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Abstract

his study presents the application of the Boundary Element Method (BEM) to

spherical and radome geometries. The boundary of the solution domain was
discretized by using both linear and quadratic elements and the validity of the results were
compared against other analytical and numerical methods.

Several improvements to the BEM have been presented. These include the efficient
evaluation of the singular integrals where new methods have been implemented and
compared with other schemes. Improvement is also shown by the implementation of the
semi-continuous elements to solve the well known limitation of the Corner Problems
present in the BEM. Exhaustive numerical experimentation is carried out to establish the
optimum collocation point for the semi-continuous elements and to link this to the
quadrature rule used for the integration of that element.

The present study also includes the limitations of the BEM in applications involving
geometries of long and thin sections. The study shows in detail the circumstances under
which accurate results can be expected in the BEM. In this case, the emphasis is placed on
the element size and the section thickness. A relationship linking these two parameters in
the control of the accuracy of the BEM results is also established.

For the surface stresses and strains of the domain, a detailed implementation of a natural
cubic spline is illustrated which greatly improved these surface results.
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Notation
A Solution matrix multiplying the unknown vector X
b Matrix containing known variables
b Outside base radius of a cone
b ,b,, b, Cartesian components of the body forces
B(¢g) Spherical ball of radius €
€€y Intercepts of the linear element variation
c;: Rigidity coefficients
Offset of the origin for the large arc in a cone geometry
i Third order tensor multiplying the tractions
€.,€,,€, Unit vectors in cartesian directions
€€, Unit normal vectors in 6 and direction
E Elasticity modulus
h Offset of the origin of the small arc forming the tip of a cone
h, Interval width in spline formulation
H Cone height |
m ,m, Gradients of the linear element variation
M Number of boundary elements
M Moments in cubic spline formulation
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$,,5,,5,
S(x)
S )
S (%)

ki

Unit outward normal vector at the boundary

Cartesian components of the direction cosines of a unit vector
Lagrangian quadratic shape functions

Surface tractions
Surface tractions corresponding to the w; system

Fundamental solution of the traction kemels

Applied pressure

Distance between a source point and a field point
Lower and upper integration limits in the Kutt formula
Inner and outer radii of the tip of a cone

Radius

Inner and outer radii of the body of a cone

Arc length

Surface area

Boundary surfaces

Spline function

First derivative of the spline function S(x).
Second derivative of the spline function S(x).

Third order tensor multiplying the displacements

Factor used in the location of the nodes in semi-continuous elements
Wall thickness
Displacement vector

Cartesian displacements
Weight of the i" intgeration point
Fundamental solution of the displacement kernels
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Notation

)‘
Wy

17273

rr

v

.1
&(x) , nx)

Virtual displacement pattern that satisfies the homogenous boundary
conditions

Vector containing the unknown variables

Cartesian coordinates

Angles used in Kutt formulation

Local angles used for in the composite mapping
Parameters used in the linear set of the spline equations

Surface area of a spherical ball B(g)

Kronecker’s delta

Cartesian strain tensor

Strain tensor corresponding to the w; system
Radial strain

Hoop strain in 6 direction

Hoop strain in ¢ direction

Angle of a common tangent for two arcs

Factor used for controlling the singularity order in Kutt formulation
Shear modulus

Poisson’s ratio

Intrinsic coordinates

Functions used to define ¢(xj)
Coordinate of the i" integration point

Radial distance in local coordinates

Von Mises equivalent stress
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Cartesian stress tensor

o;k Stress tensor corresponding to the w_system

o Radial stress

Ogo Hoop stress in 6 direction

C o Hoop stress in ¢ direction

¢(x1,x2,x3) A functi‘on with continuous first derivatives with respect to cartesian
coordinates

Q Volume of a body

Q Volume Q excluding B(€)
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Chapter

1

Introduction

“Inresearch the horizonrecedes as we advance, and is no nearer at sixty
than it was at twenty. As the power of endurance weakens with age, the
urgency of the pursuit grows more intense... And research is always
incomplete.”

Mark Pattison

1875

he complexity of practical problems that engineers and scientists have to deal with
Tis sometimes beyond their analytical capability to solve them, and in some past cases
the solution time required would have exceed their lifetime. However, thanks to the recent
development of numerical techniques and the availability of computer power, it is now
possible to tackle these difficult problems. Over the years, engineers and mathematicians
worked together to come up with some numerical tools that would provide them with the
ability to solve some of their engineering problems. As a result, engineers have now been
provided with two different tools which can play major roles in their work: the Finite

Difference Method (FDM) and the Finite Element Method (FEM).

The FDM is a direct numerical algorithm used for solving differential equations and is, for
example, extensively used in the solution of fluid mechanics problems. Recently, it is

becoming apopular tool with its extensive usage in Computational Fluid Mechanics (CFD).
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The FEM originated as a method of stress analysis. The method is based upon the piecewise
discretization of the problem domain into a number of elements. The governing equation
for each element is determined separately and these are then formed into a system of

algebraic equations, which are then solved using numerical techniques.

The so called displacement method, commonly used in FEM, gives good results for
displacements, but the stresses are less accurate as they are calculated by using the
derivatives of the displacements and compounding certain errors. In many engineering
problems, particularly in linear elasticity, the major interest is in the determination of the
stresses, and very often these are of a particular interest in the surface region. Because of
the nature of the Finite Element Method, there is always an excess amount of information
that has to be calculated in order to obtain the information required. This could be very
expensive particularly in large 3-D problems, where the storage capacity required for the

system equations could be enormous.

Another method that has been developed but has not yet reached its maturity is the
Boundary Element Method (BEM). In the BEM approach, as the name implies, the
boundary is discretized into elements and the rest of the domain is not touched. This is one

of the main advantages of the BEM over FEM and FDM.

The BEM is recognised as a powerful engineering tool. It offers the ability to transform
the field equations, which describe the behaviour of the unknown functions and its
derivatives, inside and on the boundary of the domain, to an integral equation, relating the
unknown to the given value on the boundary. From a numerical analysis point of view, the
advantage of the BEM is that, by transforming the problem to the boundary, the dimension
of the problem is reduced by one. Instead of discretizing the whole domain, only the
boundary is to be dealt with. A 3-D surface can be modelled by using two-dimensional
elements (patches) and line elements for 2-D problems. This significantly reduces the data
preparation time, computation time and interpretation of the results. The system equations

are formed in terms of the surface unknowns, (i.e. displacements and tractions in elasticity

_2.
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problems), therefore they can be determined directly. Although the initial results will
always be on the surface, it is very easy to obtain results inside the solution domain. Since
there will not be any further approximations, the results at interior points will be very
accurate. However, there is a problem with the BEM for the interior points which are too

close to the boundary: this problem will be looked at in later chapters.

The simplicity of the mesh generation is also a bonus for the method and, moreover, the
problem under consideration can be modified drastically, without drastic changes in the

existing model. Complete remeshing is not necessary.

In problems where the boundary conditions may include infinite domains, the Finite
Element Method would be very expensive to use. In the BEM formulation, such problems
are easily dealt with. Even when dealing with nearly incompressible or compressible
materials, such as epoxy resin, which has Poisson’s ratio of v = 0.5, the BEM would not

present any problems (Floyd, 1984).

It is now accepted that the BEM is not just a direct substitute for the FEM. Further
developments are continuing and the BEM is slowly becoming more popular. There are
also developments being made in the coupling of the two methods to obtain the maximum

benefits of each formulation.

The BEM has been very slow to develop. As the computer technology gradually developed
the solutions of the integral equations, derived many years ago, became possible to be
solved numerically. Although the history of the BEM can be traced back to the early 1900’s,
it was not until 1963 that the numerical examples of direct BEM were first published by
Jaswon (1963) and Symm (1963). Further details of the development of the BEM can be
found in numerous publications (see, for example, Banerjee & Butterfield (1981), Cookson

et. al. (1986), Massonnet (1987), etc.).

The BEM has come a long way since the 1960’s, but there are some major problems that

still need attention and some particular weaknesses in the method that require

-3-
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Figure 1.1: A typical nose cone, under external pressure, P, used for the analysis.

strengthening. The work presented in this thesis will concentrate on some of the weaknesses
in the method discovered in this study, to determine the displacements and stresses in the

wall of a nose cone under external pressure (see Figure 1.1).

Asthere were no analytical solutions available for the geometry in Figure 1.1, the following
approach was taken. Firstly, the BEM was implemented on a solid sphere, where both
linear and quadratic elements were used and compared. Then this was followed by slicing
the sphere at the equator plane and looking to the comer problems associated with the
BEM. Having made successful improvements to the formulation, the hemisphere was made
hollow. As the analytical solutions for the solid sphere, the hemisphere and the hollow
sphere are well known, the accuracy of the BEM method could thus be monitored. The
hollow hemisphere model was used to look at the limitations of the BEM when dealing

with long and slender sections. The next stage adopted was to modify the computer code
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so that the original cone problem could then be solved. The hollow hemisphere model,
which was already built, was so modified that the height of the model was made longer
than the base: now, of course, the only checks on solution results possible are found by

comparing the results with those of a FEM modél.

Each chapter of this thesis begins with an introduction which includes the relevant previous
work in that area followed by the appropriate formulation and numerical implementation.
Numerical results concerning each section are also provided, with the analytical

comparison where possible.

In chapter 2, the basic formulation of the BEM is illustrated for linear three-dimensional
elastostatics. The intended problem could have been solved using a 2-D axisymmetric
formulation, but for research and development purposes, it was decided to look at this as
a general 3-D application where some form of axisymmetry may not be present. The BEM
implementation to a solid sphere is dealt with in Chapter 3. Linear and quadratic elements
are both used and particular attention is given to the integration method to deal with the
singularities present in the fundamental solution. The application of a finite part integration
was also employed to reduce the integration time used on the evaluation of the coefficients

in elements where singularities are present.

Chapter 4 looks at the problems associated with the conflicting boundary conditions at
corners by modelling a hemisphere. Application of the multiple node concept as well as a
semi-continuous element are discussed. In Chapter 5 optimization of the collocation point
for the semi-continuous cormer element is illustrated. The limitation of the long and slender
sections are discussed with the aid of a hollow hemisphere, where tests are conducted to
establish some sort of limit to the element size to be used in relation to the wall thickness.
The use of the subregioning technique is deliberately avoided in order to look at this
problem in detail. Chapter 6 deals with the modification of the code developed so far and
the testing of the variations in the nose cone geometry. Various shapes of nose cones were

tested in order to see the effect of the geometry on the stress developed at the critical points.

-5-
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A comparison of the FEM results with the BEM ones is also made and discussed. Chapter 7
then looks at some of the possible improvements to the BEM. This includes the use of Dual
Boundary Element Method (DBEM) in connection with the serious limitation on the aspect
ratio of the elements used in long and slender sections and some of the latest improvements

in the evalution of strongly singular and hypersingular integrals.




Chapter

2

Boundary Element
Method Formulation

“When I think of the many cases of men who have studied one subject
for years, and have persuaded themselves of the truth of the foolishest
doctrines, I feel sometimes a little frightened, whether I may not be one

of these monomaniacs:”
Charles Robert Darwin

1859

2.1 - INTRODUCTION

his chapter starts with the illustration of the basic theory of elasticity and then moves
Tomo the fundamental BEM equation of elasticity upon which this work is based.
Although some of this section appears in other publications, (see, for example, Cruse, 1977,
Banerjee et al. 1981, and Brebbia 1980 & 1984), it is briefly reproduced here for the benefit

of the reader and continuity.

The fundamental solutions of the governing differential equations for the displacements
and the tractions are given for three-dimensional elasticity. These will be the basis for the

further equations to be developed in the later chapters. The work described in this thesis
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is based on the linear elasticity theory for a solid body and the following assumptions are

made:

i- The material is to have linear stress-strain relations, i.e. linear
material behaviour.
ii - The change in orientation of a body due to displacements is

negligible.

2.2 - LINEAR THEORY OF ELASTICITY

Figure 2.1: Stresses and body forces acting an a three-dimensional element.

Consider an isotropic elastic body as shown in Figure 2.1. The goveming differential

equation of equilibrium can be written in terms of the stress field components. In tensor

form this would be,

L i= 123 j= 123 2.1)
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Equation (2.1) is to be solved subject to certain boundary conditions given by the following

equation:

p;= G'.jnj i= 1,23 j= 123 2.2)

where p, are the surface or boundary tractions and n; are the direction cosines of the unit

normal, n, with respect to the cartesian axes, i.e.

n= cos(n , X, ) . 2.3)

The strains at any point are defined by the €;; components of the strain tensor, which in

indicial form are,

du. du,
| 25, 7

e,.j.=5 5;+ Gxi i= 1,23 j= 123 2.4

Hooke’s law relating the stress and strain components in an isotropic elastic solid can be

written as,

ij ik

_2uv 1
o.= oy o.¢ "’2“9.-,- k= 123 2.5)

where " is the Kronecker’s delta, v is the Poisson’s ratio and { is the shear modulus,

sometimes written as G.
2.3 - BASIC BEM EQUATIONS

The integral equations formulated in this thesis are based on the direct BEM approach
where the integral equations provide values of solution variables at any internal field point
in terms of the complete set of all tﬁe boundary data. The starting point for the work
presented in this thesis will be to consider a three-dimensional, bounded elastic body under

the action of predefined forces and with the volume Q and the surface area, S, which is

-9.
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X3

Figure 2.2: A three dimensional elastic body of volume €2, surface area S and

a unit normal vector n.
assumed to be smooth, i.e. unit normal vector, n, exists at each point of S, as shown in
Figure 2.2. The starting point here is to consider the equilibrium equation (2.1) over the

domain and to use the Divergence (Green’s) Theorem, which states:
g

Jgg%. (x), %, x,) dQ = J;(b (x, X, X,) cos (nx,) ds (2.6)
j
If,
O(x, x, x))=E(x,, x,, x,) N(x,, X, X,) @7

then differentiating ¢ with respect to x i would give,

=& M, +1 ag (2.8)

ax X

Using the relationship given in Equation (2.7) and Equation (2.6), Equation (2.8) can be

arranged as follows:

-10 -
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M _[ 98
jﬂgaxj dQ=] & ds L“axj dQ 2.9)

where n; is given by Equation (2.3). By letting = O and & = w; , the following can be
written:

*

9, ow,
Bx w dQ Jc M n, as - Jo ——dQ (2.10)

where w, is the displacement, which will be associated with a known displacement pattern

that conforms to the following:

1 - Equilibrium equations
c.=0 (2.11)

2 - Linear strain displacement relation

NE
3 - Hooke’s Law
o;k = ,: e:m where c;: = cj’.:' (2.13)

2.3.1 - Internal Points:

The starting point to develop the BEM formulation will be to consider the governing

equations of elasticity given in Equation (2.1), the boundary conditions given in Equation

(2.2), and the displacement type functions w . We therefore start with:

J 0+ b, wy de2 2.14)

-11 -
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Applying Green’s theorem, as given in Equation (2.6), and ignoring the body forces for

the time being, Equation (2.14) can be written as:

Lw; O dQ = jw O\, as - jc dQ (2.15)

From the Equations (2.2) and (2.12), Equation (2.15) is written as:

ka O dQ = J;Pk Gy 1 das - Jﬂojk € daQ (2.16)

The next step is to eliminate the domain integral in the second integral. First, this integral
is written in terms of the displacement derivatives by using the relationship given in

Equation (2.4). Hence:
* - l *
jﬂcjk € dQ) = 3 Jnojk (uk‘,. + uj‘k) aQ 2.17)
Applying Green’s theorem to each of these terms, resuits in the following equation:

JO’ €, daQ = J(c ", +o n u)dS——J( u, ) dQ (2.18)

Jka Uy Gﬂw
As p; = o;j nj and from c;k = o;j Equation (2.18) becomes:
[o, e d0=[puds- [0, uda 2.19)

Using the results from Equations (2.15), (2.16) and (2.19), the Equation (2.6) can be

rewritten as:

[(ou,+ bW da=[p,wds-|pju,as

+[ oy uda+ b, wido 2.20)

-12-
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The relationship given in Equation (2.20) is the fundamental identity for the Boundary

Element Method, where Ok + bk are the equilibrium results for the given problem with
surface tractions p, and displacements u,, whereas w,: is a displacement pattern with

. * * . X . * *
surface tractions p oo StrESSEs Oy and strains € ik The fundamental solution forw and p such

that,

i = 0 ; k=1,2,3 (2.21)
is derived from the Kelvin’s problem of a concentrated force acting at a point in the infinite

elastic space. For a 3-D isotropic body the fundamental solutions given by Cruse (1977)

are.

* 1
Ik~ 16 G (1= V)

a
. [(3—- 4v) 9, + 3 o ax] (2.22

I 7k

* 1 al‘ arﬁr_‘_
P = S l—v)rz[an {(1—2\/) B+ 35 ax}

k

- (1-2v) {%— n - gai- nl}:l (2.23)
I 1

where n is the outward unit normal to the surface of the body, 81 k is the Kronecker delta,

r is the distance from the source point i to the field point k under consideration (Figure

23).n k and n j are the direction cosines as shown in Equation (2.3). Also,

K
e _ or _or

—==n
ox r ’ on ox, !
I

(2.24)

where x; represents the / coordinate of the internal point i, and xf represents the / coordinate
of the surface point k.

-13-



M.Karamanoglu 1992 Chaphter 2: Boundary Element Method Formulation

Figure 2.3: Coordinate system for the fundamental solutions.

Substituting w;k and p7k into relationship (2.20) poses a problem since the stresses c;j and

w;k — oo as r — 0. This problem is solved by enclosing the point i by a spherical ball of

radius € and denote it by B(g) with boundary dB as shown in Figure 2.4.

@ Q ~ B(g)
™~ 9B AN

Figure 2.4: An elastic body with an interior point i surrounded by a ball of
radius €.

