Attack Trees in Isabelle

Florian Kammuiller

Middlesex University London and
Technische Universitat Berlin
f.kammueller@mdx.ac.uk

Abstract. In this paper, we present a proof theory for attack trees.
Attack trees are a well established and useful model for the construction
of attacks on systems since they allow a stepwise exploration of high
level attacks in application scenarios. Using the expressiveness of Higher
Order Logic in Isabelle, we succeed in developing a generic theory of
attack trees with a state-based semantics based on Kripke structures
and CTL. The resulting framework allows mechanically supported logic
analysis of the meta-theory of the proof calculus of attack trees and at
the same time the developed proof theory enables application to case
studies. A central correctness and completeness result proved in Isabelle
establishes a connection between the notion of attack tree validity and
CTL. The application is illustrated on the example of a healthcare IoT
system and GDPR compliance verification.

1 Introduction

Attack trees are an intuitive and practical formal method to analyse and quantify
attacks on security and privacy. They are very useful to identify the steps an
attacker takes through a system when approaching the attack goal. In this paper,
we provide a proof calculus to analyse concrete attacks using a notion of attack
validity. We define a state based semantics with Kripke models and the temporal
logic CTL in the proof assistant Isabelle [1] using its Higher Order Logic (HOL)E
We prove the correctness and completeness (adequacy) of attack trees in Isabelle
with respect to the model. This generic Kripke model enriched with CTL does
not use an action based model contrary to the main stream. Instead, our model
of attack trees leaves the choice of the actor and action model to the application.
Nevertheless, using the genericity of Isabelle, proofs and concepts of attack trees
carry over to the application model.

There are many approaches to provide a mathematical and formal semantics
as well as constructing verification tools for attack trees but we pioneer the use
of a Higher Order Logic (HOL) tool like Isabelle that allows proof of meta-theory
— like adequacy of the semantics — and verification of applications — while being
ensured that the formalism is correct.

Attack trees have been investigated on a theoretical level quite intensively;
various extensions exist, e.g., to attack-defense trees and probabilistic or timed

! In the following, we refer to Isabelle/HOL simply as Isabelle.

attack trees. This paper uses preliminary work towards an Isabelle proof calcu-
lus for attack trees presented at a workshop [2] but accomplishes the theoretical
foundation by defining a formal semantics and providing the proof of correctness
and completeness and thereby establishing a feasible link for application verifi-
cation. The novelty of this proof theoretic approach to attack tree verification is
to take a logical approach from the very beginning by imposing the rigorous ex-
pressive Isabelle framework as the technical and semantical spine. This approach
brings about a decisive advantage which is beneficial for a successful application
of the attack tree formalism and consequently also characterizes our contribu-
tion: meta-theory and application verification are possible simultaneously. Since
Higher Order Logic allows expressing concepts like attack trees within the logic,
it enables reasoning about objects like attack trees, Kripke structures, or the
temporal logic CTL in the logic (meta-theory) while at the same time applying
these formalised concepts to applications like infrastructures with actors and
policies (object-logics).
This paper presents the following contributions.

— We provide a proof calculus for attack trees that entails a notion of refine-
ment of attack trees and a notion of valid attack trees.

— Validity of attack trees can be characterized by a recursive function in Is-
abelle which facilitates evaluation and permits code generation.

— The main theorems show the correctness and completeness of attack tree
validity with respect to the state transition semantics based on Kripke struc-
tures and CTL. This meta-theorem not only provides a proof for the concepts
but is part of the proof calculus for applications.

— The Isabelle attack tree formalisation is applied to the case study of formal-
ising GDPR properties over infrastructures.

In this paper, we first introduce the underlying Kripke structures and CTL
logic (Section . Next, we present attack trees and their notion of refinement
(Section . The notion of validity is given by the proof calculus in Section
followed by the central theorem of correctness and completeness (adequacy) of
attacks in Section [f] including a high level description of the proof. Section [6]
shows how the framework is applied to analyse an IoT healthcare system and
Section [7] extends by labelled data to enable GDPR compliance verification.
We then discuss, consider related work, and draw conclusions (Section . All
Isabelle sources are available online [3].

2 Kripke Structures and CTL in Isabelle

Isabelle is a generic Higher Order Logic (HOL) proof assistant. Its generic aspect
allows the embedding of so-called object-logics as new theories on top of HOL.
An Isabelle theory introduces new types, constants, and definitions. Similar to
a programming language, keywords indicate these items: for example, the key-
word datatype marks the beginning of a new type definition or definition
introduces a new constant and its definition. In this paper, we will provide more

detailed explanation of the concrete syntax when and where it is used. Object-
logics, when added to Isabelle using constant and type definitions, constitute a
so-called conservative extension. This means that no inconsistency can be in-
troduced; conceptually, new types are defined as subsets of existing types and
properties are proved using a one-to-one relationship to the new type from prop-
erties of the existing type. New properties within a theory can be subsequently
proved in interaction with the user over any model defined in terms of the new
types, constants, and definitions. These properties are introduced with the key-
word lemma or theorem depending on their significance. Following the statement
of such a property, the Isabelle tool expects the user to provide step-by-step in-
structions how to prove the property using existing lemmas and theorems from
underlying theories or previously proved properties. In principle, proof can be a
tedious process and requires expert knowledge. However, there are sophisticated
proof tactics available to support reasoning: simplification, first-order resolution,
and special macros to support arithmetic amongst others. The use of HOL has
the advantage that it enables expressing even the most complex application sce-
narios, conditions, and logical requirements and HOL simultaneously enables the
analysis of the meta-theory.

