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Abstract 

T his study presents the application of the Boundary Element Method (BEM) to 

spherical and radome geometries. The boundary of the solution domain was 

discretized by using both linear and quadratic elements and the validity of the results were 

compared against other analytical and numerical methods. 

Several improvements to the BEM have been presented. These include the efficient 

evaluation of the singular integrals where new methods have been implemented and 

compared with other schemes. Improvement is also shown by the implementation of the 

semi-continuous elements to solve the well known limitation of the Corner Problems 

present in the BEM. Exhaustive numerical experimentation is carried out to establish the 

optimum collocation point for the semi-continuous elements and to link this to the 

quadrature rule used for the integration of that element. 

The present study also includes the limitations of the BEM in applications involving 

geometries of long and thin sections. The study shows in detail the circumstances under 

which accurate results can be expected in the BEM. In this case, the emphasis is placed on 

the element size and the section thickness. A relationship linking these two parameters in 

the control of the accuracy of the BEM results is also established. 

For the surface stresses and strains of the domain, a detailed implementation of a natural 

cubic spline is illustrated which greatly improved these surface results. 
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Notation 

A Solution matrix multiplying the unknown vector x 

b Matrix containing known variables 

b Outside base radius of a cone 

bl ' b2 ' b3 
Cartesian components of the body forces 

B(E) Spherical ball of radius E 

C t ' C2 
Intercepts of the linear element variation 

'k 

Sk Rigidity coefficients 

d Offset of the origin for the large arc in a cone geometry 

D
kij 

Third order tensor multiplying the tractions 

e
1

,e
Z

,e3 
Unit vectors in cartesian directions 

ee' er 
Unit normal vectors in e and t direction 

E Elasticity modulus 

h Offset of the origin of the small arc forming the tip of a cone 

h. Interval width in spline formulation 
J 

H Cone height 

m
l
,m

2 
Gradients of the linear element variation 

M Number of boundary elements 

M. Moments in cubic spline formulation 
J 

-x-



M Karamanoglu 1992 Notation 

n 
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NI ,N
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" Pi ,Pi 

• Pk 

• P1k 
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r,S 

r i , "0 
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R.,R 
I 0 
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S 

SI,S2,S3 

Sex) 
, 

Sex) 

" S (x) 

Skij 

t 

t 

u 

U. 
I 

W. 
I 

• w
ik 

Unit outward normal vector at the boundary 

Cartesian components of the direction cosines of a unit vector 

Lagrangian quadratic shape functions 

Surface tractions 

Surface tractions corresponding to the w; system 

Fundamental solution of the traction kernels 

Applied pressure 

Distance between a source point and a field point 

Lower and upper integration limits in the Kutt formula 

Inner and outer radii of the tip of a cone 

Radius 

Inner and outer radii of the body of a cone 

Arc length 

Surface area 

Boundary surfaces 

Spline function 

First derivative of the spline function Sex). 

Second derivative of the spline function Sex). 

Third order tensor multiplying the displacements 

Factor used in the location of the nodes in semi-continuous elements 

Wall thickness 

Displacement vector 

Cartesian displacements 

Weight of the ith intgeration point 

Fundamental solution of the displacement kernels 
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• w
k 

Virtual displacement pattern that satisfies the homogenous boundary 

conditions 

x Vector containing the unknown variables 

Xl ,X
2 

' X3 Cartesian coordinates 

a , 'V Angles used in Kutt fonnulation 

a
l 

' a
2 

' a
3 

' a 4 Local angles used for in the composite mapping 

a. , ~. , y Parameters used in the linear set of the spline equations 
1 1 1 

dB Surface area of a spherical ball B(E) 

0.. Kronecker's delta 
I) 

E.. Cartesian strain tensor 
I) 

E;k Strain tensor corresponding to the w: system 

E Radial strain 
rr 

Eee Hoop strain in e direction 

E Hoop strain in <p direction 
«pfp 

aT Angle of a common tangent for two arcs 

A Factor used for controlling the singularity order in ~utt fonnulation 

J..l Shear modulus 

v Poisson's ratio 

; , 11 Intrinsic coordinates 

;(X.) ,11(x.) Functions used to define 4>(x.) 
J J J 

;. Coordinate of the i th integration point 
1 

p Radial distance in local coordinates 

(J ,(J Von Mises equivalent stress 
e ,. 
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Notation 

0 .. 
IJ 

• 
°jk 

o 
" 

0 99 

O!p<p 

cp(X t .xZ
.x3) 

Q 

n 

Cartesian stress tensor 

Stress tensor corresponding to the w: system 

Radial stress 

Hoop stress in e direction 

Hoop stress in <p direction 

A function with continuous ftrst derivatives with respect to cartesian 

coordinates 

Volume of a body 

Volume n excluding B( £) 
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Chapter 

1 

Introduction 

"In research the horizon recedes aswe advance, and is no nearer at sixty 
than it was at twenty. As the power of endurance weakens with age, the 
urgency of the pursuit grows more intense ... And research is always 
incomplete. " 

Mark Pattison 

1875 

T he complexity of practical problems that engineers and scientists have to deal with 

is sometimes beyond their analytical capability to solve them, and in some past cases 

the solution time required would have exceed their lifetime. However, thanks to the recent 

development of numerical techniques and the availability of computer power, it is now 

possible to tackle these difficult problems. Over the years, engineers and mathematicians 

worked together to come up with some numerical tools that would provide them with the 

ability to solve some of their engineering problems. As a result. engineers have now been 

provided with two different tools which can play major roles in their work: the Finite 

Difference Method (FDM) and the Finite Element Method (FEM). 

The FDM is a direct numerical algorithm used for solving differential equations and is, for 

example, extensively used in the solution of fluid mechanics problems. Recently, it is 

becoming a popular tool with its extensive usage in Computational Fluid Mechanics (CFD). 
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The FEM originated as a method of stress analysis. The method is based upon the piecewise 

discretization of the problem domain into a number of elements. The governing equation 

for each element is determined separately and these are then formed into a system of 

algebraic equations, which are then solved using numerical techniques. 

The so called displacement method, commonly used in FEM, gives good results for 

displacements, but the stresses are less accurate as they are calculated by using the 

derivatives of the displacements and compounding certain errors. In many engineering 

problems, particularly in linear elasticity, the major interest is in the determination of the 

stresses, and very often these are of a particular interest in the surface region. Because of 

the nature of the Finite Element Method, there is always an excess amount of information 

that has to be calculated in order to obtain the information required. This could be very 

expensive particularly in large 3-D problems, where the storage capacity required for the 

system equations could be enormous. 

Another method that has been developed but has not yet reached its maturity is the 

Boundary Element Method (BEM). In the BEM approach, as the name implies, the 

boundary is discretized into elements and the rest of the domain is not touched. This is one 

of the main advantages of the BEM over FEM and FDM. 

The BEM is recognised as a powerful engineering tool. It offers the ability to transform 

the field equations, which describe the behaviour of the unknown functions and its 

derivatives, inside and on the boundary of the domain, to an integral equation, relating the 

unknown to the given value on the boundary. From a numerical analysis point of view, the 

advantage of the BEM is that, by transforming the problem to the boundary, the dimension 

of the problem is reduced by one. Instead of discretizing the whole domain, only the 

boundary is to be dealt with. A 3-D surface can be modelled by using two-dimensional 

elements (patches) and line elements for 2-D problems. This significantly reduces the data 

preparation time, computation time and interpretation of the results. The system equations 

are formed in terms of the surface unknowns, (Le. displacements and tractions in elasticity 

- 2 -
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problems), therefore they can be determined directly. Although the initial results will 

always be on the surface, it is very easy to obtain results inside the solution domain. Since 

there will not be any further approximations, the results at interior points will be very 

accurate. However, there is a problem with the BEM for the interior points which are too 

close to the boundary: this problem will be looked at in later chapters. 

The simplicity of the mesh generation is also a bonus for the method and, moreover, the 

problem under consideration can be modified drastically, without drastic changes in the 

existing model. Complete remeshing is not necessary. 

In problems where the boundary conditions may include infinite domains, the Finite 

Element Method would be very expensive to use. In the BEM formulation, such problems 

are easily dealt with. Even when dealing with nearly incompressible or compressible 

materials, such as epoxy resin, which has Poisson's ratio of v = 0.5, the BEM would not 

present any problems (Floyd, 1984). 

It is now accepted that the BEM is not just a direct substitute for the FEM. Further 

developments are continuing and the BEM is slowly becoming more popular. There are 

also developments being made in the coupling of the two methods to obtain the maximum 

benefits of each formulation. 

The BEM has been very slow to develop. As the computer technology gradually developed 

the solutions of the integral equations, derived many years ago, became possible to be 

solved numerically. Although the history ofthe B EM can be traced back to the early 1900' s, 

it was not until 1963 that the numerical examples of direct BEM were ftrst published by 

Jaswon (1963) and Symm (1963). Further details of the development of the BEM can be 

found in numerous publications (see, for example, Banerjee & Butterfield (1981), Cookson 

et. al. (1986), Massonnet (1987), etc.). 

The BEM has come a long way since the 1960's, but there are some major problems that 

still need attention and some particular weaknesses in the method that require 

- 3 -
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P 
P 

\ 
\ 

Xl P 

~P 

~P 

X2 

Figure 1.1: A typical nose cone, under external pressure, P, used for the analysis. 

strengthening. The work presented in this thesis will concentrate on some of the weaknesses 

in the method discovered in this study, to determine the displacements and stresses in the 

wall of a nose cone under external pressure (see Figure 1.1). 