S

-14-
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In the region I3, which is defined by Q ~ B(g), the following conditions are

assumed:

V(x,x,x,) € ;

V(x,x,x,) € 1 ;

V(xj,xz,xj) el (2.25)

For the point i, three equations can be written by using the results given in Equations (2.20),

(2.22) and (2.23). Typically, for the case of /=1:

J (0,4 bW, d= Jpowipds+] powias

- [P eas - j”p;k u, dS

" L[cij 0,42+ [p,w), d0 (2.26)

In the usual manner for Improper Integrals, the following applies:

(@, b) Wiy 2 = tim J(o,;+ bWy = 0 2.27)
| &) = tim [ o} w,d0 =0 (2.28)

Substituting these results into Equation (2.26) gives:

0=[p, w dS+lim [ p, W ds- [P}, u ds
S £—0 0B S

- lim J pramds+ J 6,0}, d0 (2.29)

The integrals with limits in Equation (2.29) are determined as follows. Consider the

geometry definitions given in Figure 2.5. For /=] and k=1,2,3 :
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n
ol
Phe 1Tt T2 : - ’l
P - e - | 2
T _.< ‘ ds = |e| "sin® dod6
! !
|
: & £ | |
! 6 ! :
€ cos6 | | ‘
| |
1 s 82 | 'l
| 1 T = x2>
! 81 ! _ -
' M 7T € sinB cos@
. € sin®
Xy € sin@ sin@

Figure 2.5: Geometry definition of an internal point surrounded by a ball of
radius €.

jil_:;LB(P“ Uy +p Uy TPy Uy) dS (2.30)

Since the unit normal vector is taken as +ve when directed outward, then:
n=nge + ng, +n.Ee, 2.31)
where

n, = cos(n,el) = — §inB cosP
n,= cos(n.g,) =- sin® sing

n,= cos(n,e3) =—cos0 (2.32)
Using the identities given in (2.24):

or X~ X _ |elsin® cosp -0
B el

= sin6 cos@ (2.33)

axl lel
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Similarly,
gf = sinf sin@ (2.34)
2
% = cos0 (2.35)
3
Hence,
_or o o
an Bx n +a 2n +8x3 n, 1 (2.36)

From the results obtained in Equations (2.31) - (2.36) and using (2.23),

p:l = m[ (1-2v)+3 sin29 COSz(P) ] (2.37)
x 1 . .
p,= m[ 3 5in’@ cos’@ sing) ] (2.38)
.1 .
P PP [ 3 sin@ cos cosB) ] (2.39)
also,
= |e|” sin® dd® (2.40)
Hence,
. T 27 N 2,
J, preteds = J. I Py, el sind dodo (241

The mean value theorem gives:

u(e8,9) —u ;( au

. (& 0,9) where 0 <& <€ (2.42)
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i ou
2 u (£0,9) =1, +3°(580) lel (2.43)
Substituting the result of Equation (2.43) into Equation (2.41)leads to :
JnZn‘ ) l,J«M*. 1:21:.au.
|, iy, sinedede = | | "7}, sinododo + el JIJ. 71,5 sinédda2.44)
Hence, as € =0 :

[}, u, sinbdode — i, [[ p}, sinedede (2.45)

and using the Equations (2.37) - (2.39),
i T 21 * * * . i
ukjojo (p”+pn+p13)sm9d(pd6=uk[1+0+O] (2.46)

Using the result from (2.46), Equation (2.30) can be rewritten as:

lim [ p, u,dS = (2.47)
€

lir_)x;_LBka u dS = u, (2.48)
liﬂ Jasp”‘ u dS = u, (2.49)
li 2 dS =0 2.50
e“_g «[-’Bplk v k ( )
tim [ p,,wj ds = 0 @.51)
e~-0 .

lim *dS =0 2.52
lim J;Bp” W, ( )
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Substituting Equations (2.47) - (2.52) into Equation (2.29) results in the Somigliana’s

displacements identity, in tensor form:

- jspkwlk ds — js u p’, dS+ jﬂ b w, dQ (2.53)

where § is the surface of the elastic body, 1, and p, are the displacements and tractions of
the boundary point k£ and the kernels p; , and w;‘ , fepresent tractions and displacements

in the k direction due to a unit force acting in the / direction (Figure 2.3).

The stresses at these internal points can be calculated by substituting Equation (2.53) and
(2.4) into Equation (2.5). The resulting equation, also given by Cruse (1977), in tensor

form is shown below:
o, = [Dyp,ds - [5,uds +] Db d0 (2.54)

where the third order tensor D . and S . can be calculated by making use of the

relationships given in Equation (2.24). The resulting tensor definitions are:

i T S
P = = 7 {(l' 2 B+ Oy~ %) T ax e axk} 2.55)
K o o s O
Skj = 4r(1- v)ra{ on [(1 2v )8 v [afk 8x].+61k 8)«)

or or or or dr | or o
'5ax,.axjaxk]+5"[ i o, 8 +n Jax a.XJ

+(1- ZV)(S %g—}+n 8 +n, 5. ) (1-4v) n, 8"1} (2.56)
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2.3.2 - Boundary Points:

Equation (2.53) can be used to find the displ.acements at any interior point of Q if the R.H.S.
is known. In general, not all the displacements and tractions are known on the boundary.

An approximation to these can be found by taking the point i to the boundary.

This is done in the following way, which is similar to the method for an interior point. The

point i is thus again surrounded with a ball B(€) of a radius € (Figure 2.6).

dB=0BNQ

S=S-(@BNQ) /

Figure 2.6: Geometry definitions of an elastic body with a surface point, i.

Set,

B=B(e)nQ

0=Q-~B

3=§-(BNQ)

dB=0BNQ 2.57)
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As before, making use of Equations (2.26) and (2.28), and applying boundary conditions,

similar to those given in Equation (2.25), the following can be written:

0=tim [ p, w, dS+hmJ.Lplkw ds - thp:kude

€0

lim | pru,dS + lim ] b, ) d2 + tim [ o, 4, a0 2.58)

eoa £—0

For simplicity of the integration purposes, a smooth boundary will be assumed and as

€ — 0, the intersecting boundary JdB can be assumed to become a hemisphere.
L.
lim J‘ p:k u, as = J-E p:k u, sinBdepdo (2.59)
e—0 9B 0°0

This is identical with the form of an interior point except that the integral for 6 now run

from 0 — —;5 whereas for the interior point 6 run from 0 — .

In general, the BEM displacement equation for a point, i, on a smooth boundary can be

calculated from the following equation:

U, + '[s up, dS= JS P w, dS+ '[n b w, dQ (2.60)

0 =

In practice, at every boundary point, either displacements or tractions are known and it will
be possible to solve the integral Equation (2.60) by an approximation procedure, which
will be shown in Chapter 3. Having found an approximation to the displacement pattern
over the boundary, the internal displacements and stresses for any point, i, can be

approximated from Equation (2.53).
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The work presented in the later chapters is based on the Equation (2.60) and the analysis
will be carried out in the absence of the body forces. Therefore these equations arereduced

to:

1. * *
Eul + JS ukplk ds = Jspkwlk ds (261)
2+ IS 4, Py dS = ISPk Wy, dS (2.62)
1 i * *
'2'113 + -fs U Py as = J.Spkw;;k as (2.63)
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Chapter

3

BEM For A Solid Sphere

“One of the symptoms of approaching a nervous breakdown is the belief
that one’s work is terribly important. If I were a medical man, I should
prescribe a holiday to any patient who considered his work important.”

Bertrand Russell
1930

3.1 - INTRODUCTION

he boundary of the domain is divided into a number of small segments. For
two-dimensional problems, these segments take the form of a line, and in three-
dimensional cases, rectangular or triangular patches. The variation of the displacements
and the tractions over each element can be formulated to be constant, linear, quadratic, etc.,

by using an appropriate interpolation formula.

In this chapter, linear and quadratic variations of the displacements and tractions are
demonstrated. Constant variation of these surface variables are not considered, as they will

not have such variations in the final geometry.
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The selected geometrical shape to be used in this chapter is a solid sphere, where an external
pressure of 1MPa is exerted on the surface. Initially, linear variation is applied and the
surface unknowns, in this case the surface displacements, are to be determined. The linear
variation of the surface displacements are then used to determine the internal displacements
and stresses. This is then repeated with a quadratic variation. In all cases, the numerical

results are compared with the theoretical values.
Attention is also paid to the integration of the singular integrals and the problems associated

with the discretization of the boundary, where there is a large variation of size in the

adjacent elements used.

3.2 - LINEAR ELEMENTS

To derive the formulation for this section, the Equations (2.61), (2.62) and (2.63) are
considered. However, due to the symmetrical geometry and the applied uniform pressure

the BEM is only implemented on Equations (2.61) and (2.63).

3.2.1 - Surtace Displacements
Rewriting Equation (2.61) in expanded form:
21
1 * * * 2 .
24 +f:_[o (up,, +up,+up, )R sinb dpdd
_J”'f" P tpw +pw. ) R%in® dodo 3.1
=, Py TPy p;W,;) R'sin® dod G.1)
Consider only the L.H.S. of Equation (3.1) and substitute the transformation given in

Equation (3.2) into the Equation (3.1).
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U, =v,cosQ
u2 = vlsin(p

w=v, (3.2)
1 i 2n " . * * 2 .

2ht J:: -[o (vcosgp,, +v,singp, +vyp,,) R sinb dpdd (3.3)

The boundary is to be discretized into several elements and summed up to form the total
boundary. The integrals given in Equation (3.3) are divided into M segments in 6 direction
and N segments in ¢ direction (Figure 3.1). Due to the axisymmetry, the source points
where the unknown displacements are required are distributed on a path where
0< 6 < mand ¢ =0. Each segment on this path is called an element and the source points,
called nodes, are placed at the corers of each element. The displacements and tractions

are assumed to vary linearly between these end points. Substitution into Equation (3.3) is

element 0

node

Figure 3.1: The top half of a solid sphere, divided into M X N segments. Marked
nodes show the path selected for the unknown displacements (i.e. ¢ =0).
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achieved by making use of an interpolation formula, derived from a straight line fit (see

Appendix A). The interpolation formula used is given below, where Gj and 9]. 4+ are the

coordinates of the end point of the element:

m 078 i B (3.4)

v=v
(ej+l - ej) (9j+1 - ej)

Equation (3.3) in discretized form is given as:

M N '

1 | K+ * ' * * 2 .,

A > J‘:ﬂ ZJ’: (v,cos¢p,, +v,singp,, +v,p,,) R sind dod® 3.3)
jm k=1

i k

Substituting Equation (3.4) into Equation (3.5) and, after some mathematical manipulation,

Equation (3.5) can be written in simple terms as:

i j+ j JH
v1+lel+v1 Bl+v3Cl+v3 Dl (3.6)

N

The integrals and other parameters are embeddedin A, B;, C; and D,. The next step is to

consider the R.H.S. of the Equation (3.1). The variables p,, p,, and p, are the surface

tractions and they correspond to the components of the surface pressure (Figure 3.2).

2 3
p’=p,+p,+p,

p, =p sinbcos@

p, =p sinBsing

py p,=p cos® (3.7)

Xy TP

1
I
!
i
1
+
1
!
i}
Y

Figure 3.2: Components of the
surface pressure p.
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By using the relationships given in Equation (3.7), the R.H.S. of Equation (3.1) can be
written in terms of the surface pressure, p, and it can be taken outside the integral as shown

below.
mmo, $ o . 2.,
4 Jo Jo (w”smecosq) +w,,sinBsing + w, ,€088 ) R’sin® dedb (3.8)

Putting the Equations (3.6) and (3.8) together, a set of equations can be written for each i
point. The similar equations can also be written for the u, displacements as given in
Equation (2.63). The complete set of these equations can easily be written in a matrix form

as.

[ T ()
a,, 4, .- 4y, X b,
a. da, ... d X b
21 “n 2 2 2
S S r=s 3.9)
i anl an2 ann 'xn‘ bn

Since there are no mixed boundary conditions present, the Equation (3.9) can be written as,

Ax=b (3.10)

When the source point and the field point coincide, i.e. when i = j, the free term of Equ ation
(3.6) has a contribution of % which is included in the diagonal terms of the A matrix. By

using a suitable solver, the unknowns in the x vector can easily be calculated. The solver

used in this work is a NAG routine called FO4ATF which uses Crout’s factorisation method.

The diagonal terms of the A matrix are calculated explicitly throughout this work. It is
also possible to determine these terms by applying a rigid body displacement in the
direction of one of the cartesian coordinates (Brebbia et. al., 1989). It is the intention of
the author to evaluate these diagonal terms explicitly, in order to look at the possible
improvements to the integration schemes used by previous researchers ( i.e. Lachat 1975,

Lera et. al. 1982, Jun et. al. 1985a, Labeyrie et. al. 1985 , Higashimachi et. al. 1986).
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3.2.2 - Numerical Integration

In this section, the numerical integration scheme which is employed is shown. To determine
all the coefficients of the A matrix, the Gauss integration scheme (Stroud et. al. 1966) is
implemented. The transformation used that takes the integrals from (6,¢) space to (§,1)

with NX M quadrature rule is:

N M
J‘Z, J:zf(e,(P) dodd = mm, Y W, Y wif(ml&j+cl ,mn, +c,) 3.11)

S S

where £ and 1) are the abscissas and w ; and w; are the corresponding weights. Symbols m

and c are used to change the limits of the integral, where,

99 9 +0,
m === 6 ="">
6.-6 6 +6
m,= 224 c,= 22 : (3.12)

The discretization of the surface is done in such a way that the singularities always occur
between two adjacent elements and not on the comers of the elements. In the presence of
a singularity, Gauss integration cannot be used in the normal way. When integrating over
a singular element, the Convergence Method is used. This method isolates the singular
point by subdividing the element into smaller areas. Normal Gauss integration is performed
over these areas except for the singular sub-elements. The results of the individual
integrations are then added together. The whole process is repeated until the cumulative
result converges within a pre-defined percentage (1% in most cases). Similar methods were
used by Lachat (1975), and Jun et. al. (1985a). Lachat used equally divided regions,
whereas Jun et. al. tried unequally divided elements to approach the source point more
rapidly by halving the size of the elements each time. The intention of these researchers
was to distribute a larger number of integration points around the singularity and overcome

the difficulty of dealing with singular integrals.
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The method used here is closer to the one suggested by Jun with two exceptions:

i- The division ratio is set to be 10 rather than 2, so that the
convergence is accelerated.
ii - Only one half of the singular element is integrated and the result
is then doubled. This could only be used where the two adjacent
singular elements are of the same size and symmetry of geometry
and loading is obtained.
In cases where there are differences in the size of the neighbouring elements, the longer
element is made the same size as the other element by partitioning it. Ordinary integration
is performed over the excess area and the Convergence Method is used for the remainder
(Figure 3.3). It is important to note that when the Convergence Method is used, the

integration of the two adjacent elements must be done together. This is because the integrals

present in the formulation are in the Cauchy Principal Value (CPV) sense.

To see the effect of the Convergence Method, the subdivisions were set at equal lengths,

i.e. the division factor was set to 50%. This was then changed to 33% and then to 10%.

¢=0 ¢, ¢=0 ¢, ¢=0 ¢,
6, 6, 6,
0, ¢
o|l_________4+ . b
M 6,4
SRR b
8, !
e
63 63 63
(a) (b) (©)

Figure 3.3: Possible cases of R.H.S. of singular elements: a) The top element
is longer than the lower element; b ) The lower element is longer than the top
element; c¢) The elements are equal .
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With the division factor set to 2, 7 iterations were needed to bring the convergence of the

integral within 1%. When a division factor of 3 was used, this dropped to 4, and with 10,

2-3 iterations were found to be necessary for such accuracy.

The results obtained from the programmed formulation presented so far shown in Table
3.1, are those obtained for a solid sphere under a uniform external pressure of 1MPa, with

an equally spaced mesh and a division factor set to 10. Good agreement was found with

the analytical result.

Table 3.1: Accelerated convergence results for external

displacements (analytical solution gives 0.2 X 107 m).

0.200123E-05

0.199666E-05

0.200242E-05

0.200279E-05

0.200282E-05

0.200282E-05

0.200282E-05

0.200279E-05

0.200242E-05

0.199666E-05

1 9.0
2 18.0
3 36.0
4 54.0
5 72.0
6 90.0
7 108.0
8 126.0
9 144.0
10 162.0
11 171.0

0.200123E-05
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3.2.3 - Internal Displacements

Once the boundary displacements have been determined, the internal displacements are
calculated from Equation (2.53) without the body forces. As in the surface displacement
formulation, the transformations in Equations (3.2) and (3.7) and the interpolation formula
given in Equation (3.4) is substituted into Equation (2.53). The resulting formulation is
shown in the following equation for a horizontal displacement at point i

i2p _[viA +v™MB +vic +
”1"P1 [V1A1+v1 Bl+v3Cl+v3 D,] (3.13)

The first term,P |, represents the first integral in Equation (2.53) which is given by Equation

(3.8) and the second term represents the second integral in Equation (2.53) which is shown

in the previous section ( see Equation (3.6) ). The values of P1 , Al ,B 1 C | and Dl can

easily be calculated, as shown in section 3.2.2. Since the displacements on the surface are
now known, any internal displacement can be determined from Equation (3.13).The

internal displacements are obtained using the surface displacements determined in section

2.0

18 [
1.6

-6

Resultant displacements / 10 m
o®

14|
12|

1.0 L
O BEM result

— Analytical result

oo . .
00 4 2 3 4 5 6 7 8 9 10

Radial distance from the centre / m

Figure 3.4: Internal resultant displacements obtained on the equator plane for
a solid sphere.
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3.2.2 and are presented in Figure 3.4. The results shown are determined along the equator
of the sphere (8= 90° ; ¢= 0°), at regular increments in the radial direction measured from

the origin.

In general, Equation (3.13) is well behaved. But, as the internal point approaches the
surface, some inaccuracies in the results begin to appear. This is caused by the presence of
the singularities in the displacement and traction kernels. The effect of this will be

highlighted in section 3.4.3.

3.2.4 - Internal Stresses

The stresses at the internal points are calculated from Equation (2.54). The expanded form

of this equation, without the body forces term for Oji is written as follows:
o,= ] (Duyp+ Dy, + Dy )dS - J (S + Syt + Sy )5 314)

The Dkij and § kij terms are calculated from Equations (2.55) and (2.56). As before,

Equations (3.2), (3.4) and (3.7) are used to reduce Equation (3.15) to:

—p [ H j j+1
o,=P,=[v/A, +]"'B +vic,+4]"D,] 3.15)

where Pij represents the first integral term of Equation (3.14) and the other terms are written

in terms of the surface displacements as shown in the second integral of Equation (3.14).

Again, there is a limitation on how close the internal point can approach the boundary.
With stresses, this is more severe as the § kij term involves a l/r3 term rather than a 1/r2
term as it was in p,, for the internal displacements. The effect of this will be shown in

section 3.4.4.

Using the surface displacements determined in section 3.2.3, three direct and three shear

stresses were calculated. The shear stresses, G2 O3 and O, Were found to be less than
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10'10 N/mz. This was expected as due to symmetrical loading, there was no shear on the

sphere. The direct stresses 6, 0,, and G,; were expected to be equal to the applied

pressure ( 1 MN/mz), and are given in Table 3.2 below:

Table 3.2: Direct stresses on the equator plane of a solid sphere using linear elements.

0 0.997205 0.997205 0.996983
0.1 0.997208 0.997206 0.996982
0.2 0.997216 0.997211 0.996980
0.3 0.997231 0.997218 0.996977
04 0.997254 0.997231 0.997973
0.5 0.997292 0.997250 0.996969
0.6 0.997359 0.997280 0.996958
07 0.997556 0.997341 0.996877
08 0.998487 0.997547 0.996358
09 1.002868 0.998741 0.994858

095 1.009510 1.001284 0.995306

The results shown in Table 3.2 confirm the formulation used in this section. However, the
method explained in this section cannot be used to determine the stresses on the boundary.
One alternative to the solution of this problem is to use the derivatives of the displacements
on the surface to obtain the strains, and then using the Hooke's Law to evaluate the stresses
on the boundary. This approach will be used in Chapter 6 to determine the surface stresses

for the nose cone.
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3.3 - EVALUATION OF SINGULAR INTEGRALS

3.3.1 - Previous Formulation

Evaluation of the singular integrals present in the BEM formulation by the Convergence
Method is expensive in terms of the CPU time, due to its iterative nature. Therefore, a
method is required for these singular integrals, of order 0(1/r°‘) with o= 1, 2, which could

be evaluated efficiently and at a low CPU cost.