In this work, we make additional use of the class concept of Isabelle that
allows an abstract specification of a set of types and properties to be instantiated
later. We use it to abstract from states and state transition in order to create
a generic framework for Kripke structures, CTL, and attack trees. Using classes
the framework can then be applied to arbitrary object-logics that have a notion
of state and state transition by instantiation. Isabelle attack trees have been
designed as a generic framework meaning that the formalised theories can be
applied to various applications. Figure [l illustrates how the Isabelle theories in
our framework are embedded into each other.

GDPR for
IoT healthcare

Infrastructure S&P

Attack trees

Kripke structures & CTL

Fig. 1. Generic framework for attack trees embeds applications.

2.1 Kripke Structures and CTL

The expressiveness of Higher Order Logic (HOL) allows formalizing the notion
of Kripke structures as sets of states and a generic transition relation over those
in Isabelle. In addition, the branching time temporal logic CTL is embedded
conservatively into HOL using Isabelle’s fixpoint definitions for the CTL opera-
tors [?]. We apply Kripke structures and CTL to model state based systems and
analyse properties under dynamic state changes. Snapshots of systems are the
states on which we define a state transition. Temporal logic is then employed to
express and prove security and privacy properties over these system models.

In Isabelle, the system states and their transition relation are defined as a
class called state containing an abstract constant state_transition. It intro-
duces the syntactic infix notation I — I’ to denote that system state I and I’
are in this relation over an arbitrary (polymorphic) type o.

class state =
fixes state_transition :: [0 :: type, o] = bool ("_ — _")

The above class definition introduces a new type class in Isabelle. This class
state lies in the base class type which is encoded by the type judgment :: type
following o. All types in class state are characterized by having a constant called
state_transition, with concrete infix syntax —. The o is a polymorphic type
variable used here to represent an arbitrary type ¢ in the class state imposing
that the state transition must be a predicate over two elements of o, that is, a
relation.

This type class state lifts Kripke structures and CTL to a general level
allowing various instantiations to concrete state transition relations that will be
provided using inductive definitions. The definition of such an inductive relation
is given by a set of specific rules which are, however, part of an application like
infrastructures (Section @ Branching time temporal logic CTL is defined in
general over Kripke structures with arbitrary state transitions and can later be
applied to suitable theories, like infrastructures.

Based on the generic state transition — of the type class state, the CTL-
operators EX and AX express that property f holds in some or all next states,
respectively.

AX f

={s. {£f0.s >0} C f}
EX f = 3

f0 € f. s —> £f0 }

The CTL formula AG f means that on all paths branching from a state s the
formula f is always true (G stands for ‘globally’). It can be defined using the
Tarski fixpoint theory by applying the greatest fixpoint operator.

AG f = gfp(\ Z. f N AX 2)

The function input to gfp is from a set of states Z to the set of states f N AX
Z transforms properties to properties — a so-called predicate transformer.

In a similar way, the other CTL operators are defined. The formal Isabelle
definition of what it means that formula f holds in a Kripke structure M can be

stated as: the initial states of the Kripke structure init M need to be contained
in the set of all states states M that imply f. This is stated in the definition of
the operator check with infix syntax .

MF f= init M C { s € states M. s € f }

The left side of a definition fixes parameters, here, a Kripke structure M and
a set of states f, which can be used on the right side of the = to define its
meaning. In this definition, we use the set theory operators for subset relation
C, set membership €, and set collection { x. P x } denoting the set of all x
with property P for any predicate P. These set notations are provided in the
rich Isabelle theory database. In an application, the set of states of the Kripke
structure will be defined as the set of states reachable by the infrastructure state
transition from some initial state, say example_scenario.

example states = { I. example_scenario —"* I }

The relation —~* is the reflexive transitive closure () “* — a generic operator
supplied by the Isabelle theory library — applied to the relation —. Again using
here the generic theory library, automatically provides a realm of theorems about
the reflexive transitive closure and powerful automated proof support for our
application.

