an
ce

 E
ff

ic
ie

nc
y.

Ti
m

e
B

eh
av

io
ur

. M
ea

n
re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

-
5s

10
s

10
s

5s
2s

Pe
rfo

rm
an

ce
 E

ff
ic

ie
nc

y.

Ti
m

e
B

eh
av

io
ur

.
Re

sp
on

se
 ti

m
e

ad
eq

ua
cy

-
1

0.
6

0.
6

1
0.

9

1111Software Quality Journal (2024) 32:1075–1135	

1 3

and shared among the entire team. A second meeting, led by the senior developers, was
carried a week later to reach a consensus on the quality targets for each functional require-
ment, including the mandatory requirements for the quality-in-use model. They presented
the recorded baseline values and proposed targets for the two measures for each functional
requirement. There were some divergences of opinions with regards to the targets among
the team members. However, these were resolved though discussions of the discrepan-
cies and identification of any trade-offs that was deemed necessary. The team members
also explored compromises and collectively arrived at a consensus on the quality targets.
That concluded the initial scoping phase in UCIEDP2. The team decided to adopt a com-
bination of iterative and incremental approach to development. The 15 highest priority
requirements were implemented first during the main development phase. The artefact
produced was then evaluated using the quality-in-use model in production environment.
The IET was updated with data collected and inconsistencies were easily identified,
which led to further improvement. Feedback was then sought from the general manager
and account manager before work started on the next increment. Overall, after four cycles
during development, a complete version of the system was ready for system testing. The
two testers then proceeded to release testing of the system using the proposed quality-in-
use model. Data on number of regressions and reworks was collected for three releases.
Figure 10 shows a comparison between the two planning systems developed using Agile
Scrum and UCIEDP2 respectively.

5.2.3 � Findings

The project team members were individually interviewed to gather their feedback on
UCIEDP2 and the quality-in-use model at the completion of the project. In this section. we
discuss the findings of this case study against the research propositions.

Proposition 1  Current projects in IE domains do not capture quality requirements ade-
quately in their specifications.

•	 Are quality requirements captured prior to the case study?
	  No
•	 How are quality requirements specified in the current system specifications?
	  Not specified. However, performance testing of the application is done if time per-

mits. Usability is validated during the user acceptance testing. The lead tester provides
test scripts to the customers and assists them whenever required.

•	 Are stakeholders’ vision taken into consideration when specifying the quality requirements?
	  No
•	 How is quality tracked during the development process?
	  Quality is not tracked during the development process.
•	 What is the strategy for managing conflicting quality requirements?
	  No strategy.
•	 Was any previous benchmark data available on quality aspects of the system?
	  No data was previously available.
•	 How is system evaluated during and post development?
	  User acceptance testing post development only.

1112	 Software Quality Journal (2024) 32:1075–1135

1 3

Proposition 2  A quality enhanced methodology (UCIEDP2) leads to development of
higher quality IEs.

•	 How are stakeholders’ feedback captured during the development process?
	  The general manager confirmed that customers are involved during every stage of a

project. The team generates the requirements specification, design document and test
scripts after capturing the full customised demands of the clients. With the adoption of
UCIEDP2, the requirements were quantified. Quality targets were defined following
consultation with the project team. The researcher had to schedule a session to explain
the ISO/IEC 25010 (2021) and ISO/IEC 25012 (2021) quality models. The accounts
manager recorded these metrics in an IET which was then used as basis for assessing
potential design solutions more likely to meet the quality targets along with estimated
development effort, cost, and time. This session was facilitated by the team leaders,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Context completeness

Flexible

User engagement

Independence

PrivacySafety

Autonomy

Operability

User Control

Evaluation of IE systems using the proposed quality-in-use model on the mandatory quality characteristics

Agile Scrum

UCIEDP2

Fig. 10   Evaluation of the Two Planning Solutions Using the Quality-in-use model

1113Software Quality Journal (2024) 32:1075–1135	

1 3

senior developers, and testers. The potential design options were then presented to the
general manager and customers and a consensus was reached on the solution which will
likely provide the best value in terms of quality, time, and cost. Following this phase,
all the fields, process flows, data capture and screen flows were captured in a design
document, which was again validated by the general manager and the customers. Cus-
tomers’ feedback was instrumental to drive implementation of the new system. After
each increment, the artefact was demonstrated and resulting quality related data was
used as basis for decision making.

•	 What is the impact of specifying quality requirement(s) for every functional require-
ment on development time, cost, and overall quality?

	  Looking at the Table 12, the functional requirement is placed on the left-hand col-
umn. Goal represents the expected target value while actual captures the value which
was measured. For instance, mean response time for the functionality was noted to
be 10s for the system developed using Agile Scrum. A 50% improvement was pro-
posed and the target to achieve was set to 5s. However, after refactoring the codes, the
response time the response time further improved 2s. However, the number of system
tests increased considerably from 334 to 725 with the introduction of quality character-
istics since new test cases were defined. Total effort also increased from 21-person days
to 32-person days for the new project. Estimated development cost rose by Rs 75K.
Table 13 summarises the two projects on key characteristics.

•	 How effective is UCIEDP2 to developers as a methodology?
	  The three senior developers agreed that while using Agile Scrum, the focus was

more on delivering system functionalities after every sprint. Testing was always
performed by the quality assurance team at the end. However, with the adop-
tion of UCIEDP2, quality measures were now incorporated with every functional
requirement. They reflected that this encouraged them to perform tests early and
check quality targets are being met during development. This was also beneficial
since it allowed detection of errors early on. On the other hand, since the team was

Table 13   Comparison Between Planning Projects

Characteristic Planning Project

Methodology Agile Scrum UCIEDP2

Number of staff • General Manager (projects and operations)
• Account Manager
• Chief Programmer
• Lead Tester
• 1 person for documentation
• 5 developers
• 3 Testers

Number of features 15
Number of requirements 75
Number of system tests 334 427
Total effort 21-person days 32-person days
Estimated development cost (Rs) 200 K 275 K
Number of releases 3
Number of regressions 126 85
Number of reworks 15 9

1114	 Software Quality Journal (2024) 32:1075–1135

1 3

composed of junior and senior developers, there were some divergences in effort
and time required to complete tasks of similar levels of complexity. The two junior
developers needed more consultations and support from seniors to resolve techni-
cal issues. The two testers reflected that previously they were running test scripts
to validate the functional requirements only. However, with UCIEDP2, they also
had to measure the quality characteristics for each functional requirement which
led to a significant increase in effort and time. However, the general perception was
that UCIEDP2 was very effective because everybody had a clearer picture of the
project’s expectations. However, on the downside, significant time and effort were
required and it was tricky to manage multiple projects.

•	 What is the impact on development cost and time using UCIEDP2?
	  Total effort increased from 21-person days to 32-person days. The estimated devel-

opment cost also was higher, as summarised in Table 13. The general manager high-
lighted that additional time was required to apply UCIEDP2 and cover for the com-
paratively higher number of system tests. However, on the positive side, bugs were
discovered early during development and there was a decrease in number of reworks
over three releases. The number of regressions had also fallen, especially on issues
related to response times of queries. According to the general manager, UCIEDP2
offered a better return on investment compared to Agile Scrum on this planning project.

•	 How are conflicting quality requirements managed?
	  Managing performance (response time) and usability in the planning solution was

challenging previously. It requires availability of data in real time. However, perfor-
mance related issues increased as the user interfaces grew more complex. Unfortu-
nately, a lot of these problems emerged during testing and lead to reworks or quick
fixes to ship the system on time. With the introduction of UCIEDP2, since performance
is now quantified, the senior developers were able to find problems earlier during
development. Crucially, they had collected critical data to explain to customers what
was technically feasible.

•	 Does application of UCIEDP2 result in development of higher quality IEs?
	  The consensus from the team is that they had more confidence in the quality of the

system that was developed. By measuring quality throughout the development process,
all five developers agreed that quality was embedded into the system. This is also sup-
ported by a reduction in major reworks and regressions post deployment for the new
planning project (Table 13). The general manager and accounts manager highlighted
that UCIEDP2 gave a sense of direction in terms of design and quality of choices and
were able to give more objective feedback to customers. They were thus able to choose
the solution which would deliver the best value in terms of quality, cost, and develop-
ment effort.

Proposition 3  An IE specific quality-in-use model is beneficial to evaluate quality of IEs.

•	 How relevant is the proposed list of mandatory quality characteristics?
	  The team acknowledged that evaluation of systems was always performed using user

acceptance testing at the end of development. The introduction of mandatory quality
characteristics served as a reminder of the critical attributes that systems of this nature
should embody. To ensure a comprehensive assessment without resource dispersion

1115Software Quality Journal (2024) 32:1075–1135	

1 3

across numerous quality dimensions, the team deliberately chose to concentrate on
these nine mandatory quality characteristics for the current project. The quality-in-use
model was first applied to the existing planning solution by the developers and testers.
The results provided useful insights into the quality of the system. The team noted that
quality targets for three out of the nine characteristics were already met.

	  The developers tried to improve the remaining six characteristics and were success-
ful to some extent. The radar maps in Figure 10 show the degree to which each manda-
tory quality have been realized using the two methodologies for the planning solutions.

•	 Does the quality-in-use model provide more visibility about the quality of the system
to stakeholders?

	  The senior developers pointed out that the quality characteristics revealed critical
insights into the quality of their first planning solution. Previously, quality was always
left to the quality assurance team. Testing during development was sporadic. However,
the quality-in-use model offered tangible and measurable indicators by quantifying the
quality aspects. They were also able to assess more objectively their implementation
choices, allowing more iterative refinement of the system as development progressed.
Moreover, they argued that metrics enabled a comparative analysis over time or across
different projects. By establishing benchmarks and comparing metrics across various
iterations or projects, teams can identify trends, assess the impact of process improve-
ments, and make informed decisions for future development efforts.

•	 How effective is the quality-in-use model to developers?
	  The implementation of the quality requirements, using the quality-in-use model,

allowed the developers to perform a more comprehensive evaluation of the system.
The senior developers agreed this level of granularity was particularly beneficial as it
allowed them trace problems back to the functional level, gaining insights into the root
causes of issues.