Nearly all of the known methods for dealing with singular integrals involve element
subdivisioning. The aim of these methods is to increase the accuracy of the integration. To
achieve this, the integration points are gathered close to the singular point by either using

a process of element subdivisioning or of nonlinear mapping, or both.

Jun et. al. (1985b) and Higashimachi et. al. (1986) used a double-exponential formula
which is based on the trapezoidal rule for two-dimensional elastic problems. However, this
method requires a high number of sampling points for sufficient accuracy, (see Cerroloza
et. al. (1989a & 1989b), Beswick (1992a)) and does not provide any significant advantage
over the Convergence Method. Telles (1987) used a non-linear coordinate transformation
to gather the sampling point nearby the source point. In this paper, the author also discu;scs
the use of the numerical quadrature formula developed by Kutt (1975). Kutt quadrature is
for the evaluation of finite-part integrals. This formulation can be used for the evaluation
of the singular kernels that exist in the Cauchy Principal Value (CPV) sense. Kernels with
singularities of order O(log r) cannot be evaluated with this method. Another way of dealing
with singular integrals is to use the direct computation of CPV integrals developed by
Guiggiani et.al. (1987) but this is limited to O(1/r). In this method, the CPV integrals with
first order singularity is reduced to two regular integrals plus two logarithmic terms. Later
Cerroloza et. al. (1989) extended the works of Telles (1987) and Guiggiani (1987) by
introducing a bi-cubic transformation that ensures total symmetry about the singular point

when it is placed on the comer of an element. The importance of maintaining total
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symmetry is lacking in Telles’s work and this was confirmed by Guiggiani (1988). This
was also discovered in the early stages of this study when dealing with adjacent elements

of different size (see Karamanoglu et. al. 1991).

3.3.2 - Finite-part Integral Formulation

The aim of this section is to show the development of an integration method in the current
work for accurate and efficient evaluation of the strongly singular kernels. The double
integrals present in this 3-D analysis are evaluated by combining the Gauss (see Stroud
et.al., 1966) and Kutt (1975) formulations. Both these formulae are given in terms of one
dimension only, but using one formula for the inner integral and another for the outer
integral, the double integrals can thus be evaluated. Consider two linear elements with a
source point shared between them (see Figure 3.5). Notice that these elements are divided
into two equal parts about ¢ = ( and then doubled after the integration of the right hand
side. These elements are divided into triangles in order to use local polar coordinates. The

new method, named as Composite Mapping, is applied to each of the triangular areas

(P,__l_ _________ (i (pi+l
| 6.1

I 1

]

|

|

: a, 3
|

l 817 %

| oy

: o 4
:

: 2

t

!

o B1u

Figure 3.5: Element division for the Composite Mapping formulation.
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+1

-1

-
e

i

Figure 3.6: Composite Mapping transformation using 4 (Gauss) by 3 (Kutt)
quadrature with a= 60° and a= 10.

(Figure 3.6). The aim is to use this formulation to cancel the singularity present in the

integration and to pack more sampling points near the singular point. The formulation given

by Kutt (1975) is:
f(x) N 1)
X —alr . f (s)Inlr—s|
J:(x—s))‘ = (r—s)l Ewif [(—s) §i+s] + (A=1)1 (3.16)

where &i is the co-ordinate of the ith integration point, w; is the associated weighting

factor, A is used to control the order of the singularity, and N is the total number of
points. The above relationship is subject to the following condition: f(x) is a real
function of the real variable x. It is also required that f(x) € C in an interval containing
[s,/] and f(x) e C (A in the neighbourhood of s. For the case where the integration

interval is [0, b ] and A= 1, then the above formula simplifies to:

N .
Jzi%‘l = Y w,f(bE) + fO)Inlb| (3.17)
=1
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Take an example of a triangular area (Figure 3.5) for which the BEM integral is to be

evaluated. The integral is:
ﬂf (6,9) dbdo = f: f; f(p.¥) pdpay (3.18)

Notice that b is dependant on p and it should be treated accordingly. The outer integral is
to be evaluated using Gauss quadrature and the inner integral using Kutt quadrature.
However, the integral given in Equation (3.18) is not in the right form for a Kutt type
formulation. Therefore, Equation (3.18) is multiplied and divided by p so that it is tumed

into an acceptable form.

=j:f;)f£;m p dpdy (3.19)

The p2 term in Equation (3.19) will cancel out with the l/r2 term inside the function f,
since as p — 0 then p — r, provided that the local polar coordinates are used. Hence the
strong singularity present in the integrals when dealing with singular elements, will not
cause any problems, and the integrals can now be evaluated without any further element

division.

As the BEM formulation is in a spherical coordinate system, then some transformations
are necessary. Furthermore, the integral limits in Equation (3.19) need to be transformed
to (-1,+1) and (0, 1) spaces for the quadrature formulae. The outer integral limit (0 , o)

is to be mapped to (-1 , +1) space:

y=mé&+c (3.20)
=-1 ; \l]:O (321)
E=dl v=o (3.22)
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This leads tom=%andc=%-.

=2 (&)

The inner integral limit (0 , b ) is mapped to (0, 1) space:

p=mn+c

n=0 ; p=0 = =0

n=1 ; p=b = m=b
p=bn

(3.23)

(3.24)
(3.25)
(3.26)

(3.27)

The upper limit b has to be computed for each value of y (see Figure 3.7) by using the

relationship give in Equation (3.28);

a

= cos (3.28)
o®; Diti
01 4=y~ @
0.—90.
0L=tan_1[ i i-1
a
o
v="7 (&+)
__a
P p= cosy n
0 hd 6=6,~ p siny
1 \ o
a

Figure 3.7: Parameters and transformations used in Composite Mapping.
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The formulation developed so far is used for the evaluation of the L.H.S. and the R.H.S.
of the BEM equations. Although Kutt type quadrature is not needed for the R.H.S. integrals,
these integrals were evaluated along with the others to save computing time in calculating
the many common variables. The Composite Mapping was implemented to the existing
code with little change and the formulation was tested using the surface displacements

formulation; the results are given in Table 3.3.

The f(0) In (b) term in Equation (3.17), named as the log term, was disregarded during
the implementation as it was discovered that the contribution coming from the upper
element cancelled the contribution from the lower element. This was due to the equally

spaced elements used in the mesh. This will be discussed in more detail in section 3.4.2.

Table 3.3: External displacements using Composite Mapping and linear
elements. (Analytical result is 0.2 X 10'5m)

1 9.00 0.200846
2 18.00 0.199172
3 36.00 0.199204
4 54.00 0.198847 N
5 72.00 0.198625
6 90.00 0.198552
7 108.00 0.198625
8 126.00 0.198847
9 144.00 0.199204
10 162.00 0.199172
11 171.00 0.200846
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3.4 - QUADRATIC ELEMENTS

In this section, a solid sphere is discretized by using quadratic elements. By making use of
these elements, the geometry can be modelled more accurately and a higher order of

variation of the surface variables can be used to improve the accuracy of the solution.

The solution is only provided for the top half of the solid sphere because of the symmetry
about the equator plane. However, as the axisymmetric formulation is not used in the
present work, again, the whole sphere has to be discretized so that contributions to the
system matrix coefficients are collected from the whole sphere. By placing source points
only on the top half of the sphere, the number of unknowns is halved and the size of the
system matrices is greatly reduced, leading to a more economical use of computer
resources. Again, the singular integrals are evaluated using the Composite Mapping method

and the rest are computed using the ordinary Gauss integration.

3.4.1 - Surface Displacements - equal elements

The basic BEM formulation for the surface displacements is the same as the one used in
Equation (3.3). However, when the boundary is discretized using quadratic elements, the
interpolation formula is based on the Lagrange’s Interpolation method. For a quadrétic

variation of displacement v:

v= va.' -l-sz‘.+l +N3v'.+2 (3.29)

where N 1’ NZ, and N3, called the shape functions, are given by:

N = (6-6,)0-86,) (3.30)
' ®,- 9.'+|) G ei+2) '

N = ©-6)(©-6.,) 331
2 (em - ei) (em - em) .

-40 -



M. Karamanoglu 1992 Chapter 3: BEM For A Solid Sphere

S

i+

<

i+2

S
Do -

@ — - m m o m e m o —m e m -

2

@
X

Figure 3.8: Parameters used in the quadratic element interpolation using
Lagrange’s interpolation formula and its shape functions.

v ©-9)©-0,)
3 ®,,-96)6,,- ei+l)

(3.32)

Equation (3.29) is substituted into Equation (3.5) and then simplified into a form similar

to Equation (3.6), giving:

1 i, j j+ j*2 j 1 2
2v1+‘1A1+v1 B +v, Cl+v3Dl+v3 El+v3 F, (3.33)
As before, the integrals and other parameters are embedded in A T C 1Dy, Ejand F.
The R.H.S. of the BEM equation (see Equation 3.1) is not affected by the change in the

interpolation formula.

The outer nodes of the first element are both now placed on the ends of the element. i.e.
the first node is placed on the north pole and is shared by all the pole elements around the
X4-axis; the same applies to the last element on the south pole of the sphere. It is worth

noting here that the horizontal displacement component at the north pole node and the
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vertical displacement component of the node placed on the equator plane are both zero.

This is due to the symmetry.

System matrices are formed as given in Equation (3.9). The unknowns are then solved
using the NAG routine FO4ATF. The results were not as accurate as the previous
formulation at the north pole. When coefficients of the A matrix were examined the a,,
coefficient of the A matrix was found larger than the rest of the coefficients. Normally all
the coefficients were found to be much less than 0.5, except the diagonal terms which have
0.5 added to them from the free term of the BEM equations. A value greater than 0.7 for
a non-diagonal coefficient would therefore seem too high, and the first element was
analysed for convergence. The integrations involving the Kutt quadrature give a single
result at the end without any other information about the accuracy of this answer. So it was
decided to check the integration result over the first element with the Convergence Method.
The result of this analysis showed that the a, | coefficient, linking the horizontal and vertical
displacements at the north pole node, was not converging to a finite value. However, as
the horizontal displacement of the north pole node was zero, it was decided to exclude this
from the system matrices. This meant that the first row and the first column of the A matrix

were eliminated. This helped to overcome the problem of determining the a,, coefficient.

(3.34)

an-l.n-l an—l.n

n-12

n2 an.n-l an,n “n n
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Although it was not needed, the same procedure was applied to the vertical displacement
of the node on the equator plane which eliminated the n-1 rows and the #-1 columns as

shown below.

(3.35)

The solution of the Equation (3.35) gave successful results and these are shown in Table
3.4 below. They were obtained using eight element divisions in the 8 direction of the top

half of the sphere and 15 segments in the ¢ direction.

Table 3.4: Surface displacements determined using
quadratic elements (Theoretical value is 0.2 X 10'5m).

1 0.00 0.200488
2 5.62 0.200127
3 11.25 0.199773
4 16.87 0.199732
5 22.50 0.199384
6 28.12 0.199506
7 33.75 0.199108
8 39.37 0.199350
9 45.00 0.198907
10 50.62 0.199239
11 56.25 0.198763
12 61.87 0.199162
13 67.50 0.198665
14 73.12 0.199113
15 78.75 0.198608
16 84.37 0.199089
17 90.00 0.198589
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3.4.2 - Surface Displacements - unequal elements

Upto this stage, all the elements used in the mesh for the solid sphere have been of equal
size. When elements of different sizes are to be used in the surface discretization, some
fluctuations in the surface displacements are detected (see Karamanoglu et. al. 1991),

whereas in the case of equally spaced elements, such inaccuracies do not occur.

This effect is examined in this section by considering a solid sphere, discretized using
quadratic elements in two ways. The aim is to determine the surface displacements. In the
first case, the mesh is made up of only equally spaced elements and in the second case,
elements of various sizes are used to form the mesh. The results of the first case are listed
in Table 3.4 on page 43 and are also illustrated in Figure 3.9. Figure 3.10 shows the

integration scheme used for the singular element and the elements around it.

2.25 , . . ; . . 7
2,008 S S S S IEL""‘J‘LEF
1.75 | | i | i
8 : ¥ E 4 : i
\?o 1.50 ! ! ‘00 Resultant Displacements
v— * I A | 1 i
- E " A Horizo‘ntal Displat'cements
“g 1.25 E E EV Vertic;;l Displace*nents
Q I 1 7 1 :
B 100 1 s
3 : : : : :
-% '75 . 1 i i E | %
A | | i 5 ! ;
50 | | E | E | :
25 | ! 5 ! ! ! : |
0.00 L ! o e L i L
0 10 20 30 40 50 60 70 80 90
Angle 6

Figure 3.9: Surface displacements of equally spaced quadratic elements.
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Gauss & Kutt

Figure 3.10: Integration scheme for equally spaced elements. No distortion in
the results are observed.

Figure 3.11 shows the integration scheme used with different sizes of elements without
having any special treatment. The inaccuracies in the displacements, caused by changing

the element spacing, are given in Figure 3.12. This problem is solved by subdividing the

=

Gauss & Kutt ﬂ

Figure 3.11: Integration scheme used for unequally spaced elements.
Significant distortion in the results.
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Figure 3.12: Surface displacements of unevenly distributed quadratic elements
without element subdivisioning.

Figure 3.13: Unequally spaced elements. Distortion in the results are removed
by the use of element subdivisioning.
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Figure 3.14: Surface displacements of unequally spaced quadratic elements
with element subdivisioning. Fluctuations in the results are removed.

singular elements when the integration is performed. Before the integration of a singular
element is carried out, the two adjacent elements are compared in size and if necessary
they are made to be of equal size by dividing the longer element into two parts. The excess
area is integrated using the ordinary Gauss quadrature and the integration over the singhlar
area is evaluated by using the Composite Mapping method (see Figure 3.13). The results

are improved considerably and are shown in Figure 3.14.
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3.4.3 - Internal Displacements

The internal displacements using quadratic elements are calculated in a similar way to the
linear element formulation. The only difference being the order of the interpolation formula
used for the surface displacements. Again, Equation (2.53) is considered without any body
forces and the transformations given in Equations (3.3) and (3.7) with the interpolation
formula from Equation (3.29) are substituted into this equation. The final formula obtained

for a horizontal displacement at point i is:
15

i i i+ 42 j JH 2
=P, =[viA, + V"B, +vI°C +vID +VI"E +vI7F | (3.36)

When the above formulation is implemented, the results of intemal displacements of the

solid sphere is given in Table 3.5 (see Figure 3.15 for the plot of these results).

Table 3.5: Internal displacements using quadratic elements along 6 = 45°.

1 0.00 0.00000 0.00 0.00
2 0.10 0.01993 0.02 0.35
3 0.20 0.03989 0.04 0.27
4 0.30 0.05991 0.06 0.15
5 0.40 0.07993 0.08 0.09
6 0.50 0.09989 0.10 0.11
7 0.60 0.11979 0.12 0.18
8 0.70 0.13983 0.14 0.12
9 0.80 0.15976 0.16 0.15
10 0.90 0.17972 0.18 0.16
11 0.95 0.18968 0.19 0.17
12 0.96 0.19166 0.192 0.18
13 0.97 0.19365 0.194 0.18
14 0.98 0.19563 0.196 0.19
15 0.99 0.19761 0.198 0.20
16 0.992 0.19802 0.1984 0.19
17 0.994 0.19838 0.1988 0.21
18 0.996 0.19824 0.1992 0.48
19 0.997 0.19855 0.1994 0.43
20 0.998 0.20361 0.1996 2.01
21 0.999 0.21301 0.1998 6.61
22 0.9995 0.16804 0.1999 15.94
23 0.9999 0.10841 0.19998 45.79
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As the internal point approaches the surface, the results begin to deteriorate until finally
the computer code fails if continued. The reason for this is that as the internal point, being
the source point, approaches the surface, the distance between the source point and the
field point (i.e. the integration point over the surface element) becomes minimal: this
distance is the r term referred to in the BEM formulation. Figure 3.15 shows the effects

of this limitation. The main contributors of the inaccuracies in these results are the strongly
singular traction kemels, prk , given by Equation (2.23). Higher orders of quadrature will

improve these results but with corresponding increase of CPU time.

In practical situations, the results for the internal points can be determined at a reasonably
close distance to the surface and, since the surface results are already known, the limitation
presented here should only be a major concemn in the presence of large variations of the
displacements. The determination of results very close to the surface are more important

for the stresses than for the displacements; this will be discussed in section 3.4.4.

.300
. L
- 250
'©
: I —— Analytical Displacements
w 200 L 3
E {0 BEM Displacements
E ] 0
L 150
2
;:5: 100 | Eb
g
a 050 —
o .050 ¢}
e
0.000 X . - . . . . . ,
0.0 A 2 .3 4 5 6 7 8 9 1.0
Radius /m

Figure 3.15: Internal displacements of a solid sphere along the path 6=45°.
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3.4.4 - Internal Stresses

The evaluation of the internal stresses using quadratic elements for the discretization is
very similar to the analysis shown in section 3.2.4. The only difference is the use of a
quadratic variation for the surface displacements. If Equation (3.14) is considered for the
analysis, substitution of the transformations given in Equations (3.2), (3.7) and the

interpolation formula given in Equation (3.29), results in the following;:

c.=P - [vl’A.. +v"B_ +vC +viD +vIME 4+ vIF ]
if 1 if 1 if 3T 3 ij 3 ij

y g

]

(3.29)

Table 3.6: Internal stresses along 8= 0° for a solid sphere using quadratic elements.

1 0.00 | ‘0.995.7‘250 0.9957250 0.997'/"”682
2 0.10 0.9957318 0.9957318 0.9978293
3 0.20 0.9957674 0.9957674 0.9979945
4 0.30 0.9958719 0.9958719 0.9982162
5 0.40 0.9960909 0.9960909 0.9984458
6 0.50 0.9964418 0.9964418 0.9986991 -
7 0.60 0.9968814 0.9968814 0.9991720
8 0.70 0.9973623 0.9973623 1.0000363
9 0.80 0.9982047 0.9982047 1.0031072
10 0.90 1.0015550 1.0055501 1.0086613
11 0.95 1.0073561 1.0073561 1.0133601
12 0.96 1.0095420 1.0095422 1.0145341
13 0.97 1.012795 1.012795 1.0147891
14 0.98 - 1.002526 1.002526 1.0541050
15 0.99 1.420579 1.420579 -0.1613575
16 0.999 0.3409153 0.3409153 -186.10520
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The values obtained from Equation (3.37) are given in Table 3.6. Notice that the values
obtained for distances over 0.98m gave unacceptable results. With the internal
displacements, it was found to be possible to get accurate results with less than 1% error
at 0.997m, whereas for the internal stresses this value is much less. This shows the

significance of the order of the singularity present in the BEM formulation.