The Kripke constructor combines a state set, here the one of our dummy ex-
ample, a set of initial states, here just the singleton set containing example_scenario,
and a state transition relation, here —, into a Kripke structure that we name
here example Kripke.

example_Kripke = Kripke example_states {example_scenario} —

In Isabelle, the concept of sets and predicates coincideﬂ Thus a property is a
predicate over states which is equal to a set of states. For example, we can then
try to prove that there is a path (E) to a state in which the property eventually
holds (in the Future) by starting the following proof in Isabelle.

example_Kripke + EF property

Since property is a set of states, and the temporal operators are predicate
transformers, that is, transform sets of states to sets of states, the resulting EF
property is also a set of states — and hence again a property.

3 Attack Trees and Refinement

Attack Trees |4] are a graphical language for the analysis and quantification of
attacks. If the root represents an attack, its children represent the sub-attacks.
Leaf nodes are the basic attacks; other nodes of attack trees represent sub-
attacks. Sub-attacks can be alternatives for reaching the goal (disjunctive node)
or they must all be completed to reach the goal (conjunctive node). Figure [2] is
an example of an attack tree taken from a textbook [4] illustrating the attack

open safe

pick lock learn combo cut open safe _ install
improperly

find written get combo
combo from target

threaten blackmail eavesdrop bribe

listen to get target to
conversation state combo

Fig. 2. Attack tree example illustrating disjunctive nodes for alternative attacks refin-
ing the attack “open safe”. Near the leaves there is also a conjunctive node “eavesdrop”.

of opening a safe. Nodes can be adorned with attributes, for example costs of
attacks or probabilities which allows quantification of attacks (not used in the
example).

3.1 Attack Tree Datatype in Isabelle

The following datatype definition attree defines attack trees. Isabelle allows
recursive datatype definitions similar to the programming languages Haskell or
ML. A datatype is given by a “|” separated sequence of possible cases each of
which consists of a constructor name, the types of inputs to this constructor, and
optionally a pretty printing syntax definition. The simplest case of an attack tree
is a base attack. The principal idea is that base attacks are defined by a pair of
state sets representing the initial states and the attack property — a set of states
characterized by the fact that this property holds for them. Attacks can also be
combined as the conjunction or disjunction of other attacks. The operator &y
creates or-trees and @, creates and-trees. And-attack trees I$3% and or-attack
trees (P, consist of a list of sub-attacks — again attack trees.

datatype (o :: state)attree =

BaseAttack (o set)x (o set) ("N ()"
| AndAttack (o attree)list (o set)x (o set) ("_ 695()")
| OrAttack (o attree)list (o set)x (o set) ("_ EBE])")

The attack goal is given by the pair of state sets on the right of the operator N,
@y or D, respectively. A corresponding projection operator is defined as the
function attack.

2 In general, this is often referred to as predicate transformer semantics.

primrec attack :: (o::state)attree = (0 set)x (o set)
where

attack (BaseAttack b) =
| attack (AndAttack as s)
| attack (OrAttack as s) = s

b
=s

Functions over datatypes can be given with primrec which enables defining an
operator, here attack, by listing the possible cases and describing the semantics
using simple equations and pattern matching on the left side.

3.2 Attack Tree Refinement

When we develop an attack tree, we proceed from an abstract attack, given by
an attack goal, by breaking it down into a series of sub-attacks. This proceeding
corresponds to a process of refinement. Therefore, as part of the attack tree cal-
culus, we provide a notion of attack tree refinement. This can be done elegantly
by defining an infix operator C. The intuition of developing an attack tree from
the root to the leaves is illustrated in Figure |3} The example attack tree on the
left side has a leaf that is expanded by the refinement into an and-attack with
two steps. Formally, we define the semantics of the refinement operator by an

D

| Nist,s2) | | AT | | .

Fig. 3. Attack tree example illustrating refinement of an and-subtree.

inductive definition for the constant C, that is, the smallest predicate closed
under the set of specified rules (see Table 77).

inductive refines_to :: [(o :: state) attree, o attree] = bool ("_ C _")
where
refl: [A= (1@ [WNeisnl @1° :)@&90733); A = 10 @&91,32);
pr=1e1 01 %P] = A LC A

| ref_or: [[as # [1; VA € set(as). A C A’ A attack A = s
] = AL as @ys

| ref_trans: [AC A’; A’ C A’] = AL A”

| ref_refl : AC A

The rule refI captures the intuition expressed in Figure [3} a sequence of leaves
in an and-subtree can be refined by replacing a single leaf by a new subsequence
(the @ is the list append in Isabelle). Rule ref_or describes or-attack refinement.
To refine a node into an or-attack, all sub-trees in the or-attack list need to refine
the parent node. The remaining rules define C as a pre-order on sub-trees of an
attack tree: it is reflexive and transitive.

Refinement of attack trees defines the stepwise process of expanding abstract
attacks into more elaborate attacks only syntactically. There is no guarantee that
the refined attack is possible if the abstract one is, nor vice-versa. We need to
provide a semantics for attacks in order to judge whether such syntactic refine-
ments represent possible attacks. To this end, we now formalise the semantics
of attack trees by a proof theory.

