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The smallest bimolecular mass-action system with
a vertical Andronov—Hopf bifurcation
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Abstract

We present a three-dimensional differential equation, which robustly displays a degenerate Andronov—Hopf
bifurcation of infinite codimension, leading to a center, i.e., an invariant two-dimensional surface that is
filled with periodic orbits surrounding an equilibrium. The system arises from a three-species bimolecular
chemical reaction network consisting of four reactions. In fact, it is the only such mass-action system that
admits a center via an Andronov—Hopf bifurcation.
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1. Summary of the main results

In order to admit an Andronov—Hopf bifurcation, the underlying chemical reaction network of a bimolec-
ular mass-action system must have at least three species and at least four reactions. It has recently been
shown that there are exactly 138 nonisomorphic three-species four-reaction bimolecular reaction networks,
whose associated mass-action systems admit Andronov-Hopf bifurcation [1]. These networks fall into 87
dynamically nonequivalent classes. Of these classes, 86 admit nondegenerate Andronov—Hopf bifurcation for
almost all parameter values on the bifurcation set, leading to isolated limit cycles. In the remaining class,
however, the Andronov—Hopf bifurcation can only be degenerate. A representative of this exceptional class
is

K1
Z+X— 2X

2%

X4+Y —s 2y (1)
K K.

Y47 —250—2 597

giving rise to the mass-action differential equation

T =x(k12 — K2y),
§ = y(ket — K32), (2)
z2 = 2(—Rsy — K1Z) + 2Ky

with state space RS ), where k1, ka2, k3, K4 are positive parameters, called the reaction rate constants. (The
other member of the exceptional class is obtained from (1) by replacing the reaction 0 — 2Z by 0 — Z.)
The question left open in [1] concerns the behaviour of system (2). In Section 3, we prove that whenever
the Jacobian matrix at the unique positive equilibrium has a pair of purely imaginary eigenvalues, the
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equilibrium is a center, i.e., there is a one parameter family of periodic orbits that fill the two-dimensional
center manifold. In particular, Andronov—Hopf bifurcations in system (2) are always wvertical, i.e., all the
periodic orbits occur simultaneously at the critical value of the bifurcation parameter. Additionally, we
prove that every positive solution converges either to one of these periodic orbits or to the unique positive
equilibrium. Further, we show that the global center manifold is analytic and discuss how its closure
intersects the boundary of the state space R2,.

2. Vertical Andronov—Hopf bifurcations in mass—action systems

There are two well-known small reaction networks that exhibit oscillations. The Lotka reactions [9] (left)
and the Ivanova reactions [12, page 630] (right) along with their associated mass-action differential equations
are

K1 R1
X—>2X Z4+X——2X
b= x(K1 — K2y)

Ks Y = y(raw — r3) Ks
v Y17 —25 97

T =x(Kk12 — Kay)
K
X+Y —> 2y § = y(row — K3Z)

Z2 = z(ksy — K12)

K2
X+Y —2Y

Both the Lotka and the Ivanova networks are bimolecular (i.e., the molecularity of every reactant and
product is at most two) and have rank two (i.e., the span of the vectors of the net changes of the species is
two-dimensional). For the Lotka system, the unique positive equilibrium is surrounded by periodic orbits,
the level sets of z*3y*1e~*2(#+¥)_ For the Ivanova system, the triangle A. = {(z,y,2) € R} : 2 +y + 2 = ¢}
is invariant for any ¢ > 0, and the unique positive equilibrium in A, is surrounded by periodic orbits, the
level sets of x"3y"1 z"2. For both the Lotka and the Ivanova systems, the described behaviour holds for all
K1, K2, k3 > 0, and hence, these systems admit no bifurcation.

By [2, Theorem 4.1], the Lotka and the Ivanova systems are the only rank-two bimolecular mass-action
systems with periodic orbits. Thus, for an Andronov—Hopf bifurcation to occur in a bimolecular mass-action
system, its rank must be at least three, and hence, it must have at least three species. Moreover, by [1,
Lemma 2.3], it must have at least four reactions.