At this stage, minimising the CPU time was not the main concern and the results given in
Table 3.6 were obtained using equally spaced elements and Gauss quadrature of order 8.
Initially a fixed order of integration was used to compare the values obtained along 6= (°,
45°,and 90°. Surprisingly, even though double precision arithmetic is used throughout the
computer code, the three tests produced results with different accuracies. The most accurate
results were obtained along 8 = 0°. This could be due to the cumulative numerical errors

that may be produced in the evaluation of the large number of trigonometric functions.

The use of BEM in this way for stresses very close to the surface does not seem practical
as large quadrature orders are required and the results may not be of acceptable accuracy.
The surface stresses may not be calculated using the formulation given in this section due
to the singular nature of the BEM equations. However, it is still possible to calculate the

surface stresses using the surface displacements: this will be shown in chapter 6.
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Chapter

4

BEM For A Hemisphere

“Reading after a certain age diverts the mind too much from its creative
pursuits. Any man who reads too much and uses his own brain too little
falls into lazy habits of thinking.”

Albert Einstein

1931

4.1 - INTRODUCTION

In this chapter, the BEM analysis is implemented on a hemisphere to investigate the
problems associated with solids with multiple surfaces and sharp corners and/or edges.

A hemisphere is well suited for this work for the following reasons:

B 1t follows all the work presented in the previous chapters.
B Geometry is one step closer to the selected cone shape for the
final analysis.

W The geometry has a sharp edge so that the problems associated
with this can be identified, which also will affect the analysis

of the cone.

M The analytical results are already known from Chapter 3.
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Figure 4.1: Boundary conditions for the hemisphere used for the analysis.

The hemisphere selected has a radius of 1 metre and is subjected to an external uniform
outwards pressure of 1 MPa. The base is restrained in the x, direction and is free to move

in the x| and x, directions as shown in Figure 4.1.

4.2 - BEM IMPLEMENTATION

The BEM formulation to be developed in this section takes into account the two surfaces,
S, and S,. The basic formulation is the same as before, but integral equations are written
for both surfaces. The BEM equation for the horizontal component of the external

displacements on the hemisphere is:

1 i * * * . * * *
L+ js (P}, +p}, + 1p7y) R sinbdeda + js P, +up, +up) pdpde

= -‘;(WI Dy twLp, + wl}ps)R;SinOded(p + J;(wl 11/;1 + wlzsz + WISII;B) pdpdp (4.1)
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However, the base of the hemisphere is restrained in X, direction and therefore the u,
displacements on S, are zero. There are no tractions acting in the horizontal directions on

the base. The only traction on S, is 1’;3 and is distinguished from the p; on S, by the #

symbol. By taking these conditions into account, the fact that the tractions on S, are

unknown, it is best to rewrite Equation (4.1) as follows:

1 i * * * 2 .
5 U +Js (”1pn +up,+ “3P13) Rj sin8dBd¢

+ Js ("1p;1 + “zpzz) pdpde - LM)”I/;‘_; pdpde

= J;(wl P twpp, W 3p3)R;sin6d9d(p 4.2)

On surface S,,, the integration is done with respect to the radius p and the angle ¢ since the
angle © is constant at g The transformation given in Equation (3.2) is substituted into

Equation (4.2). The boundary is discretized using quadratic elements and therefore, the
interpolation formula given in Equation (3.29) is used. The shape functions N;, N, and N,
are the same as given in Equations (3.30), (3.31) and (3.32) for the S1 integrals, but for the

S, integrals they are:

(p-p,)(P-p,,)

_ 4.3
: ;- p.‘+1) ( P~ p.‘+2) -
__(P=p)(p=py) (4.4)
2 (p,-+1 - pi) ( P~ pi+2) |
(p-p)(p-p,,) (4.5)

2" (Pi2 = P) (Piy —Piy)
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The R.H.S. of Equation (4.2) is identical to the one used for the solid sphere and again the
surface tractions on S, are written in terms of the surface pressure by using the relationships
given in Equation (3.7). The final equation is written in a matrix form as before and since
all the unknowns are on the L.H.S. and all the knowns are on the R.H.S. of Equation (4.2),
the form A x=b is obtained. Only this time the unknown vector x holds the surface

displacements u; and u, for the S, surface and u, displacements and 1’\73 tractions for the
S, surface. The A matrix is partitioned to hold the coefficients from the integration of both

surfaces. Since the vertical displacements on the surface S, are zero, the % term of the

BEM equation is excluded from the diagonal coefficients of the A matrix for the rows that

are used for the u, component of the displacement.

4.3 - PROBLEMS WITH CORNERS

One of the weaknesses in the BEM is the difficulty in dealing with geometries with sharp
corners and edges. This is caused by the discontinuities in the geometry and the boundary
conditions. For an elasticity problem, the displacements are uniquely defined but the
surface tractions are multivalued at a coner node. This means that there are more unknowns
than the number of equations available and the solution is not possible. This requires other
approaches for the solutions involving comers and/or edges, and is normally referred to as

the corner problems in the BEM.

4.3.1 - Previous Work

One obvious way to solve the corner problems is to round off the edges and comers
(Banerjee et. al., 1981). This approach inevitably produces reasonable results away from
the edges and the comers but introduces local errors. This method cannot be considered a
satisfactory solution to the problem since in some cases the results at the edges and the

corners can be a vital part of the solution.
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Ricardella (1973), introduced the multiple independent node concept. For a two-
dimensional problem, an extra node is introduced to avoid the ambiguities in the definition
of the surface normal and the boundary conditions. In three-dimensional problems, two
additional nodes are introduced. This also provided the extra equations needed for the
solution of the system matrix. The problem with this method is that, unless a “sufficient”
gap is left between the comer nodes, the system matrix will be singular due to the very

similar rows of coefficients obtained for the corner nodes.

Another way to circumvent this problem when a displacement is specified at a comner is to
assume that the corresponding multivalued tractions are equal. This approach was adopted
by Lachat (1975) who found that the accuracy of results at points some distance away from

the corner are not significantly affected.

The multiple node concept was further studied by Chaudonneret (1978) who let the
multiple nodes at the comer share the same location. To avoid the singular solution of the
system matrix, two auxiliary equations are derived for each of the comer nodes using the
symmetry of the stress tensor and the invariance of the trace of the strain tensor. For a
two-dimensional case, there would be two equations and four unknowns. Of the two
additional equations, one of them can be obtained using the symmetry of the stress tensor
and the other, using the invariance of the trace of the strain tensor. Using the auxiiiary
equations derived, it would be possible to eliminate one set of the tractions and convert the
problem into a well-posed one. Similar analysis is applied to three-dimensional problems

by using a triple point at the corner to represent the traction discontinuities.

4.3.2 - Use of the Double Node Concept

The problem associated with the corners for the hemisphere is tackled with a concept
similar to the one introduced by Ricardella. The boundary is discretized with conforming
quadratic elements. Due to the symmetry, the surface displacements in the x, direction are

not calculated. Like the solid sphere in Chapter 3, the source points are distributed along

-56-



M.Karamanoglu 1992 Chapter 4: BEM For A Hemisphere

apath where angle ¢ = 0°. This path is made of two surfaces, S, and S,. Both these surfaces
are divided equally into 5 elements with quadratic variation (Figure 4.2). The whole
boundary is also discretized in ¢ direction by 20 equally spaced segments around the x,
axis. The two elements forming the sharp comer have their outer node on the comer. The
element belonging to the S, surface has u; and u, displacements as unknowns on its corner
node, whereas the comer node of the element belonging to S, has the unknowns u; and

Py If the system matrix A is formed using this discretization as it is, two similar rows will

be obtained for the u displacements at the comer nodes, and this will result in a singular
matrix. To avoid this, the row associated with the u, displacement on node 11, and the row
associated with the u 1 displacement on node 12 are removed from the A matrix. In practice,
this does not produce any problems as the u, displacement at the comer node 11 is zero

and the 1, displacement must be the same at nodes 11 and 12.

a4

o Py — 'y P & o
) A Y A A d ~
|u|‘unlullul'mlmlul‘ullul‘ Xy
A A A A

3 P P P3 Ps P3 P Py Py Py P3

|
I
"LZZ 21 i() 19 18 17 16 15 14 13 11 X

|

Figure 4.2: Descretization used for the hemisphere.
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4.4 - PROBLEMS WITH INTEGRATION

The procedures for the numerical integration developed so far are not sufficient to evaluate
all the integrals over the hemisphere. The additional problems that were come across are

detailed in the next two sections.
44.1 - Integration of the Corner Elements

In Chapter 3, it is shown that maintaining the size of two adjacent elements equal in the
presence of a singularity is essential for the integration purposes. For this reason, care
should be taken when dealing with the two elements on the comer. For the integrals
involving these corner elements, a special routine is developed for the case when the source
point is on one of the two corer nodes. The difficulty is the dissimilar shape of the two
comner elements for the element length comparison. Ideally, the two elements should be
integrated and their contributions added together. Because of the geometry limitation, a
Kutt type of integration cannot be applied to the flat corner element which is on the base

surface, Sz.

An alternative is to use the Convergence Method. As shown in Chapter 3, this method can
be used to deal with unequally spaced elements by comparing the angle 8 if the elements
concemned are on the S1 surface. However, as one of the elements is on 82 surface,
comparison of the element size cannot be made by using just this angle. So, for the element
on S,, the base radius has to be used to determine the element length and to compare this
with the arc length of the adjacent element which is on S, surface. The element with the
longer side is divided so that two elements with identical lengths are obtained. The excess
area is integrated using the ordinary Gauss quadrature and the other areas are integrated

using the Convergence Method.

However, as the u, displacement on the comer node and on the S, surface is zero, some

of the coefficients become zero. This helps to simplify the convergence procedure as there
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Pi+1

®i

ri+l ri

Figure 4.3: Limitation on the Kutt integration for the S, elements.

would be fewer terms to check for convergence. Because of these diminishing and
somewhat redundant coefficients, it was possible to use the ordinary Gauss integration
method to evaluate the integrals over the comer elements. To check the validity of this
assumption, comparison with the Convergence Method is made for both of the corner
elements. As expected, very similar results are obtained from both methods. The testing
was then extended to see the effect of using these two different integration procedures for
the corner elements on the surface displacements and tractions. The results are given in

section 4.5.

4.4.2 - Integration Over the Base Elements

The integrals over the singular elements on the S, surface could not be evaluated using the
Composite Mapping method. The restriction is that when the rectangular elements are
divided across their diagonal into two triangular elements, one of the sides of the triangular
area is always curvilinear (see Figure 4.3) and this is not suitable for the Kutt integration.

Therefore, a convergence type integration procedure is developed for these elements. When
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Figure 4.4: Convergence Method used for the elements on the S; surface.

the source point is shared by two adjacent elements which are both on the S, surface, the
size of the radial lengths of these elements are checked and if necessary, the longer element
is made the same size as the neighbouring element by partitioning it and then the integration
is performed over the small areas and added together. Further division is continued until
the cumulative sum of all the coefficients are converged within a predetermined tolerance
of < 1%. The mesh used for the base surface is made of only equally spaced elements and
therefore, element length comparison was not necessary. As a result, elexﬁcnt
subdivisioning, such as the one shown in Figure 4.4, is used. The same procedure is also

used for the case when the source point is on the midside node.

Asinthe S, surface, all the integrations that involved singularities on surface S, have been
evaluated using one half of the singular element and then the result doubled to give the

total result over the whole element.

One exception where the previously described convergence type integration method is not
suitable is the central element of the S, surface. In this case amodified convergence method

is used where the division of the surface element is only done in the radial direction. The

- 60 -



M. Karamanoglu 1992 Chapter 4: BEM For A Hemisphere

Or+1

-
44 {4 4

ror r Foori-l ri-2

@i

Figure 4.5: Integration scheme used for the central element of the S, surface
(Drawing not to scale).
The integrated area rapidly converges towards the central origin of the base surface as the

divisioning factor is set to 10 (see Figure 4.5).

4.5 - RESULTS

The following results are obtained using 5 element divisions on the S, path and 4 element
divisions on the S, path. The number of segments created around the x, axis is 20. Although
the expectancy of local errors has been reported by other researchers previously, it is
intended to see which integration method for the corner elements would result in a more
accurate solution. These results are also used to see the effect of using the double node

concept on the comer elements and how much local error this will introduce.

The comparisons are made for the resultant displacements on surfaces S; and S, and also

the tractions on the S, surface. Two methods of integration are used for the corner elements:

W Gauss integration without any element subdivision

B Gauss integration with element subdivision (Convergence
Method)
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Figure 4.6: Comparison of the resultant displacements on surface S;.
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Figure 4.7: Comparison of the horizontal displacements on surface S».
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Figure 4.8: Comparison of surface tractions on Sz using a different integration
scheme and double node concept for the comer elements.

In Figures 4.6, 4.7 and 4.8, comparison of surface unknowns are made. The results obtained
using the two different integration methods for the comer elements (Gauss integration
with element subdivisioning and Gauss integration without any element subdivisioning)
are compared against the analytical result. Both integration methods gave very poor results
at the corner element nodes. However, the errors around the comer are not so pronounced

at the other elements.

If the results other than the ones on the corner elements are considered, the two different
integration methods do not have any significant variations in the other results. Therefore,
the use of normal Gauss integration on the comer elements produces just as good results
as the case where a convergence type of integration is employed. Having said that, it should
be remembered that this is only due to the convenient type of boundary conditions present
on the S, surface. Otherwise, a convergence method should be used to avoid any possible

singularity problems.
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The results produced for the corner elements are not at all suitable for the purpose of the
work presented in this thesis. Thérefore, alternative ways of getting around the problem of
local errors introduced at the corners are required. This problem will be further discussed
in Chapter 5 using a hollow sphere where the path defining the source points will have two

comers, inner and outer.
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Chapter

S

BEM For A Hollow Sphere

“When a distinguished elderly scientist says something is possible, he is
probably right; when he says something is impossible he is probably
wrong”

Arthur C. Clarke

1969

5.1 INTRODUCTION

r I Yhis chapter concentrates on finding an alternative method to those suggested in
Chapter 4, conceming the problems associated with the corners and edges and to

look at the limitations of having long and slender geometries in BEM analysis.

Initially, a thick walled hollow sphere is considered to look at the comer problems. The
selection of a thick wall is to avoid any problems that may be caused by having a thin and

long structure.

Having completed the appropriate treatment of comers and edges, attention is paid to long
and slender structures. Previous research suggests that serious problems arise when dealing

with structures of such geometry (Bakr 1983, Brebbia & Dominguez 1989, Brebbia &
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X1

Sharp comer Sharp comner

Figure 5.1: Boundary conditions for the hollow hemisphere used for the
analysis.
Walker 1980). Problems of this kind are not unique to BEM and they also appear in FEM
applications where the structure under consideration involves elements with a large aspect
ratio (Cook et. al. 1989). The selected thick hollow sphere has an internal radius of 0.5m

and an outer radius of 1.0m. The applied boundary conditions are shown in Figure 5.1.

5.2 BEM IMPLEMENTATION OF A HOLLOW SPHERE

The BEM formulation for the hollow sphere is similar to the one used for the hemisphere
in Chapter 4. In this case, there is one more surface to consider in order to take into account
the inner surface, S;. Note that the axis of symmetry is not discretized. As in Chapter 4,
the BEM equation for the horizontal component of the surface displacements can be written
by considering the formulation derived in Chapter 2. The formulation is very similar to the
one used in Equation (4.2), but extra ténns are required to cover the inner surface. These
are the integrals concerning the surface displacement fields and the surface tractions. On

the inner surface the surface tractions are zero as there is no applied pressure, so this term
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is absent from the formulation. Once these terms are added on, the BEM equation for the

hollow sphere is ready and is given in Equation (5.1).
Lyiw [ up' +up, +up’) R sinbdéd
2717 % P UL THP B, ¢
* * A
+ L (up,, +up,,) pdpde - _Lw”p3 pdpde
* * * 2 .
+L (up,, +up,+ uapna) Rj. sinBd0d¢
' 2.
= J;(w“pl +w.p,+ w”p3)Rj sinBd0d¢ 6.1
The implementation of the Equation (5.1) is almost identical to the case of hemisphere with
the exception of considering two corners. Again all the unknown terms are on the L. H.S.
and all the known terms are on the R.H.S. The same transformations and interpolation
functions are used as given in Equations (3.2), (3.29 - 3.32) and (4.3 - 4.5) and are

substituted into Equation (5.1). This leads to a system of equations that are easily written

in the form of A x = b . As before, the vector x holds mixed surface unknowns.

5.3 RESULTS OF A THICK WALLED SPHERE

5.3.1 - Analytical Formulation

Theoretical analysis of a thick walled sphere can be found in a book by Prescot (1961).
The general formulae for a thick sphere with an inner and outer radii a and b, and the

pressures on the inner and outer surfaces p and g is given as:

3,3
b
6 ="3 3 {—b3q+a3p +__a 3 (q—p)} (5.2)
b —a r
1 3 3 ab’
Gy = PR {—bq+ap+ N (‘I“P)} (5.3)
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U= Zr«f {(1 - V)o, - vor} 5.4)

where ©, and O represents the radial and hoop stresses and u represents the radial

displacements, Distance r is measured from the centre of the sphere. The thick sphere used

in this chapter is subjected to external pressure only and, therefore, Equations (5.2) and

(5.3) simplify to:
b a
0 =15 {—;—1} (5.5)
b'—a |r
b3g a
G, = —-1 5.6
8 b3—a3{2r3 } ©0)

5.3.2 - BEM Results For A Thick Sphere

When the formulation explained in section 5.2 was implemented for the hollow sphere,
initial testing was done using the double node concept on the inner and outer comers.
Ordinary Gauss integration was used for the comer elements. On surfaces S| and S, the
Composite Mapping was used to evaluate the singular integrals and the Convergence
Method method was used on surface S,. All the non-singular integrals were evaluated using
ordinary Gauss quadrature. The surface divisions for Sl, 82 and S3 were 7,4 and 5
respectfully. Twenty segments were generated around the ¢ direction. The elements on
the first three and the last three segments had a fixed number of quadrature order of 15x16
and all the other elements had a quadrature order of 12x12. These results are given in

Figures 5.1, 5.2, 5.3 and 5.4.

The CPU time for this analysis took 18 minutes on an IBM 4381 mainframe to form the
system matrices. The reduction of this large amount of CPU time is discussed in section
5.6. As for the hemisphere example in Chapter 4, there were severe local errors on the

comers. However, for the displacements on surfaces Sl and S3, more accurate surface
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Figure 5.2; Comparison of resultant displacements on surface S;.
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Figure 5.3: Comparison of resultant displacements on surface Ss.
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Figure 5.4: Comparison of horizontal displacements on surface S,.
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Figure 5.5: Comparison of tractions on surface S..
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displacement values can be obtained by taking an average of the results on each surface,

especially when the comer node result is not included (see Figures 5.2 & 5.3).

5.4 SEMI-CONTINUOUS ELEMENTS

5.4.1 - Position of the End Node

Use of the double node approach in section 5.3 showed severe errors on the nodes belonging
to the comer elements. In this section, the nodes on the comers will be moved away from
the comers, towards the inside of the comer elements. The nodes at the other end of these
elements are to remain in their previous positions, making these elements semi-continuous.
The new position of the midside nodes will then be adjusted to suit the existing interpolation

formulae.