4 Proof Calculus

A valid attack, intuitively, is one which is fully refined into fine-grained attacks
that are feasible in a model. The general model we provide is a Kripke structure,
i.e., a set of states and a generic state transition. Thus, feasible steps in the
model are single steps of the state transition. We call them valid base attacks.
The composition of sequences of valid base attacks into and-attacks yields again
valid attacks if the base attacks line up with respect to the states in the state
transition. If there are different valid attacks for the same attack goal starting
from the same initial state set, these can be summarized in an or-attack.

fun is_attack_tree :: [(o :: state) attree] = bool ("F_")
where

att_base: F N; =V x € fsts. 3y € snds. x —y
| att_and: F (As :: (o::state attree list)) P} =

case As of
[l = (fst s C snd s)
| [a]l] = F a A attack a = s
| a#1 =F a A fst(attack a) = fst s
A1 69(Asnd(at:tack a),snd(s))
| att_or: + (As :: (o::state attree list)) @Y =
case As of
[1 = (fst s C snd s)
[al] = F a A fst(attack a) O fst s A snd(attack a) C snd s

a#l=1FaA fst(attack a) C fst s A snd(attack a) C snd s
AF1 @(fst s - fst(attack a),snd s)
Vv

More precisely, the different cases of the validity predicate are distinguished by
pattern matching over the attack tree structure.

— A base attack Nso,s1y is valid if from all states in the pre-state set sO we
can get with a single step of the state transition relation to a state in the
post-state set s1. Note, that it is sufficient for a post-state to exist for each
pre-state. After all, we are aiming to validate attacks, that is, possible attack
paths to some state that fulfills the attack property.

— An and-attack As ®$%%V is a valid attack if either of the following cases
holds:

e empty attack sequence As: in this case all pre-states in sO must already
be attack states in s1, i.e., sO C s1;

e attack sequence As is singleton: in this case, the singleton element attack
a in [al, must be a valid attack and it must be an attack with pre-state
s0 and post-state s1;

e otherwise, As must be a list matching a # 1 for some attack a and tail of
attack list 1 such that a is a valid attack with pre-state identical to the
overall pre-state sO and the goal of the tail 1 is s1 the goal of the overall
attack. The pre-state of the attack represented by 1 is snd(attack a)
since this is the post-state set of the first step a.

— An or-attack As EB&SO’SU is a valid attack if either of the following cases
holds:

e the empty attack case is identical to the and-attack above: sO C si;

e attack sequence As is singleton: in this case, the singleton element attack
a must be a valid attack and its pre-state must include the overall attack
pre-state set sO (since a is singleton in the or) while the post-state of a
needs to be included in the global attack goal s1;

e otherwise, As must be a list a # 1 for an attack a and a list 1 of alter-
native attacks. The pre-states can be just a subset of s0 (since there are
other attacks in 1 that can cover the rest) and the goal states snd (attack
a) need to lie all in the overall goal state set s1. The other or-attacks in
1 need to cover only the pre-states fst s - fst(attack a) (where - is
set difference) and have the same goal snd s.

The proof calculus is thus completely described by one recursive function.
This is a major improvement to the inductive definition provided in the pre-
liminary workshop paper [2] that inspired this paper. Our notion of attack tree
validity is more concise hence less prone to stating inconsistent definitions and
still allows to infer properties important for proofs. The increase of consistency
is because other important or useful algebraic properties can be derived from
the recursive function definition. Note, that preliminary experiments on a proof
calculus for attack trees in Isabelle [2| used an inductive definition that had a
larger number of rules than the three cases we have in our recursive function defi-
nition is_attack_tree. The earlier inductive definition integrated a fair number
of properties as inductive rules which are now proved from the three cases of
is_attack_tree.

It might appear that Kripke semantics interprets conjunction as sequential
(ordered) conjunction instead of parallel (unordered) conjunction. However, this
is not the case: the ordering of events or actions is implicit in the states. There-
fore, any kind of interleaving (or true parallelism) of state changing actions is
possible. This is inserted as part of the application — for example in the In-
frastructures definition of the state transition in Section [l There the order of
actions between states depends on the pre-states and post-states only.

Given the proof calculus, the notion of validity of an attack tree can be used
to identify valid refinements already at a more abstract level. The notion Cy

denotes that the refinement of the attack tree on the left side is to a valid attack
tree on the right side.

ACy = (AC A AN A

Taking this one step further, we can say that an abstract attack tree is valid if
there is a valid attack tree it refines to.

Fyv A = (3 A. ACy A)

Thereby, we have achieved what we initially wanted: to state that an abstract
attack tree A is actually a valid attack tree, we can conjecture -y A. This results
in the proof obligation of finding a valid attack tree FA’ such that A CA’. For
practical purposes, the following lemma implements this method.

lemma ref_vall: AC A’ — F A’ — Fy A

We are going to use this method on the case study in Section [6.2] for the attack
tree analysis.