	  The comprehensive evaluation made possible by the quality-in-use model empow-
ered them take targeted and effective measures to enhance the overall quality of the
system. By understanding the specific aspects that require attention, they were able to
prioritise their efforts and implement changes that had a meaningful impact on the sys-
tem performance. However, the two novice developers highlighted that they faced some
challenges in applying the quality-in-use model concretely. While they appreciated the
level of support which was provided by the senior developers, they expressed a need
for more explicit guidelines and practical exercises to enhance their understanding and
application of the quality-in-use model. This feedback highlighted the importance of
providing adequate resources and guidance, especially for less experienced team mem-
bers, to maximize the model’s effectiveness across the entire development team.

6 � Discussions

In this section, we aggregate the findings from the two case studies.

Proposition 1  Current projects in IE domains do not capture quality requirements ade-
quately in their specifications.

Ensuring a common understanding of system quality requirements among stakeholders
is crucial, given the various interpretations of quality (Jones & Bonsignour, 2011). Both

1116	 Software Quality Journal (2024) 32:1075–1135

1 3

case studies highlight shortcomings in effectively addressing quality requirements. They
were expressed quite vaguely as non-functional requirements encompassing the entire sys-
tem which is a common practice (Ali et al., 2022; Ruiz-López et al., 2013; Werner, 2022).
However, the "one definition fits all" approach doesn’t aptly apply to non-functional require-
ments (Chung et al., 2009). Each IE system has certain unique characteristics and stakeholder
expectations which may require more tailored approach to defining and implementing quality
requirements. Unfortunately, we note that stakeholders’ vision was often disregarded in both
case studies. Werner (2022) further argues against applying quality requirements uniformly
for the entire system due to potential higher costs. This again highlights the need of adapting
quality requirements to the specific characteristics and demands of each system.

Chung and do Prado Leite (2009) further draw attention to a disproportionate emphasis
on functional requirements. There is a risk that functional requirements may be neglected
or overlooked. The study by Oriol et al. (2020) adds weight to this concern by highlighting
that in Agile based developments, quality requirements are often given less consideration
compared to their functional requirements. This again raises concerns about the effective-
ness of development methodologies in ensuring a balanced focus on both functional and
non-functional aspects of a system.

The argument presented by Brodie and Woodman (2009) against separating non-functional
or quality requirements from functional requirements further reinforces the idea that these two
types of requirements should be interrelated. Integrating quality characteristics with functional
requirements, as advocated by Edward Deming (Ghobadian & Speller, 1994), ensures that
quality becomes an inherent aspect of the system. System development aligns with developer
specifications, but customer expectations must also be met (Jones & Bonsignour, 2011). This
approach discourages dissociation of quality and functional aspects, promoting a holistic per-
spective for effective system development. Both case studies also highlight that the stakehold-
ers’ vision was disregarded, and there was a lack of quality monitoring during the development
process. The strategic management of conflicting requirements was insufficient, exacerbated
by the absence of benchmark data and evaluation methods.

Thus, there is a need to improve how quality requirements are currently addressed in IEs
domain projects. The highlighted deficiencies overlook stakeholders’ vision and the imbal-
ance in emphasis between functional and non-functional requirements collectively support
the proposition that current projects in IE domains do not capture quality requirements ade-
quately in their specifications.

Proposition 2  A quality enhanced methodology (UCIEDP2) leads to development of higher
quality IEs.

In the first case study, Prototyping was initially used as methodology (Sommerville,
2011). According to the developer, it gave him the flexibility to explore ideas and seek
feedback from the consultant and supervisor. On the other hand, the company had adopted
Scrum, which is considered as a prevalent Agile method, as methodology by the company
(Hron et al., 2022). The general manager pointed out that this offered several advantages
over conventional approaches such as prioritisation of requirements based on business value
and delivery of potentially shippable product increments after a sprint (Hanslo et al., 2019).
In addition, utilisation of Scrum metrics such as velocity, sprint length and retrospective
meetings were used to improve on project delivery objectives (Greening, 2015; Hanslo
et al., 2019). The Scrum team members agreed that they were working very closely with
customers to refine the requirements and were following recommendations from the Scrum

1117Software Quality Journal (2024) 32:1075–1135	

1 3

Body of Knowledge (SCRUMstudy™, 2016) to ensure early value delivery. However, the
main issues were related to quality although projects were being delivered on time according
to the general manager. In both case studies, testing was the predominant method to evaluate
the systems post development. However, it is important to note that testing can only reveal
the presence of errors, not their absence. Consequently, some requirements and design bugs
persisted even after testing. For example, usability issues lingered in the first case study. In
the second case study, reworks and regressions occurred after each release, primarily due to
performance-related problems, incurring substantial overhead costs, time, and resources.
Management of the company expressed concerns about the excessive time and resources
spent on post-development bug fixing and regression handling, impacting other projects due
to resource unavailability. Surprisingly, a quantitative analysis of the Scrum Framework found
no significant positive correlation between quality and Scrum adoption (Hanslo et al., 2019).

The introduction of the UCIEDP2 methodology mitigated these shortcomings by pri-
oritising stakeholders’ feedback during development. Most importantly, the vision of
the stakeholders was translated to measurable quality characteristic(s) from the ISO/IEC
25000 (2021) standards. Despite challenges in selecting appropriate characteristics and
targets, the use of ISO/IEC 25000 (2021) standards facilitated the specification of qual-
ity requirements. Agreed baseline and target values for each functional requirement was
recorded in an IET. This also influenced the way the most optimal solution was selected
based on cost, time, and quality expectations rather than subjectively. All participants
agreed that UCIEDP2 successfully managed quality requirements, aided by the IET for
progress tracking. Moreover, the systematic incorporation of stakeholders’ feedback during
development facilitated the integration of quality measures into each functional require-
ment, enabling early testing and tracking of quality targets. This was a departure from con-
ventional end-of-development testing which served as the predominant method to assess
systems in both case studies.

UCIEDP2 departs from the inflexible nature of plan-based methods and addresses the
absence of metrics for measuring quality in Scrum (Sommerville, 2011). It facilitates pro-
gress tracking by assessing quality measures during development, encouraging immedi-
ate problem resolution rather than deferring it to the end of development. Additionally, it
offers flexibility to accommodate various lifecycle approaches, including incremental, pro-
totyping, iterative, or hybrid methodologies. The recommended iterative approach involves
using feedback for incremental development to meet the established targets (Humble &
Farley, 2010). However, a key challenge is shortening the development cycle to obtain early
and regular feedback from customers. Both case studies highlighted that novice develop-
ers required more time and support to enhance code compared to their senior counterparts,
leading to an increase in testing efforts that could potentially impact development sched-
ules (Gordon & Bieman, 1993). Despite these challenges, the methodology demonstrated
advantages such as early bug detection during development and a reduction in rework
instances across various releases. These benefits allowed for improved planning when deal-
ing with multiple projects concurrently.

The arguments provide a compelling case for the second proposition suggesting that
the UCIEDP2 methodology positively contributes to the development of higher quality
IEs compared to initially employed methodologies (Prototyping and Scrum) by prioritis-
ing stakeholder feedback during development, specification of quality requirements, pro-
gress tracking throughout development, and early testing. While this methodology led to
increased development cost and time due to additional tests and efforts, it proved effective
for developers generally, offering a comprehensive evaluation of the system and targeted
improvements. This approach provided a clearer understanding of project expectations.

1118	 Software Quality Journal (2024) 32:1075–1135

1 3

Proposition 3  An IE specific quality-in-use model is beneficial to evaluate quality of IEs.

As already discussed, quality was initially overlooked in both case studies. Efforts were
mostly concentrated towards implementing the functional requirements. IEs are personal-
ised and user-centric systems. They depend on the specific physical environments in which
they operate since different users will have different requirements (Banijamali et al., 2020).
However, quality aspects related to the personalised nature of IEs such as user control,
context coverage, and privacy were not explicitly considered in the early stages. Testing
primarily revealed functional errors but lacked comprehensive insights leading to a dis-
crepancy between user expectations and system capabilities.

The application of this adapted quality-in-use model in the two case studies proved to be
instrumental in guiding the development processes. The model explicitly outlines quality
characteristics relevant to IEs. Developers reported that the defined quality characteristics
and metrics facilitated the selection of optimal design ideas, considering factors such as
cost, time, and quality. They could also weigh the trade-offs between adapting the system
to diverse physical environments. The stakeholders expressed appreciation for the informed
decision-making enabled by the UCIEDP2 methodology at each phase. Developers in
both case studies acknowledged that the quality-in-use model provided a more objective
perspective on the anticipated capabilities of the systems and allowed for system develop-
ment tailored to specific customer contexts. Moreover, the IE-specific quality-in-use model
proved beneficial for evaluating IE quality. Stakeholders prioritised mandatory quality
characteristics, such as privacy, context coverage, user control, and trust. The quality-in-
use model provided transparency, enabling informed decisions and incremental improve-
ments throughout the development process.

Furthermore, the collection of critical benchmark data represented a notable shift in the
company’s approach, providing more accurate insights than their prior method of obtain-
ing feedback through user interface demonstrations. Although this change meant increased
efforts for developers and testers, involving more efficient code writing and extensive test-
ing throughout development, it proved beneficial in meeting and managing quality levels.
Constant monitoring of selected quality attributes allowed developers in both projects to
navigate quality trade-offs and minimise the risk of accruing technical debt. A similar
observation aligns with the findings of Sas and Avgeriou (2020), who, in their study inter-
viewing developers across various companies developing embedded systems, noted the
importance of actively managing quality attributes to mitigate technical debt.

The analysis supports the third proposition and suggests that an IE specific quality-
in-use model is indeed beneficial for evaluating the quality of IEs. The tailored approach
addresses the unique challenges posed by these personalised and user-centric systems and
guides both developers and stakeholders in making informed decisions throughout the
development process. However, it required a substantial investment of time and effort, pre-
senting challenges in managing multiple projects simultaneously.

7 � Threats to validity

Yin (2018) highlighted several common criticisms of case study research, including lack
of rigor, bias, difficulty in generalisation, and extensive, cumbersome documentation.
In response to these concerns, it is emphasised that improving the quality of a case study
involves adhering to four empirical research tests: construct validity, internal validity, external

1119Software Quality Journal (2024) 32:1075–1135	

1 3

validity, and reliability (Yin, 2018). To enhance the robustness and credibility of the research
findings, a systematic scrutiny of potential validity threats was conducted at every stage of
the case study, drawing on the validity perspectives proposed by Gibbert et al. (2008) and
Runeson and Höst (2009). The adoption of these perspectives facilitated a comprehensive
evaluation of the study’s design, execution, and the generalisability of its findings.