Comer element

d o »y -
T el T - i
t
—]
1
Comer element

Figure 5.6: Use of semi-continuous elements to prevent the comer problems.
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Table 5.1: Comparison of the extrapolated results for the semi-continuous elements.

S, Resultant Displacement - outer corner 2.23 1.05 0.58
S, Horizontal Displacement - inner corner 1.14 0.86 0.66
S, Horizontal Displacement - outer corner 1.16 0.58 0.89
S, Traction - inner corner 1.04 1.20 1.11
S, Traction - outer corner 1.92 0.73 0.91
S5 Resultant Displacement - inner corner 0.25 0.23 0.22

The optimum position of the shifted node was not known. To determine this, a series of
tests were conducted using the same sphere and the mesh throughout the tests. The distance
between the outer and the inner nodes, ¢, was taken as a percentage of the actual element
size (see Figure 5.6). The values of ¢ were taken between 30% and 90% with increments
of 10 %. A further value of 99% was also tried to see the effect of numerical instability of

the system matrix A.

The results of surface displacements for S 1 Sz’ S3 and surface tractions for surface S2 are
given in Figures 5.7-5.10 respectively. The most accurate results appear to be obtained for
t values of 50%, 60% and 70%. To get the most accurate position for the offset nodes, the
results for the 50%, 60% and 70% offset positions are plotted together with the offset nodes
extrapolated to the comers and compared in Figures 5.11-5.14 as before. The summary of
the findings are given in Table 5.1 above. By looking at the results given in Table 5.1, the
accuracy of the extrapolated results seem to get better as the fraction ¢ approaches 70%.
However, when t=80% the results get worse. There is also evidence that a unique value
for the optimum position for the outer node, which will provide the most accurate solution

for the displacements and the tractions for all the corner nodes, is not available.
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5.4.2 - Relationship Between Node Position and Gauss Points

In a paper, Xu and Brebbia (1986) suggest that there is a relationship between the optimum
location of the nodes in a discontinuous element and the Gauss integration points. However,
their investigation is based purely on numerical experimentation. They claim that for
minimal error in results, the position of the node inside a discontinuous element should
coincide with a Gauss integration point. In their tests, linear discontinuous elements were
used throughout in their mesh. However the elements used in this work are quadratic,
continuous everywhere except for the four elements forming the inner and the outer

corners, which are semi-continuous.

From the numerical tests carried out in the previous section, values of ¢ less than 0.5 and
bigger than 0.7 did not produce satisfactory results. Better results are achieved within the
region of 0.5 and 0.7. This shows that not all the Gauss points available can be used to
produce results with minimal error. In the work carried out at present, the order of Gauss
quadrature was set to 16 for the integration of the singular elements. The projection of the

Gauss points onto the comner element on S, surface is given in Figure 5.15.

6=77.1428° (-1)

Gauss | Angle | Angle Rt&io OL\
Abcisa & 9 o 78
0.9894 89.93 12.79 0.99
0.9446 89.64 12.50 0.97
0.8656 89.14 11.99 0.93
0.7554 88.43 11.28 0.88 0=83.5714° (0
0.6179 87.54 10.40 0.81 0.54
0.4580 86.52 9.37 0.73
8 0.64
0.2816 85.38 8.24 0.64
0.73
0.0950 84.18 7.04 0.54
0.81
0.88
AB=90-77.1428 = 12.8572 0.93

0.99 2997 9= 90.0000° (1)

Figure 5.15: Mapping of Gauss points over the corer element on S;.
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To test the validity of the claim by Xu et. al., several Gauss points were selected as the
location for the end node on the semi-continuous elements (see the table in Figure 5.15 ).
Identical mesh and Gauss quadrature order were used for #= 0.54, 0.64, 0.73 and 0.81. The
aim is to see if the errors in the displacements and the tractions would be minimized at one
of these Gauss points. The results of the displacements and the tractions are plotted in
Figures 5.18-21. A summary of these results and a comparison with other values of ¢ are
given in Table 5.2. These errors are given at the actual nodes instead of the mesh points.
The intention was to avoid possible errors that may be caused by the extrapolation of the
results to the mesh points. A graphical illustration of Table 5.2 is also given in Figure 5.16.
A comparison of the results given in Table 5.2, when extrapolated to the mesh points are

given in Table 5.3 and graphically illustrated in Figure 5.17.

It is interesting to see that not all the node positions corresponding to the Gauss point
locations give the best accuarcy. However, it is clear that the best results are obtained when
t is between 0.60 and 0.73 where errors of under 0.51% are seen. There is also a clear
indication that in this range, the error in the results are minimised at the Gauss points;
namely at 0.64 and 0.73. This is also valid when the extrapolated results are considered
and errors around 1% are determined. Although the minimum errors were obtained at ¢ =
0.64 and ¢ = 0.73, other ¢ locations corresponding to the Gauss points gave much worse
results compared to locations that did not corresspond to the Gauss points. This shows that
not all the locations corresponding to the Gauss points give the best results. It is also evident
that the optimum node position determined in one Gauss order will not be the same location
in another Gauss order since the location of the end node is a function of the Gauss abscissa.
Until a mathematical relationship between the Gauss points and the optimum node location
can be established, the optimum location for the nodes in a semi-continuous or
discontinuous elements should be determined by experimental methods for each of the
Gauss quadrature orders to be used in the actual analysis. For a Gauss order of 16, the best
location could be taken as 0.64 but for a different Gauss order this value would not be

appropriate. Optimum location for Gauss order of 12 is discussed in Chapter 6.
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Table 5.2: Comparison of the results at the comer nodes to investigate the effect of end
nodes coinciding with the Gauss points.

S1 Resultant disps. - outer comer | 0.63 | 0.52 | 0.44 | 0.40 | 0.41 | 0.35 | 0.84 | 0.60

S2 Horizontal Disps.- outer corner | 0.90 | 0.61 | 0.46 | 0.32 | 0.51 | 0.36 | 3.00 | 1.87

S2 Horizontal disps. - inner comer | (.44 | 0.33 | 0.28 | 0.23 | 0.24 | 0.21 | 0.42 | 0.30

53 Resultant Disps. - inner comer | 0,38 | 0.29 | 0.25 | 0.20 | 0.21 | 0.17 | 0.36 | 0.27

S2 Traction - outer comer 0.17 | 0.07 | 0.01 | 0.07 | 0.14 | 0.15 | 293 | 1.78

S2 Traction - inner comer 0.251]10.17 1009 | 0.04 | 005 008 005} 0.14

[\
)

% Error In nodd results
~N
INTE

0.5

Ol "3 A _
-~ S1 disp. - ouler - S2 disp. ~ ouler -2 52 disp. ~ inner
£ S3 disp. - innar € S2 froctlon — outer - S2 troction = Inner

Figure 5.16: Plot of the errors in the nodal results shown in Table 5.2.
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Table 5.3: Comparison of the extrapolated results at the comer nodes to investigate the
effect of end nodes coinciding with the Gauss points.

S1 Resultant disps. - outer comer | 2,23 | 1.45 | 1.05 | 0.70 | 0.58 | 0.43 | 1.08 | 0.71

S2 Horizontal Disps.- outer corner | 1.16 | 0.73 | 0.86 | 0.36 | 0.89 | 0.57 | 5.11 | 3.08

S2 Horizontal disps. - inner corner | 1,14 | 0.99 | 0.58 | 0.76 | 0.66 | 1.32 | 0.72 | 0.56

53 Resultant Disps. - inner comer | (.25 | 0.23 | 0.23 | 0.20 | 0.22 | 0.12 | 0.23 | 0.29

S2 Traction - outer comer 192130073031 ]091 044 }10.79]| 6.23

S2 Traction - inner comer 1.04 | 1.00 | 1.20 | 1.16 | 1.11 | 1.09 | 0.74 | 0.79

% Error in nodd results

-8~ S1 disp. — oufer  —— S2 disp, — outer -~ S2 disp, ~ inner
~E3- S3 disp. ~ Innar  —>€ S2 troction — oufer s S2 frociion — Innar

Figure 5.17: Plot of the errors in the extrapolated results for the comer nodes
shown in Table 5.3.
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5.5 INCREASING THE EFFICIENCY

In all of the previous calculations the mesh around the x;-axis was generated using a
constant segment length. i.e. the surface was divided into equally spaced segments in @
direction. Normally the number of segments were predefined and a typical value used was
20. The quadrature order used for all the elements except the ones with singularities was
constant and it was set to be 8 by 8 or 10 by 10. Such high quadrature orders for elements

away from the singularities are not necessary to maintain an acceptable level of accuracy.

Since the bulk of the CPU time is taken by the amount of integration, a scheme was devised
to minimize the number of elements in ¢ direction and also allow the quadrature order of
the elements to reduce as they get further away from the singular points. To avoid rapid

changes to the element size in ¢ direction the following was adopted:

B Make all of the elements on ¢= 0 have the same length in ¢
direction as their length in 0 direction. This would make these
elements square.

B The first segment is reflected to the opposite side.

B The rest of the surface between the first and the opposite
segment is divided into segments which is incremented by
1.0, 1.5, 2.0, 2.5, 3.0 etc. multiplied by the first segment.

B The created mesh is mirror-imaged to the opposite side to
form the complete mesh.

Once the number of elements on surface S 1 is set, then the size of each element in 6 direction
is calculated. By applying the algorithm described above the coordinates for the elements
in ¢ direction are calculated. In this way the total number of elements are greately reduced.
Another way that was implemented to reduce the CPU time was to allow variable
quadrature orders during the execution of the program. Three levels of quadrature order
were set before the execution. Again the mirror image mechanism was used to assign the

quadrature orders. The order was reduced as the integration progressed in the
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Figure 5.22: A typical allocation of segments in ¢ direction to reduce the CPU
time by allowing incremental segment size based on the element length in 0
direction and also variable quadrature order for integration.

counterclockwise direction. The first segment is the one with the singularity and the
integration order was set to the highest. This was 16 by 15. The elements, belonging to the
segments one before and one after the first segment was also set to this order. The
quadrature order for the next two segments was set to 8 by 8 and also for the two segments
on the other side. The elements in the rest of the segments were integrated using a 4 by 4
quadrature order. A diagram showing the implementation of the two methods described

above is given in Figure 5.22 above.
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5.6 THIN WALLED HOLILOW SPHERE

The hollow sphere geometry used in the previous sections had a wall thickness of 0.5 m.
Such wall thickness was selected to avoid the problems that may be caused by having long
and slender geometry. In this section, the limitation of BEM for dealing with long and

slender geometries is investigated.

The cone to be used in Chapter 6 has a wall thickness of 5 mm and a height of 100 mm.
This gives an aspect ratio of 20:1. In packages for FEM analysis such as PAFEC, there is
a limit to the ratio of longest to the shortest side of an element and this is limited to 5:1. In
BEM, there is a limitation for having elements too close to each other. In a short course in
BEM applications, Mercy & Trevelyan (1986) gave some guidelines on the ratio of element
length to the distance between them. These were based on their experience in FEM

applications and they are:

>5:1 Avoid.
3:1-5:1 Check results.

<3:1 Nommally O.K.

<2:1 OXK.

In the hollow sphere example, when the wall thickness is reduced to 5 mm, the limitation
about the distance between the elements on the inner and outer surfaces becomes a major
concern. The number of elements have to be increased to reduce the ratio. For convenience,
this ratio will be referred to as SOT in this thesis ( S over T ; S being the element length

and T being the wall thickness).
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5.6.1 - Element Size Limitation

To see the significance of the SOT ratio, two tests were conducted. The first was to maintain
the hollow sphere dimensions constant and to change the SOT ratio by varying the number
of elements on the inner and outer surfaces. The second was to keep the SOT ratio constant
and reduce the wall thickness by increasing the inner radius. The aim of this test was to

see the effect of having elements too close together.

Table 5.4 shows the summary of the results of the first test. The SOT ratio varied between
1.0 and 3.5. As the element size increased on surfaces S1 and S3, the error in the results
also increased. The most sensitive results were the horizontal displacements on the surface
S,. Although the averaged displacement results on the surfaces S, and S; were not as bad

as the S, displacements, the error in the nodal displacements was much bigger. For

Table 5.4: Summary of results of a hollow hemisphere with various SOT ratios. The
dimensions were kept constant. (Inner radius = 0.045m; outer radius = 0.050m )

328

10|16 2 |14 21 0.07 | 0.39 | 0.01 0.03 132x 132 | 987

151102 | 9 17 0.06 | 4.51 | 0.13 0.44 88 x 88 639

20 827 15 0.39 | 16.62| 0.49 0.79 72x72 410

25{6 |26 13 1.39 |41.32| 1.47 0.26 60 x 60 275

30525 13 2.53 |58.14| 2.75 1.14 27 x27 205

35142 | 4 11 .3.98 [57.54| 4.15 1.22 23x23 141

t - Results are averaged over the surface concemned.
t - Results are taken at the midside node along the surface S2.
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example, for the SOT=3.5, the S, displacement at 8= 0° resulted in +10.2% of error and
at the other end -27.9% of error. However, when all the results were averaged, the errors
were minimized and gave only an average error of 3.98%. This implies that averaging of
the results cannot be used as a good measure of the reliability of the error estimates.
Therefore, inspection of all the results are necessary and these can be seen in Figures
5.23-5.26. According to these figures, the best results are obtained at SOT=1.0 and the
worst results at SOT=3.5. From Table 5.4, the surface tractions on 82 show small errors
for all the SOT ratios. This can be explained by inspecting Figure 5.26. The errors are
almost symmetric about the midside node and of opposite sign. As the results are given at

this midside node, such small errors are expected.

All the graphs shown in Figures 5.23-5.26, with the exception of Figure 5.24, show curves
meeting at a certain point. On S, displacements, this is about 68°, for S, displacements this
is at 22° and for the tractions on surface S, the cross-over point is at half-way along the
thickness. This pattern is not present for the S, displacements. In this case, the whole curve

is displaced away from the ideal curve and none of the curves cut the analytical curve.

In a similar investigation which involved a 2-D axisymmetric formulation, Bakr (1983)
showed that for a hollow sphere, SOT ratio of 5.0 can be tolerated if 10 Gauss points are
used. He also shows that in the absence of sharp edges or corners, averaged errors of less
than 1% is possible. In the presence of a sharp comer, Bakr advises not to exceed the ratio
of 2.0. In the hollow hemisphere example, shown in this chapter, where there are two sharp
comers, it is shown that even with an SOT ratio of 2.0, nodal errors of upto 13% can be
expected for the inner and outer surface displacements, whereas the average error for these

are less than 0.5%.

Based on the findings shown in this section, the SOT ratio of 1.0 is recommended for thin
sections with sharp comers and where the accuracy of the results across the wall thickness
is important. Otherwise SOT ratio of 1.5 can be used if the errors of about 5% across the

wall thickness can be allowed.

-93.



(WG('( SNIPeI 1IN0 ‘WGH()'() SNIPLI Jauut da1aydstuway MO[[oH)
-azoydsturoy mo[[oY a3 103 QS ORI 9 JO SON[eA JUSISIIIP Yila Paurelqo 1§ S2BJINS uo SJuswade[dsIp jueInsay :€¢°S Indi g

ajbuy :
o6 o8 o, 09 0 o0g o0z o0l 0

Chapter 5: BEM For A Hollow Sphere

M. Karamanoglu 1992

T T T T T .M om.
]
1 6§
geE=10S8 [ .
0E=10S <7 E 09
§T=108 D |u [ele} W
0Cz=108 ¢ ; £,
CT=108 + S YA g
. ] 9
01=10S X g
A 3
(4]
3
. 3
SR, 08" &
N : =
< . N
a8 5
Jnsal [eonhjeuy .
| _ “ 06
] 66
1
1 00°L

-94 .



Chapter 5: BEM For A Hollow Sphere

M. Karamanoglu 1992

(WG () SNIPEI I9IN0 ‘WGH()'() SNIPEI JauuT AraydsTway MO[[OH)

“a1oydsTiIoy Mooy 3y 03 JOS ORI oyl JO SIN[eA JUIISIIIP (I POuTelqo ¢S 90BIINS U0 SJUawade[dsIp [eIu0ZuoY :$7°S ang1 ]

W / snipey
0050 06¥0° 0810 0Lv0 09v0 0Gv0
T ; T T T Y T T T ON.
¢E=10S | i
0'c=108 1 0
iov
5
2
05 &
o
<
09 &
2
2
oo
<
08’ =
4 06
J[nsa1 feonAreuy .
00°}

-95_



Chapter 5: BEM For A Hollow Sphere

M. Karamanoglu 1992

(Wg()'( SNIPRI INNO ‘WIGH() () SNIPel Jouu sraydstuay mOT[0H)

-axoydsTway MO[[OY S 10§ L OS ONEI 93 JO SON[eA JUSIIJIP 1M PAurelqo £§ 20BJINS U0 SIUSWR[ASTP JURIMSIY :$7°S d4n31f

o o|buy .
06 08 0L 09 0] ov 0€ 0¢ Ol 0
T T T T l i .H Om.
e
. 7 09"
$E=10S [ _
0€=10§ ) \mw 9 4
§T=10S A \\ - =
0c=10S O / 1 0L g
¢1=10S + X \ .M.
01=10S X m
B
=
[nsa1 [eondeny <
=
&
) AVIY 3
G———

00}

-96 -



Chapter 5: BEM For A Hollow Sphere

M. Karamanoglu 1992

(WG () SNIPEI JAINO0 ‘WGH()'() SNTPET Iouut dIaydstuoy mof[oH)
"oxoydsTwIoy MOT[OY 21 10J [0S OIIeI 24} JO SoN[eA JUSISJIP Yim PaUreIqo TS 20BJMS U0 SUondel], :97°S 34ngdig

w / snipey
0050 06¥0° 080 0/.v0° 090 0Sv0°
T al T T T T T v 7 T u- O.o —.l
SE=10S [] e J 0°6-
0€=10S L
$T=108 A = 08
/] A\
0z=108 ¢ -
¢1=108 + 7 4 0/L- =
JMsoy [eonAfeny 01=108 X Za 1 2.
4 0°9- m
/ £ 7 VA L\A , m . M
s 5 406 °
¢ £X e
M ; 0v-
E
i x O@-
\/ 1 ON-
E
] o. —-l

-97-



M. Karamanoglu 1992 Chapter 5: BEM For A Hollow Sphere

Table 5.5: Summary of results of a hollow hemisphere with various inner radii. The outer
radius dimension was kept constant at 0.050 m.

0030 J]O8 ] 5|23 11 0.35/1.24]10.08] 0.10 44x44 |141

00351087125 13 0.20/0.8210.04| 0.12 60x 60 | 275

0040 |O8 |10} 2 | 8 17 0.0910.53|0.03| 0.09 84 x84 | 590

0.045 {08 |20 2 |18 23 0.080.2310.03| 0.08 |164x164|2516

0046 | 1.0 20| 2 |18 23 0.09]0.33|0.05| 0.03 |164x 164 |2513

0.047 | 10126 2 |25 27 0.1110.32/0.08| 0.05 |216x216 4640

0.048 | 1.0 39| 2 |38 35 Singular matrix 320 x 320 18036

0049 {1079 | 2 |77 49 Data storage problems | 636 x636 | -

1 - Results are averaged over the surface concemed.
1 - Results are taken at the midside node along the surface Sa.