We turn to the question of when mass-action systems admit vertical Andronov—Hopf bifurcations. If
we do not require bimolecularity then these can occur in rank-two networks. For example, as a short
calculation shows, by adding the reactions X <= 2X -2 3X to the Lotka network above, the resulting mass-
action system exhibits a vertical Andronov—Hopf bifurcation: for k4 slightly smaller than k5 the positive
equilibrium is asymptotically stable, for k4 slightly larger than k5 it is repelling, while for k4 = k5 it is a
center.

Focussing on bimolecular networks, we can construct rank-three networks with vertical Andronov—Hopf
bifurcation. For instance, by inserting some intermediate steps into the Ivanova network and choosing the
rate constants appropriately, we obtain the following rank-three bimolecular mass-action system with cyclic
Symietry:

74X —2 > X =X
. 5 & =z(y— Pz —ay)
X+Y——>Y——2Y ) =y(y — By — az) (3)
Z=z(y— Bz —ax)

Y+Z—a>z<:>22

This system exhibits vertical Andronov—Hopf bifurcation: the unique positive equilibrium is asymptotically
stable for a < 24, it is unstable for a > 23, while it is a center for « = 23. More precisely, for @ = 23 the

triangle A = {(z,y,2) € RY: z4y+z = %} is invariant, and on A the equilibrium (z*, y*, 2*) = (%, %, %)
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is surrounded by periodic orbits. On these curves, the function xyz is constant, as in the Ivanova system
with equal rate constants. In fact, the function % is a constant of motion in R3, the stable manifold
of (z*,y*,2*) is the line = y = z in R3, while the w-limit set of any positive initial point outside this line
is one of the periodic orbits in A, see [10] or [6, Section 5.5].

In the next section, we prove that the mass-action system (2) (which is obtained from the Ivanova network
by adding a single intermediate step, and has only four reactions) also admits a vertical Andronov—Hopf
bifurcation, even though it has no obvious symmetries. By [1, Theorems 5.2 and 7.1], up to renaming the
species, it is the only three-species four-reaction bimolecular mass-action system that exhibits a vertical
Andronov-Hopf bifurcation.

3. Analysis

In this section we analyse the mass-action system (2). In particular, we show that it undergoes a vertical
Andronov-Hopf bifurcation at k1 = ks + k3. A description of the dynamics in the critical case is provided
in Theorem 1, while some information on the shape of the global center manifold is revealed in Theorem 2.

By a short calculation, system (2) has a unique positive equilibrium, given by

R3R4 R1kK4 R2kR4

* * *

(", y", 2") = ; ; :
K1K2 KRoK3 K1R3

Denoting by J the Jacobian matrix at (z*,y*, 2*), one finds that the characteristic polynomial of J equals
A%+ CLQ)\2 + a1 A + ag with

K1K3K4q 3
as =2 — s m= (K1 + Ko — K3)Ra, ap = 44/ K1KaK3K}.
2

Since ag > 0, one eigenvalue is a negative real number, and the real parts of the other two eigenvalues have
the same sign. Since as > 0 this sign equals sgn(ag — asa;) = sgn(—rk1 + ko + k3) by the Routh—Hurwitz
criterion. Hence,

(a) if k1 > Ko+ k3 then all three eigenvalues of J have negative real parts (and thus, the positive equilibrium
is asymptotically stable),

(b) if kK1 = K2 + K3 then J has a pair of purely imaginary eigenvalues,

(c) if kK1 < Ko + K3 then J has eigenvalues with positive real parts (and thus, the positive equilibrium is
unstable).

Thus, on the bifurcation set (given by k1 = k2 + Kk3), apart from the negative real eigenvalue, there is a pair
of imaginary eigenvalues (Fwi with w = \/2r2k4). It was shown by direct calculation in [1] that the first
and the second focal values (also known as Poincaré-Lyapunov coefficients [4], or Lyapunov coefficients [8])
both vanish. In the sequel, we show by providing a constant of motion that the system (2) has a center
whenever k1 = kg + k3. Therefore, by a theorem of Lyapunov (see [4, page 143 and Theorem 7.2.1]), in fact,
the kth focal value vanishes for all k£ > 1, and system (2) exhibits a vertical Andronov—Hopf bifurcation as
k1 varies through ko + k3.