The formulation of the main research question and propositions was informed by a thor-
ough analysis of the literature. However, there is the possibility that the literature review
might not have been exhaustive. Data collection, stemming from research questions for
each proposition, involved multiple sources in both case studies, including interviews,
meetings, project reports, system specification documents, bug reports, and test reports.
One challenge to the construct validity is potential misinterpretation of interview questions
by participants. To mitigate this concern, the main author conducted a pilot test with the
two co-authors to identify ambiguous questions or potential misinterpretations (Creswell
& Creswell, 2017). The interview questions were then further refined and are detailed in
Appendices D and E, respectively. In both case studies, the main author also carried train-
ing and information clarification meetings to ensure that the participants are adequately
trained and briefed on the interview protocol (Rubin & Rubin, 2012). After completing
each interview, the primary author emailed a summary of the findings to each participant,
following the approach recommended by Morse (1994) to ensure an accurate representa-
tion of their perspectives.

Additionally, an established coding scheme and a systematic data analysis plan were
implemented to ensure objective and thorough data analysis. Validity perspectives proposed
by Gibbert et al. (2008) and Runeson and Höst (2009) were applied into the coding scheme
development and data analysis. Gibbert et al. (2008) offer a structured approach to address
threats to construct validity, emphasizing the importance of ensuring that selected variables
accurately represent underlying theoretical constructs. This was particularly crucial in the
context of a case study. The coding scheme for each proposition was assessed to ensure that
it aligns with the theoretical constructs underlying it. To validate relevance and complete-
ness of the coding categories, the main author conducted a pilot project and sought feedback
from the two co-authors who are domain experts. Meanwhile, Runeson and Höst (2009) con-
tribute valuable insights into addressing concerns related to internal and external validity in
empirical research, guiding the examination of potential biases, confounding variables, and
the generalisability of findings beyond the specific case study context. Despite the qualitative
nature of the study, quantitative analysis was incorporated, with results interpreted in consid-
eration of internal validity threats. However, we acknowledge that the metrics proposed for
the quality-in-use model have undergone limited empirical testing, primarily through initial
pilot studies. First, they could be re-evaluated and refined using the Goal-Question-Metric
(GQM) approach. This will involve clearly defining specific goals for each principle, formu-
lating precise questions to reflect these goals, and ensuring our metrics directly answer these
questions. While these studies provided valuable insights, they fall short of a comprehen-
sive empirical validation needed to firmly establish the metrics reliability and validity across
diverse IE contexts. More comprehensive empirical validation across a broader range of IE
domains needs to be conducted. A larger and more diverse group of domain experts should
be engaged in the review process. Their feedback could be obtained on the relevance, clarity,
and comprehensiveness of each metric.

The choice of a multiple case study methodology aimed to explore the applicability of
UCIEDP2 in two distinct settings and assess the similarity of findings. One case study was
conducted in a real-world industrial context to minimise threats to external validity. However,
external validity regarding the generalisability of study results to companies beyond the scope

1120	 Software Quality Journal (2024) 32:1075–1135

1 3

of the research cannot be ignored. For the industrial case study, only one small and medium
sized local company participated due to the novelty of IE technologies. Therefore, the inclu-
sion of only one local company introduces a potential limitation, as our findings predomi-
nantly reflect its perspectives. In both case studies, the main researcher explained UCIEDP2,
the proposed quality-in-use model, and ISO/IEC 25000 (2021) quality characteristics. Data
recorded in impact estimation tables were collected through tests designed and written by
developers/testers. These were validated by the consultant in the first case study and the
chief developer in the second one. Multiple data collection techniques, such as interviews,
observation, and document analysis, were utilised to bolster data reliability (Yin, 2018). Tri-
angulation of data, involving the collection of information from various sources, including
interviews with different stakeholders, was employed to cross-verify findings. UCIEDP2 was
also compared against two methodologies namely prototyping and Agile Scrum through the
two case studies respectively. Ethical considerations were addressed by conducting all study
procedures in accordance with Middlesex University’s Ethics Framework. Prior consent was
obtained from individual participants, safeguarding their rights throughout the study. These
measures collectively aimed to improve the overall reliability of the study.

8 � Conclusion and future work

Engineering higher quality IEs is challenging. This study highlights the prevailing issues,
including the absence of suitable methodologies. These challenges are further compounded by:

•	 Insufficient guidance on tracking and measuring quality throughout the development
process.

•	 Lack of a dedicated quality model for assessing the quality of IEs.
•	 Separation of quality characteristics from functional requirements.
•	 Limited empirical research focusing on quality aspects for IEs.

To tackle these issues, our study introduces the UCIEDP2 methodology, designed to
define, measure, and monitor quality aspects for IEs during their development. This
approach involves specifying quality characteristics and measures, drawn from the ISO/
IEC 25000 (2021) family of standards, for every functional requirement. Additionally, a
novel quality-in-use model, adapted from the generic ISO/IEC 25010 (2021) model and
aligned with the nine guiding principles of IEs, is presented for IE evaluation.

Through a multiple case study involving projects from different domains, our proposed
methodologies were investigated, revealing that integrating quality characteristics from
the ISO/IEC 25000 (2021) standards with functional requirements builds quality into sys-
tems. Stakeholder collaboration in defining targets using quality standards’ measures and
metrics enables developers to proactively address deviations from quality targets during
development.

The effectiveness of the proposed quality-in-use model was evident in guiding system
development by offering an objective perspective on expected capabilities. Involving stake-
holders throughout the process ensures the delivery of systems that provide optimal value.
However, challenges remain, such as the need to shorten development cycles for more fre-
quent stakeholder feedback and managing the increased number of system tests. Current
efforts focus on applying the methodology to a broader range of industrial projects, aiming
to refine and adapt our approaches for wider applicability.

1121Software Quality Journal (2024) 32:1075–1135	

1 3

Appendix A – list of selected articles following SLR

Paper ID Title Contribution

P1 An analysis of quality of model driven devel-
opment solutions applied to cyber-physical
devices

This study evaluates the quality of Cyber Physi-
cal Systems using a model driven develop-
ment platform. (Goncalves et al., 2022)

P2 Challenges for usability testing in ubiquitous
systems

This paper discusses some challenges for doing
usability testing in ubiquitous systems based
on a literature analysis and the authors’ own
experience towards testing these types of
systems. The authors also discuss ongoing
research for how to design usability testing
by considering context-awareness factors.
(Bezerra et al., 2014)

P3 Data quality-oriented efficacy evaluation
method for AAL

This paper presents a data quality model for
assessing the efficacy of AAL technologies.
The authors highlight that the system could
be evaluated during different stages of its life
cycle by measuring efficacy to determine its
functional and non-functional performance
(Beevi et al., 2016).

P4 Infrastructure for Ubiquitous Computing:
Improving Quality with Modularisation

In this paper, the authors define a set of infra-
structural concerns in the domain of ubiqui-
tous computing and outline an aspect-oriented
design to improve software modularity. They
also discuss how improvement in qual-
ity can be quantifiably measured using the
Goal-Question-Metric approach (Munnelly &
Clarke, 2008).

P5 Metrics Evaluation for Context-Aware Com-
puting

This study presents a software product quality
metric for context-aware computing. The
metrics have also been updated based on the
technological, social, user and environment
dimensions (Mantoro, 2009).

P6 Quality Provisioning in the Internet of Things
Era: Current State and Future Directions

This paper proposes to extend quality of experi-
ence of IoT systems by including factors such
as quality of data, quality of information and
presents a quality aware framework (Pal et al.,
2018).

P7 A study on the quality evaluation index system
of smart home care for older adults in the
community -based on Delphi and AHP

This paper presents a quality index system for
smart home care for older adults (Chen et al.,
2023).

P8 A tailored smart home for dementia care This paper discusses development of a smart
home solution for dementia care through the
systems development process (Amiribesheli
& Bouchachia, 2018).

P9 Evaluate and control service and transaction
dependability of complex IoT systems

This study designed and evaluated an artifact
to define and evaluate service and transaction
dependability from a consumer-centric view
in an action research project (Niedermaier et
al., 2022).

P10 Development and Operation of Trustworthy
Smart IoT Systems: The ENACT Frame-
work

This paper presents a framework to provide
DevOps support for smart IoT systems (Bruel
et al., 2020).

1122	 Software Quality Journal (2024) 32:1075–1135

1 3

Paper ID Title Contribution

P11 Applying architecture-based adaptation to
automate the management of internet-of-
things

The authors introduce an architecture-based
adaptation approach to automate the manage-
ment of IoT (Weyns et al., 2018).

P12 LNCS 7040 - Evaluation of AAL Platforms
According to Architecture-Based Quality
Attributes

This paper presents an evaluation of relevant
AAL platforms based on a selection of quality
attributes that are important for AAL systems
(Antonino et al., 2011).

P13 Quality Model for CloudIot Applied in Ambi-
ent Assisted Living (AAL)

This paper presents a quality model with a
particular focus on CloudIoT layers in AAL
(Salgado Guerrero et al., 2021).

P14 Evaluating an IoT Application Using Software
Measures

The aim of this paper is to investigate the appli-
cability of software measures from ubiquitous
to IoT systems (Carvalho et al., 2017).

P15 QoS-based formation of software architec-
tures in the Internet of Things

This paper models and analyses QoS-related
concerns in IoT architectures (Bures et al.,
2019).

P16 An exploratory study on how internet of
things developing companies handle user
experience requirements

This qualitative study explores how companies
elicit UX requirements in the context of IoT
(Kamsties et al., 2018).

P17 A Quality in Use Model for Ambient Assisted
Living (AAL) Systems

The main contribution of this paper is a qual-
ity in use model for AAL systems (Botto-
Tobar et al., 2021).

P18 Heuristics to evaluate the usability of ubiqui-
tous systems

This work proposes specific heuristics to evalu-
ate the usability of ubiquitous systems (Streitz
& Markopoulos, 2017).

P19 A Quality Model for Human-Computer Inter-
action Evaluation in Ubiquitous Systems

This paper presented a model for the HCI
quality evaluation in ubiquitous systems
(Santos et al., 2013).

P20 A Quality 4.0 Model for architecting industry
4.0 systems

This paper proposes a refined version of ISO/
IEC 25010 quality model based on I4.0 needs
(Antonino et al., 2022).