5 Correctness and Completeness of Attack Trees

The novel contribution of this paper is to equip attack trees with a Kripke
semantics. Thereby, a valid attack tree corresponds to an attack sequence. The
following correctness theorem provides this: if A is a valid attack on property s
starting from initial states described by I, then from all states in I there is a
path to the set of states fulfilling s in the corresponding Kripke structure.

theorem AT_EF: F A :: (o :: state) attree) —> (I, s) = attack A
—> Kripke {t . 3 i€ I.i—="%t}IF EFs

It is not only an academic exercise to prove this theorem. Since we use an
embedding of attack trees into Isabelle, this kind of proof about the embedded
notions of attack tree validity - and CTL formulas like EF is possible. At the
same time, the established relationship between these notions can be applied
to case studies. Consequently, if we apply attack tree refinement to spell out
an abstract attack tree for attack s into a valid attack sequence, we can apply
theorem AT_EF and can immediately infer that EF s holds.

Theorem AT _EF also extends to validity of abstract attack trees. That is, if
an “abstract” attack tree A can be refined to a valid attack tree, correctness in
CTL given by AT_EF applies also to the abstract tree.

theorem ATV_EF: vy A :: (o :: state) attree) — (I, s) = attack A
— Kripke {t . 3i € I.i—>"%t}IF EFs

The inverse direction of theorem AT_EF is a completeness theorem: if states
described by predicate s can be reached from a finite nonempty set of initial
states I in a Kripke structure, then there exists a valid attack tree for the attack
(I,s).

theorem Completeness: I # {} = finite I —
Kripke {t . 3i € I. i - %t} I+ EF s
— J A :: (o::state)attree. - A A (I, s) = attack A

Correctness and Completeness are proved in Isabelle within the theory AT. thy
[3]. The interactive proofs including auxiliary lemmas consist of nearly 1200 lines
of proof commands. However, we have proved these theorems once for all. Owing
to the modular organisation of our framework they are meta-theoretic theorems
usable for any object logic that models an application.

6 Application to Infrastructures, Policies, and Actors

The Isabelle Infrastructure framework supports the representation of infrastruc-
tures as graphs with actors and policies attached to nodes. These infrastructures
are the states of the Kripke structure.

The transition between states is triggered by non-parametrized actions get,
move, eval, and put executed by actors. Actors are given by an abstract type
actor and a function Actor that creates elements of that type from identities
(of type string). Policies are given by pairs of predicates (conditions) and sets
of (enabled) actions.

type_synonym policy = ((actor = bool) X action set)
Actors are contained in an infrastructure graph.

datatype igraph = Lgraph (location X location)set
location = identity set
actor = (string set X string set)
location = (string X acond)

An igraph has just one constructor function Lgraph. It constructs an igraph
from a set of location pairs representing the topology of the infrastructure as a
graph of nodes and a list of actor identities associated to each node (location) in
the graph. The third component of an igraph associates actors to a pair of string
sets by a pair-valued function whose first range component is a set describing
the credentials in the possession of an actor and the second component is a
set defining the roles the actor can take on. More importantly in this context,
the fourth component of an igraph assigns locations to a pair of a string that
defines the state of the component and an element of type acond. This type
acond is defined as a set of labelled data representing a condition on that data.
Corresponding projection functions for each of these components of an igraph
are provided; they are named gra for the actual set of pairs of locations, agra
for the actor map, cgra for the credentials, and 1gra for the state of a location
and the data at that location.

Infrastructures are given by the following datatype that contains an infras-
tructure graph of type igraph and a policy given by a function that assigns local
policies over a graph to all locations of the graph.

datatype infrastructure = Infrastructure igraph
igraph = location = policy set

There are projection functions graphI and delta when applied to an infrastruc-
ture return the graph and the policy, respectively. Policies specify the expected
behaviour of actors of an infrastructure. They are defined by the enables predi-
cate: an actor h is enabled to perform an action a in infrastructure I, at location
1 if there exists a pair (p,e) in the local policy of 1 (delta I 1 projects to
the local policy) such that the action a is a member of the action set e and the
policy predicate p holds for actor h.

enables I 1 ha =3 (p,e) € deltaIl. a€e Aph

We now flesh out the abstract state transition introduced in Section by
defining an inductive relation —,, for state transition between infrastructures.
This state transition relation is dependent on actions but also on enabledness
and the current state of the infrastructure. For illustration purposes we consider
the rule for get_data only (see the complete source code [3] for full details of
other rules)ﬂ

get_data : G = graphl I — a Qg 1 =
enables I 1’ (Actor a) get —
I’ = Infrastructure
(Lgraph (gra G) (agra G) (cgra G)
((1gra G) (1 := (fst (lgra G 1),
snd (lgra G 1) U {new}))))

(delta I)

= I —, I’

The new state I’ of the infrastructure can be reached from I if the actor h is in
location 1, action get is enabled for h at location 1. Under those preconditions,
data new can be added to the actor’s current location 1 formalised here using
the function update := for the fourth component 1gra G of the infrastructure’s
igraph.