The findings of the second test, where the SOT ratio was kept constant and the wall
thickness was reduced by increasing the inner radius, are given in Table 5.5. All of the
results have a very low percentage of error in their averaged values. However, when the
nodal values are examined in Figures 5.27-5.30, it is clear that such small percentage of
errors are not just confined to the averaged values but to all of the nodal values too.

Selection of the SOT ratio of 0.8 and 1.0 which were used for the second test proved that

reliable and accurate results can be expected for small and large wall thicknesses.

Tests of wall thicknesses from 20mm down to 3mm showed very similar error values and
this again reflects the importance of the role that SOT ratio plays when dealing with thin
and long structures where elements are close together. It is also interesting to see that there
was no sign of interference from the two sharp comers on all the results shown in Figures

5.27-5.30.
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5.6.2 - Limitation of the System Matrix

Selection of small SOT ratios, such as 1.0, forces alarge number of elements to be generated
and this is reflected in the CPU times (see Table 5.5). Storage of large files can also cause

some problems and may result in the termination of the analysis.

Further reduction of the wall thickness was not possible for two reasons. The first cause
was found when an attempt was made to run the analysis with a wall thickness of 2mm.
Although the calculation of the system matrix was not a problem, the solution of this matrix
was not possible because of many similar rows being generated and this caused the matrix

to be singular.

The second cause that prevented testing the hollow hemisphere became apparent when the
wall thickness was set to Imm. Before running into problems of having similar rows in
the system matrix, there was demand for an unrealistic amount of storage area needed for
the system matrix. At the time of running out of disk storage, the CPU time required to
determine the system matrix was so large that it was decided to abandon the testing at this

stage. There was also every chance of obtaining another singular system matrix.

103 -



N

Chapter

6

BEM For A Cone

“Why does this magnificent applied science which saves work and makes
life easier bring us so little happiness? The simple answer runs: Because
we have not yet learned to make sensible use of it.”

Albert Einstein

1931

6.1 - INTRODUCTION

ﬁ nalysis of a nose cone has been the main concem in this thesis. The work presented
in this chapter uses the findings described in the previous chapters, and these are
applied to anose cone. All of the work presented in the previous chapters are systematically

implemented in this chapter.

As the analysis of the nose cone is the prime object of this thesis, the BEM formulation
developed so far is fully implemented and a comprehensive set of results are obtained. This
includes surface displacements, internal displacements, and internal and surface stresses.
All of these results are calculated directly with the exception of the surface stresses. These

are calculated from the surface displacements using natural cubic splines.
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Sharp comner

Figure 6.1: Profile and boundary conditions of a nose cone used for the
analysis

The profile of the nose cone used in this chapter is made of two circular arcs for the outer
surface and two circular arcs for the inner surface. Arc 1and arc 2 form the outer surface
S, whereas arc 3 and arc 4 form the inner surface S,. These surfaces are joined by surface

82 (see Figure 6.1).

Again, a uniform external pressure of 1MPa is exerted in the outwards direction. The
vertical displacements of the structure on surface S, are restrained in the x, direction and

only the horizontal movement is allowed in x, and x, directions along the surface S,.

Semi-continuous quadratic elements are used at the two sharp comers, and continuous
quadratic elements for the rest of the structure. The number of segments are again

determined by the method described in section 5.5 in order to maintain square elements

around the path where the nodes are placed.
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R 86

R =R sin® - 4
® o
0A = Rw&pROSO

84 = (R sin® - d) R 530

Figure 6.2: Diagram showing the parameters used in the calculation of the
jacobian for the large arc of the cone.

- 106 -




M. Karamanoglu 1992 Chapter 6: BEM For A Cone

6.2 - BEM IMPLEMENTATION OF A CONE

The implementation of the BEM to a nose cone is shown in this section. The formulation
is very similar to the one used for the hollow sphere in Chapter 5. However, as there are
two separate arcs for the inner and outer surfaces, slightly different equations are used, as
each arc had a different origin. For arcs 1 and 4, the origin for the integration purpose is

taken at Or and for arcs 2 and 4 at OR (see Figure 6.1).

The BEM equation for the cone is similar to Equation (5.1) with the following exceptions.
The integrals involving the surface S and the surface S, are broken down to two separate
integrals to deal with the two separate arcs that form these surfaces. This of course required

different jacobians for these integrals. The jacobians for the arcs 1 and 4 present no
. o . . 2 . 2 .2
difficulty as their origin is on the axis of rotation, X,, and these are 1 sin’0 and 1, sin"@

respectively, where r, and r_ represent the radii for these arcs.

The origin of the large arcs 2 and 3 is a distance d away from the rotation axis. As the
integration advances in the ¢ direction, the location of this origin varies with the angle ¢.

To take this effect into account, a new variable R(p is defined which will enable the rotation

of the origin of the large arcs (see Figure 6.2). For a given point on arc 2, the following

can be written:

dA = (R sinb - d) R dedd 6.1)
Similarly for a point on arc 3 the jacobian becomes:
dA = (Rsin® - d) R dod6 (6.2)

The values of R , R, r , r, and d are calculated before hand. Details of these are given in

Appendix B and are further discussed in section 6.3.
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The integration on the surface S, is unchanged. When the above equations are implemented
for all the surfaces, the complete BEM equation for the horizontal component of the surface

displacements and tractions can be written as follows:

% u'; + J;”(ulp:l + uzpl'2 + uap:a) rj sinBdBd¢
+ J;rc(ulp: 7t uzp:2 + 143p;3) (R sin® — d) R dBde
+JS (up;, +up,,) pdpde — J;“"ng s Pdpdo
+ ch(ulp;l + uzp:2 + u3p;3) (R;sinf — ad) R.d8de
+ J:m(u]p:l + uzp;2 + 143p:3) r‘,2 sinBd0d¢
= J;rc(w“pl WP, W, 3p3)rl.zsined9d(p

+ _[ (w, p,+w,p,+ WD) (R, sin® — d) Rid(-)d(p 6.3)

Arc
2

Numerical implementation of the Equation (6.3) is identical with the hollow hemisphere
in Chapter 5. Quadratic elements are used for the mesh.and the system equations are
determined as before. As all the knowns are on the R.H.S. and all the unknowns a;re
arranged to be on the L.H.S. of the Equation (6.3), no real problem is encountered in

forming the A x = b.

6.3 - COORDINATE GENERATION FOR THE CONE

The geometry of the nose cone used in this chapter is formed by taking two arcs of two
different size circles and merging these two arcs at a common tangent to form the outer
surface. The inner surface is also formed in a similar way by choosing smaller radii for the

other two arcs. These two surfaces are rotated about the vertical axis, x, to form the cone.
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Figure 6.3: Parameters used in the determination of the cone geometry.

The height of the cone, H, the base radius b and the tip radius r are specified to form the
outer surface. With these parameters known, Equation (6.4) is used to find a suitable large
arc. Given the wall thickness, the inner surface can also be formed (see Figure 6.3) to

generate the nose cone.

b +H -1
"0 o
— "
d= Ro -b (6.5)
0, =tan"' ‘—; (6.6)
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Because of the different origins for different surfaces, new equations for the coordinates

of the nodes are calculated as follows. For the outer large arc, arc 2:

X, =R sin0,— d 6.7)
X=0 (6.8)
x; = Rocosel. (6.9)
x’; = (RosinGj -d) cosQ, (6.10)
Jj _ ' _ .

X, = (Rosmej d) sing, 6.11)
x’; = Rocosej (6.12)

For the small arc, arc 1, the coordinates are:

X, =7 sind, (6.13)
X,=0 (6.14)
x; = rocosei +h (6.15)
Aj; = rosinejcoscpj (6.16)
X,= r 5in@ sin@, (6.17)
xja:rocosej+h (6.18)

Similar equations are written for the nodes on the arcs 2 and 3 by replacing r_ with r, and

R with R, The equations for calculating the coordinates on surface S, is not changed.
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6.4 - SURFACE DISPLACEMENTS

This section concentrates on the surface displacements and the tractions on the surface S,
Results are given for cones of 10 and 5 mm wall thicknesses and a height of 80mm. Further
tests with various cone heights were conducted and for all the cones tested, base radius

was selected to be 60mm.

6.4.1 - BEM Model

Equation (6.2) was implemented using quadratic elements to determine the unknown
surface displacements and the tractions. The same integration procedure described in
Chapter 5 was used and also the SOT ratio of 1.0 was maintained when generating the

mesh.

Initially, a 10mm wall thickness and a base radius of 60mm and a cone height of 80mm
was tested. The mesh used for this structure involved 4 elements on arcs 1& 4 and 10
elements on arcs 2 & 3. On the flat surface, surface S,, 2 elements were used. The number
of segments generated around the ¢ direction was based on the element size on arc 2, which
was around 20 segments (see Figure 6.4). A similar mesh was created for the Smm anll
thickness and this is shown in Figure 6.5 with 3 elements on arcs 1& 4 and 16 elements

on arcs 2 & 3. Surface 82 was divided into 2 elements.

There was no analytical solution or experimental result available for the geometry
generated. The only way to check these results was to compare them against another
method, even though some disagreements were expected. Therefore, the same problem
was modelled using the same mesh in a finite element package, namely PAFEC®. The
results were then compared. Once satisfied with the comparison, further analysis was
performed on the cone, such as different wall thicknesses and aspect ratios of height and

base radius. These are discussed in section 6.6.
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Figure 6.4: TheBEM mesh used for the cone with 10 mm wall thickness. Inner
and outer surfaces were divided into 14 and the base surface was divided into
2 quadratic elements. Initially, the internal points were distributed along the
mid-wall. Semi-continuous comer elements are not shown in this mesh.
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Figure 6.5: The BEM mesh used for the cone with 5 mm wall thickness. Inner
and outer surfaces were divided into 19 and the base surface was divided into
2 quadratic elements. Initially, the internal points were distributed along the
mid-wall. Semi-continuous comer elements are not shown in this mesh.
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6.4.2 - FEM Model

The Pafec FEM model contained 28 8-noded isoparametric rectangular elements of type
36210. The analysis was done in 2-D axisymmetric mode so that the vast amount of data

generated by the Pafec program was minimized. A typical mesh is shown in Figure 6.6.

TITLE NOSE COME TEST HEIGHT=0.08 BASE-R~0.06 RTIP=0.03 THICKMESS»0.01 FINE MESH

ML

YIEW FROM X »  0.0000
Y = 0.0000
1= 1.000

L

2 TOMARDS VIEWER

101 308 113

WHOLE STRUCTURE  DRAWK

{10 20 30 40 50 M. DRAVING NO. 2
Ts o ils 2o swvgwﬂ“ SCALE = 2.400
MULTIPLY BY 10 7Y UK DRAVING TYPE- 2

Figure 6.6: The FEM mesh used for comparing the BEM results. Care was taken
to maintain the same nodal positions as the BEM mesh shown in Figure 6.4 for

direct comparison.
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6.5 - INTERNAL DISPLACEMENTS

The formula for the internal displacements is similar to Equation (2.53). However, this
equation is written for one continuous surface and in the presence of body forces. Equation
(2.53) can easily be modified for the cone used in this chapter to take into account of the
different surfaces and arcs. In the absence of body forces, the equation giving the internal

displacements in x, direction, at any point within the cone wall, is:

2.,
L WDy WD, WP sin0dBde¢
-L w, P, +w,p, +w.,p.) (R, sin@ - d) Rdbde
- Lm("lp 1Py, up) 1 sinBdBdep

- _L (ulp;'l + uszZ + u3p:3) (RosinB - d) Rode(p

* * A
- fs (u,p,, +u,p,,) pdpde - sz,}m pdpde

-] @}, +up), +upiy) Rsind - d) Rdode

rc
3

* * * ‘2 .
- |, @}, +up}, +up)) r’ sinodedo (6.19)

re
4

A similar equation can also be written for the displacements in the x; direction (u;). The
variables p,, p, and p, are the components of the external pressure. When Equation (6.19)

is implemented, these can be written in terms of the resultant external pressure using

Equation (3.7).

The numerical results of these displacements are given at various distances away from the
inner wall surface for both the 10mm and Smm wall thicknesses. Comparisons are also
made with the FEM results for the internal displacements at mid-wall position and they

are given in Section 6.6.
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6.6 - COMPARISON OF BEM AND FEM DISPLACEMENTS

The following results are determined for a cone of height 80mm, base radius of 60mm, tip
radius of 30mm and wall thicknesses of 10mm and Smm. The results for the 10mm and

Smm wall thicknesses are given in sections 6.6.2 and 6.6.3 respectively.

The displacements are compared at various parts of the cone. These include the surfaces

S,, S, and S,. Displacements along 6 =0° and 6 =€ are also compared. Tractions on

surface S, are also shown. On all the graphs, centred symbols represent the point results

obtained by the BEM and the cubic spline fitted solid lines represent the FEM results.
6.6.1 - Optimising Node Positions

In Chapter 5 it was shown that for a Gauss order of 16, the optimum position for the
semi-continuous element node is to use £=0.64. However, in this chapter the highest Gauss
order was 12. Therefore new ¢ value was required for the optimum results. Tests similar to
those in Chapter 5 were conducted to establish the optimum position of the end node of
the semi-continuous element. In this case the actual cone geometry was used and the results

were compared against the FEM ones. Test were conducted for the ¢ values of 0.56, 0.68

Table 6.1: Comparison of the extrapolated results at the corner nodes with
various ¢ values.

S1 disps. - outer corner 1.02 046 0.76 0.72
S2 disps. - outer corner 1.95 043 0.60 1.35
S2 disps. - inner corner 1.06 0.46 0.59 0.90
S3 disps. - inner corner 0.65 0.34 0.44 0.61
S2 tractions - outer comer 1.83 1.70 149 5.90
S2 tractions - inner comer 242 1.24 247 2.69

T - 4 elements on surface S,
1 - 2 elements on surface 82
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and 0.79. The results are illustrated in Figures E.1-E.4 in Appendix E and a summary is
also given in Table 6.1. For the Gauss order of 12, the optimum results were obtained with

the ¢ value of 0.56.

The effect of having too many elements on the S, surface was also investigated. For £=0.56,
the S, surface was divided into 2 and 4 elements. Since the wall thickness was only 10 mm,
having 4 elements caused some deficiencies in the comer areas. The results of S, surface
having 4 elements are illustrated in the Figures E.5-E.7 in Appendix E, and also a

comparison is given in Table 6.1.

6.6.2 - Wall thickness = 10mm

The following results shown in Figures 6.7, 6.8, 6.9 and 6.10 are for a cone with 10mm

wall thickness and compare very well with the FEM results.

The problem of selecting internal points too close to the surface is shown well in Figure
6.10, particularly when nodes are placed lmm away from both surfaces. The sign of

oscillations developing in these results is very clear.

It is a general belief that the distance between the internal points and the surface should be
greater than the size of the surface elements. However, it is shown in Figure 6.10 that with
the correct selection of the element size and the number of Gauss points, an accurate
analysis, involving internal points which are very close to the surface, can be made possible

In the example discussed in this section, the element size on arc 2, which dominated surface
S,, was 9.4mm and the wall thickness was 10mm. A variable number of Gauss points were
used and although the elements close to the internal point were integrated using 12 by 12
Gauss order, this was reduced to 4 by 4 for all other elements. However, excellent results
were obtained even at points placed 3mm away from the boundary surfaces. This shows
that results very close to the surface can be determined. It will be shown in Section 6.6.3

that internal points much closer to the surface can also be placed.
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6.6.3 - Wall thickness = 5mm

Having completed a set of results with a 10mm wall, another cone of the same base radius,
tip radius and height with 5Smm wall thickness was tested. Smm wall thickness is the main

interest in this thesis as the investigation is concentrated on thin structures.

Results for the same parameters as in the previous section were obtained and they are
illustrated in Figures 6.11, 6.12, 6.13 and 6.14. The selected mesh was more dense than
the 10mm one as the SOT ratio was to be maintained at around 1.0 for all the surfaces.
Therefore, 19 elements were used for both the inner and the outer surfaces, whereas two
elements were used for the flat surface, Sz' For the small arc on the outer surface, 3 elements
were used and the remaining 16 were distributed on the large arc. The same allocation of
elements was also done on the inner surface. On surface Sz, 4 elements were too dense and
resulted m a singular system matrix. The number of the elements on the S, surface was

then reduced to 2 elements which solved the problem.

All the results given in Figures 6.11-6.14 have been compared with the results obtained
using FEM. They all showed very close agreement with the FEM results with the exception
of the tractions on surface S,. This was due to having two small elements on surface S,.
However, a minimum of two elements were necessary so that semi-continuous element
could be used. In Figure 6.14, the internal displacements showed remarkable accuracy even

for points placed at Imm away from the inner and outer surfaces.

6.6.4 - Various Cone Heights

Further investigation was conducted to see the effect on the surface displacements at
various cone heights with the same base radius and wall thickness. In this test, the wall
thickness was kept at 10mm and the outer base radius at 60mm. As the largest
displacements occured on the inner surface, S,, the comparison is done on these

displacements and they are shown in Figure 6.135.
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6.7 - INTERNAL STRESSES

Inthis section the internal stresses are worked out using Equation (2.54) without the volume
integral which represents the body forces. The calculated BEM stresses are then compared

with the FEM results. By symmetry, the shear stresses ,, and 0, are zero and therefore,

are not compared. The cone considered has outer surface dimensions of 60mm base radius,

tip radius of 30mm, height of 80mm and wall thickness of Smm.

Although the internal stresses are calculated at lmm intervals across the wall, only the

mid-wall stresses are compared. Nodal values are compared for the shear stress ¢ ,, hoop

13°

stress OW and the Von Mises equivalent stress c,. The equivalent stress, defined in terms

of the global directional stresses, is given below (see, for example, Pafec, 1975):

_ \/(o“ ~06,)’+(0,,=6,)' +(0,, = 6,)" +6 (0}, + 0}, + 7)) (6.20)

¢}
¢ 2

60

x, 12 X

= —

Figure 6.16: Diagram showing the two hoop stresses Geo and Gog used in the
nodal stress comparison.
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10 .
91
8L
7t
6l Ay
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g 5
§ 4 . BEM Von Mises Stress
E O BEM Hoop Stress ( OW)
2f
1L
0 1 1 1 i 1 1 i ) I
0 10 20 30 40 50 60 70 80 90
Angle 0

Figure 6.17: Comparison of BEM and FEM Von Mises and Hoop Stress
(Gyp) at mid-wall of the cone. ( Wall thickness=5mm)

Stresses / MPa

'7 ! 1 . L

—l L

4 BEM Shear Stress ( g,,)
— FEM results

i .

40 50
Angle 6

10 20 30 -

60 70 80 90

Figure 6.18: BEM and FEM comparison of Shear Stress o013 at mid-wall

thickness for the cone. (Wall thickness=5mm)
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Figure 6.17 shows the hoop stress C o and the von Mises equivalent stress G determined

at the mid-wall for the cone with a Smm wall thickness. A good agreement with the FEM
results is obtained. This is also reflected in the shear stress results shown in Figure 6.18.
The shear stress is maximum along 6 = 40°. The angle theta is measured clockwise from

the x, axis to x, axis as shown in Figure 6.16.