P21 Enabling correct design and formal analysis
of Ambient Assisted Living systems

This paper proposes a verification approach
and methodology to check fulfilment of
non-functional requirements (Benghazi et
al., 2012).

P22 Euphoria: A Scalable, event-driven architec-
ture for designing interactions across hetero-
geneous devices in smart environments

This paper proposes a new software archi-
tecture design and implementation which
facilitates prototyping, deployment and evalu-
ation of interactions across devices in a smart
environment (Schipor et al., 2019).

P23 A model-driven approach for quality of con-
text in pervasive systems

This study focuses on quality of context infor-
mation (Hoyos et al., 2016).

P24 A Quality Model for the Evaluation AAL
Systems

This paper underlines the need to define a data
quality model based on quality characteristics
of AAL systems (Kara et al., 2017).

P25 Assessing Usability of Ubiquitous Systems
Using Quality Model

In this study, the authors identified quality
characteristics and measures for assessing
usability of ubiquitous systems. A usabil-
ity measurement model is also proposed
(Hamzah et al., 2018).

P26 CloudIoTSecurity: Evaluating the Security in
Cloud IoT Applications

This paper presents a quality model based on
ISO/IEC 25010 model and a method aligned
to ISO/IEC 25040 to evaluate the security of
cloud IoT applications (Cedillo et al., 2020).

1123Software Quality Journal (2024) 32:1075–1135	

1 3

Paper ID Title Contribution

P27 Modelling Quality of IoT Experience in
Autonomous Vehicles

This study proposes a new architecture which
takes into consideration quality of data, qual-
ity of network and quality of context to deter-
mine overall quality of IoT in the domain of
autonomous vehicles (Minovski et al., 2020).

P28 Quality in use measures for an AAL system
for older adults

This paper proposes a set of quality measures
to evaluate quality in use of an AAL platform
that monitors and supports elderly people
(Cristescu et al., 2020).

P29 Towards a New Interoperability Quality
Model for IoTs

This paper presents a quality model to evaluate
the interoperability of IoT platforms (Abdel-
ouahid & Marzak, 2018).

P30 Trustworthiness and Quality of Context
Information

This study proposes a quality of context model
and introduces trustworthiness as measure of
reliability of the context information provider
(Neisse & Wegdam, 2008).

P31 A Real-time PPG Quality Assessment
Approach for Healthcare Internet-of-Things

This paper proposes a novel PPG quality
assessment approach for IoT-based health
monitoring system with the goal of removing
unreliable data (Naeini et al., 2019).

P32 Conceptualizing and measuring quality of
experience of the internet of things: Explor-
ing how quality is perceived by users

This study explores how quality is perceived by
users and proposes a user experience model
for IoT (Shin, 2017).

P33 CLOUDQUAL: A Quality Model for Cloud
Services

This study is inspired from SERVQUAL and
the e-service quality model and initiate a
quality model named CLOUDQUAL for
cloud services (Xianrong et al., 2014).

Appendix B – quality characteristics per domain

IE Domain Quality Characteristic Paper ID

AAL Accuracy, completeness, timeliness and interpretability P3
Reliability, security, maintainability, efficiency, safety P12
Security, usability, reliability P13
Effectiveness, efficiency, satisfaction, freedom from risk, context

coverage
P17

Safety, timeliness P21
Accuracy, completeness, recoverability, confidentiality, efficiency,

precision, reliability, security
P24

Effectiveness, trust, usefulness, freedom from risk P28
Ubiquitous systems Context-awareness, transparency, attention, mobility, calmness P2

Comprehensibility, manageability, maintainability, scalability, testabil-
ity, reusability, usability

P4

Usability P18
Trust, resource-limitedness, usability, ubiquity P19
Context awareness, calmness, transparency, attention, mobility P25

1124	 Software Quality Journal (2024) 32:1075–1135

1 3

IE Domain Quality Characteristic Paper ID

Context-aware systems Functionality, reliability, usability, efficiency, maintainability, port-
ability

P5

Trustworthiness of context providers P30
Cyber-physical systems Analysability, changeability, stability, testability P1
IoT Systems Quality of Data, Quality of Information P6

Effectiveness, efficiency, satisfaction P9
Trustworthiness P10
Quality goals are set P11
Calmness P14
Power consumption, sensing accuracy, execution time P15
User Experience P16
Confidentiality, integrity, non-repudiation, accountability, authentic-

ity, availability
P26

Quality of experience P27
Confidentiality, efficiency, mobility, flexibility, distributivity, func-

tionality
P29

Accuracy of health parameters P31
Satisfaction, involvement, affordance, coolness, enjoyment, hedonic-

ity, content quality, reliability of services, system
P32

Usability, availability, reliability, responsiveness, security, elasticity P33
Industry 4.0 Reliability, maintainability (modifiability), maintainability (testability) P20
Pervasive Systems Trustworthiness, comparability, completeness, relevance, understand-

ability
P23

Smart environment Timeliness, reliability, ease of use, tangibility, empathy P7
Functionality, usability P8
Adaptability, modularity, flexibility, interoperability P22

Appendix C – example of an impact estimation table

Functional Requirement Quality Requirement Design Idea

D1 D2

FR001 Reliability
300 <-> 3000
Hours (Mean Time Before Failure)

1950 h
(1650 h)
 ± 0
61% ± 0

1140 h
(840 h)
 ± 240
31% ± 9%

Usability
20 <-> 10 min

19 min
(1 min)
 ± 4 min
10% ± 40%

14 min
(6 min)
 ± 9 min
60% ± 90%

Maintenance
1.1 M <-> 100 K
US dollars/year

1.1 M $/Y
(0 K$/Y)
 ± 180 K
0% ± 18%

100 K $/Y
(1 M$/Y)
 ± 720 K
100% ± 72%

Sum of Quality Requirements 71% 191%

1125Software Quality Journal (2024) 32:1075–1135	

1 3

Resources

Capital
0 <-> 1 M
US dollars

500 K
(500 K)
 ± 200 K
50% ± 20

100 K
(100 K)
 ± 200 K
10% ± 20

Sum of Costs 50% 10%
Quality to Cost Ratio 1.42 (71/50) 19.10 (191/10)

The above Impact Estimation Table (IET) is an example of how it could be used to estimate
the impact of implementing three quality requirements (reliability, usability, and mainte-
nance) for a functional requirement denoted by FR0001 (Gilb, 2005). The estimates are based
on experience data and the estimated project duration is one year. Baseline and target values
are represented using (Baseline <-> Target) pair notation. In this example, we are comparing
two design ideas. The first idea is expected to improve usability by 1 min whereas the second
idea is projected to improve usability by 6 min. To account for potential errors or uncertain-
ties, we estimate ranges of ± 4 and ± 9 min respectively. The percentage impact serves as a
measure of the proportional change from an initial baseline to a specified target. For instance,
percentage impact for the second idea is determined as follows:

100% indicates that the target has been fully achieved, while 0% signifies no change at
all. There is also a possibility of defining an overall percentage uncertainty. The total per-
centage impact of quality requirements serves as the determinant of how "good" a design
idea is, while the aggregate of costs provides an estimation of its financial implications.
The quality-to-cost ratio measures the cost-effectiveness of a given idea, and according
to this ratio, the second design idea emerges as a better choice compared to the first idea.
Despite the existence of more sophisticated versions of the IET, this simplified iteration
captures essential data such as quality and cost. Moreover, it can be employed throughout
the development lifecycle for the assessment of design ideas or the comparison of multiple
versions of an application in terms of cost-effectiveness.

Appendix D – first interview questions

Introduction

1.	 Explanation about the research study, what we are looking for, how they will benefit
from the results and that they will be anonymous.

2.	 Details of the organization

(a)	 Mission statement
(b)	 Vision

3.	 Subject’s personal history in the company

(a)	 Role
(b)	 Experience

(1M∕(1.1M − 100K)) × 100 = 100%

1126	 Software Quality Journal (2024) 32:1075–1135

1 3

(c)	 Daily tasks
(d)	 Responsibility

General information about projects at the organisation

4.	 What types of projects are developed at the organisation?
5.	 Provide details about the following:

(a)	 What are the timescales for the project?
(b)	 How many people are involved and their roles?
(c)	 Which development methodologies are adopted?
(d)	 What are innovative about the projects?

Questions about quality management

	 6.	 What quality management processes are used within a project?

(a)	 Do you follow any specific standard for managing quality at the project level?
(b)	 Are there any best practices which you are encouraged to follow with regards to

quality?
(c)	 Which units and/or roles are involved in quality management?

	 7.	 How is quality of a system assessed?
	 8.	 How are functional and quality requirements managed?
	 9.	 What quality requirements (top 5) are most important in your work?

(a)	 Efficiency/performance/capacity, reliability, safety, security, maintainability,
usability, others

	10.	 During which phase(s) are the quality requirements evaluated?

(a)	 By whom?
(b)	 How (measurement, reviews, testing etc.)?

	11.	 What is the course of action if results are not as expected?
	12.	 How has the quality of systems evolved using the current approach?
	13.	 What are the pros and cons working with the current approach?

Ending

	14.	 Other observations? Anything we may have not covered?
	15.	 Any relevant observations with regards to your specific perspective in the project.

Appendix E – second interview questions

Introduction

1.	 What is the aim of the project?

1127Software Quality Journal (2024) 32:1075–1135	

1 3

2.	 What is the vision of the stakeholders?
3.	 What are the timescales of the project?
4.	 What is the budget allocated for the project?
5.	 How many people were involved in the project and what were their roles?
6.	 Which quality characteristics and attributes were selected from ISO/IEC 25010?
7.	 Who were involved in defining target values for the functional requirements, including

the core set of requirements based on IE principles, of the system?
8.	 Were quality requirements specified in the system specifications document previously?
9.	 What previous benchmark data was available?

Questions about UCIEDP2 methodology

	10.	 Describe three most significant aspects of UCIEDP2:

(a)	 What worked well?
(b)	 What did not work as well?

	11.	 State any adaptations to your current setup specifically due to UCIEDP2?
	12.	 How was the project (time, cost, resources) affected by UCIEDP2?
	13.	 Your overall experience with UCIEDP2 compared to your previous way of working.

(a)	 On a scale of 1 to 10, with 1 being the worst possible method and 10 being the
best possible method, how do you rate your previous method?