6.1 Application Example from IoT Healthcare

The example of an IoT healthcare systems is from the CHIST-ERA project
SUCCESS [5] on monitoring Alzheimer’s patients. Figureillustrates the system
architecture where data collected by sensors in the home or via a smart phone
helps monitoring bio markers of the patient. The data collection is in a cloud
based server to enable hospitals (or scientific institutions) to access the data
which is controlled via the smart phone. We show the encoding of the igraph
for this system architecture in the Infrastructure model.

ex_graph = Lgraph {(home, cloud), (sphone, cloud), (cloud,hospital)}
(A x. if x = home then {’’Patient’’}
else (if x = hospital then {’’Doctor’’} else {}))
ex_creds ex_locs

3 We deliberately omit here the DLM constraints for illustration purposes (see below)

).

sensor hub |——

§)r

hospital

5 &

sphone

o

Fig. 4. 10T healthcare monitoring system for SUCCESS project

The identities Patient and Doctor represent patients and their doctors; double
quotes ’’s’’ indicate strings in Isabelle/HOL. The global policy is ‘only the
patient and the doctor can access the data in the cloud’:

fixes global_policy:: [infrastructure, identity] = bool
defines global_policy I a = a ¢ gdpr.actors —
—(enables I cloud (Actor a) get)

Local policies are represented as a function over an igraph G that addi-
tionally assigns each location of a scenario to its local policy given as a pair of
requirements to an actor (first element of the pair) in order to grant him actions
in the location (second element of the pair). The predicate @g checks whether
an actor is at a given location in the graph G.

local_policies G =
(A x. if x = home then {(\ y. True, {put,get,move,eval})}
else (if x = sphone then
{((\ y. has G (y, ’’PIN’’)), {put,get,move,eval})}
else (if x = cloud then {(\ y. True, {put,get,move,evall})}
else (if x = hospital then
{((A y. (3 n. (n Qg hospital) A Actor n =y A
has G (y, ’’skey’’))), {put,get,move,eval})} else {}))))

6.2 Using Attack Tree Calculus

Since we consider a predicate transformer semantics, we use sets of states to
represent properties. For example, the attack property is given by the following
set sgdpr.

sgdpr = {x. — (global_policy x ’’Eve’’)}

The attack we are interested in is to see whether for the scenario
gdpr_scenario = Infrastructure ex_graph local_policies

from the initial state Igdpr ={gdpr_scenario}, the critical state sgdpr can be
reached, i.e., is there a valid attack (Igdpr,sgdpr)?

To set up this question as a proof goal, we can now use the meta-theory for
valid abstract attack trees developed in Section 4] which allows setting out from
this abstract attack.

}_V [N(Igdpr,sgdpr)] EBS\Igdpr,sgdpr)
We can then prove that there is a refinement to an and-attack where the set
GDPR is an intermediate state where Eve accesses the cloud.

(Igdpr,sgdpr)
[N(Igdpr,sgdpr)]@/\g b, 585
C
(Igdpr,sgdpr)
[N(Igdpr,GDPR) ,N(GDPR,sgdpr)] DA

We can then finish the proof by deriving that the second refined attack is a valid
and-attack using the attack tree proof calculus.

(Igdpr,sgdpr)
F [N(Igdpr,GDPR) ,N(GDPR,sgdpr)] @, BT e

For the Kripke structure
gdpr_Kripke = Kripke { I. gdpr_scenario —* I } Igdpr

we can alternatively apply the Correctness theorem AT_EF to immediately derive
from the previous result the following CTL statement.

gdpr_Kripke - EF sgdpr

This application of the meta-theorem of Correctness of attack trees saves us
proving the CTL formula tediously by exploring the state space. However, a
more convincing case for using the Correctness and Completeness meta-theorems
is given next when we consider how to improve the access control on data to
guarantee GDPR level security and privacy.

7 Data Protection by Design for GDPR compliance

7.1 General Data Protection Regulation (GDPR)

On 26th May 2018, the GDPR has become mandatory within the European
Union and hence also for any supplier of IT products. Breaches of the regulation
will be fined with penalties of 20 Million EUR. For this paper, we use the final
proposal [6] as our source. Despite the relatively large size of the document
of 209 pages, the technically relevant portion for us is only about 30 pages
(Pages 81-111, Chapters I to Chapter III, Section 3). In summary, Chapter
IIT specifies that the controller must give the data subject read access (1) to
any information, communications, and “meta-data” of the data, e.g., retention

time and purpose. In addition, the system must enable deletion of data (2) and
restriction of processing.