As there were no analytical solutions available for the geometry in Figure 1.1, the following 

approach was taken. Firstly, the BEM was implemented on a solid sphere, where both 

linear and quadratic elements were used and compared. Then this was followed by slicing 

the sphere at the equator plane and looking to the comer problems associated with the 

BEM. Having made successful improvements to the formulation, the hemisphere was made 

hollow. As the analytical solutions for the solid sphere, the hemisphere and the hollow 

sphere are well known, the accuracy of the BEM method could thus be monitored. The 

hollow hemisphere model was used to look at the limitations of the BEM when dealing 

with long and slender sections. The next stage adopted was to modify the computer code 

-4-
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so that the original cone problem could then be solved. The hollow hemisphere model, 

which was already built, was so modified that the height of the model was made longer 

than the base: now, of course, the only checks on solution results possible are found by 

comparing the results with those of a FEM model. 

Each chapter of this thesis begins with an introduction which includes the relevant previous 

work in that area followed by the appropriate formulation and numerical implementation. 

Numerical results concerning each section are also provided, with the analytical 

comparison where possible. 

In chapter 2, the basic formulation of the BEM is illustrated for linear three-dimensional 

elastostatics. The intended problem could have been solved using a 2-D axisymmetric 

formulation, but for research and development purposes, it was decided to look at this as 

a general 3-D application where some form ofaxisymmetry may not be present. The BEM 

implementation to a solid sphere is dealt with in Chapter 3. Linear and quadratic elements 

are both used and particular attention is given to the integration method to deal with the 

singularities present in the fundamental solution. The application of a fmite part integration 

was also employed to reduce the integration time used on the evaluation of the coefficients 

in elements where singularities are present. 

Chapter 4 looks at the problems associated with the conflicting boundary conditions at 

corners by modelling a hemisphere. Application of the multiple node concept as well as a 

semi-continuous element are discussed. In Chapter 5 optimization of the collocation point 

for the semi-continuous comer element is illustrated. The limitation of the long and slender 

sections are discussed with the aid of a hollow hemisphere, where tests are conducted to 

establish some sort of limit to the element size to be used in relation to the wall thickness. 

The use of the subregioning technique is deliberately avoided in order to look at this 

problem in detail. Chapter 6 deals with the modification of the code developed so far and 

the testing of the variations in the nose cone geometry. Various shapes of nose cones were 

tested in order to see the effect of the geometry on the stress developed at the critical points. 

- 5 -
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A comparison of the FEM results with the B EM ones is also made and discussed. Chapter 7 

then looks at some of the possible improvements to the B EM. This includes the use of Dual 

Boundary Element Method (DB EM) in connection with the serious limitation on the aspect 

ratio of the elements used in long and slender sections and some of the latest improvements 

in the evalution of strongly singular and hypersingular integrals. 

- 6-



Chapter 

2 

Boundary Element 
Method Formulation 

"When I think of the many cases of men who have studied one subject 

for years, and have persuaded themselves of the truth of the foolishest 
doctrines, I feel sometimes a little frightened, whether I may not be one 

of these monomaniacs;" 

Charles Robert Darwin 

1859 

2.1 - INTRODUCTION 

ThiS chapter starts with the illustration of the basic theory of elasticity and then moves 

onto the fundamental BEM equation of elasticity upon which this work is based. 

Although some of this section appears in other publications, (see, for example, Cruse, 1977, 

Banerjee et al. 1981, and Brebbia 1980 & 1984), it is briefly reproduced here for the benefit 

of the reader and continuity. 

The fundamental solutions of the governing differential equations for the displacements 

and the tractions are given for three-dimensional elasticity. These will be the basis for the 

further equations to be developed in the later chapters. The work described in this thesis 



MKaramanoglu 1992 Chaphter 2: Boundary Element Method Fonnulation 

is based on the linear elasticity theory for a solid body and the following assumptions are 

made: 

i-The material is to have linear stress-strain relations, i.e. linear 

material behaviour. 

ii - The change in orientation of a body due to displacements is 

negligible. 

2.2 - LINEAR THEORY OF ELASTICITY 

X3 0"33 

b3 

XI 

X2 
bl 

b2 

Figure 2.1: Stresses and body forces acting an a three-dimensional element. 

Consider an isotropic elastic body as shown in Figure 2.1. The governing differential 

equation of equilibrium can be written in terms of the stress field components. In tensor 

form this would be, 

aa.. 0 
-..Jl + b. = 
dX. ' 

I = 1,2,3 j = 1,2,3 (2.1) 

J 

- 8 -
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Equation (2.1) is to be solved subject to certain boundary conditions given by the following 

equation: 

p.=G.n. , U , i = 1,2,3 j = 1,2,3 (2.2) 

where Pi are the surface or boundary tractions and Ilj are the direction cosines of the unit 

nonnal, n, with respect to the cartesian axes, i.e. 

It. = cos(n , x.) , , (2.3) 

The strains at any point are defined by the €ij components of the strain tensor, which in 

indicial fonn are, 

E =1. -' +--.-1 
(

dU. du. J 
ij 2 dX

j 
dX; i = 1,2,3 j = 1,2,3 (2.4) 

Hooke's law relating the stress and strain components in an isotropic elastic solid can be 

written as, 

~ 0 .. € + 2J.1Eij Gij = 1-2v " kk 
k = 1,2,3 (2.5) 

where 0ij is the Kronecker's delta, v is the Poisson's ratio and J.1 is the shear modulus, 

sometimes written as G. 

2.3 - BASIC BEM EQUATIONS 

The integral equations fonnulated in this thesis are based on the direct BEM approach 

where the integral equations provide values of solution variables at any internal field point 

in tenns of the complete set of all the boundary data. The starting point for the work 

presented in this thesis will be to consider a three-dimensional, bounded elastic body under 

the action of predefmed forces and with the volume n and the surface area, S, which is 

- 9-
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x 

n 

n s 

~XI 
X2 

Figure 2.2: A three dimensional elastic body of volume n, surface area Sand 
a unit normal vector n. 

assumed to be smooth, i.e. unit normal vector, n, exists at each point of S, as shown in 

Figure 2.2. The starting point here is to consider the equilibrium equation (2.1) over the 

domain and to use the Divergence (Green's) Theorem, which states: 

f !&aa (Xl' X2' X3) dn = i <I> (XI' X2' X3) cos (n,x.) dS 
n x. s J 

J 

(2.6) 

If, 

<I>(XI, x2, x3) = ~(XI' x2' X3 ) 11 (XI ,x2' x3) (2.7) 

then differentiating <I> with respect to Xj would give, 

a<l> = ~ a" + 11 a~ 
ax. ax. ax. (2.8) 

J J J 

Using the relationship given in Equation (2.7) and Equation (2.6), Equation (2.8) can be 

arranged as follows: 

- 10-
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In ~~ dO. = ~ ~"11j dS :-t "f: dO. (2.9) 
J J 

where 11j is given by Equation (2.3). By letting" = 0jk and ~ = w; , the following can be 

written: 

l aO 'k '" I '" 1 aw; 
--1!5..a wk dO. = O'k wk 11, dS - O'k -a dO. 

n x, s J J n J x, 
J J 

(2.10) 

where w; is the displacement, which will be associated with a known displacement pattern 

that conforms to the following: 

1 - Equilibrium equations 

O~, = 0 
IJ 

(2.11) 

2 - Linear strain displacement relation 

£"'=! _i +--L 
(

al-/ aw"') 
ij 2 aX

j 
aX; 

(2.12) 

3 - Hooke's Law 

'" 'k '" 
°jk = Sm £'m where 

jk 1m 
C. =c 

1m jk 
(2.13) 

2.3.1· Internal Points: 

The starting point to develop the BEM formulation will be to consider the governing 

equations of elasticity given in Equation (2.1), the boundary conditions given in Equation 

(2.2), and the displacement type functions w; . We therefore start with: 

In(OjkJ + bk ) w; dO. (2.14) 

- 11 -
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Applying Green's theorem, as given in Equation (2.6), and ignoring the body forces for 

the time being, Equation (2.14) can be written as: 

i w; O'k' dO. = I w; a'k It. dS - I a'k w; . dO. o JoJ S J J oj oJ 
(2.15) 

From the Equations (2.2) and (2.12), Equation (2.15) is written as: 

i w; O'k' dO. = Ipk a'k It. dS - i a~k E. k dO. o J oJ S J J 0 J J. 
(2.16) 

The next step is to eliminate the domain integral in the second integral. First, this integral 

is written in terms of the displacement derivatives by using the relationship given in 

Equation (2.4). Hence: 

f · 1 i · a'k E'k dO. = -2 a'k (Uk' + u) dO. o J J 0 J oJ J. 
(2.17) 

Applying Green's theorem to each of these terms, results in the following equation: 

f · II· · If·· a'k E'k dO. = -2 (a'k It, Uk + a'k 11k u.) dS - -2 (a'k' Uk + a'k' u,) dO. oj 1 S J 1 J 1 n loJ loJ 1 
(2.18) 

* * * * . As Pk = akj Itj and from ajk = akj Equation (2.18) becomes: 

I a~k E'k dO. = ip; Uk dS - i akj' Uk dO. oj J s n oJ 
(2.19) 

Using the results from Equations (2.15), (2.16) and (2.19), the Equation (2.6) can be 

rewritten as: 

I (a·k, + bk) w; dO. = iPk w; dS - ip; Uk dS 
o J oJ S S 

+ ta~jukdo.+ fobk w;do. (2.20) 

- 12-
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The relationship given in Equation (2.20) is the fundamental identity for the Boundary 

Element Method, where 0jkj + bk are the equilibrium results for the given problem with 

surface tractions P k and displacements Ilk' whereas w; is a displacement pattern with 

urf . '" '" d . '" fu d al I . & '" * s ace tracUons P k' stresses 0jk an strams t jk. The n ament so utlOn lor w and p such 

that, 

Ok" = 0 
7J 

k=1,2,3 (2.21) 

is derived from the Kelvin's problem of a concentrated force acting at a point in the infinite 

elastic space. For a 3-D isotropic body the fundamental solutions given by Cruse (1977) 

are: 

· 1 [3 4 0 3~~] w/k = 1h'l7' rJ. (1 _ ,,\ .. ( - v) Ik + aX
I 

aX
k 

(2.22 

• 1 [a,. { a,. a,.} 
Pik = 8 7t ( I-v) r 2 all (1 - 2v) °lk + 3aXI aX

k 

{a,. a,.}] 
- (1 - 2v) aX

I 
Ilk - aX

I 
"l (2.23) 

where Il is the outward unit normal to the surface of the body, 01 k is the Kronecker delta, 

r is the distance from the source point i to the field point k under consideration (Figure 

2.3). Ilk and 11[ are the direction cosines as shown in Equation (2.3). Also, 

i k ar XI-XI 

aX
I 

= r 
a,. ar 
-=-n an aX

I 
I 

(2.24) 

where x~ represents the I coordinate of the internal point i, and x~ represents the 1 coordinate 

of the surface point k. 