	  (i) Usefulness
	  (ii) Power of clarification
	  (iii) Ease of use
	  (iv) Effectiveness
	  (v) Time efficiency
(b)	 On a scale of 1 to 10, with 1 being the worst possible method and 10 being the

best possible method, how do you rate UCIEDP2?
	  (i) Usefulness
	  (ii) Power of clarification
	  (iii) Ease of use
	  (iv) Effectiveness
	  (v) Time efficiency

	14.	 Was the team able to measure and monitor accomplishment of target values of quality attrib-
utes for each functional requirement during analysis, design, implementation, evaluation?

	15.	 How did you incorporate stakeholders’ feedback during development process?
	16.	 Will you use UCIEDP2 in its current form in other projects?
	17.	 Do you have any recommendations what to improve?

Questions about proposed quality‑in‑use model to evaluate the system

	18.	 How did you evaluate quality of your system previously?
	19.	 How did the quality-in-use model work? Describe the three most significant aspects:

1128	 Software Quality Journal (2024) 32:1075–1135

1 3

(a)	 What worked well?
(b)	 What did not work as well?

	20.	 State any adaptations required specifically due to this new quality model?
	21.	 How was the project (time, cost, resources) affected by this new quality model?
	22.	 Your overall experience with this quality model compared to your previous way of working.

	 (iii)	 On a scale of 1 to 10, with 1 being the worst possible method and 10 being the
best possible method, how do you rate your previous method?

		  (i) Usefulness
		  (ii) Power of clarification
		  (iii) Ease of use
		  (iv) Effectiveness
		  (v) Time efficiency
	 (iv)	 On a scale of 1 to 10, with 1 being the worst possible method and 10 being the

best possible method, how do you rate the quality-in-use model?
		  (i) Usefulness
		  (ii) Power of clarification
		  (iii) Ease of use
		  (iv) Effectiveness
		  (v) Time efficiency

	23.	 How often did your team use the quality-in-use model to evaluate the system during
development and after development?

	24.	 Who were involved in the evaluation process?
	25.	 Did you note any improvement in quality of the system? What data do you have to

prove this?

Ending

	26.	 Other observations? Anything we may have not covered?
	27.	 Any relevant observations with regards to your specific perspective in the project.

Author contribution  This study was carried out as part of a PhD study pursued by Mr. Adityarajsingh San-
tokhee (corresponding author) at Middlesex University UK. Prof. Dr. Juan Carlos Augusto and Dr Lindsey
Brodie reviewed and approved the final manuscript.

Funding  This project is not funded at all.

Data availability  The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations 

Conflict of interest  The authors declare no competing interests.

1129Software Quality Journal (2024) 32:1075–1135	

1 3

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aarts, E., & Roovers, R. (2003). IC design challenges for ambient intelligence. 2003 Design, Automation
and Test in Europe Conference and Exhibition (pp. 2–7). Munich, Germany. https://​doi.​org/​10.​1109/​
DATE.​2003.​12535​78

Abdelouahid, R. A., & Marzak, A. (2018). Towards a New Interoperability Quality Model for IoTs (p. 1).
Institute of Electrical and Electronics Engineers.

Ahmad, M., Belloir, N., & Bruel, J. M. (2015). Modeling and verification of functional and non-functional
requirements of ambient self-adaptive systems. Journal of Systems and Software, 107, 50–70. https://​
doi.​org/​10.​1016/j.​jss.​2015.​05.​028

Alasuutari, P., Bickman, L., & Brennan, J. (2008). The Sage handbook of social research methods. Sage.
Ali, A., Khalil, I., Ahmad, I., Parveen, I., & Uz Zaman, U. K. (2022). Role of Non-functional Requirements

in projects’ success. In 2022 2nd International Conference on Digital Futures and Transformative
Technologies (ICoDT2), pp. 1–7. https://​doi.​org/​10.​1109/​ICoDT​255437.​2022.​97874​63

Amiribesheli, M., & Bouchachia, H. (2018). A tailored smart home for dementia care. Journal of Ambient
Intelligence and Humanized Computing,9(6), 1755–1782. https://​doi.​org/​10.​1007/​s12652-​017-​0645-7

Antonino, P. O., Capilla, R., Pelliccione, P., Schnicke, F., Espen, D., Kuhn, T., & Schmid, K. (2022). Qual-
ity 4.0 Model for architecting industry 4.0 systems. Advanced Engineering Informatics,54, 101801.
https://​doi.​org/​10.​1016/j.​aei.​2022.​101801

Antonino, P. O., Schneider, D., Hofmann, C., & Nakagawa, E. Y., et al. (2011). Evaluation of AAL Plat-
forms According to Architecture-Based Quality Attributes. In D. V. Keyson (Ed.), Ambient Intelli-
gence. AmI 2011. Lecture Notes in Computer Science (vol 7040). Heidelberg: Springer, Berlin.

Anurag, A., & Kamatchi, R. (2019). (2019) Designing a “software quality model” based on RCCA of
defects and validating based on “quality algorithm.” J Softw Evol Proc.,31, e2210. https://​doi.​org/​10.​
1002/​smr.​2210

Ashouri, M., Davidsson, P., & Spalazzese, R. (2021). Quality attributes in edge computing for the Internet
of Things: A systematic mapping study. Internet of Things,13, 100346. https://​doi.​org/​10.​1016/j.​iot.​
2020.​100346. ISSN 2542-6605.

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks (Amster-
dam, Netherlands: 1999),54(15), 2787–2805. https://​doi.​org/​10.​1016/j.​comnet.​2010.​05.​010

Augusto, J. C. (2007). Ambient Intelligence: The Confluence of Ubiquitous/Pervasive Computing and
Artificial Intelligence. In A. J. Schuster (Ed.), Intelligent Computing Everywhere. London: Springer.
https://​doi.​org/​10.​1007/​978-1-​84628-​943-9_​11

Augusto, J. C. (2014). User-centric software development process. In 2014 international conference on
intelligent environments (pp. 252–255). Shanghai, China. https://​doi.​org/​10.​1109/​IE.​2014.​47

Augusto, J., Callaghan, V., Kameas, A., Cook, D., & Satoh, I. (2013). Intelligent Environments: a manifesto
Human - centric. Computing and Information Sciences (3rd ed., p. 12). Springer.

Augusto, J., Kramer, D., Alegre, U., Covaci, A., & Santokhee, A. (2018). The user-centred intelligent environ-
ments development process as a guide to co-create smart technology for people with special needs. Univer-
sal Access in the Information Society, 17, 115–130. https://​doi.​org/​10.​1007/​s10209-​016-​0514-8

Banijamali, A., Pakanen, O. P., Kuvaja, P., & Oivo, M. (2020). Software architectures of the convergence of
cloud computing and the Internet of Things: A systematic literature review. Information and Software
Technology,122, 106271. https://​doi.​org/​10.​1016/j.​infsof.​2020.​106271. ISSN 0950-5849.

Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (3rd ed.). Addison-Wesley.
Beevi, F. H. A., Wagner, S. R., Pedersen, C. F., & Hallerstede, S. (2016). Data Quality Oriented Efficacy

Evaluation Method for Ambient Assisted Living Technologies. Association for Computing Machinery.
Benghazi, K., Hurtado, M. V., Hornos, M. J., Rodríguez, M. L., Rodríguez-Domínguez, C., Pelegrina, A. B.,

& Rodríguez-Fórtiz, M. J. (2012). ’Enabling correct design and formal analysis of Ambient Assisted

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/DATE.2003.1253578
https://doi.org/10.1109/DATE.2003.1253578
https://doi.org/10.1016/j.jss.2015.05.028
https://doi.org/10.1016/j.jss.2015.05.028
https://doi.org/10.1109/ICoDT255437.2022.9787463
https://doi.org/10.1007/s12652-017-0645-7
https://doi.org/10.1016/j.aei.2022.101801
https://doi.org/10.1002/smr.2210
https://doi.org/10.1002/smr.2210
https://doi.org/10.1016/j.iot.2020.100346
https://doi.org/10.1016/j.iot.2020.100346
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1007/978-1-84628-943-9_11
https://doi.org/10.1109/IE.2014.47
https://doi.org/10.1007/s10209-016-0514-8
https://doi.org/10.1016/j.infsof.2020.106271

1130	 Software Quality Journal (2024) 32:1075–1135

1 3

Living systems. The Journal of Systems and Software,85(3), 498–510. https://​doi.​org/​10.​1016/j.​jss.​
2011.​05.​022

Bezerra, C., Andrade, R., Santos, R., Abed, M., de Oliveira, K., Monteiro, J., Santos, I., & Ezzedine, H.
(2014). Challenges for usability testing in ubiquitous systems (p. 183). ACM.

Botto-Tobar, M., Montes León, S., Camacho, O., Chávez, D., Torres-Carrión, P., & Zambrano Vizuete,
M. (2021). ’ Quality in Use Model for Ambient Assisted Living (AAL) Systems Applied Technolo-
gies (pp. 643–660). Switzerland: Springer International Publishing AG.

Boehm, B. (1981). Software Engineering Economics. Prentice-Hall.
Budgen, D. (2003). Software Design (2nd ed.). Pearson Education.
Brodie, L., & Woodman, M. (2009). Using metrics to express quality. In 17th International Conference

on Software Quality Management (SQM 2009). Southampton.
Bruel, J., Mazzara, M. and Meyer, B. (2020) ’Development and Operation of Trustworthy Smart IoT

Systems: The ENACT Framework. In Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment. Switzerland: Springer International
Publishing AG, pp. 121–138.

Bures, T., Duchien, L., & Inverardi, P. (2019). QoS-Based Formation of Software Architectures in the
Internet of Things. In Software Architecture. Switzerland: Springer International Publishing AG,
pp. 178–194.

Carvalho, R. M., Andrade, R. M. C., Barbosa, J., Maia, A. M., Junior, B. A., Aguilar, P. A., Bezerra,
C. I. M., & Oliveira, K. M. (2017). Distributed, Ambient and Pervasive Interactions : 5th Interna-
tional Conference, DAPI 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada,
July 9–14, 2017, Proceedings. Springer International Publishing.

Cedillo, P., Bermeo, A., Piedra-Garcia, D., & Tenezaca-Sari, P. (2020). CloudIoTSecurity: Evaluating
the Security in Cloud IoT Applications (p. 1). IEEE.