Theorem 1. For the mass-action system (2) with K1 = k2 + k3, the following hold.

(i) The function
K
Viz,y,2) = ?2(% —y + 2)% + 2kpmy — 2k4 log(zy)

s a constant of motion.
(ii) The stable manifold of (x*,y*,2*) is {(x,y,2) ERy: 2 —y+ 2= 0,2y = may.
3



(i) There exists an analytic two-dimensional invariant surface M in ]Ri, composed of periodic orbits and
the positive equilibrium. The w-limit set of any positive initial condition outside the stable manifold of
the positive equilibrium is one of the periodic orbits in M.

Proof. We perform a change of coordinates which reveals the global orbit structure of (2). The map

x r—y+z
v y| = logx—l—logy—logz—; (4)
z —logx + log —:?:;

is an analytic diffeomorphism between {(z,y,2) € R®: z > 0,y > 0} and R3. Its inverse is given by

QT
1 P Zle+
1, o r
U= [q | — meq ,
_ QT @ gtT
r D= € +&Se

Ki1Kk3Kk4

o4 When k1 = k2 + k3, the new coordinates (p,q,r) = Y(z,y, z) evolve according to the

where oo =

differential equation

p = —2/434(6(1 — 1),
q = Kap, (5)
7= —r1p+ale”” — el

Notice that p and ¢ evolve independently of . In fact, the (p, ¢)-system is Newtonian (i.e., §+ F'(q) = 0),

and thus, it is also Hamiltonian. Its Hamiltonian function is

H(p,q) = %pQ + 2k4(e? —q—1).
Since H o (U1, ¥5) differs from the function V in (i) only by an additive constant, V' is indeed a constant of
motion in the original coordinates, proving (i). Observe furthermore that the r-axis is invariant for (5), and
the flow there converges to the origin. Thus, the r-axis is the stable manifold, and in turn, this shows (ii).

The level sets of H are closed, bounded curves which foliate the (p, ¢)-plane. Thus, in the (p, ¢)-system,
the origin is a global center, i.e., each nonconstant solution is a periodic one whose orbit surrounds the
origin, see Figure 1 for a phase portrait.

The function H also provides an analytic constant of motion for system (5). Thus, the Lyapunov Center
Theorem (see e.g., [7], [3, Theorem 3], or [11, Theorem 5.1.1]) shows that the local center manifold at the
equilibrium (0, 0,0) is unique, analytic, and filled with periodic orbits. In the following we show that this
center manifold extends globally and attracts every solution.

For any L > 0, the cylinder Cf, = {(p,q,7) € R3: H(p,q) = L} is invariant for the differential equation
(5), and there exist r < 0 < 7 such that

7 <0in {(p,q,r) €Cr:r>7T}and 7 >0 in {(p,q,r) € Cpr: r <71}

hold. Therefore, the bounded cylinder {(p, q,7) € Cp,: r < r < T} is forward invariant, and attracts all orbits
on Cp. This shows, in particular, that all solutions of the differential equation (5) exist for all positive time
and so the differential equation (5) defines a semiflow ®¢ on R3. On the other hand, the (p, q) subsystem is
associated with a flow ®! on the (p, 9)-plane since all orbits are bounded and thus exist for all time. Both
®t and ®! are analytic (by the analytic dependence of solutions on initial conditions).

Next, we show that any two solutions starting above each other on a cylinder C';, approach each other.
Let us denote the r.h.s. of (5) as f(p,q,r), and accordingly, f3(p,q,r) equals —k1p + a(e™ — e?"). Note
that

ofs

o = —a(e™" 4+ ettT) < —20e/2. (6)
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Figure 1: The phase portrait of p = —2k4(e? — 1),
¢ = kap. All nonconstant solutions are periodic.