- 13 -
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XI 

i3 

i 
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/ unit load in x2direction 

Xi 
2 

r • 
P23 

n 

• 
P22 

X2 

Figure 2.3: Coordinate system for the fundamental solutions. 

Substituting w;k and P;k into relationship (2.20) poses a problem since the stresses cr~ and 

W;k ~ 00 as r ~ O. This problem is solved by enclosing the point i by a spherical ball of 

radius E and denote it by B(E) with boundary aB as shown in Figure 2.4. 

n 

GE 

1 '----.. aB 

U - B(E) 

~S 

Figure 2.4: An elastic body with an interior point i surrounded by a ball of 
radius E. 

- 14-
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In the region n, which is defined by 0 - B(£), the following conditions are 

assumed: 

0k,,+b =0 
7J k 

• 
°k"=O 1J 

• W < 00 
Ik 

'V(XI ,x2,x) e n 

'V(XI ,x2,).) e n 

'V(XI ,x2,x3) e n (2.25) 

For the point i, three equations can be written by using the results given in Equations (2.20), 

(2.22) and (2.23). Typically, for the case of /=1: 

f (O'k' + bk ) W1•k dO = lpk W;k dS + J Pk W;k dS 
.rn J J S aB 

- lp;k Uk dS - f. P;k Uk dS 
s aB 

+ .u: O;kJ! lIk dO. + 1fk W;k dO. (2.26) 

In the usual manner for Improper Imegrals, the following applies: 

1 (0 'k ' + b k ) W;k dO. = lim f (0 'k ' + b k ) W;k dO = 0 
n J J £-+o.rn J J 

(2~27) 

1 O~k' Uk dO. = lim r O~k ,Uk dO. = 0 
n J J £-+0 -h J J 

(2.28) 

Substituting these results into Equation (2.26) gives: 

0= lplk W;k dS + lim f. P1k W;k dS - Jp;k Uk dS 
S £-+0 aB s 

-lim J. P;k Uk dS + f b1k W;k dO. 
£-+0 aB n 

(2.29) 

The integrals with limits in Equation (2.29) are determined as follows. Consider the 

geometry definitions given in Figure 2.5. For 1=1 and k=1,2,3 : 

- 15 -
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n 

X3 

" " 
dS = I EI2 sine d<pde 

-::::::.-----

I 

ECOSe/
1 
I 

E3 E 

i,J( E2 

EI q> 

----c---------
E sine sinq> 

I > ~ 
X -' 2 

-' -' ~ E sine cosq> 

Esine 

Figure 2.5: Geometry definition of an internal point surrounded by a ball of 
radius E. 

lim 5. (P;I U1 + P;2 U2 + P;3 u3) dS (2.30) 
£~ dB 

Since the unit normal vector is taken as +ve when directed outward, then: 

n = lllEI + 112E2 + lll3 
(2.31 ) 

where 

III = cos(n,E
1
) = - sine cosq> 

112 = cos(n,E) = - sine sinq> 

113 = cos(n,E3) = - cose (2.32) 

Using the identities given in (2.24): 

ar Xl - X~ I E I sine cosq> - 0 = sine cosq> 
ax = lEI = lEI 

1 

(2.33) 

- 16 -
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Similarly, 

Hence, 

at ax = sine sin<p 
2 

at ax = COse 
3 

ar at at at 
~= ~l1l +~112+-a 113 =-1 
all oXl 0"'2 X3 

From the results obtained in Equations (2.31) - (2.36) and using (2.23), 

* Pll 81t (1 ~ V)E2 [ (1 - 2v) + 3 sin
2
e col<p) ] 

>I< 1 [.2 2. ] P
l2 

= 2 3 sm e cos <p sm<p) 
81t (1- V)E 

P;3 = 8 1 2 [3 sine cos<p cose) ] 
1t (1 - V)E 

also, 

dS = I EI2 sine d<pde 

Hence, 

f. J
1t J21t 2 

P;k Uk dS = P;k Uk I EI sine d<pde 
<JB 0 0 

The mean value theorem gives: 

i 

Uk(E,e,<p) - Uk = au (~,e,<p) 
I at IE 

where 0 <~ <E 

- 17 -
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(2.41) 

(2.42) 



MKaramanoglu 1992 Chaphter 2: Boundary Element Method Formulation 

i au 
:. Uk (e,9,<p) = Uk + ar (~,9,<p) I e I (2.43) 

Substituting the result of Equation (2.43) into Equation (2.41)leads to : 

ff21t . ff21t fltf21t au J_ P;k Uk sin9d<pd9 = u~J_ P;k sin9d<pd9 + lei P;k ~ sin9d<pd9(2.44) 
o 0 0 0 0 0 or 

Hence, as e ~O : 

If P;k Uk sin9d<pd9 ~ u~ If P;k sin9d<pd9 

and using the Equations (2.37) - (2.39), 

. fit f21t u~ 0 0 (p;I+P;2+p;3)sined<pd9=u~[I+O+O] 

Using the result from (2.46), Equation (2.30) can be rewritten as: 

lim i P;k Uk dS = Ui

l 
£-+0 aB 

Similar analysis shows that: 

lim i P;k Uk dS = u~ 
£-+0 aB 

lim i P;k ukdS = u~ 
£-+0 aB 

lim f. P1k w; dS = 0 
£-+0 dB 

lim f. P2k w; dS = 0 
£-+0 aB 

lim f. P3k w; dS = 0 
£-+0 dB 

- 18 -
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Substituting Equations (2.47) - (2.52) into Equation (2.29) results in the Somigliana's 

displacements identity, in tensor form: 

u: = f P k w; k dS - f Uk P; k dS + f . b k w; k dO. 
s s n 

(2.53) 

where S is the surface of the elastic body, uk and P k are the displacements and tractions of 

the boundary point k and the kernels P; k and w; k represent tractions and displacements 

in the k direction due to a unit force acting in the I direction (Figure 2.3). 

The stresses at these internal points can be calculated by substituting Equation (2.53) and 

(2.4) into Equation (2.5). The resulting equation, also given by Cruse (1977), in tensor 

form is shown below: 

0' .. = f Dki,Pk dS - f Ski' Uk dS + f Dki · bk dO. 
'/ S 1 S J n J 

(2.54) 

where the third order tensor D kij and S kij can be calculated by making use of the 

relationships given in Equation (2.24). The resulting tensor definitions are: 

1 { a,. a,. a,. a,. a,. a,. } 
Dkij = 87t(1- V),.2 (1- 2v) (Oki ax. + °kj ax. - °ij ax) + 3 ax. ax. ax (2.55) 

/ I k I / k 

S .. = ~ {3
ar

[(1_2V)° ~+v(o .Ec+ o .Ec) kif 47t(1-v),.3 an ij aX
k 

ik a).j jk aX; 

-5--- +5v n.--+ll.--a,. a,. a,. ] (ar a,. ar a,.) 
ax; aX

j 
aXk I aX

j 
aXk / ax; aXk 

(
a,. a,. ) } + ( 1- 2v) 51lk ax; aX

j 
+ llj 0jk, + Il i 0jk - (1- 4v) Ilk Oil (2.56) 
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2.3.2· Boundary Points: 

Equation (2.53) can be used to fmd the displacements at any interior point of 0 if the R.H.S. 

is known. In general, not all the displacements and tractions are known on the boundary. 

An approximation to these can be found by taking the point i to the boundary. 

This is done in the following way, which is similar to the method for an interior point. The 

point i is thus again surrounded with a ball B(E) of a radius E (Figure 2.6). 

Set, 

ll= 0- B 

(JB= dB (I 0 

"S = S - (dB (I 0) / 

Figure 2.6: Geometry defmitions of an elastic body with a surface point, i. 

B =B(E) (10 

ll=O-B 

"S = S - (dB (I 0) 

(JB=dB (10 

- 20-
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As before, making use of Equations (2.26) and (2.28), and applying boundary conditions, 

similar to those given in Equation (2.25), the following can be written: 

0= lim r P'k W;k dS + lim 1 fJ'k W;k dS -lim f P;k Uk dS 
£-+0 ~ £-+0 a1f £-+0 ~ 

-lim 1 fJ;k U'k dS + lim f b'k W;k dO. + lim r (J~k' Uk dO. 
£-+0 a 1f £-+0 -n £-+0 -b J J 

(2.58) 

For simplicity of the integration purposes, a smooth boundary will be assumed and as 

E ~ 0, the intersecting boundary (J1J can be assumed to become a hemisphere. 

7t 27t 

lim J P;k Uk dS = r f P;k Uk sined<pde 
£-+0 iJ1J 0 0 

(2.59) 

This is identical with the form of an interior point except that the integral for e now run 

from 0 ~ "i whereas for the interior point e run from 0 ~ ft. 