An invariant condition for data processing resulting from these Articles is
that the system functions must preserve any of the access rights of personal
data (3).

7.2 Security and Privacy by Labeling Data

The Decentralised Label Model (DLM) [7] introduced the idea to label data by
owners and readers. We pick up this idea and formalize a new type to encode
the owner and the set of readers.

type_synonym dlm = actor X actor set

Labelled data is then just given by the type dlm x data where data can be
any data type. Additional meta-data, like retention time and purpose, can be
encoded as part of this type data. We omit these detail here for conciseness of
the exposition.

Using labeled data, we can now express the essence of Article 4 Paragraph
(1): 'personal data’ means any information relating to an identified or identifiable
natural person ('data subject’). Since we have a more constructive system view,
we express this by defining the owner of a data item d of type dlm as the actor
that is the first element in the pair that is the first of the pair d. Then, we use
this function to express the predicate “owns”.

definition owner :: dlm X data = actor
where owner d = fst(fst d)

definition owns :: [igraph, location, actor, dlm X datal] = bool
where owns G 1 ad = owner d = a

The introduction of a similar function for readers projecting the second element
of a d1m label

definition readers :: dlm X data = actor set
where readers d = snd (fst d)

enables specifying whether an actor may access a data item.

definition has_access :: [igraph, location, actor, dlm X datal = bool
where has_access G 1 ad =owns G1ladV a €& readers d

For our example of an IoT health care monitoring system, the data and its
privacy access control definition is given by the parameter ex_locs specifying
that the data 42, for example some bio marker’s value, is located in the cloud,
is owned by the patient, and can be read by the doctor (> ’free’’ is the state
of the cloud component).

ex_locs = (M x. if x = cloud
then (’’free’’, {((Actor ’’Patient’’,{Actor ’’Doctor’’}),42)})
else (°’7,{}))

7.3 Privacy Preserving Functions

The labels of data must not be changed by processing: we have identified this
finally as an invariant (3) resulting from the GDPR in Section [7] This invariant
can be formalized in our Isabelle model by a type definition of functions on
labeled data that preserve their labels.

typedef label_fun = {f :: dlmxdata = dlmxdata. V x. fst x = fst (f x)}

We also define an additional function application operator § on this new type.
Then we can use this restricted function type to implicitly specify that only func-
tions preserving labels may be applied in the definition of the system behaviour
in the state transition rule for action eval (see [3]).

7.4 Policy Enforcement

We can now use the labeled data to encode the privacy constraints of the GDPR
in the rules. For example, the get_data rule has now labelled data ((Actor
a’, as), n) and used the labeling in the precondition to guarantee that only
entitled users can get data: Actor a has to be in the set of readers as to have
this data item added to his location 1.

get_data : G = graphl I = a Qg 1 = enables I 1’ (Actor a) get —
((Actor a’, as), n) € snd (lgra G 1’) —> Actor a € as —>
I’ = Infrastructure
(Lgraph (gra G) (agra G) (cgra G)
((lgra G)(1 := (fst (lgra G 1),
snd (lgra G 1) U {((Actor a’, as), new)}))))

(delta I)

= I —, I’

Using the formal model of infrastructures, we can now prove privacy by design
for GDPR compliance of the specified system. We can show how the properties
relating to data ownership, processing and deletion can be formally captured
using Kripke structures and CTL and the Infrastructure framework. As an ex-
ample, consider the preservation of data ownership.

Processing preserves privacy We can prove that processing preserves own-
ership as defined in the initial state for all paths globally (AG) within the Kripke
structure and in all locations of the graph.

theorem GDPR_three: h € gdpr_actors —> 1 € gdpr_locations —
owns (Igraph gdpr_scenario) 1 (Actor h) d —
gdpr_Kripke
AG {x. V 1 € gdpr_locations. owns (Igraph x) 1 (Actor h) d }

Note, that it would not be possible to express this property in Modelcheckers
(let alone prove it) since they only allow propositional logic within states. This
generalisation is only possible since we use Higher Order Logic. The proof of this
property is straightforward evaluation of the CTL rules.

Applying Correctness to prove Absence of Attacks The contraposition of
the Correctness theorem grants that if (EF f) does not hold in a Kripke structure,
then there is no attack (I, f) for the initial states of the Kripke structure I.
Since properties are expressed as sets, negation is expressed in the theorem by
using the set complement -P for the negation of property P.

h € gdpr_actors —> 1 € gdpr_locations —>
owns (Igraph gdpr_scenario) 1 (Actor h) d —
attack A = (Igdpr, -{x. V 1 € gdpr_locations.

owns (Igraph x) 1 (Actor h) d })
— —(F A::infrastructure attree)

Proving the absence of attacks for attack trees is in general very difficult but
becomes feasible owing to the meta-theorem Correctness and the possibility to
interleave meta-theoretic reasoning with that in the object logic in Isabelle.