For a fixed L > 0, let (p,q,7r1),(p,q,72) € Cr, with 71 < ro. Further, let 7;(t) = ®4(p,q,7;), the third
component of the solution. Then r1(¢) < ro(t) for all ¢ > 0 and, by the Mean Value Theorem,

fa(t) = 71(t) = fa(p(t), q(t), m2(t)) — f3(p(t), q(t),m1(2)) =
= (ra2(t) - Tl(t))%(p(t%q(t)f(t))
with 71(£) < 7(£) < ra(t). By (6), it follows that
Pa(t) — 71 (t) < —K(r2(t) — r1(2))
holds with K = 2a¢7/2, where 7 is the negative solution of H(0,g) = L. Thus, by the Gronwall Lemma,

ro(t) = ra(t)] < e ®t|ry — ). (7)

Next, we define the Poincaré section

L ={(p,g,r) ER’: p=0,q > 0},

and a Poincaré map P: ¥ — X as follows. For any ¢ > 0, let ¢, be the line {0} x {¢} x R. Then ({;)¢>0
is a foliation of ¥. Associated with each ¢ > 0 is a minimal positive period 7, such that P (0,9) = (0,q),
ie., ®7(¢,) C ¢,. By the analytic Implicit Function Theorem, 7, is an analytic function of g. We can thus
define the first return map P by P(0,q,r) = ®7(0,q,r), and since ® and 7, are analytic, P is analytic on
3.

We define the analytic function R: (0,00) x R — R by P(0,q,7) = (0,¢, R(q,7)). For any fixed ¢ > 0,
by substituting ¢ = 7, into (7), we obtain

|R(q,r2) — R(g,r1)| < e Ta|ry — 4], (8)

showing that R(q,-) is a contraction. Hence, for each ¢ > 0 the function R(q,-): R — R has a unique fixed
point h(q). Every orbit of P starting on the line ¢, converges to (0, ¢, h(g)) which corresponds to a periodic
orbit of (5) with period 7,. Additionally, since ’%—f‘ < e K7 < 1 follows from (8), the analytic Implicit
Function Theorem applies to R(q, h(q)) = h(q), and thus, h is analytic for g > 0.

Finally, applying ®¢ to the graph of h, we obtain the invariant surface C = {®*(0,q,h(q)) : ¢ > 0,t €
R} U {(0,0,0)}, consisting entirely of periodic orbits of the flow (together with the equilibrium). Near
the origin, C coincides with the local center manifold, hence, C is analytic there by the Lyapunov Center

5



Theorem. That C is analytic away from the origin follows by a straightforward argument that uses the
analyticity of ®, ®, and h.

Setting M = ¥~1(C) and recalling that ¥ is an analytic diffeomorphism complete the proof of statement
(iii). O

In the next theorem, we describe how the closure of the surface M intersects the boundary of the
nonnegative orthant R%,. We call a solution  — (x(t), y(t), 2(t)) complete if it is defined for all ¢ € R.

Theorem 2. For the invariant surface M, obtained in Theorem 1, the intersection M N 8]1%320 is the

parametric curve
%r (- olr) e(r)
07 ’ ER’
V s < o(r) o) ) T

where p(T) = \/%e and ®(7) = [ __p(s)ds. Up to the rescaling T = \/2kgkat of time, this curve is the
only complete solution of (2) on the boundary of R%,.

22
2

Proof. First, observe that & (yz) < 0 whenever yz > % Indeed,

d T 2k,
*log(yZ):y+f:52x7,{3271€3y71€1x+7‘1:
dt y .
2 =
:7[{3(x+z)+w<07
z

where we used kK1 = ke + k3 and yz > 2,%4 As a consequence, for any point (z,y, z) € M we have yz < %4

Next, we show that M intersects the facet F = {(z,y,2) € R3,: z = 0}. To this end, take a sequence
of points (pn, qn,™n)n>0 C C such that p, = —1 and lim,,_, ¢, = —00, where C is the invariant surface of
the differential equation (5), constructed in the proof of Theorem 1, foliated by periodic orbits. Then define
(T, Yny 2n) = VY (Pn, Gn, ™) € M, where U is given by (4). Since p,, = —1, it follows that y,, = z,, +2, +1,
and consequently, 3, > 1. Since lim,,_, o, ¢, = —00, we obtain that lim, . ¥, = 0. Hence, lim,, o, T, =
0 and lim,,— 00 (Y, — 2,) = 1. Taking also into account that (x,y,z) € M implies yz < 2%54, the sequence
(Tns Yn, Zn)n>0 has an accumulation point on the line segment {(0,y, z) € R%O: y—z=1 and yz < %}

Since M consists of orbits of complete solutions, so does the closure of M. Therefore, since M C R2,
there is a complete solution in Rio through the accumulation point that we found in the previous paragra}gh.
Since the set Gy = {(z,y,2) € R3:2=0,y> 0} is invariant, this complete solution lies in G; "R, i.e., in
F.