In general, the BEM displacement equation for a point, i, on a smooth boundary can be 

calculated from the following equation: 

Ii f· f · f · -2 U, + UkP'k dS = Pk W'k dS + bk W'k dO. s s n 
(2.60) 

In practice, at every boundary point, either displacements or tractions are known and it will 

be possible to solve the integral Equation (2.60) by an approximation procedure, which 

will be shown in Chapter 3. Having found an approximation to the displacement pattern 

over the boundary, the internal displacements and stresses for any point, i, can be 

approximated from Equation (2.53). 
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The work presented in the later chapters is based on the Equation (2.60) and the analysis 

will be carried out in the absence of the body forces. Therefore these equations arereduced 

to: 

1 if· f · -2 U1 + UkP1k dS = P k W 1k dS 
S s 

(2.61) 

1 if· f * -2 U2 + uk P2k dS = P k W 2k dS 
S s 

(2.62) 

1 if· f · -2 U3 + Uk P3k dS = Pk W 3k dS 
S s 

(2.63) 

- 22-



Chapter 

3 

BEM For A Solid Sphere 

"One of the symptoms of approaching a nervous breakdown is the belief 
that one's work is terribly imp011ant. If I were a medical man, I should 
prescribe a holiday to any patient who considered his work important." 

Bertrand Russell 

1930 

3.1 - INTRODUCTION 

T he boundary of the domain is divided into a number of small segments. For 

two-dimensional problems, these segments take the form of a line, and in three­

dimensional cases, rectangular or triangular patches. The variation of the displacements 

and the tractions over each element can be formulated to be constant, linear, quadratic, etc., 

by using an appropriate interpolation formula. 

In this chapter, linear and quadratic variations of the displacements and tractions are 

demonstrated. Constant variation of these surface variables are not considered, as they will 

not have such variations in the fmal geometry. 
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The selected geometrical shape to be used in this chapter is a solid sphere, where an external 

pressure of lMPa is exerted on the surface. Initially, linear variation is applied and the 

surface unknowns, in this case the surface displacements, are to be detennined. The linear 

variation of the surface displacements are then used to detennine the internal displacements 

and stresses. This is then repeated with a quadratic variation. In all cases, the numerical 

results are compared with the theoretical values. 

Attention is also paid to the integration of the singular integrals and the problems associated 

with the discretization of the boundary, where there is a large variation of size in the 

adjacent elements used. 

3.2 - LINEAR ELEMENTS 

To derive the fonnulation for this section, the Equations (2.61), (2.62) and (2.63) are 

considered. However, due to the symmetrical geometry and the applied unifonn pressure 

the BEM is only implemented on Equations (2.61) and (2.63). 

3.2.1 • Surface Displacements 

Re\\'ritin~ Equation (2.61) in expanded fonn: 

[ f
21t I I ....... 2. 

-2 "I + (UIPII + Ui'12 + U-F13 ) R sme d<pde 
o 0 

[ f
21t ... • • 2 • 

= (PI ",til + P2"'12 + P 3"'13 ) R sme d<pde 
o 0 

(3.1) 

Consider only the L.H.S. of Equation (3.1) and substitute the transformation given in 

Equation (3.2) into the Equation (3.1). 
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U 1 = V1cos<p 

U2 = VI simp 

U3 = V3 

-2
1 V~ + [ fit (V1COS<PP;1 + v1sin<PP;2 + VJ1;3) R2 sina d<pda 

o 0 

(3.2) 

(3.3) 

The boundary is to be discretized into several elements and summed up to form the total 

boundary. The integrals given in Equation (3.3) are divided into M segments in a direction 

and N segments in <P direction (Figure 3.1). Due to the axisymmetry, the source points 

where the unknown displacements are required are distributed on a path where 

o s,; a s,; 1t and <P = O. Each segment on this path is called an element and the source points, 

called nodes, are placed at the corners of each element. The displacements and tractions 

are assumed to vary linearly between these end points. Substitution into Equation (3.3) is 

X3 

element a -. 

Figure 3.1: The top half of a solid sphere, divided into M x N segments. Marked 
nodes show the path selected for the unknown displacements (i.e. <P = 0 ). 
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achieved by making use of an interpolation formula, derived from a straight line fit (see 

Appendix A). The interpolation formula used is given below, where 9j and 9j+1 are the 

coordinates of the end point of the element: 

v = vj+1 
(9 - 9.) . (9. I - 9) __ -,-,_ + v1 ---L.J+,-,--_ 

(9j+1 - 9j ) (9j+1 - 9j ) 
(3.4) 

Equation (3.3) in discretized form is given as: 

M N 

1 i "re J+I "fl+' · .o4o • 2. "2 VI + '"'" L '"'" (vlcos<PP ll + "lsm<PP I2 + VJ'13) R sm9 d<pd9 
j=1 9j k=1 'Pi 

(3.5) 

Substituting Equation (3.4) into Equation (3.5) and, after some mathematical manipulation, 

Equation (3.5) can be written in simple terms as: 

1 i j A j+1 j C j+' D '2 v,+v, ,+v B,+v3 ,+v3 , (3.6) 

The integrals and other parameters are embedded in A l' B l' eland D l' The next step is to 

consider the R.H.S. of the Equation (3.1). The variables Pl'P2' andp3 are the surface 

tractions and they correspond to the components of the surface pressure (Figure 3.2). 

X3 

p 

e 
P3 

x, 
P

'" " I~ 
2 "" " : -........ X2 

"~~:""'''Pl 

Figure 3.2: Components of the 
surface pressure p. 

222 3 
P =P,+P2 +P3 

PI = P sin9cos<p 

P 2 = P sin9sin<p 

P3 =P cos9 (3.7) 
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By using the relationships given in Equation (3.7), the R.H.S. of Equation (3.1) can be 

written in terms of the surface pressure, p, and it can be taken outside the integral as shown 

below. 

f
it f21t 

P (w;lsin9cosq> + w;2sin9sinq> + W;3cos9) R
2
sin9 d<pd9 

o 0 
(3.8) 

Putting the Equations (3.6) and (3.8) together, a set of equations can be written for each i 

point. The similar equations can also be written for the u3 displacements as given in 

Equation (2.63). The complete set of these equations can easily be written in a matrix form 

as: 

WI r all a l2 ... alII I I 

a" a" a" x, = ~'t (3.9) 

aliI a ll2 ... a l111 I I x" I I bl1 

Since there are no mixed boundary conditions present, the Equation (3.9) can be written as, 

Ax=b (3.10) 

When the source point and the field point coincide, i.e. when i = j, the free term of Equation 

(3.6) has a contribution of 1 which is included in the diagonal terms of the A matrix. By 

using a suitable solver, the unknowns in the x vector can easily be calculated. The solver 

used in this work is a NAG routine called F04ATF which uses Crout's factorisation method. 

The diagonal terms of the A matrix are calculated explicitly throughout this work. It is 

also possible to determine these terms by applying a rigid body displacement in the 

direction of one of the cartesian coordinates (Brebbia et. al., 1989). It is the intention of 

the author to evaluate these diagonal terms explicitly, in order to look at the possible 

improvements to the integration schemes used by previous researchers ( i.e. Lachat 1975, 

Lera et. al. 1982, Jun et. al. 1985a, Labeyrie et. al. 1985, Higashimachi et. al. 1986). 
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3.2.2· Numerical Integration 

In. this section, the numerical integration scheme which is employed is shown. To detennine 

all the coefficients of the A matrix, the Gauss integration scheme (Stroud et. al. 1966) is 

implemented. The transfonnation used that takes the integrals from (9,</» space to (~;Tn 

with Nx M quadrature rule is: 

N M 

~l f 1

f(9,</» d<pd9 =:: ntlnt2 I Wj I w;f(ntl~j+cI ' ntiTl; +c2) 
I 'PI j=1 ;=1 

(3.11) 

where ~ and 11 are the abscissas and Wi and 'Hj are the corresponding weights. Symbols nt 

and c are used to change the limits of the integral, where, 

</>2 - </>1 
ntl = 2 

9 -9
1 2_._ 

nt2= 2 

</>1 + </>2 
cI = 2 

9
2 
+9

1 
c2 = 2 (3.12) 

The discretization of the surface is done in such a way that the singularities always occur 

between two adjacent elements and not on the comers of the elements. In the presence of 

a singularity, Gauss integration cannot be used in the nonnal way. When integrating over 

a singular element, the Convergence Method is used. This method isolates the singular 

point by subdividing the element into smaller areas. Nonnal Gauss integration is perfonned 

over these areas except for the singular sub-elements. The results of the individual 

integrations are then added together. The whole process is repeated until the cumulative 

result converges within a pre-defined percentage (1 % in most cases). Similar methods were 

used by Lachat (1975), and Jun et. al. (1985a). Lachat used equally divided regions, 

whereas Jun et. aI. tried unequally divided elements to approach the source point more 

rapidly by halving the size of the elements each time. The intention of these researchers 

was to distribute a larger number of integration points around the singularity and overcome 

the difficulty of dealing with singular integrals. 
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The method used here is closer to the one suggested by Jun with two exceptions: 

1 - The division ratio is set to be 10 rather than 2, so that the 

convergence is accelerated. 

ii - Only one half of the singular element is integrated and the result 

is then doubled. This could only be used where the two adjacent 

singular elements are of the same size and symmetry of geometry 

and loading is obtained. 

In cases where there are differences in the size of the neighbouring elements, the longer 

element is made the same size as the other element by partitioning it. Ordinary integration 

is performed over the excess area and the Convergence Method is used for the remainder 

(Figure 3.3). It is important to note that when the Convergence Method is used, the 

integration of the two adjacent elements must be done together. This is because the integrals 

present in the formulation are in the Cauchy Principal Value (CPV) sense. 

To see the effect of the Convergence Method, the subdivisions were set at equal lengths, 

i.e. the division factor was set to 50%. This was then changed to 33% and then to 10%. 