6.7.1 - Stresses Close To Surface:

As discussed in Chapter 1, the stresses for the internal points very close to the boundary
are expected to show substantial errors due to the singular nature of the BEM formulation.

This effect is demonstrated here by showing the hoop stress C o and Von Mises equivalent
stress O, at internal points across the wall thickness at small intervals. Results for both wall

thicknesses, Smm and 10mm, are shown in Figures 6.19-6.22. For both the wall
thicknesses, the results calculated at Imm from the inner and outer surfaces showed very
large errors and these appeared as severe oscillations. However, at points placed 2mm or
more away from the boundary surfaces, good results are obtained. Comparison of these
results with the FEM analysis at the mid-wall support this claim (see Figures 6.18 and

6.19).

For the 10mm wall thickness, the internal point stresses results are shown at 1,2, 4,6, 8
and 9mm away from the inner surface. For the Smm wall thickness, These are shown at 1,

2, 3 and 4mm away from the inner surface.
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20
181
16
14 |
12
3
E 10L Imm
P 2mm
§ 81 4mm
g 6mm
1z 6 Smm i
9mm
41 /
4 S ‘ ‘A - -—-f_?’g—_-_.g—-'——«'_—-g
2 '...-:(‘A-» WESSEE ‘5—"‘? /—— 5 \
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Figure 6.19: Von Mises stresses at various distances away from the inner wall.

( Wall thickness=10mm)

10
9L
8
7
6
3
g
&
3
2
1
O N L L 1 I\ — 1 1
0 10 20 30 40 50 60 70 80 90
Angle 6

Figure 6.18: Hoop Stress 64, determined at various distances away from the

inner wall surface. (Wall thickness=10mm)
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Figure 6.21: Von Mises stresses at various distances away from the inner wall.
( Wall thickness=5mm)

14 [
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Figure 6.22: Hoop Stress Gy, determined at various distances away from the
inner wall surface. (Wall thickness=5mm)
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6.8 - SURFACE STRESSES

The stresses on the boundary cannot be determined by using the formulation derived for
the stresses at internal points. This is due to the singular behaviour of the third order tensors
S Wi and Dk,.j shown in Equations (2.55) and (2.56) when the point under consideration is
placed on the boundary. For this reason, the surface stresses are determined by using the

surface displacements. This section shows the details of this method.

6.8.1 - Stress - Strain Relationship

To determine the stresses, the strains must be determined first. The following equations

show the stress - strain relationship:

g = %:- {o,-vo,-vo,| (6.21)
Egp = El— { G,,— VO - vow} (6.22)
ew = % { Cpo~ VO, — voee} (6.23)

On the inner surface, the radial stress is equal to zero as there is no pressure acting on that
surface. Therefore, only Equations (6.22) and (6.23) are required. The two hoop stresses

can be rewritten in terms of the hoop strains as follows:

E
Cgp = mj {eee + vow} (6.24)

(6.25)

The next step is to determine the two hoop strains from the surface displacements, and this

is shown in the next section.
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6.8.2 - Strain - Displacement Relationship

o

Figure 6.23: Diagram showing the vectors used for the calculation of the
tangent strains.

The tangential strains ( hoop strains) €., and €, 1€ determined in this section. Figure 6.23

shows two surface points a and b, displaced to aand b respectively. It also shows the

vectors associated with the displaced shape in the x, and x, plane. The vector ab can be

written in terms of the other vectors forming the polygon, such that:

ab =u+ a'b' (6.26)
=ab + (u + du) (6.27)
Therefore,
ab =ab+ (u+0u)—u | (6.28)
ab =R 30 e, + (u+du) - u (6.29)
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u=1u(6) e (8) +u6) ¢,(0) (6.30)
(1 +3u) = 1 (8 +56) € (6 + 56) + u,(6+ 56) ¢,(6 + 36) (6.31)
However;
d Be,
Z =e + 89e (6.32) ’
e =e -3 (6.33) ?'
ou
(u+0u)—u = [u (9) +—— 50 :”:er(G) + 36 e,(6) ]
ou
[u (6) + — ae] [ee(e) ~30¢(0) ]
— u(8) e (0) — u (6) e,(6) (6.34)
ou ou
(u+du)—u =u(®)e (9)+u(6)89e(9)+ 89e(9)+ 59e(9)
ou, ou
+u(8) ¢,(8) ~ u,(6) 80 ¢,(6) + =2 89e(6)— 89 ()
~ 1 (8) ¢ (8) — u,(6) ¢,(6) (6.35)

Ignoring the second order terms and collecting the similar terms together, Equation (6.35)

simplifies to:

0 a
(u+du)—u = 80 {[ ag' ]er(e) + [ % +u (6)} e(9)} (6.36)

Substituting Equation (6.36) into Equation (6.29);

. ou_ Bu
ab = 59 %—u (8) |e (6) + 89 +u(6) e,(6) (6.37)
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. - lab|-lab|

L labl

|a’b’ | = Va’b’ . a'bl
Rewriting Equation (6.37),

1 ou
ab = R &6 R 5~

du,
8

=y |-
%Iﬁ

=

U
o
o TR

= |-

Substituting Equations (6.41) and (6.42) into (6.40);

u,(6)
R

]e,(e) + {

ab =R 80[ (1+1,) ¢,®)+1,2(0) ]

au
+E—a_§+

(6.38)

(6.39)

u(6)

(6.40)

(6.41)

(6.42)

(6.43)

ab .ab=R 80[ (1+1,) (@) +1,¢,0) ] & 80[ (1+1,) €@ +1,,0) ]

=R2829[(1+re)2+tf]

=R2829[1+2re+r§+rf]

Ignoring the high order terms;

ab .ab=R'50 ( 1+21, )
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|a'b' | =R66(1+2re)% (6.48)

Using only the first two terms of binomial series;

(14+4x)'= 1 +nx (6.49)
gives;

|a'b' | =R8(1+1) (6.50)

Substituting this result into Equation (6.38):

R8(1+1,)-R30

€go = R0 (6.51)
1 94, u,
Epg = 1y = R 90 +-1—?— (6.52)
By similar analysis the hoop strain in the ¢ direction is determined as;
u du
1 17 .
eW_ch +R 30 (6.53)
ou,
Because of the symmetry, ZIE = (), and therefore;
U
8(9(4’ = 'R'; (654)

The definition of R(p is given in Figure 6.2. The tangential strains can now be calculated
using Equations (6.52) and (6.54). However, the €go is in terms of the displacement u, and

ou

the derivative “a—eﬂ These terms should be expressed in terms of the known displacements
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us €y )

o lll el

0 lle ee

Figure 6.24: Diagram showing the vector components of a surface
displacement.

u, and u, and they are worked out in the following way (see Figure 6.24). The displacement

vector ¥ can be written as follows:

u=ue +ue =ue +ue (6.55)

The tangential displacement 1, can be written in terms of the known displacements u, and

u, as follows:

e, .e 6.56)

The dot product of two vectors is defined as follows:

a.b =lal bl coso (6.57)

where o is the angle between these vectors a and b. For vectors of unit magnitude, the dot

product simply reduces to the cosine of the angle between the two vectors.
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Hence from Figure (6.24),
e, .e, =cos 0 (6.58)
4 .
€. ee=cos(3+6)=—-sm9 (6.59)

Now, substituiting Equations (6.58) and (6.59) into Equation (6.56),

u, = ulcose - u3sin9 (6.60)

Similarly for the u_displacement:

u=ue .e+ue .e (6.61)
T
u = ulcos(—z- - 6)+ u3cos6 (6.62)
u = ulsin() + 143cos6 (6.63)
o, ,
To determine the derivative FTY Equation (6.60) is differentiated with respect to angle 6

using the product rule:

du ou du

. _1 _ 3
30 = ulsm9+ 39 cosO u,cos6 3 sin® (6.64)
du, du, ou,
56 = —éé‘ cos6 — —ai sinf — llr (665)
ou
It was decided at this stage to express — in terms of the arc length as the preliminary
g 36

investigation showed discontinuities in the slopes of # and u, at the intersection of the two

arcs forming the surfaces if 6 was kept as a parameter.
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Hence:
au, aul ds
20 _ ds 90
00~ ds 00
But,
s=Rd6 (6.68)
9s _
0= (6.69)
Therefore;
E)ul aul
5" X
au3 8143
20 9s
du, Odu ou

® = ' Rcos®——Rsin®—u
s os r

90 0

(6.66)

6.67)

arc s
de. -

(6.70)

6.71)

(6.72)

Substituting Equation (6.72) into Equation (6.52), simplifies to the following:

ou, ou,

£ =—cos@——"sinb

8 gy ds
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6.8.3 - Use of Cubic Spline

Having determined the necessary expressions to calculate the tangential strains, the next
step is to calculate the displacement derivatives required by Equation (6.72). These
derivatives can be calculated from the quadratic shape functions used for the BEM
elements, but the first derivative would not be continuous, in general, at the ends of each

element and this would show in the strains and, therefore, stresses.

This is best explained by considering a small number of the elements and comparing the
first derivative of the displacements. For example, the derivatives of four elements on the
inner surface that belong to the large arc were calculated using both the quadratic
formulation and the cubic spline formulation. The results for quadratic formulation are
given in Figure 6.25 and for the cubic spline they are plotted in Figure 6.26. A very noticable
difference in the end nodes of the quadratic elements are seen and this is also reflected in

the final stress values.

In a different study (see Beswick, 1992b), a circular ring section under a point load was
tested to see the result of using quadratic elements for stresses across the thickness. The
results were taken at the 45° line across the thickness. The two extreme points which were
on this line, were also the end nodes of the quadratic elements. The results were both
compared with BEM analysis using BEASY? and the analytical theory. All the internal
points agreed with the theoretical results except the surfce points, where an error of 3.3%
was seen. The same problem was again solved with BEASY®, but this time the mesh was
modified so that the results were taken along a line that corresponded to the midside nodes.
The previous errors seen on the surface nodes had now diminished. The detailes are given
in Appendix C. Due to the apparent discontiniuties in the derivatives, as shown in Figure
6.25, a cubic spline was fitted through the displacement points available, and their
derivatives determined accordingly. Since by definition, a cubic spline is C’, the derivatives
were of quadratic order and smooth results obtained as the continuity of the derivatives

was maintained. The formulae used are given below ( Stoer and Bulirsch, 1983). The
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Figure 6.25: The derivative of the vertical displacements determined using
quadratic variation. (Each interval shows an element)

25

20 |
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Figure 6.26: The derivative of the vertical displacements determined using
cubic spline fit. (Each interval shows an element)
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s A
S(x)
Yis2
Yia T —
T
] hi —
i-1 i i+] i+2 X

Figure 6.27: Parameters used for the spline fitting.

variable definitions are given in Figure (6.27). The second derivatives of the knots are

referred as the moments and are defined as M,. = S”(x‘.) .

(Jc'.—x)3 (x=x_) (x-x) _h‘.2
S&) =M, 6h. M, 6h. * h, },"-1-__6—1‘4"-l

(=, hiz
+—1y.-=M. forxe [x., ,x]1,i=l2,..,n 6.74)
hi i 6 i i-1 i
, (x, - x)’ (x-X,-_,)2 1 h. VM
S(x)=_M.'-1 2h.' +M, 2hl. +h; 0=y, - p ( i ) (6.75)
forxe [x,,x] =120
., (x,— x) =x_) .
S (%) =M;-| 7 +M‘. 7 forxe [x,,,x,] Ji=12,..n (6.76)

i ]
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From the information given so far, there are n-/ equations and n+/ unknown moments.
Therefore, two further equations are required and these can be gained from the end
conditions. This leads to a linear system of equations for the moment M, . In matrix notation,

it can be shown as follows:

2 1 0 M, Y,
2 Bl M, "
a'2 2 B2 M2 YZ
‘ ‘ = : 6.77)
(xn—l 2 B n—-1 Mn—l Yn—l
0 1 2 M v,
where,
hi
%=h +h, (6.78)
i i+1
h
_ i+1 -1 _
B,= ik =1-o 6.79)

6 1 1 .
Ly {h_ (yi+l—yi)—hi(yi—yi—l)} y fori=l, n-l (6.80)

i+

If the first derivatives are specified at x=x and x=x :
St = yx) (6.81)

Sx,) = y(x,) (6.82)
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therefore,

6yl—yo /
%=H1 " % (6.83)

__6_ / yn—yn—l 6.84
yrl—h yn h ( . )

For the cone used in this chapter, the slopes for the horizontal displacements u, (see

Figure 6.28);

Y%=, ; y,=0 (6.85)

’ N
Yo =0 ; Y= (6.86)

The formulation given in this chapter is implemented for the inner surface of the cone and

the results are shown in Section 6.9.

6.9 - RESULTS

This section is divided into three sub-sections. First section, section 6.9.1, gives a set of
sample results obtained by using the BEM displacements and the cubic spline fit. The next
section, section 6.9.2, shows the effect of the change in height over the inner surface
stresses. Section 6.9.3 compares a selection of cone height results of the inner surface, with

the results obtained by using the FEM analysis.
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6.9.1 - Results - BEM Spline Fit

In this section, the results of a cone of 80mm high, 60mm outer base radius and Smm wall
thickness are given. The bounadry conditions are those illustrated in Figure 6.1. Figure 6.28
shows the horizontal and vertical displacements on the inner surface of the cone. These
results were determined using the spline formulation given in section 6.8.3. The derivatives
of the displacements are given in Figure 6.29. It is these values that were used to calculate

the strains which are given in Figure 6.30.

As pointed out in section 6.8.2, the displacement derivatives were calculated with respect
to the inner surface arc length. To maintain consistency, all of the following results shown

in Figures 6.28-6.31 were plotted against the arc length. The hoop stresses 6, and G, ar¢

given in Figure 6.31. The direct stresses 0, O,,, O,, and the shear stress o, , are also

1 V2
compared with the FEM results. These BEM stresses were determined from the calculated

hoop stresses o,y and O by using the following relationships:

G, = G,,c0s’0 (6.87)

c,, = °w (6.88)

G,, = G, sin’ (6.89)
-0, sin’6 — 0’3300829

O3 = sin20 (6.90)

The details of these relationships are given in Appendix D. These stresses are also compared
with the FEM results and they are given in Figures 6.32-6.34 where excellent agreement

between theses results can be seen.
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6.9.2 - Results - Various Cone Heights

In this section, three sets of results are provided for cones of 10mm wall thickness and
outer base radius of 60mm. The cone heights tested are §0mm, 100mm, 120mm, 140mm,

160mm and 180mm. The compared stresses are hoop stress O oo’ Von Mises stress ¢ and
the shear stress G ,. From the results, it is clearly shown that as the cone height increases,
the hoop stress and the Von Mises stress at the base of the cone also increase and, decrease
at the nose section of the cone. However, these stresses tend to pick up again at the tip. The

shear stress is maximum at around the point where two arcs merge on the inner surface.

The results are shown in Figures 6.35-6.37.
6.9.3 - Results - FEM-BEM Comparison

The results explained in section 6.9.2 are only the BEM results. In this section, a selection
of these results are compared with the results obtained by using the FEM. The mesh used
for the FEM model matches identically with the BEM mesh on the inner and outer surfaces
with the exception that the FEM mesh elements across the wall thickness is divided into

two so that several internal points were also obtained.

Again, the hoop stress Gw’ the Von Mises stress o, and the shear stress C,, are compared

for the cone heigths of 80mm, 100mm,140mm and 180mm. The BEM results agree well
with the FEM results except for the point very close to the tip of the cone. These are given

in Figures 6.38 and 6.39.

The comparison of the shear stress ©,, is given in Figure 6.40. The results indicate that

there is practically no change in the shear stress at the merging point of the two arcs

irrespective of the change in the cone height.
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Chapter

7

Further Developments

“Only in men’s imagination does every truth find an effective and
undeniable existence. Imagination, not invention, is the supreme master
of art as of life.”

Joseph Conrad

1912

7.1 - INTRODUCTION

In this chapter, investigations to take the present work one step further are discuséed.
One of the areas in need of further investigation is to increase the ability of BEM to
deal more efficiently with long and slender sections. It is shown in this work that by having
two surfaces very close together, similar rows are obtained in the system matrices which
cause singular solutions. This is due to the fact that as the geometrical position of the nodes
on two different surfaces becomes similar, the resulting coefficients also become similar,
and hence this results in similar rows in the system matrices. This type of limitation also
appears in fracture mechanics, where the nodes on both surfaces of a crack often share the
same special location when the crack is closed. One way to get around this problem is
suggested by Portela et. al. (1991) where a different formulation is used for each of the

crack surfaces. This method is known as the Dual Boundary Element Method (DBEM).
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7.2 - DBEM APPLIED TO CRACK PROBLEMS

The DBEM uses two independent equations. In Portela’s case, the displacement and the
traction boundary integral equations are used. One of these equations is used for one side

of the crack and the other equation is used for the other side of the crack.

The displacement equation is given in Equation (2.60) and it is repeated here, for the benefit

of the reader, without the body force term.
% u(x') + Js p:k(x',x) u(x) dS(x) = '[s w;k(x’ X) P, dS(x) (7.1)

The stress equation for a boundary point x’, derived by Cruse (1977), in the absence of the

body forces, is:

Lo, +] 5,00 uwdsw = [ D,;p,dsex) 72)

By using the relationship given in Equation (2.2), the traction equation is written as follows:

LP() + nx) fs 00 () dS@) = nx) Js D, p,dS() (1.3)

where n/(x’) denotes the j component of the outward normal to the surface, at the point x.

Equation (7.1) and (7.3) form the bases of the DBEM formulation.

7.3 - DBEM APPLIED TO CONE

These two equations were used to model the cone geometry discussed in Chapter 6.
Equation (7.1) was used to formulate the outer and base surfaces, S, and S,. The surface

S5 was formulated using Equation (7.3). However, on the inner surface, S3, there were no

tractions and therefore, Equation (7.3) was simplified to:
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n ) | S0 1) ds) = 0 (7.4)

Equation (7.1) was already implemented for the surfaces S, and S, using quadratic
elements. The integration routines were also successfully implemented. In Equation (7.4),

the kemel S,; exhibits a hypersingularity of the order ’—’J . Hypersingular kemels arise

whenever the normal derivative of a conventional boundary integral is taken. This is due
to the fact that hypersingular integral equations involve the derivatives of already strongly

singular kemels.

The existing Composite Mapping integration was developed for a singularity of order 'i,

and when the integral was transformed into polar coordinates, the order of the integral
reduced by one. This process is detailed in Chapter 3. The same procedure can be applied
to the integral in Equation (7.4) which will make the integral a finite-part integral of order
2 (see Kutt, 1975) and is also equivalent to the Hadamard principal-value, provided the
integrand is C? continuous (see Portela, 1992) . To maintain the C? continuity requirement
on the integral Equation (7. 4), elements of cubic variation were used on the inner surface

and quadratic on the other two surfaces.