Chen, H., Zhang, Y., & Wang, L. (2023). ’ study on the quality evaluation index system of smart home
care for older adults in the community - based on Delphi and AHP. BMC Public Health,23(1), 411.
https://​doi.​org/​10.​1186/​s12889-​023-​15262-1

Chung, L., & do Prado Leite, J.C.S. (2009). On Non-Functional Requirements in Software Engineering. In
A. T. Borgida, V. K. Chaudhri, P. Giorgini, & E. S. Yu (Eds.), Conceptual Modeling: Foundations and
Applications. Lecture Notes in Computer Science (vol. 5600). Berlin, Heidelberg: Springer. https://​doi.​
org/​10.​1007/​978-3-​642-​02463-4_​19

Clickup. (2022). Available at: https://​click​up.​com/. Accessed 1 Jan 2022.
Cote, M. A., Suryn, W., & Georgiadou, E. (2006). Software quality model requirements for software qual-

ity engineering. 14th International Conference on Software Quality Management, 31–50.
Creswell, J. W., & Creswell, J. (2017). Research design: Qualitative, quantitative, and mixed methods

approaches (4th ed.). Newbury Park: Sage.
Cristescu, I., Balog, A., & Bajenaru, L. (2020). Quality in use measures for an AAL system for older

adults (p. 1). IEEE.
Dalcher, D., & Brodie, L. (2007). Successful IT Projects. London (UK): Thomson Learning.
Dyba, T., Dingsoyr, T., & Hanssen, G. (2007). Applying systematic reviews to diverse study types: An

experience report. In First international symposium on empirical software engineering and meas-
urement (ESEM 2007) (pp. 225–234.s).

Erazo-Garzon, L., Illescas-Peña, L., & Cedillo, P. (2021). A Quality in Use Model for Ambient Assisted
Living (AAL) Systems. In M. Botto-Tobar, S. Montes León, O. Camacho, D. Chávez, P. Torres-
Carrión, & M. Zambrano Vizuete (Eds.), Applied Technologies. ICAT 2020. Communications in
Computer and Information Science, vol 1388. Cham: Springer. https://​doi.​org/​10.​1007/​978-3-​030-​
71503-8_​50

European Commission. (2009). Ambient Assisted Living - Preparation of an Art. 169-Initiative. https://​
cordis.​europa.​eu/​proje​ct/​rcn/​71922/​facts​heet/​en. Accessed 19 May 2020.

Fenton, N., & Bieman, J. (2014). Software Metrics: A Rigorous and Practical Approach. Third Edition.
https://​doi.​org/​10.​1201/​b17461

Fizza, K., Banerjee, A., Jayaraman, P. P., Auluck, N., Ranjan, R., Mitra, K., & Georgakopoulos, D.
(2023). A Survey on Evaluating the Quality of Autonomic Internet of Things Applications. IEEE
Communications Surveys and Tutorials,25(1), 567–590. https://​doi.​org/​10.​1109/​COMST.​2022.​
32053​77

Garcés, L., Ampatzoglou, A., Avgeriou, P., & Nakagawa, E. (2017). Quality attributes and quality mod-
els for ambient assisted living software systems: A systematic mapping. Information and Software
Technology,82, 121–138. https://​doi.​org/​10.​1016/j.​infsof.​2016.​10.​005. ISSN 0950-5849.

Ghobadian, A., & Speller, S. (1994). Gurus of quality: A framework for comparison. Total Quality Man-
agement,5(3), 53–70. https://​doi.​org/​10.​1080/​09544​12940​00000​25

https://doi.org/10.1016/j.jss.2011.05.022
https://doi.org/10.1016/j.jss.2011.05.022
https://doi.org/10.1186/s12889-023-15262-1
https://doi.org/10.1007/978-3-642-02463-4_19
https://doi.org/10.1007/978-3-642-02463-4_19
https://clickup.com/
https://doi.org/10.1007/978-3-030-71503-8_50
https://doi.org/10.1007/978-3-030-71503-8_50
https://cordis.europa.eu/project/rcn/71922/factsheet/en
https://cordis.europa.eu/project/rcn/71922/factsheet/en
https://doi.org/10.1201/b17461
https://doi.org/10.1109/COMST.2022.3205377
https://doi.org/10.1109/COMST.2022.3205377
https://doi.org/10.1016/j.infsof.2016.10.005
https://doi.org/10.1080/09544129400000025

1131Software Quality Journal (2024) 32:1075–1135	

1 3

Gibbert, M., Ruigrok, W., & Wicki, B. (2008). What passes as a rigorous case study? Strategic Manage-
ment Journal,29(13), 1465–1474.

Gilb, T. (2005). Competitive Engineering. In L. Brodie (Ed.), A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage. Buterworth-Heinemann.
ISBN 0750665076.

Gilb, T., & Brodie, L. (2012). What’s fundamentally wrong? Improving our approach towards capturing
value in requirements specification. In Proceedings of the 22nd Annual INCOSE International Sympo-
sium (IS 2012). Rome, Italy. California: International Council on Systems Engineering (INCOSE), 1,
p. 1010.

Gordon, V. S., & Bieman, J. M. (1993). Reported effects of rapid prototyping on industrial software quality.
Software Quality Journal,2, 93–108. https://​doi.​org/​10.​1007/​BF005​90438

Goncalves, R. F., Menolli, A., & Dionisio, G. M. (2022). An Analysis of the Quality of Model Driven Devel-
opment Solutions Applied to Cyber-Physical Devices. ACM.

Greening, D.R. (2015). Agile Enterprise Metrics. In 2015 48th Hawaii International Conference on System
Sciences, pp. 5038–5044. https://​doi.​org/​10.​1109/​HICSS.​2015.​597

Hamzah, N., Mageswaran, G., Nagappan, S. D., & Chuprat, S. (2018). Assessing Usability of Ubiquitous
Systems Using Quality Model (p. 1). IEEE.

Hanslo, R., Mnkandla, E., & Vahed, A. (2019) Factors that contribute significantly to Scrum adoption. In: FedC-
SIS 2019 Proceedings. IEEE, pp. 821–829. https://​doi.​org/​10.​15439/​2019F​220

Hoyos, J. R., García-Molina, J., Botía, J. A., & Preuveneers, D. (2016). A model-driven approach for quality
of context in pervasive systems. Computers & Electrical Engineering,55, 39–58. https://​doi.​org/​10.​
1016/j.​compe​leceng.​2016.​07.​002

Hron, M., & Obwegeser, N. (2022). Why and how is Scrum being adapted in practice: A systematic review.
Journal of Systems and Software,183, 111110. https://​doi.​org/​10.​1016/j.​jss.​2021.​111110. ISSN 0164–1212.

Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation. Pearson Education.

ISO/IEC 25010. (2021). ISO/IEC 25010:2011: Systems and Software Engineering – Systems and Software
Quality Requirements and Evaluation (Square). System and Software Quality Models. Geneva: ISO 2021.

ISO/IEC 25012. (2021). ISO/IEC 25012:2008 Software engineering — Software product Quality Requirements
and Evaluation (SQuaRE) — Data quality model. System and Software Quality Models. Geneva: ISO 2021.

ISO/IEC 25000. (2021). ISO/IEC 25000:2014 Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — Guide to SQuaRE. System and Software Quality
Models. Geneva: ISO 2021.

ISO/IEC 25023. (2022) ISO/IEC 25023:2016 Quality measurement framework. System and Software Qual-
ity Models. Geneva: ISO 2022.

IPA. (2010). Embedded System development Quality Reference guide, Software Engineering Center, Tech-
nology Headquarters. Japan: Information-technology Promotion Agency.

Jones, C., & Bonsignour, O. (2011). The Economics of Software Quality (1st ed.). Addison-Wesley
Professional.

Kamsties, E., Horkoff, J. and Dalpiaz, F. (2018) An Exploratory Study on How Internet of Things Develop-
ing Companies Handle User Experience Requirements. In: 24th International Working Conference on
Requirements Engineering Foundation for Software Quality, REFSQ 2018,Utrecht, Netherlands. Swit-
zerland: Springer International Publishing AG, pp. 20–36.

Kan, S. H. (2002). Metrics and Models in Software Quality Engineering (2nd ed.). Addison-Wesley.
Kara, M., Lamouchi, O., & Ramdane-Cherif, A. (2017). ’A Quality Model for the Evaluation AAL Systems.

Procedia Computer Science,113, 392–399. https://​doi.​org/​10.​1016/j.​procs.​2017.​08.​354
Kakarontzas, G., Anthopoulos, L., Chatzakou, D., & Vakali, A. (2014). A conceptual enterprise architec-

ture framework for smart cities: A survey-based approach. In 2014 11th International Conference on
e-Business (ICE-B), pp. 47–54.

Kitchenham, B., & Charters, S. (2007). Guidelines for Performing Systematic Literature Reviews in Soft-
ware Engineering. In: Technical Report EBSE 2007–001. Keele University and Durham University
Joint Report.

Kurtel, K., & Ozemre, M. (2013). Cohesive software measurement planning framework using ISO stand-
ards: A case study from logistics service sector. Journal of Software: Evolution and Process, 25, 663–
679. https://​doi.​org/​10.​1002/​smr.​1557

Maciel, P., Dantas, J., Melo, C., Pereira, P., Oliveira, F., Araujo, J., & Matos, R. (2022). A survey on reliability
and availability modeling of edge, fog, and cloud computing. Journal of Reliable Intelligent Environments,
8, 227–245. https://​doi.​org/​10.​1007/​s40860-​021-​00154-1

Mantoro, T. (2009). Metrics evaluation for context-aware computing (p. 574). USA: ACM.

https://doi.org/10.1007/BF00590438
https://doi.org/10.1109/HICSS.2015.597
https://doi.org/10.15439/2019F220
https://doi.org/10.1016/j.compeleceng.2016.07.002
https://doi.org/10.1016/j.compeleceng.2016.07.002
https://doi.org/10.1016/j.jss.2021.111110
https://doi.org/10.1016/j.procs.2017.08.354
https://doi.org/10.1002/smr.1557
https://doi.org/10.1007/s40860-021-00154-1

1132	 Software Quality Journal (2024) 32:1075–1135

1 3

McKinsey. (2021). The Internet of things: Catching up to an accelerating opportunity. McKinsey & Company.
November 2021. Available from: https://​www.​mckin​sey.​com/​~/​media/​mckin​sey/​busin​ess%​20fun​ctions/​
mckin​sey%​20dig​ital/​our%​20ins​ights/​iot%​20val​ue%​20set%​20to%​20acc​elera​te%​20thr​ough%​202030%​
20whe​re%​20and%​20how%​20to%​20cap​ture%​20it/​the-​inter​net-​of-​things-​catch​ing-​up-​to-​an-​accel​erati​ng-​
oppor​tunity-​final.​pdf. Accessed 1 May 2023.