<PI=O 
91 r--

9' 

92 
I 

<P2 

__ L _____ _ 

93 

(a) 

<PI= 0 
91 'r---- 1 

<P2 <PI= 0 <P2 
91 r"' -------, 

92 .-~---
I __ L _____ _ 

---------
92 • ---.:~--

9' 1 __ - __ ----

I __ L ______ _ 

93 ' 
9

3
, ___ _ 

(b) (c) 

Figure 3.3: Possible cases of R.H.S. of singular elements: a) The top element 
is longer than the lower element; b ) The lower element is longer than the top 
element; c) The elements are equal . 
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With the division factor set to 2, 7 iterations were needed to bring the convergence of the 

integral within 1 %. When a division factor of 3 was used, this dropped to 4, and with 10, 

2-3 iterations were found to be necessary for such accuracy. 

The results obtained from the programmed formulation presented so far shown in Table 

3.1, are those obtained for a solid sphere under a uniform external pressure of 1MPa, with 

an equally spaced mesh and a division factor set to 10. Good agreement was found with 

the analytical result. 

Table 3.1: Accelerated convergence results for external 
displacements (analytical solution gives 0.2 x 10-5 m). 

1 9.0 0.200123E-05 

2 18.0 0.199666E-05 

3 36.0 0.200242E-05 

4 54.0 0.200279E-05 

5 72.0 0.200282E-05 

6 90.0 0.200282E-05 

7 108.0 0.200282E-05 

8 126.0 0.200279E-05 

9 144.0 0.200242E-05 

10 162.0 0.199666E-05 

11 I 171.0 0.200123E-05 
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3.2.3· Internal Displacements 

Once the boundary displacements have been detennined, the internal displacements are 

calculated from Equation (2.53) without the body forces. As in the surface displacement 

fonnulation, the transfonnations in Equations (3.2) and (3.7) and the interpolation fonnula 

given in Equation (3.4) is substituted into Equation (2.53). The resulting fonnulation is 

shown in the following equation for a horizontal displacement at point i: 

i [ j j+1 j j+1 ] 
U I = PI - vIA I + v I B I + V 3 C I + V 3 D I (3.13) 

The ftrst tenn,P l' represents the ftrst integral in Equation (2.53) which is given by Equation 

(3.8) and the second tenn represents the second integral in Equation (2.53) which is shown 

in the previous section ( see Equation (3.6) ). The values of PI' Al ,B 1 ' eland D 1 can 

easily be calculated, as shown in section 3.2.2. Since the displacements on the surface are 

now known, any internal displacement can be detennined from Equation (3.13).The 

internal displacements are obtained using the surface displacements detennined in section 

2.0 

1.8 

e 1.6 

II? 
0 1.4 -...... a 1.2 
~ 

5 1.0 

Jj .8 

~ .6 

E 
~ .4 

o BEMresult 

- Analytical result 

~ .2 

0.0 
0:0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Radial distance from the centre I m 

Figure 3.4: Internal resultant displacements obtained on the equator plane for 
a solid sphere. 
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3.2.2 and are presented in Figure 3.4. The results shown are detennined along the equator 

of the sphere (9= 90°; <p= 0°), at regular increments in the radial direction measured from 

the origin. 

In general, Equation (3.13) is well behaved. But, as the internal point approaches the 

surface, some inaccuracies in the results begin to appear. This is caused by the presence of 

the singularities in the displacement and traction kernels. The effect of this will be 

highlighted in section 3.4.3. 

3.2.4· Internal Stresses 

The stresses at the internal points are calculated from Equation (2.54). The expanded fonn 

of this equation, without the body forces tenn for (5U is written as follows: 

(5ij = Is (D'ijP, + D2ij P2 + D3ij P3 )dS - ~ (S'ij U, + S2ij u2 + S3ij u3 )dS (3.14) 

The D kij and S"'ij tenns are calculated from Equations (2.55) and (2.56). As before, 

Equations (3.2), (3.4) and (3.7) are used to reduce Equation (3.15) to: 

[ 
jA j+' jc j+'D ] (5 .. = P .. - v, .. + v, B .. + V3 .. + V3 .. 

IJ IJ IJ IJ IJ IJ 
(3.15) 

where P .. represents the fIrst integral tenn of Equation (3.14) and the other tenns are written 
lJ 

in tenns of the surface displacements as shown in the second integral of Equation (3.14). 

Again, there is a limitation on how close the internal point can approach the boundary. 

With stresses, this is more severe as the S kij tenn involves a 1/,,3 tenn rather than a 1/,,2 

tenn as it was in P;k for the internal displacements. The effect of this will be shown in 

section 3.4.4. 

Using the surlace displacements detennined in section 3.2.3, three direct and three shear 

stresses were calculated. The shear stresses, (512' (513 and (523 were found to be less than 
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lO-1O N/m2. This was expected as due to symmetrical loading, there was no shear on the 

sphere. The direct stresses 0'11' 0'22 and 0'33 were expected to be equal to the applied 

pressure ( 1 MN/m2), and are given in Table 3.2 below: 

Table 3.2: Direct stresses on the equator plane of a solid sphere using linear elements. 

0 0.997205 0.997205 0.996983 

0.1 0.997208 0.997206 0.996982 

0.2 0.997216 0.997211 0.996980 

0.3 0.997231 0.997218 0.996977 

0.4 0.997254 0.997231 0.997973 

0.5 0.997292 0.997250 0.996969 

0.6 0.997359 0.997280 0.996958 

0.7 0.997556 0.997341 0.996877 

0.8 0.998487 0.997547 0.996358 

0.9 I 1.002868 0.998741 0.994858 

0.9~ I 1.009510 I 1.001284 0.995306 

The results shown in Table 3.2 confinn the formulation used in this section. However, the 

method explained in this section cannot be used to determine the stresses on the boundary. 

One alternative to the solution of this problem is to use the derivatives of the displacements 

on the surface to obtain the strains, and then using the Hooke's Law to evaluate the stresses 

on the boundary. This approach will be used in Chapter 6 to determine the surface stresses 

for the nose cone. 
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3.3 - EVALUATION OF SINGULAR INTEGRALS 

3.3.1· Previous Formulation 

Evaluation of the singular integrals present in the BEM formulation by the Convergence 

Method is expensive in terms of the CPU time, due to its iterative nature. Therefore, a 

method is required for these singular integrals, of order O(1/r(J.,) with a= 1, 2, which could 

be evaluated efficiently and at a low CPU cost. 

Nearly all of the known methods for dealing with singular integrals involve element 

subdivisioning. The aim of these methods is to increase the accuracy of the integration. To 

achieve this, the integration points are gathered close to the singular point by either using 

a process of element subdivisioning or of nonlinear mapping, or both. 

Jun et. al. (1985b) and Higashimachi et. al. (1986) used a double-exponential formula 

which is based on the trapezoidal rule for two-dimensional elastic problems. However, this 

method requires a high number of sampling points for sufficient accuracy, (see Cerroloza 

et. al. (1989a & 1989b), Beswick (1992a» and does not provide any significant advantage 

over the Convergence Method. Telles (1987) used a non-linear coordinate transformation 

to gather the sampling point nearby the source point. In this paper, the author also discusses 

the use of the numerical quadrature formula developed by Kutt (1975). Kutt quadrature is 

for the evaluation of fmite-part integrals. This formulation can be used for the evaluation 

of the singular kernels that exist in the Cauchy Principal Value (CPV) sense. Kernels with 

singularities of order O(log r) cannot be evaluated with this method. Another way of dealing 

with singular integrals is to use the direct computation of CPV integrals developed by 

Guiggiani et.al. (1987) but this is limited to O(1/r). In this method, the CPV integrals with 

first order singularity is reduced to two regular integrals plus two logarithmic terms. Later 

Cerroloza et. al. (1989) extended the works of Telles (1987) and Guiggiani (1987) by 

introducing a bi-cubic transformation that ensures total symmetry about the singular point 

when it is placed on the comer of an element. The importance of maintaining total 
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synunetry is lacking in Telles's work and this was confinned by Guiggiani (1988). This 

was also discovered in the early stages of this study when dealing with adjacent elements 

of different size (see Karamanoglu et. al. 1991). 

3.3.2· Finite-part Integral Formulation 

The aim of this section is to show the development of an integration method in the current 

work for accurate and efficient evaluation of the strongly singular kernels. The double 

integrals present in this 3-D analysis are evaluated by combining the Gauss (see Stroud 

et.al., 1966) and Kutt (1975) formulations. Both these formulae are given in terms of one 

dimension only, but using one formula for the inner integral and another for the outer 

integral, the double integrals can thus be evaluated. Consider two linear elements with a 

source point shared between them (see Figure 3.5). Notice that these elements are divided 

into two equal parts about <P = 0 and then doubled after the integration of the right hand 

side. These elements are divided into triangles in order to use local polar coordinates. The 

new method, named as Composite Mapping, is applied to each of the triangular areas 

?I <Pi-I - -e- • 
- i-I 

<Pi 

1 

3 

e. 
- - - - - - - - - - -/"'1J{~t-1 --------l 

a 2
"" 4 

2 

91+1:.4-___ )J - - - . 
Figure 3.5: Element division for the Composite Mapping formulation. 
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~ 

+11-1 -------, 

-~. 01 'I ~ 

~a~ -1 ,1--------' 

Figure 3.6: Composite Mapping transformation using 4 (Gauss) by 3 (Kutt) 
quadrature with a.== 60° and a= 10. 

(Figure 3.6). The aim is to use this formulation to cancel the singularity present in the 

integration and to pack more sampling points near the singular point. The formulation given 

by Kutt (1975) is: 

[ 
f(x) I-A ~ 't< A- I) 

s (x __ s{ == (r--s) .t..J Wj f [(r--s) ~. + s] + (s) lnl r -- s I 
i-I I ( A -- 1) ! 