8 Conclusions

In this paper, we have presented a proof theory for attack trees in Isabelle’s
Higher Order Logic (HOL). We have shown the incremental and generic struc-
ture of this framework, presented correctness and completeness results equating
valid attacks to EF s formulas. The proof theory has been illustrated on an IoT
healthcare infrastructure where the meta-theorem of completeness could be di-
rectly applied to infer the existence of an attack tree from CTL. The practical
relevance has been demonstrated on GDPR compliance verification.

There are excellent foundations available based on graph theory [8]. They
provide a very good understanding of the formalism, various extensions (like
attack-defense trees [9]) and differentiations of the operators (like sequential
conjunction (SAND) versus parallel conjunction [10]) and are amply documented
in the literature. These theories for attack trees provide a thorough foundation
for the formalism and its semantics. The main problem that adds complexity to
the semantical models is the abstractness of the descriptions in the nodes. This
leads to a variety of approaches to the semantics, e.g. propositional semantics,
multiset semantics, and equational semantics for ADtrees [9]. The theoretical
foundations allow comparison of different semantics, and provide a theoretical
framework to develop evaluation algorithms for the quantification of attacks.

More practically oriented formalisations, e.g. [11], focus on an action based-
approach where the attack goals are represented as labels of attack tree nodes
which are actions that an attacker has to execute to arrive at the goal.

A notable exception that uses, like our approach, a state based semantics
for attack trees is the recent work [12]. However, this work is aiming at assisted
generation of attack trees from system models. The tool ATSyRA supports this
process. The paper [12] focuses on describing a precise semantics of attack tree
in terms of transition systems using “under-match”, “over-match”, and “match”
to arrive at a notion of correctness. In comparison, we use additionally CTL
logic to describe the correctness relation precisely. Also we use a fully formalised
and proved Isabelle model.

Surprisingly, the use of an automated proof assistant, like Isabelle, has not
been considered before despite its potential of providing a theory and analysis
of attacks simultaneously. The essential attack tree mechanism of disjunction
and conjunction in tree refinement is relatively simple. The complexity in the
theories is caused by the attempt to incorporate semantics to the attack nodes
and relate the trees to actual scenarios. This is why we consider the formalisation
of a foundation of attack trees in the interactive prover Isabelle since it supports
logical modeling and definitions of datatypes very akin to algebraic specification
but directly supported by semi-automated analysis and proof tools.

The workshop paper |2] has inspired the present work but is vastly superseded
by it. The novelties are:

Attack trees have a state based semantics formalised in the framework.

— Correctness and completeness are proved based on the formal semantics.

— The Isabelle framework is generic using type classes, that is, works for any
state model. Infrastructures with actors and policies are an instantiation.

— The semantics, correctness and completeness theorems facilitate application

verification.

References

1. T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS 2283, Springer-Verlag, 2002.

2. F. Kammiiller, “A proof calculus for attack trees,” in Data Privacy Management,
DPM17, 12th Int. Workshop, LNCS 10436, Springer, 2017.

3. ——, “Isabelle infrastructure framework with iot healthcare s&p application,”
2018, available at https://github.com/flokam /TsabelleAT.

4. B. Schneier, Secrets and Lies: Digital Security in a Networked World. Wiley, 2004.

5. CHIST-ERA, “Success: Secure accessibility for the internet of things,” 2016,
http://www.chistera.eu/projects/success.

6. E. Union, “The eu general data protection regulation (gdpr),” Accessed 20.3.
2018, proposal for a Regulation of the European Parliament and of the Council
on the protection of individuals with regard to the processing of personal data
and on the free movement of such data (General Data Protection Regulation)
[first reading] - Analysis of the final compromise text with a view to agreement,
Brussels, 15 December 2015. [Online]. Available: http://www.eugdpr.org

7. A. C. Myers and B. Liskov, “Complete, safe information flow with decentralized
labels,” IEEE Symposium on Security and Privacy. IEEE, 1999.

8. B. Kordy, L. Pietre-Cambacédés, and P. Schweitzer, “Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees,” Computer Science Review,
vol. 13-14, pp. 1-38, 2014.

9. B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer, “Attack-defense trees,”
Journal of Logic and Computation, vol. 24, no. 1, pp. 55-87, 2014.

10. R. Jhawar, B. Kordy, S. Mauw, S. Radomirovic, and R. Trujillo-Rasua, “Attack
trees with sequential conjunction,” IFIP SEC’15, AICT 455, Springer 2015.

11. Z. Aslanyan, F. Nielson, and D. Parker, “Quantitative verification and synthesis
of attack-defence scenarios,” CSF’16, IEEE 2016.

12. M. Audinot, S. Pinchinat, and B. Kordy, “Is my attack tree correct?” ES-
ORICS’2017, LNCS 10492, Springer, 2017.

https://github.com/flokam/IsabelleAT
http://www.eugdpr.org

	Attack Trees in Isabelle