Martirano, L., & Mitolo, M. (2020). Building Automation and Control Systems (BACS): a Review. In: 2020
IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial
and Commercial Power Systems Europe (EEEIC / I&CPS Europe). Madrid, Spain, pp. 1–8. https://​doi.​
org/​10.​1109/​EEEIC/​ICPSE​urope​49358.​2020.​91606​62

Memon, M., Wagner, S. R., Pedersen, C. F., Beevi, F. H., & Hansen, F. O. (2014). Ambient assisted
living healthcare frameworks, platforms, standards, and quality attributes. Sensors (Basel),14(3),
4312–41. https://​doi.​org/​10.​3390/​s1403​04312. PMID: 24599192; PMCID: PMC4003945.

Minovski, D., Ahlund, C., & Mitra, K. (2020). Modeling Quality of IoT Experience in Autonomous Vehicles.
IEEE Internet of Things Journal,7(5), 3833–3849. https://​doi.​org/​10.​1109/​JIOT.​2020.​29754​18

Mohammadi, R., & Javidan, R. (2022). EFSUTE: A novel efficient and survivable traffic engineering for
software defined networks. Journal of Reliable Intelligent Environments, 8, 247–260. https://​doi.
​org/​10.​1007/​s40860-​021-​00139-0

Morse, J. M. (1994). Designing funded qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.),
Handbook of qualitative research (pp. 220–235). Sage Publications Inc.

Munnelly, J., & Clarke, S. (2008). Infrastructure for ubiquitous computing (p. 1). ACM.
Murzi, M. (2007). The philosophy of logical positivism [Online]. Available: http://​www.​murzim.​net/​LP/​

LP.​pdf. Accessed 31 Jan 2023.
Naeini, E. K., Azimi, I., Rahmani, A. M., Liljeberg, P., & Dutt, N. (2019). A Real-time PPG Quality

Assessment Approach for Healthcare Internet-of-Things. Procedia Computer Science,151, 551–
558. https://​doi.​org/​10.​1016/j.​procs.​2019.​04.​074

Neisse, R., & Wegdam, M. (2008). Trustworthiness and Quality of Context Information (p. 1925). IEEE.
Niedermaier, S., Zelenik, T., Heisse, S., & Wagner, S. (2022). Evaluate and control service and transac-

tion dependability of complex IoT systems. Software Quality Journal,30(2), 337–366. https://​doi.​
org/​10.​1007/​s11219-​021-​09556-z

Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen & R. L. Mack (Eds.), Usability Inspection Methods.
New York City, NY: Wiley & Sons.

Nuñez-Varela, A. S., Perez-Gonzalez, H. G., Martínez-Perez, F. E., & Soubervielle-Montalvo, C. (2017).
Source code metrics: A systematic mapping study. Journal of Systems and Software,128(2017),
164–197.

Ogbuabor, G., Augusto, J., Moseley, R., & Van Wyk, A. (2021). Context-aware support for cardiac
health monitoring using federated machine learning. In M. Bramer, & R. Ellis (Eds.), 41st SGAI
International Conference on Artificial Intelligence (AI-2021) (pp. 267–281). Cambridge, England:
Springer. https://​doi.​org/​10.​1007/​978-3-​030-​91100-3_​22

Olianas, D., Leotta, M., & Ricca, F. (2022). MATTER: A tool for generating end-to-end IoT test scripts.
Software Quality Journal, 30, 389–423. https://​doi.​org/​10.​1007/​s11219-​021-​09565-y

Oram, A., & Wilson, G. (2010). Making Software: What Really Works, and Why We Believe It. Sebas-
topol, CA: O’Reilly Media.

Oriol, M., Martínez-Fernández, S., Behutiye, W., et al. (2020). Data-driven and tool-supported elicita-
tion of quality requirements in agile companies. Software Quality Journal,28, 931–963. https://​doi.​
org/​10.​1007/​s11219-​020-​09509-y

Pal, D., Vanijja, V., & Varadarajan, V. (2018). Quality Provisioning in the Internet of Things Era (p. 1).
USA: ACM.

Pressman, R. S. (2014). Software Engineering: A Practitioner’s Approach (8th ed.). McGraw-Hill
Education.

Rashidi, P., Cook, D. J., Holder, L. B., & Schmitter-Edgecombe, M. (2011). ’Discovering Activities to
Recognize and Track in a Smart Environment. IEEE Transactions on Knowledge and Data Engi-
neering,23(4), 527–539. https://​doi.​org/​10.​1109/​TKDE.​2010.​148

Regan, G., McCaffery, F., Paul, P. C., Reich, J., Armengaud, E., Kaypmaz, C., Zeller, M., Guo, J. Z.,
Longo, S., O’Carroll, E., & Sorokos, I. (2020). Quality improvement mechanism for cyber physical
systems—An evaluation. Journal of Software: Evolution and Process, 32, e2295. https://​doi.​org/​10.​
1002/​smr.​2295

Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., & Alkhabbas, F. (2020). What are IoT systems for
real? An experts’ survey on software engineering aspects. Internet of Things,12, 100313. https://​
doi.​org/​10.​1016/j.​iot.​2020.​100313

https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%20through%202030%20where%20and%20how%20to%20capture%20it/the-internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%20through%202030%20where%20and%20how%20to%20capture%20it/the-internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%20through%202030%20where%20and%20how%20to%20capture%20it/the-internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%20through%202030%20where%20and%20how%20to%20capture%20it/the-internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf
https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160662
https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160662
https://doi.org/10.3390/s140304312
https://doi.org/10.1109/JIOT.2020.2975418
https://doi.org/10.1007/s40860-021-00139-0
https://doi.org/10.1007/s40860-021-00139-0
http://www.murzim.net/LP/LP.pdf
http://www.murzim.net/LP/LP.pdf
https://doi.org/10.1016/j.procs.2019.04.074
https://doi.org/10.1007/s11219-021-09556-z
https://doi.org/10.1007/s11219-021-09556-z
https://doi.org/10.1007/978-3-030-91100-3_22
https://doi.org/10.1007/s11219-021-09565-y
https://doi.org/10.1007/s11219-020-09509-y
https://doi.org/10.1007/s11219-020-09509-y
https://doi.org/10.1109/TKDE.2010.148
https://doi.org/10.1002/smr.2295
https://doi.org/10.1002/smr.2295
https://doi.org/10.1016/j.iot.2020.100313
https://doi.org/10.1016/j.iot.2020.100313

1133Software Quality Journal (2024) 32:1075–1135	

1 3

Rizk, J., & Hillier, C. (2022). Digital technology and increasing engagement among students with dis-
abilities: Interaction rituals and digital capital. Computers and Education Open,3, 100099. https://​
doi.​org/​10.​1016/j.​caeo.​2022.​100099

Rodríguez-Domínguez, C., Santokhee, A., & Hornos, M. J. (2022). Intelligent environments with entangled
quality properties. Journal of Reliable Intelligent Environments, 8, 223–226. https://​doi.​org/​10.​1007/​
s40860-​022-​00182-5

Rubin, H. J., & Rubin, I. S. (2012). Qualitative Interviewing: The Art of Hearing Data (3rd ed.). Los
Angeles, CA: Sage. ISBN: 978-1-4129-7837-8.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software
engineering. Empir Software Eng,14, 131. https://​doi.​org/​10.​1007/​s10664-​008-​9102-8

Ruiz-Lopez, T., Rodriguez-Dominguez, C., Noguera, M., Rodriguez, M., Benghazi, K., & Garrido, J.
(2013). Applying model-driven engineering to a method for systematic treatment of NFRs in Aml sys-
tems. J. Ambient Intell. Smart Environ.,5, 287–310.

Salgado Guerrero, J. P., Chicaiza Espinosa, J., Cerrada Lozada, M., & Berrezueta-Guzman, S. (2021) Qual-
ity Model for CloudIot Applied in Ambient Assisted Living (AAL). In: Information and Communica-
tion Technologies. Switzerland: Springer International Publishing AG, pp. 184–198.

Salomón, S., Duque, R., Montaña, J. L., & Tenés, L. (2023). Towards automatic evaluation of the Quality-
in-Use in context-aware software systems. Journal of Ambient Intelligence and Humanized Comput-
ing, 14, 10321–10346. https://​doi.​org/​10.​1007/​s12652-​021-​03693-w

Salvi, D., Montalva Colomer, J. B., Arredondo, M. T., Prazak-Aram, B., & Mayer, C. (2015). A Frame-
work for Evaluating Ambient Assisted Living Technologies and the Experience of the universAAL
Project. 329–352.

Santokhee, A., Augusto, J. C., & Brodie, L. (2019). Towards a general framework for evaluating intelligent
environments methodologies. In Intelligent Environments (Workshops) (pp. 17–25).

Santos, R. M., De Oliveira, K. M., Andrade, R. M. C., Santos, I. S., & Lima, E. R. (2013). A Quality Model
for Human-Computer Interaction Evaluation in Ubiquitous Systems. Springer International Publishing.

Saunders, M., Lewis, P., & Thornhill, A. (2016). Research Methods for Business Students (7th ed.). Pearson,
Harlow.

Sas, D., & Avgeriou, P. (2020). Quality attribute trade-offs in the embedded systems industry: An explora-
tory case study. Software Quality Journal,28, 505–534. https://​doi.​org/​10.​1007/​s11219-​019-​09478-x

Schipor, O., Vatavu, R., & Vanderdonckt, J. (2019). Euphoria: A Scalable, event-driven architecture for
designing interactions across heterogeneous devices in smart environments. Information and Software
Technology,109, 43–59. https://​doi.​org/​10.​1016/j.​infsof.​2019.​01.​006

Scott, E., Milani, F., Kilu, E., & Pfahl, D. (2021). Enhancing agile software development in the banking
sector—A comprehensive case study at LHV. Journal of Software: Evolution and Process, 33, e2363.
https://​doi.​org/​10.​1002/​smr.​2363

SCRUMstudy™. (2016). A Guide to the Scrum Body Of Knowledge (SBOK™ Guide) – (2016th ed.). Ari-
zona, USA.