(3.16) 

where ~i is the co-ordinate of the ith integration point, Wi is the associated weighting 

factor, A is used to control the order of the singularity, and N is the total number of 

points. The above relationship is subject to the following condition: f(x) is a real 

function of the real variable x. It is also required that f(x) E C in an interval containing 

[s,r] and f(x) E C [A.] in the neighbourhood of s. For the case where the integration 

interval is [0, b] and A= 1, then the above formula simplifies to: 

N . 

rb ful == L w.f (b~.) + f(O) Inl b I Jo x ' I 
;::1 

(3.17) 
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Take an example of a triangular area (Figure 3.5) for which the BEM integral is to be 

evaluated. The integral is: 

If fce,<p) ded<p = [ r f(p,'I') pdpdljt 
~ 0 0 

(3.18) 

Notice that b is dependant on p and it should be treated accordingly. The outer integral is 

to be evaluated using Gauss quadrature and the inner integral using Kutt quadrature. 

However, the integral given in Equation (3.18) is not in the right fonn for a Kutt type 

fonnulation. Therefore, Equation (3.18) is multiplied and divided by p so that it is turned 

into an acceptable fonn. 

= r r f(p, '1'2 p 2 dpdljt 
o 0 P 

(3.19) 

The p2 tenn in Equation (3.19) will cancel out with the 1/1'2 tenn inside the function f, 

since as p ~ 0 then p ~ 1', provided that the local polar coordinates are used. Hence the 

strong singularity present in the integrals when dealing with singular elements, will not 

cause any problems, and the integrals can now be evaluated without any further element 

division. 

As the BEM fonnulation is in a spherical coordinate system, then some transfonnations 

are necessary. Furthennore, the integral limits in Equation (3.19) need to be transfonned 

to (-1 , + 1) and (0 , 1) spaces for the quadrature formulae. The outer integral limit (0 , a) 

is to be mapped to (-1 , + 1) space: 

'I'=m~+c 

~=-1 

~=+1 
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. dad a This lea s to m = 2" an c = 2" '. 

a 
'V= 2" (;+1) (3.23) 

The inner integral limit (0 , b ) is mapped to (0 , 1) space: 

p=ml1+ c (3.24) 

11 =0 p=o ~ c=o (3.25) 

11 = 1 p=b ~ m =b (3.26) 

p=bl1 (3.27) 

The upper limit b has to be computed for each value of 'V (see Figure 3.7) by using the 

relationship give in Equation (3.28); 

a 
b = cos 'V 

<Pi 
9i- 1 

9. IV r , 

L r 

<Pi+l 

p. 

a -I 

a = <Pi+1 - <Pi 

1(9.-9 ) a = tan - I a i-I 

a 
'V= 2" (;+1) 

a 
p = cos'V 11 

9 = 9. - P sin'V 
I 

Figure 3.7: Parameters and transfonnations used in Composite Mapping. 
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The fonnulation developed so far is used for the evaluation of the L.H.S. and the R.H.S. 

of the BEM equations. Although Kutt type quadrature is not needed for the R.H.S. integrals, 

these integrals were evaluated along with the others to save computing time in calculating 

the many common variables. The Composite Mapping was implemented to the existing 

code with little change and the fonnulation was tested using the surface displacements 

fonnulation; the results are given in Table 3.3. 

The i(O) In (b) tenn in Equation (3.17), named as the log tenn, was disregarded during 

the implementation as it was discovered that the contribution coming from the upper 

element cancelled the contribution from the lower element. This was due to the equally 

spaced elements used in the mesh. This will be discussed in more detail in section 3.4.2. 

Table 3.3: External displacements using Composite Mapping and linear 
elements. (Analytical result is 0.2 x 1O-5m) 

1 9.00 0.200846 

2 18.00 0.199172 

3 36.00 0.199204 

4 54.00 0.198847 

5 72.00 0.198625 

6 90.00 0.198552 

7 I 108.00 0.198625 

8 I 126.00 0.198847 

9 144.00 0.199204 

10 162.00 0.199172 

11 171.00 0.200846 
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3.4 - QUADRATIC ELEMENTS 

In this section, a solid sphere is discretized by using quadratic elements. By making use of 

these elements, the geometry can be modelled more accurately and a higher order of 

variation of the surface variables can be used to improve the accuracy of the solution. 

The solution is only provided for the top half of the solid sphere because of the symmetry 

about the equator plane. However, as the axisymmetric formulation is not used in the 

present work, again, the whole sphere has to be discretized so that contributions to the 

system matrix coefficients are collected from the whole sphere. By placing source points 

only on the top half of the sphere, the number of unknowns is halved and the size of the 

system matrices is greatly reduced, leading to a more economical use of computer 

resources. Again, the singular integrals are evaluated using the Composite Mapping method 

and the rest are computed using the ordinary Gauss integration. 

3.4.1 - Surface Displacements - equal elements 

The basic BEM formulation for the surface displacements is the same as the one used in 

Equation (3.3). However, when the boundary is discretized using quadratic elements, the 

interpolation formula is based on the Lagrange's Interpolation method. For a quadratic 

variation of displacement v: 

v=N1v;+N2v;+1 +N3V;+2 (3.29) 

where N1, N2, and N3, called the shape functions, are given by: 

(a - a, I) (a - a'+2) N = 1+ 1 

1 (a; - a;+I) (a; - a;+2) 
(3.30) 

(a - a,)(a - a, 2) 
N = 1 1+ 

2 (aj+1 - aj) (aj+1 - ai+2) 
(3.31) 

- 40-



M Karamanoglu 1992 Chapter 3: BEM For A Solid Sphere 

V;+I 
V; 

V;+2 

. ~ . 
~ 

9; 9;+1 9;+2 

Figure 3.8: Parameters used in the quadratic element interpolation using 
Lagrange's interpolation formula and its shape functions. 

(9 - 9,)(9 - 9, I) 
N = ' ,+ 

3 (9;+2 - 9) (9;+2 - 9;+1) 
(3.32) 

Equation (3.29) is substituted into Equation (3.5) and then simplified into a form similar 

to Equation (3.6), giving: 

1; j A j+1 B j+2 C j D ;+1 E j+2 F '2 VI +"'1 1+"'1 1+"1 1+"'3 1+"'3 1+"'3 1 (3.33) 

As before, the integrals and other parameters are embedded in AI' B l' C l' D l' Eland Fl' 

The R.H.S. of the BEM equation (see Equation 3.1) is not affected by the change in the 

interpolation formula. 

The outer nodes of the rust element are both now placed on the ends of the element. i.e. 

the rust node is placed on the north pole and is shared by all the pole elements around the 

x3-axis; the same applies to the last element on the south pole of the sphere. It is worth 

noting here that the horizontal displacement component at the north pole node and the 

- 41 -



M. Karamanoglu 1992 Chapter 3: BEM For A Solid Sphere 

vertical displacement component of the node placed on the equator plane are both zero. 

This is due to the symmetry. 

System matrices are formed as given in Equation (3.9). The unknowns are then solved 

using the NAG routine F04ATF. The results were not as accurate as the previous 

formulation at the north pole. When coefficients of the A matrix were examined the a21 

coefficient of the A matrix was found larger than the rest of the coefficients. Normally all 

the coefficients were found to be much less than 0.5, except the diagonal terms which have 

0.5 added to them from the free term of the BEM equations. A value greater than 0.7 for 

a non-diagonal coefficient would therefore seem too high, and the first element was 

analysed for convergence. The integrations involving the Kutt quadrature give a single 

result at the end without any other information about the accuracy of this answer. So it was 

decided to check the integration result over the first element with the Convergence Method. 

The result of this analysis showed that the a21 coefficient, linking the horizontal and vertical 

displacements at the north pole node, was not converging to a finite value. However, as 

the horizontal displacement of the north pole node was zero, it was decided to exclude this 

from the system matrices. This meant that the first row and the first column of the A matrix 

were eliminated. This helped to overcome the problem of determining the a21 coefficient. 

a a 
n-I.n-I n-I.n 

a a 
n.n-I n.n 

::~~lli)~~:; j !~ij!: 
- = :- ~ (3.34) 

X 
n-I 

\. 
- n 
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Although it was not needed, the same procedure was applied to the vertical displacement 

of the node on the equator plane which eliminated the n-l rows and the n-l columns as 

shown below. 

!:i~:::::::!:! 
x 

2 

11:111.:: 
XII 

= 

::::Ii:i:i:i:i:i:i 
b2 

(3.35) 

1:::llt:11 
bl! 

The solution of the Equation (3.35) gave successful results and these are shown in Table 

3.4 below. They were obtained using eight element divisions in the e direction of the top 

half of the sphere and 15 segments in the <p direction. 

Table 3.4: Surface displacements determined using 
quadratic elements (Theoretical value is 0.2 x 1O-5m). 

1 0.00 0.200488 

2 5.62 0.200127 

3 11.25 0.199773 

4 16.87 0.199732 

5 22.50 0.199384 

6 28.12 0.199506 

7 33.75 0.199108 

8 39.37 0.199350 

9 45.00 0.198907 

10 50.62 0.199239 

11 56.25 0.198763 

12 61.87 0.199162 

13 67.50 0.198665 

14 73.12 0.199113 

15 78.75 0.198608 

16 84.37 0.199089 

17 90.00 0.198589 
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3.4.2 - Surface Displacements - unequal elements 

Upto this stage, all the elements used in the mesh for the solid sphere have been of equal 

size. When elements of different sizes are to be used in the surface discretization, some 

fluctuations in the surface displacements are detected (see Karamanoglu et. al. 1991), 

whereas in the case of equally spaced elements, such inaccuracies do not occur. 

This effect is examined in this section by considering a solid sphere, discretized using 

quadratic elements in two ways. The aim is to determine the surface displacements. In the 

fIrst case, the mesh is made up of only equally spaced elements and in the second case, 

elements of various sizes are used to form the mesh. The results of the fIrst case are listed 

in Table 3.4 on page 43 and are also illustrated in Figure 3.9. Figure 3.10 shows the 

integration scheme used for the singular element and the elements around it. 
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Figure 3.9: Surface displacements of equally spaced quadratic elements. 
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Figure 3.10: Integration scheme for equally spaced elements. No distortion in 
the results are observed. 