Next, we investigate the dynamics on G;. To ease the notation, we divide both y and z by \/% . After

also rescaling time (7 = v/2r3k4t), the differential equation (2) on G; becomes

y:_yza
z=—-yz+ 1.

9)

The general solution to (9), up to time shift, is
(10)

where —1 < C < oo (the limit case C' = oo gives the complete solution y(7) = 0, z(7) = 7 along the z-axis).
For —1 < C < 0 the solution (10) is defined only in the interval (7, 00), where 7y is given by ®(19) +C =0,
and thus, the solution is not complete. For C' > 0, the solution (10) is defined for all 7 € R, however,

6



since lim,_, _, 2(7) = —o0, it is a complete solution in Gy, but not in F. Consequently, the only complete
solution in F is (10) with C'= 0. See Figure 2 for the orbits of the solutions (10) for different values of C.
On the invariant set Go = {(z,y,2) € R3: & > 0,y = 0}, the differential equation (2) takes the form

T = K22,

Z = —K1TZ + 2Ky4.

Since z(t) + 2(t) = 24t + C (for some C € R), for every solution with (z(0), z(0)) € R%, there exists a time
t* < 0 such that z(t*) < 0. Thus, there is no complete solution in Go NRE,,. -

Finally, since # > 0 for (2) whenever z = 0, the closure of M cannot intersect {(z,y,2) € R3,: z =
0}. This concludes the proof of the theorem. (The shape of the global center manifold M is shown in
Figure 3.) O

Figure 2: The phase portrait of the differential
equation (9), along with three highlighted trajec-
tories (for —1 < C < 0, C = 0, C > 0). The
trajectory shown in magenta is the only one that
corresponds to a complete solution that lies entirely
in the boundary of the nonnegative orthant Rio.

Figure 3: The periodic orbits of the differential
equation (2) (shown in blue), the stable manifold of
the unique positive equilibrium (shown in red), and
the intersection of the closure of the center manifold
with the boundary of the positive orthant (shown in
magenta).

4. Discussion

We have shown in Theorem 1 that the positive equilibrium of (2) is a center when k1 = k2 + k3. In fact,
we provided a constant of motion V, and proved the existence of a global center manifold M that attracts
all positive solutions, albeit we have no explicit formula for M. The periodic orbits are obtained as the
intersection of the level sets of V with M. On the other hand, a frequent situation in the literature is when
the center manifold M is known explicitly, but the function V is not (although its restriction to M may
be known). In some cases (e.g. for system (3)), both V' and M are known explicitly. For some examples of
centers on center manifolds, see e.g. [3], [5], or [11, Section 5.2].

As was discussed in Section 1, there are 86 dynamically nonequivalent three-species four-reaction bi-
molecular mass-action systems that admit a nondegenerate Andronov-Hopf bifurcation. Of those, 31 also
admit a degenerate Andronov—Hopf bifurcation (i.e., a vanishing first focal value) on an exceptional subset of
the bifurcation set, see [1]. However, in all 31 cases, the second focal value is nonzero on this exceptional set,
and thus, degenerate Andronov—Hopf bifurcations of codimension greater than two are impossible. Thus,
system (2) stands out in two ways: the Andronov—Hopf bifurcation is degenerate everywhere on the bi-
furcation set; and additionally all focal values vanish, leading to a center through a bifurcation of infinite
codimension.



(a)
(b)

We conclude with two open questions about system (2):
For k1 > kg + K3, is the positive equilibrium globally asymptotically stable?

For k1 < ko + K3, are all solutions outside the stable manifold of the positive equilibrium unbounded?
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