Sharma, M., Assotally, A., & Bekaroo, G. (2022) RaspiMonitor: A Raspberry Pi Based Smart Home Moni-
toring System. In: 2022 3rd International Conference on Next Generation Computing Applications
(NextComp), pp. 1–6. https://​doi.​org/​10.​1109/​NextC​omp55​567.​2022.​99321​98

Shin, D. (2017). Conceptualizing and measuring quality of experience of the internet of things: Explor-
ing how quality is perceived by users. Information & Management,54(8), 998–1011. https://​doi.​org/​10.​
1016/j.​im.​2017.​02.​006

Sicari, S., Rizzardi, A., & Coen-Porisini, A. (2019). How to evaluate an internet of things system: Models,
case studies, and real developments. Software: Practice and Experience, 49, 1663–1685.

Sommerville, I. (2011). Software Engineering (9th ed.). Addison-Wesley.
Staron, M., Meding, W., Karlsson, G., & Nilsson, C. (2011). Developing measurement systems: An indus-

trial case study. Journal of Software Maintenance and Evolution: Research and Practice, 23, 89–107.
Streitz, N., & Markopoulos, P. (2017). ’Heuristics to Evaluate the Usability of Ubiquitous

Systems’Distributed (pp. 120–141). Springer International Publishing AG.
Tröls, M., Mashkoor, A., Demuth, A., & Egyed, A. (2021). Ensuring safe and consistent coengineering

of cyber-physical production systems: A case study. Journal of Software: Evolution and Process, 33,
e2308. https://​doi.​org/​10.​1002/​smr.​2308

Vogel, M., Knapik, P., Cohrs, M., Szyperrek, B., Pueschel, W., Etzel, H., Fiebig, D., Rausch, A., & Kuhrmann,
M. (2021). Metrics in automotive software development: A systematic literature review. Journal of Soft-
ware: Evolution and Process, 33, e2296. https://​doi.​org/​10.​1002/​smr.​2296

Washizaki, H., Ogata, S., Hazeyama, A., Okubo, T., Fernandez, E. B., & Yoshioka, N. (2020). (2020) Land-
scape of Architecture and Design Patterns for IoT Systems. IEEE Internet of Things Journal,7(10),
10091–10101. https://​doi.​org/​10.​1109/​JIOT.​2020.​30035​28

https://doi.org/10.1016/j.caeo.2022.100099
https://doi.org/10.1016/j.caeo.2022.100099
https://doi.org/10.1007/s40860-022-00182-5
https://doi.org/10.1007/s40860-022-00182-5
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s12652-021-03693-w
https://doi.org/10.1007/s11219-019-09478-x
https://doi.org/10.1016/j.infsof.2019.01.006
https://doi.org/10.1002/smr.2363
https://doi.org/10.1109/NextComp55567.2022.9932198
https://doi.org/10.1016/j.im.2017.02.006
https://doi.org/10.1016/j.im.2017.02.006
https://doi.org/10.1002/smr.2308
https://doi.org/10.1002/smr.2296
https://doi.org/10.1109/JIOT.2020.3003528

1134	 Software Quality Journal (2024) 32:1075–1135

1 3

Weiser, M. (1991). The Computer for the 21st Century. Scientific American,265, 94–104. https://​doi.​org/​10.​
1038/​scien​tific​ameri​can09​91-​94

Werner, C. (2022). Towards a theory of shared understanding of non-functional requirements in continuous
software engineering. In Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings (ICSE ’22). Association for Computing Machinery. New York,
NY, USA, 300–304. https://​doi.​org/​10.​1145/​35104​54.​35170​69

Weyns, D., Iftikhar, M. U., Hughes, D., & Matthys, N. (2018). Applying Architecture-Based Adaptation to
Automate the Management of Internet-of-Things. Springer International Publishing.

World Health Organization. (2022). Global report on health equity for persons with disabilities. World
Health Organization. https://​apps.​who.​int/​iris/​handle/​10665/​364834. License: CC BY-NC-SA 3.0 IGO.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software
engineering (p. 1). ACM.

White, G., Nallur, V., & Clarke, S. (2017). Quality of service approaches in IoT: A systematic mapping,
Journal of Systems and Software, Volume 132, 2017. ISSN,186–203, 0164–1212. https://​doi.​org/​10.​
1016/j.​jss.​2017.​05.​125

Xianrong, Z., Martin, P., Brohman, K., & Da Li, Xu. (2014). ’CLOUDQUAL: A Quality Model for Cloud
Services. IEEE Transactions on Industrial Informatics,10(2), 1527–1536. https://​doi.​org/​10.​1109/​TII.​
2014.​23063​29

Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). Sage.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Adityarajsingh Santokhee  is a Senior Lecturer in Computer Science at
Middlesex University Mauritius and a fellow of the UK Higher Education
Academy. He completed his Ph.D. in Computer Science in April 2024 at
Middlesex University, UK, under the supervision of Prof. Juan Carlos
Augusto and Dr Lindsey Brodie. Aditya holds a BEng (Hons) in Computer
Science and Engineering from the University of Mauritius, an MSc in Net-
work Centred Computing from the University of Reading, and a PGCE in
Higher Education from Middlesex University. With extensive experience
in software development, teaching, and research in both commercial and
academic settings since 2001, Aditya’s research interests focus on Software
Engineering methods, Data Science, and Intelligent Environments. He is
actively involved in knowledge transfer, offering consultancy services
based on his expertise and research findings. Additionally, he serves as the
co-chair of the annual International Workshop on the Reliability of Intelli-
gent Environments.

Prof. Juan Carlos Augusto  is a researcher with expertise in Context-
Aware Computing, Ambient Intelligence, Ambient Assisted Living,
Intelligent Environments, Smart Environments, Pervasive Computing,
Ubiquitous Computing, Person-Centric Computing, Internet of
Things, sensor-based computing, Smart Classrooms, Smart Campus,
and Smart Cities. Throughout his career, he has advocated for a shift
from gadget-centered environment automation to a more user-
centered approach. Prof. Augusto has contributed to over 280 peer-
reviewed publications, including numerous articles in scientific jour-
nals. He has also edited landmark books such as the Handbook on
Ambient Intelligence and Smart Environments (Springer, 2009), the
Handbook on Ambient Assisted Living (IOS Press, 2012), the Hand-
book of Smart Cities (Springer, 2021), and the forthcoming Smart
Health Handbook (Sage/IOS Press, 2025). He is passionate about
training postgraduate researchers and has supervised fifteen Ph.D.

candidates (ten as Director of Studies) and directed nine M.Sc. by Research projects. He has also served as
an External Examiner for twenty-three Ph.D. candidates in various countries. Prof. Augusto is dedicated to

https://doi.org/10.1038/scientificamerican0991-94
https://doi.org/10.1038/scientificamerican0991-94
https://doi.org/10.1145/3510454.3517069
https://apps.who.int/iris/handle/10665/364834
https://doi.org/10.1016/j.jss.2017.05.125
https://doi.org/10.1016/j.jss.2017.05.125
https://doi.org/10.1109/TII.2014.2306329
https://doi.org/10.1109/TII.2014.2306329

1135Software Quality Journal (2024) 32:1075–1135	

1 3

the dissemination of knowledge and has been invited to deliver keynotes, tutorials, short courses, and
research seminars worldwide. He has served on fourteen Advisory Groups/Panels and reviewed for National
Funding bodies in eleven different countries. He is an active member of several professional societies,
including ACM, IEEE, AAAI, and BCS. Additionally, he holds editorial roles such as Editorial Board mem-
ber, Editor in Chief of three journals and of one Book Series.

Dr Lindsey Brodie  is an academic at Middlesex University, where she
teaches MSc courses in Information Systems Quality Management,
Engineering Project Management, and Logistics & Supply Chains.
Her doctoral research focused on impact estimation, a quantitative
method for assessing how well designs meet requirements. Dr Brodie
has enjoyed an extensive career in the industry, predominantly at ICL
(now Fujitsu Siemens Computers). She began her career working on
customer projects in the government, banking, and retail sectors,
where she provided technical support for operating systems and
developed software for operational support and product support of
data management software. She later transitioned to consultancy, spe-
cializing in user requirements, IT strategy, and business processes.
Beyond her industry roles, Dr Brodie has made significant contribu-
tions to academic literature, authoring numerous conference papers,

journal articles, and book chapters. She has edited Tom Gilb’s books ’Competitive Engineering’ and ’Prin-
ciples of Software Engineering Management.’ Additionally, she co-authored the student textbook ’Success-
ful IT Projects’ with Professor Darren Dalcher. Dr Brodie is a member of the British Computer Society and
holds the title of Chartered IT Practitioner.

	Towards engineering higher quality intelligent environments: a multi case study approach
	Abstract
	1 Introduction
	2 Background
	3 Literature review
	3.1 Planning the SLR
	3.2 Search strategy
	3.3 Defining inclusion and exclusion criteria
	3.4 Conducting the SLR quality assessment
	3.5 Data extraction
	3.6 Reporting the SLR
	3.7 Findings
	3.7.1 RQ1 – how is quality defined for IE systems?
	3.7.2 RQ2 – How is quality of IEs evaluated?

	3.8 RQ3 – What are the challenges and future research directions?
	3.9 Research question and proposition

	4 Proposed quality-in-use model and methodological framework
	4.1 A quality-in-use model for IEs
	4.2 Proposed methodological framework: UCIEDP2

	5 Case study research design
	5.1 Case study I: smart home monitoring system
	5.1.1 Application of UCIEDP2
	5.1.2 Findings

	5.2 Case study II: planning solution
	5.2.1 Application of agile scrum
	5.2.2 Application of UCIEDP2
	5.2.3 Findings

	6 Discussions
	7 Threats to validity
	8 Conclusion and future work
	Appendix A – list of selected articles following SLR
	Appendix B – quality characteristics per domain
	Appendix C – example of an impact estimation table
	Appendix D – first interview questions
	Introduction
	General information about projects at the organisation
	Questions about quality management
	Ending

	Appendix E – second interview questions
	Introduction
	Questions about UCIEDP2 methodology
	Questions about proposed quality-in-use model to evaluate the system
	Ending

	References