Figure 3.11 shows the integration scheme used with different sizes of elements without 

having any special treatment. The inaccuracies in the displacements, caused by changing 

the element spacing, are given in Figure 3.12. This problem is solved by subdividing the 

. Gauss 

Figure 3.11: Integration scheme used for unequally spaced elements. 
Significant distortion in the results. 
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Figure 3.12: Surface displacements of unevenly distributed quadratic elements 
without element sUbdivisioning. 

Figure 3.13: Unequally spaced elements. Distortion in the results are removed 
by the use of element subdivisioning. 
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I , 
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o :Horizont\tl Displaceme~ts 
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I , , 

60 70 80 90 

Figure 3.14: Surface displacements of unequally spaced quadratic elements 
with element subdivisioning. Fluctuations in the results are removed. 

singular elements when the integration is perfonned. Before the integration of a singular 

element is carried out, the two adjacent elements are compared in size and if necessary 

they are made to be of equal size by dividing the longer element into two parts. The excess 

area is integrated using the ordinary Gauss quadrature and the integration over the singular 

area is evaluated by using the Composite Mapping method (see Figure 3.13). The results 

are improved considerably and are shown in Figure 3.14. 
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3.4.3· Internal Displacements 

The internal displacements using quadratic elements are calculated in a similar way to the 

linear element fonnulation. The only difference being the order of the intetpolation fonnula 

used for the surface displacements. Again, Equation (2.53) is considered without any body 

forces and the transfonnations given in Equations (3.3) and (3.7) with the interpolation 

fonnula from Equation (3.29) are substituted into this equation. The fmal fonnula obtained 

for a horizontal displacement at point i is: 

i P [jA j+IB j+2C jD j+IE j+2F ] ul = I - VI 1+ vl I + VI 1+ V3 1+ V3 1+ V3 I (3.36) 

When the above fonnulation is implemented, the results of internal displacements of the 

solid sphere is given in Table 3.5 (see Figure 3.15 for the plot of these results). 

Table 3.5: Internal displacements using quadratic elements along e = 45°. 
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As the internal point approaches the surface, the results begin to deteriorate until fmally 

the computer code fails if continued. The reason for this is that as the internal point, being 

the source point, approaches the surface, the distance between the source point and the 

field point (Le. the integration point over the surface element) becomes minimal: this 

distance is the r tenn referred to in the BEM fonnulation. Figure 3.15 shows the effects 

of this limitation. The main contributors of the inaccuracies in these results are the strongly 

singular traction kernels, P;k ' given by Equation (2.23). Higher orders of quadrature will 

improve these results but with corresponding increase of CPU time. 

In practical situations, the results for the internal points can be detennined at a reasonably 

close distance to the surface and, since the surface results are already known, the limitation 

presented here should only be a major concern in the presence of large variations of the 

displacements. The determination of results very close to the surface are more important 

for the stresses than for the displacements; this will be discussed in section 3.4.4 . 
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Figure 3.15: Internal displacements of a solid sphere along the path 9= 45°. 
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3.4.4 - Internal Stresses 

The evaluation of the internal stresses using quadratic elements for the discretization is 

very similar to the analysis shown in section 3.2.4. The only difference is the use of a 

quadratic variation for the surface displacements. If Equation (3.14) is considered for the 

analysis, substitution of the transformations given in Equations (3.2), (3.7) and the 

interpolation formula given in Equation (3.29), results in the following: 

P [
jA }+IB j+2C jD j+1 j+2 ] 

0' .. = .. - VI ,,+VI ,,+VI ,,+V3 ,,+V3 E,,+v3 F .. 
IJ IJ IJ IJ IJ IJ IJ IJ 

(3.29) 

Table 3.6: Internal stresses along 9= 0° for a solid sphere using quadratic elements. 

1 0.00 I 0.9957250 I 0.9957250 I 0.9977682 

2 0.10 0.9957318 0.9957318 0.9978293 

3 0.20 0.9957674 0.9957674 0.9979945 

4 0.30 0.9958719 0.9958719 0.9982162 

5 0.40 0.9960909 0.9960909 0.9984458 

6 0.50 0.9964418 0.9964418 0.9986991 

7 0.60 0.9968814 0.9968814 0.9991720 

8 0.70 0.9973623 0.9973623 1.0000363 

9 0.80 0.9982047 0.9982047 1.0031072 

10 0.90 1.0015550 1.0055501 1.0086613 

11 I 0.95 1.0073561 1.0073561 1.0133601 

12 I 0.96 1.0095420 1.0095422 1.0145341 

13 I 0.97 1.012795 1.012795 1.0147891 

14 I 0.98 1.002526 1.002526 1.0541050 

15 I 0.99 1.420579 1.420579 -0.1613575 

16 I 0.999 0.3409153 0.3409153 -186.10520 
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The values obtained from Equation (3.37) are given in Table 3.6. Notice that the values 

obtained for distances over 0.98m gave unacceptable results. With the internal 

displacements, it was found to be possible to get accurate results with less than 1 % error 

at 0.997m, whereas for the internal stresses this value is much less. This shows the 

significance of the order of the singularity present in the B EM formulation. 

At this stage, minimising the CPU time was not the main concern and the results given in 

Table 3.6 were obtained using equally spaced elements and Gauss quadrature of order 8. 

Initially a fIXed order of integration was used to compare the values obtained along e= 00, 

450
, and 900

• SUIprisingly, even though double precision arithmetic is used throughout the 

computer code, the three tests produced results with different accuracies. The most accurate 

results were obtained along e = 00
• This could be due to the cumulative numerical errors 

that may be produced in the evaluation of the large number of trigonometric functions. 

The use of BEM in this way for stresses very close to the surface does not seem practical 

as large quadrature orders are required and the results may not be of acceptable accuracy. 

The surface stresses may not be calculated using the formulation given in this section due 

to the singular nature of the BEM equations. However, it is still possible to calculate the 

surface stresses using the surface displacements: this will be shown in chapter 6. 
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Chapter 

4 

BEM For A Hemisphere 

"Reading after a cel1ain age divel1s the mind too muchfrom its creative 
pursuits. An)' man who reads too much and uses his own brain too little 
falls imo lazy habits of thinking." 

Albel1 Einstein 

1931 

4.1 - INTRODUCTION 

I n this chapter, the BEM analysis is implemented on a hemisphere to investigate the 

problems associated with solids with multiple surfaces and sharp comers and/or edges. 

A hemisphere is well suited for this work for the following reasons: 

• It follows all the work presented in the previous chapters. 

• Geometry is one step closer to the selected cone shape for the 
fmal analysis. 

• The geometry has a sharp edge so that the problems associated 
with this can be identified, which also will affect the analysis 

ofthe cone. 

• The analytical results are already known from Chapter 3. 
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Figure 4.1: Boundary conditions for the hemisphere used for the analysis. 

The hemisphere selected has a radius of 1 metre and is subjected to an external uniform 

outwards pressure of 1 :MPa. The base is restrained in the x3 direction and is free to move 

in the xl and x2 directions as shown in Figure 4.1. 

4.2 - BEM IMPLEMENTATION 

The BEM formulation to be developed in this section takes into account the two surfaces, 

S1 and S2' The basic formulation is the same as before, but integral equations are written 

for both surfaces. The BEM equation for the horizontal component of the external 

displacements on the hemisphere is: 

1 U~ + ~ (utp;t + U:f;2 + U~;3) R: sin9d9d<p + ~ (Ul;t + UzP;2 + U:f;3) pdpd<p 
I 1 

f 2. f /\ /\ /\ = /WIlP t + W1:f2 + Wl~3)Rjsm9d9d<p + /WIIP t + Wtzl'2 + W 13P3) pdpd<p (4.1) 
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However, the base of the hemisphere is restrained in x3 direction and therefore the u3 

displacements on S2 are zero. There are no tractions acting in the horizontal directions on 

the base. The only traction on S2 is ]33 and is distinguished from the P3 on S 1 by the 1\ 

symbol. By taking these conditions into account, the fact that the tractions on S2 are 

unknown, it is best to rewrite Equation (4.1) as follows: 

1 ; J • • • 2. "2 U1 + S (U1PII + U~12 + U:fI3) Rj sm9d9d<p 
I 

f ·· f 1\ + (U1P 11 + URI2) pdpd<p - W 13P3 pdpd<p 
s s 

1 1 

= ~ (WIIP1 + l1-'11'2 + w1:f3)R;sin9d9d<p (4.2) 

On surface S2' the integration is done with respect to the radius p and the angle <p since the 

angle 9 is constant at ~. The transformation given in Equation (3.2) is substituted into 

Equation (4.2). The boundary is discretized using quadratic elements and therefore, the 

intetpolation formula given in Equation (3.29) is used. The shape functions N l' N2 and N3 

are the same as given in Equations (3.30), (3.31) and (3.32) for the S1 integrals, but for the 

S2 integrals they are: 

( p - P i+1) ( p - p i+2) 
N=---=..!..!..--......!..!.::""'" 

I (p; - Pi+l)( P; - Pi+2) 
(4.3) 

( p - p) ( p - p ;+2) 

N= ) 
2 (Pi+1 - p) ( Pi+1 - Pi+2 

(4.4) 

( p - p;> ( p - P i+1) 

N= ) 
3 (Pi+2 - p) ( Pi+2 - P i+1 

(4.5) 
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The R.H.S. of Equation (4.2) is identical to the one used for the solid sphere and again the 

surface tractions on S 1 are written in tenns of the surface pressure by using the relationships 

given in Equation (3.7). The fmal equation is written in a matrix fonn as before and since 

all the unknowns are on the L.H.S. and all the knowns are on the R.H.S. of Equation (4.2), 

the form A x = b is obtained. Only this time the unknown vector x holds the surface 

displacements u1 and u3 for the Sl surface and u1 displacements and P3 tractions for the 

S2 surface. The A matrix is partitioned to hold the coefficients from the integration of both 

surfaces. Since the vertical displacements on the surface S2 are zero, the 1 term of the 

BEM equation is excluded from the diagonal coefficients of the A matrix for the rows that 

are used for the u3 component of the displacement. 