However, at this stage, it was decided to test the convergence of the integral Equation (7.4)
on a singular element on the inner surface of a hollow hemisphere by using the refinement
technique illustrated in Chapter 3. However, convergence of the Equation (7.4) over a
singular element was not achieved using the refinement type integration. The same test
was also tested with discontinuous quadratic elements which satisfied the continuity

requirements, but no improvements on the results were seen.

Although the DBEM method is reported to work well on 2D applications (Portela et. al.,

1992), difficulty in the evaluation of the hypersingular integrals of order’% present in 3D

applications has been a limiting factor in this study. Further investigation into this problem

is necessary and perhaps a more advanced integration scheme can be developed employing
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a Kutt type formulation with A = 2. It is worth noting here that a Kutt formulation of this
order will have complex abscissas in the formulation and complex number manipulations

will be necessary in the programming.

7.4 - NEW INTEGRATION METHODS

Recently, attempts have been made to solve the hypersingular integrals, which appear in
the BEM formulation, directly. Gray et. al. (1990) used a direct analytical integration with
a limiting process on flat elements. Another way was proposed by Krishnasamy et. al.
(1990), who interpreted the hypersingular integrals in terms of the Hadamard finite-part
integrals and then converted these into regular line and surface integrals through a use of
Stoke’s theorem. Since no integration by parts was performed, the problem was still

formulated in terms of the original variables.

Guiggiani et. al. (1991a, 1991b, 1991c), showed that all hypersingular integrals arising in
the BEM could be directly transformed into ordinary integrals in the local plane of the
intrinsic coordinates through simple but rigorous manipulations. Firstly, it was shown that
no unbounded terms arise in the limiting process. This process was then translated in terms
of intrinsic coordinates and through some suitable expansions, all of the singular integrals
were evaluated analytically and the limit was carried out exactly. The remaining regular
integrals were then integrated using an ordinary Gauss quadrature of low order. It was also

shown that the method provides good results even on curved elements.

By using these methods described above, it would be possible to overcome some of the
problems outlined in this thesis. For example, it would be to possible evaluate problems

with thin sections using BDEM and also to determine the whole stress tensor directly on

the boundary.
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Chapter

8

Conclusions

“Mathematics, rightly viewed, possesses not only truth, but supreme
beauty - a beauty cold and austere, like that of sculpture.”

Bertrand Russel
1918

In this thesis, Boundary Element Method formulation and its application in three
dimensional elasticity analysis have been presented by making use of Elements of linear
and quadratic variations. However, it was found that a quadratic element formulation,
which turned out to be easier to implement, gave more accurate results. The main object
of this study has been the application of the BEM for a nose cone which concentrated on

several key areas of the method.

Calculation of the diagonal terms of the system matrix was done explicitly so improvements
on the integration of singular integrals could be made. Two different integration methods
were tested. Convergence Method was based on dividing the singular elements into smaller

areas and summing the results until they converged within a predescribed percentage of
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error. With the Accelerated Convergence Method developed here, where the element
division factor was increased from 2 to 10, the number of iterations necessary to produce
the same percentage of error was dropped from 7 to 4 which saved considerable CPU time.
Further increases in the element division number was possible, but the danger of
approaching the singular point too quickly and reaching the limit of the computer was
increasing. With a division number of 50, the number of iterations were reduced to 3 but
the risk of having a premature end to the program execution was far too great. Therefore,
it was decided to keep the number of iterations to 4. Throughout this research work, a

division number of 10 was used.

Another integration method, Composite Mapping, which was used to integrate singular
double integrals was also used. This method used both Gauss and Kutt quadratures. The
rectangular elements were divided into triangular elements and Composite Mapping was
then applied to evaluate the integral without any iteration. The Kutt integration method is

based on the finite- part integral formulation and this was implemented in the BEM.

The result was that Composite Mapping was found to be more efficient than the Accelerated
Convergence Method and it was used to evaluate the singular integrals on the inner and
outer surfaces. On the flat surface, S,, the singular integrals were evaluated using the

Accelerated Convergence Method .

However, in circumstances where the validity of the numerical answer is uncertain, such
as the A(2,1) coefficient of the system matrix, a convergence type integration method
would be more advantageous because it would be possible to monitor the convergence of

such coefficient, whereas the Kutt type integration method would fail to indicate

non-convergence.

Using unequal size elements caused some problems in the determination of the surface
displacements in the solid sphere analysis. This problem was solved by subdividing the

larger singular element concerned and performing the integration on the now two identical
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sized elements and then adding the contribution coming from the excess area separately.
This method significantly improved the accuracy of a mesh that contained unequally

spaced elements.

For the solid sphere of radius 1 metre, good results with internal displacement errors under
0.5% were achieved at nodes as close as 0.003 metres to the surface. However, for the
internal stresses, accurate results at nodes so close to the surface could not be achieved.
For example, in the solid sphere case, the direct stress 63; was determined at 5.4% ata
distance of 0.98 metres. This was due to the more severe singularity presence in the

calculation of the third order tensors multiplying the displacements.

Investigation into the comer problems revealed some interesting results. Initially a double
node approach was implemented to solve these problems. However, the results obtained,
showed that two nodes sharing the same geometrical space, with some of the variables at
these nodes eliminated from the system matrices, was not suitable. Therefore, another
alternative was tried. This was to use two semi-continuous elements at the comers and a
hollow hemisphere was used to develop this method. The corner node of a continuous
quadratic element sharing the comer was pulled back into the element slightly to form a

semi-continuous element. The midside node position was adjusted accordingly.

The position of the corner node was optimized experimentally for a fixed quadrature order.
The tests were done using a 16 by 16 rule and it was found that the most accurate results
were obtained when the comer node was placed between 60% and 70% of the element
length. i.e.when?=0.6 - 0.7 . Further tests were done to link the position of the gauss points
and the position of the comer node to the accuracy of the surface displacements. It was
found that there is an optimum position of the comer node which coincided with the gauss
point. For Gauss order of 16, this was at £=0.64 and for quadrature order of 12, the best

results were obtained when £=0.56.
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An investigation into the relationship between the element size and the wall thickness for
a hollow geometry was conducted. For a long and slender section, like the hollow sphere
and the cone geometries used in this work, in the presence of small wall thicknesses such
as Smm or less, it was discovered that the element size should be made the same size as
the wall thickness (SOT=1.0). Under these conditions the errors determined on all the

surface results were less than 0.5%.

The selection of the SOT ratio was confirmed in two tests. In the first test, the inner and
the outer radii were kept constant at 45 mm and 50mm respectively. The number of elements
on the inner and outer surfaces were adjusted to determine the SOT ratios. SOT ratios of
1.0 to 3.5 were tested. The best result was obtained when the SOT ratio was 1.0, which
resulted in errors less than 0.5%. At larger SOT values, the nodal values on the inner and
outer surfaces showed considerable errors but when averaged, these dropped to acceptable
levels. In case of SOT=3.5, the outer surface displacement at the corner node gave 28%
error but when the outer surface displacements were averaged, this resulted in only 4%
error. For SOT ratios greater than 1.0, all the results showed greater errors at the comer

nodes.

In the second test, the outer radius was kept constant at 50mm but the inner radius
dimension was varied between 30mm and 49mm. The SOT ratio was kept constant by
altering the element numbers on the inner and outer surfaces. The tests showed that for a
fairly thick walled sphere (50mm outer radius, 20mm wall thickness), an SOT ratio of 0.8
gave around 1% error and took 2.3 minutes of CPU time. When the wall thickness was

reduced to 3mm, errors of less than 0.5% were recorded but the CPU time went upto 77

minutes.

It was also found in the second test that there was no increase in the errors at the nodes
near or at the comers from 20mm thickness down to 3mm wall thickness. This shows that
although very accurate results can be achieved, SOT value of 1.0 can be expensive

especially in three dimensional analysis which was implemented here. However, this
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approach can significantly improve the results in 2-D and axisymmetric analysis dealing

with long and slender sections with and without the sharp comers.

The wall thickness that was the main concermn in this study was Smm. When test results of
SOT=1.0 were compared with SOT=0.8, no significant increase in the results were seen

compared to the large increase in the CPU time of 16 minutes to 42 minutes.

An attempt was made to push the BEM model to ilmm and 2mm wall thicknesses but this
was not successful. For the 2mm case, the system matrix obtained after 134 minutes was
singular due to very similar rows being achieved. The main reason for this was that the
elements on the flat surface, S,, were getting too small, especially with the comer nodes
being pulled towards the inside of the element. At this stage this problem could have been
avoided by using just one element on the flat surface, but the CPU time of 134 minutes
and solving a matrix of 320 by 320 was not practical. The elements on the inner and outer
surfaces were also getting too close together which would cause instability problems in the
system matrix as the two surfaces came closer. For the Imm wall thickness, data storage
problems were encountered and the analysis was not continued as negative results were

anticipated.

It is shown in this study that the BEM can handle long and slender sections as long as‘the
SOT ratio of 1.0 is maintained. The only disadvantage may be the larger CPU time but
with the new developments in the computer technology in mind, this may not be an issue

in the very near future; at least for small scale problems.

For the cone analysis, an SOT ratio of 1.0 was maintained and for the semi-continuous
elements, the factor ¢ was set to 0.56 throughout the analysis as gauss order of 12 was used
for the integration of the corner elements. Cone results were compared with the results

obtained from FEM analysis.

The initial comparisons included the surface displacements and tractions for cones with a

10mm wall thickness and a Smm wall thickness. The BEM results agreed well with the
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FEM results. This was then extended to internal points where BEM results were obtained
at various distances along the wall of the cones. The internal displacements obtained for
the cone with 10mm wall showed oscillatory results at lmm away from the inner and outer
surfaces and gave good results everywhere else. For a Smm wall thickness, better internal

displacement results were achieved at distances as close as lmm from the surfaces.

However, the internal stresses gave a much different picture. Hoop and Von Mises stresses
compared at the mid-wall of the cones agreed well with the FEM resuits but large errors
occurred at nodes close to the surfaces. The oscillations were a lot more severe than the
internal displacements at the same nodes. This was believed to be due to the higher order

of the singularity present in the stress formulations.

For the results obtained through direct evaluation, good agreement was seen between the
BEM and the FEM results. However, the surface stresses were determined using the surface
displacements as the present formulation was not suitable for the direct calculation of these

stresses.

It is shown in this study that by using a cubic spline fit through the displacements, improved
results can be obtained as the first derivative required for strain calculations would be
continuous. If quadratic variation was used as in the BEM formulation, there would be

discontinuities in the strains and this would be reflected in the stresses.

As the maximum stresses were expected to be on the inner surface, these stresses were
compared with the FEM results. For the 5mm wall thickness, excellent results were
obtained in all of the stresses. However,there was a slight disagreement at the tip of the

cone.

To see the variation of the stresses on the inner surface as the cone height increased with
a fixed base radius, several cones of 10mm thick walls were tested and compared with the
FEM results. Cone heights of upto 180mm were tested which was three times the size of

the base radius. Hoop, Von Mises and the shear stresses were calculated on the inner surface
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for all the cones. For hoop and Von Mises stresses, as the cone height varied, the stress
curves turned in an anticlockwiée direction as if they were pivoted about 28mm away from
the origin. These stresses were deliberately plotted against the base radius which was
common to all the cones, regardless of their height. The maximum of these stresses
occurred at the base. The shear stress became maximum where the two arcs of the surface

met. These results were also confirmed by the FEM.

The slight disagreement with the FEM results which was seen on the stresses calculated
for the Smm wall, was also present for the 10mm wall but it was more pronounced. As the
cone height increased, the BEM results for the hoop and Von Mises stresses gave higher
stress values at the tip of the cone. However this disagreement was confined only to the

first element on the tip.
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A

Linear Interpolation
Formula

The linear interpolation formula used in Chapter 3 is based on a straight line equation,
v=m06+c (A.1)

To find the slope m and the intercept ¢, two equations must be written and solved

simultaneously.
0= 9}. yov= v = V=m Gj +c (A.2)
o i+
8=0. ; v=y = Vi i=m 8, *c (A.3)

Subtracting Equation (A.2) from Equation (A.3):

i
Vi -V =m G 6) (A4) ,
vj+1
o=y
m= AS) i
(9j+l - ej) ( v
3]

9; 0j+1
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A2X 6, = Vo, =m9.8. +ch (A.6)
J+1 faa! j o+l faa!

A3X 6. = V10 =me 6 +ch, (A7)
j j o j

Subtracting Equation (A.7) from Equation (A.6) gives:

j j+1
Ve, —V"8,=c(8, -6, (A.8)
e, —v"e)
PO R o (A.9)
®,,-9)

Now substituting the Equations (A.5) and (A.9) into the general equation (A.1) give:

Sy Ve —v"e,
v=le_—e | *| e -6 A0
Jj+1 fi J+l J

Equation (A.10) can be re-written in the following form:

. (8-9) (8..-0)
= i+ i + V’ Jj+H
®,-9) 6,,-9)

A (A.11)
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Formulation Of The Cone
Geometry

|
|
1
l

d b

Figure B.1: Parameters used in the determination of the cone geometry.
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The profile of the cones to be generated in this thesis is made by joining two arcs of two
different circles. An arc of a small circle is used to make the tip and another arc of a much
larger circle is used to form the rest of the cone. The two curves are merged at an angle

where they have a common tangent.

Normally, the base radius, b, cone height, H, the tip radius, r, and the wall thickness, ¢, are

given and the rest of the parameters are calculated from the following relationships.

Given r o H,band

h=H-r B.1)

R-r)Y=d+h (B.2)

R -r)=@®R-by+H (B.3)

R2-2rR +r’ = R2-2R b+b + i’ (B.4)

2R (b-r) = b’ +KH -1 (B.5)
B +n -7

R, = 2@-{; ®o

Having determined the radius of the outer large arc, R | then;

d=R -b (B.7)
e=mﬁ§ (B.8)

Equations (B.1), (B.6), (B.7) and (B.8) are used to generate the profile of the outer surface.

Subtraction of thickness 7 from R and r_ gives the R, and r, for the inner profile.
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Elements

~——

b
i/
o
B 7

Figure C.1: A Curved beam used for the comparison of tangential stress G, at
angle 0 =45°,
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Figure C.1 shows a curved beam with an inner radius R'.-—- 0.2m, outer radius Ro = 0.4m,

b =0.1m and d = 0.2m. The beam is subjected to a point load W = 0.2 MN. Comparison
of the stress due to bending involved the theory developed by Winkler and the numerical

analysis by the BEM.

The inner surface of the beam was decretized into five quadratic elements, the outer surface
into six quadratic elements and the ends at 6 = 0° and 8 = 90° into two quadratic elements

each.

The object of this analysis is to compare the stresses at a distance p measured from the
inner wall at © = 45° and show the effect of seeking stresses at an end node of a quadratic

element which is also shared by a neighbouring element.

From the Winkler theory ( Beswick, 1992), the tangential stress along mean radius R is

given by:

= a)
o, = Wsin © 7 (C.1)

where,

d
, R+ 5)
J = —R*bd +R’In y (C.2)
R- 5)

Table C.1: Results of Winkler stress for the curved beam at 6 = 45°,

0.0 { 0.02{0.040.060080.10}0.12 | 0.14 { 0.16 { 0.18 | 0.20

-89.0(-64.7(-44.5-27.4/-12.7{ 0.0 { 11.2 | 20.9 | 29.7 | 37.5 | 44.5

-92.11-64.2|-43.6|-26.7|-12.5|-0.26| 10.6 | 20.3 | 29.3 | 37.7 | 47.7
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40 |

20 L

2
T

3 A Winkler Theory

Stress due to bending / MN/m
[N
o

-40} O BEM Results
-60
L
-80 ¢
-100ﬁ S T T N S N T S S T T T S
0.00 .02 .04 .06 .08 .10 a2 14 .16 .18 .20

Pointp /m

Figure C.2: Comparison of stress due to bending at 6 = 45°,

The results given in Table C.1 are also plotted in Figure C.2. The stresses at the internal
points compare well but the surface nodes have 3.4% error on the inner surface and 7.2%
error on the outer surface. When the mesh for the BEM model was arranged in such a way
that the nodes on the inner and outer surfaces at 8 = 45°, corresponded to a mid-point, the

errors at the end nodes were seen to reduce to the similar order of the error on the internal

nodes.
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Stress Transformations

Determining o, ;:

By Y

Figure D.1: Resolving forces to determine the stress Gj; in terms of the
tangential stress Gge.
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On the inner surface there is no pressure, therefore on the surface, the radial stress o,, is

zero. By equating the horizontal forces from F igure D.1:

CB Gy, cos § = ABO'll (D.1)

However, from the triangle ABC,
CB=ABcos 6 (D.2)
/ Substituting Equation (D.2) into Equation (D.1) and simplifying,

2
G,, =0, COS 0 (D.3)

Xy

Figure D.2: Resolving forces to determine the stress G33 in terms of the
tangential stress Cge.
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Determining G;;:

The stress 05, similarly can be determined by resolving forces and equating the vertical

components. From Figure D.2,

ABo,, = BC Gy, Sin O (D.4)
From the triangle ABC,
BC=ABsin 0 (D.5)

Substituiting Equation (D.5) into Equation (D.4) and simplifying,

G, =G, sin" @ (D.6)
Determining o, 5:

The shear stress G, can be expressed in terms of the direct stresses G| and G5,. These

stresses are turned into forces and resolved as shown in Figure D.3. Equating the

perpandicular forces to the surface,

AC 0"=AB G,, COs 6+ AB O, sin @ + BC G, sin 6+ BC G, cos 7] {D.7

By using the relationships from the triangle ABC in Figure D.3,
AB=AC cos 9 (D.®)
BC=ACsin 0 (D.9)

Substituiting Equations (D.8) and (D.9) into Equation (D.7),
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BC S

=, BC o,
o“ sin © [ BC 03 cos 8

ACo

X

Figure D.2: Resolving forces to determine the shear stress 63 in terms of the
direct stresses G and G33.

2 . .2 . -
o _=0,, Cos 9+c>'31 sm9c0s9+o” sin 6+<513 sin O cos 6 (D.10)

However, due to symmetry, the shear stresses

G, =0y (D.11)

Hence,

.2 2 ,
C, =0, sin 8+0,, cos 6+20, sin O cos 6 (D.12)

- 182 -



M.Karamanoglu 1992 Appendix D: Stress Transformations

There is no pressure applied onto the inner surface, therefore the radial stress G, is zero.

Hence,

) 2
—0,, sin 9—0'33 cos O

013~ 2sin B cos O (D.13)
. 2 2
-0, sin"®-0,, cos O
_Pu 33
1™ sin 26 149
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Further Results

This appendix holds some of the graphs which their results are used in Chapter 6. All the
figures are for a cone with 60mm base radius, 80mm cone height and 10mm wall thickness.
Gauss order used for the semi-continuous elements on the S, surface are 12x12. Number
of elements on arcl, arc2, arc3 and arc4 are 4, 10, 10 and 4 respectively. For the figures
E.1-E.4 the number of elements on the S, surface is 2 and for the figures E.5-E.7 the number

of elements on 52 is 4.
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