4.3 - PROBLEMS WITH CORNERS 

One of the weaknesses in the BEM is the difficulty in dealing with geometries with sharp 

comers and edges. This is caused by the discontinuities in the geometry and the boundary 

conditions. For an elasticity problem, the displacements are uniquely defined but the 

surface tractions are multivalued at a comer node. This means that there are more unknowns 

than the number of equations available and the solution is not possible. This requires other 

approaches for the solutions involving comers and/or edges, and is nonnally referred to as 

the corner problems in the BEM. 

4.3.1· Previous Work 

One obvious way to solve the comer problems is to round off the edges and comers 

(Banerjee et. al., 1981). This approach inevitably produces reasonable results away from 

the edges and the comers but introduces local errors. This method cannot be considered a 

satisfactory solution to the problem since in some cases the results at the edges and the 

comers can be a vital part of the solution. 
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Ricardella (1973), introduced the multiple independent node concept. For a two­

dimensional problem, an extra node is introduced to avoid the ambiguities in the definition 

of the surface nonnal and the boundary conditions. In three-dimensional problems, two 

additional nodes are introduced. This also provided the extra equations needed for the 

solution of the system matrix. The problem with this method is that, unless a "sufficient" 

gap is left between the comer nodes, the system matrix will be singular due to the very 

similar rows of coefficients obtained for the comer nodes. 

Another way to circumvent this problem when a displacement is specified at a comer is to 

assume that the corresponding multivalued tractions are equal. This approach was adopted 

by Lachat (1975) who found that the accuracy of results at points some distance away from 

the comer are not significantly affected. 

The multiple node concept was further studied by Chaudonneret (1978) who let the 

multiple nodes at the comer share the same location. To avoid the singular solution of the 

system matrix, two auxiliary equations are derived for each of the comer nodes using the 

symmetry of the stress tensor and the invariance of the trace of the strain tensor. For a 

two-dimensional case, there would be two equations and four unknowns. Of the two 

additional equations, one of them can be obtained using the symmetry of the stress tensor 

and the other, using the invariance of the trace of the strain tensor. Using the auxiliary 

equations derived, it would be possible to eliminate one set of the tractions and convert the 

problem into a well-posed one. Similar analysis is applied to three-dimensional problems 

by using a triple point at the comer to represent the traction discontinuities. 

4.3.2 - Use of the Double Node Concept 

The problem associated with the comers for the hemisphere is tackled with a concept 

similar to the one introduced by Ricardella. The boundary is discretized with confonning 

quadratic elements. Due to the symmetry, the surface displacements in the x2 direction are 

not calculated. Like the solid sphere in Chapter 3, the source points are distributed along 
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a path where angle <p = 0°. This path is made of two surfaces, S 1 and S2' Both these surfaces 

are divided equally into 5 elements with quadratic variation (Figure 4.2). The whole 

boundary is also discretized in <p direction by 20 equally spaced segments around the x3 

axis. The two elements forming the sharp corner have their outer node on the comer. The 

element belonging to the S 1 surface has uland u 3 displacements as unknowns on its comer 

node, whereas the comer node of the element belonging to S2 has the unknowns uland 

P3.lfthe system matrix A is formed using this discretization as it is, two similar rows will 

be obtained for the U I displacements at the comer nodes, and this will result in a singUlar 

matrix. To avoid this, the row associated with the u3 displacement on node 11, and the row 

associated with the u 1 displacement on node 12 are removed from the A matrix. In practice, 

this does not produce any problems as the u3 displacement at the comer node 11 is zero 

and the III displacement must be the same at nodes 11 and 12. 

X3 t 
f3 

1 

I 

r3 

L!! 
U3 

~ 
3 

4 

LI ~U3 
III 

G
U3 

III 
5 '" U3 

6 '" ~ 

22 21 20 19 18 17 16 15 14 13 \ 1L....!1 

• fUi fUi pi rul G rul rul 0 1 fUi • 
12 

A A A A A A A A A A A 
P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 p3 

Figure 4.2: Descretization used for the hemisphere. 

- 57-

x I 



M.Karamanoglu 1992 Chapter 4: BEM For A Hemisphere 

4.4 - PROBLEMS WITH INTEGRATION 

The procedures for the numerical integration developed so far are not sufficient to evaluate 

all the integrals over the hemisphere. The additional problems that were come across are 

detailed in the next two sections. 

4.4.1· Integration of the Corner Elements 

In Chapter 3, it is shown that maintaining the size of two adjacent elements equal in the 

presence of a singularity is essential for the integration purposes. For this reason, care 

should be taken when dealing with the two elements on the comer. For the integrals 

involving these comer elements, a special routine is developed for the case when the source 

point is on one of the two comer nodes. The difficulty is the dissimilar shape of the two 

comer elements for the element length comparison. Ideally, the two elements should be 

integrated and their contributions added together. Because of the geometry limitation, a 

Kutt type of integration cannot be applied to the flat comer element which is on the base 

surface, S2' 

An alternative is to use the Convergence Method. As shown in Chapter 3, this method can 

be used to deal with unequally spaced elements by comparing the angle e if the elements 

concerned are on the SI surface. However, as one of the elements is on S2 surface, 

comparison of the element size cannot be made by using just this angle. So, for the element 

on S2' the base radius has to be used to determine the element length and to compare this 

with the arc length of the adjacent element which is on S 1 surface. The element with the 

longer side is divided so that two elements with identical lengths are obtained. The excess 

area is integrated using the ordinary Gauss quadrature and the other areas are integrated 

using the Convergence Method. 

However, as the u3 displacement on the comer node and on the S2 surface is 7..ero, some 

of the coefficients become zero. This helps to simplify the convergence procedure as there 
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v ,~ 

ri+1 ri 

Figure 4.3: Limitation on the Kutt integration for the S2 elements. 

would be fewer tenns to check for convergence. Because of these diminishing and 

somewhat redundant coefficients, it was possible to use the ordinary Gauss integration 

method to evaluate the integrals over the corner elements. To check the validity of this 

assumption, comparison with the Convergence Method is made for both of the comer 

elements. As expected, very similar results are obtained from both methods. The testing 

was then extended to see the effect of using these two different integration procedures for 

the comer elements on the surface displacements and tractions. The results are given in 

section 4.5. 

4.4.2· Integration Over the Base Elements 

The integrals over the singular elements on the S2 surface could not be evaluated using the 

Composite Mapping method. The restriction is that when the rectangular elements are 

divided across their diagonal into two triangular elements, one of the sides of the triangular 

area is always curvilinear (see Figure 4.3) and this is not suitable for the Kutt integration. 

Therefore, a convergence type integration procedure is developed for these elements. When 
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<p' 

<pi 

r;-2 

Figure 4.4: Convergence Method used for the elements on the S2 surface. 

the source point is shared by two adjacent elements which are both on the S2 surface, the 

size of the radial lengths of these elements are checked and if necessary, the longer element 

is made the same size as the neighbouring element by partitioning it and then the integration 

is performed over the small areas and added together. Further division is continued until 

the cumulative sum of all the coefficients are converged within a predetermined tolerance 

of:S; 1 %. The mesh used for the base surface is made of only equally spaced elements and 

therefore, element length comparison was not necessary. As a result, element 

subdivisioning, such as the one shown in Figure 4.4, is used. The same procedure is also 

used for the case when the source point is on the midside node. 

As in the SI surface, all the integrations that involved singUlarities on surface S2 have been 

evaluated using one half of the singular element and then the result doubled to give the 

total result over the whole element. 

One exception where the previously described convergence type integration method is not 

suitable is the central element of the S2 surface. In this case a modified convergence method 

is used where the division of the surface element is only done in the radial direction. The 
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<P;+1 

<Pi 

1'; rill 1''' 1" 1';-1 1';-2 

Figure 4.5: Integration scheme used for the central element of the S2 surface 
(Drawing not to scale). 

The integrated area rapidly converges towards the central origin of the base surface as the 

divisioning factor is set to 10 (see Figure 4.5). 

4.5 - RESULTS 

The following results are obtained using 5 element divisions on the S 1 path and 4 element 

divisions on the S2 path. The number of segments created around the x3 axis is 20. Although 

the expectancy of local errors has been reported by other researchers previously, it is 

intended to see which integration method for the comer elements would result in a more 

accurate solution. These results are also used to see the effect of using the double node 

concept on the comer elements and how much local error this will introduce. 

The comparisons are made for the resultant displacements on surfaces SI and S2 and also 

the tractions on the S2 surface. Two methods of integration are used for the comer elements: 

• Gauss integration without any element subdivision 

• Gauss integration with element subdivision (Convergence 
Method) 
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Figure 4.8: Comparison of surface tractions on S2 using a different integration 
scheme and double node concept for the comer elements. 

In Figures 4.6,4.7 and 4.8, comparison of surface unknowns are made. The results obtained 

using the two different integration methods for the comer elements (Gauss integration 

with element subdivisioning and Gauss integration without any element subdivisioning) 

are compared against the analytical result. Both integration methods gave very poor results 

at the comer element nodes. However, the errors around the comer are not so pronounced 

at the other elements. 

If the results other than the ones on the comer elements are considered, the two different 

integration methods do not have any significant variations in the other results. Therefore, 

the use of normal Gauss integration on the comer elements produces just as good results 

as the case where a convergence type of integration is employed. Having said that, it should 

be remembered that this is only due to the convenient type of boundary conditions present 

on the S2 surface. Otherwise, a convergence method should be used to avoid any possible 

singularity problems. 
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The results produced for the comer elements are not at all suitable for the purpose of the 

work presented in this thesis. Therefore, alternative ways of getting around the problem of 

local errors introduced at the comers are required. This problem will be further discussed 

in Chapter 5 using a hollow sphere where the path defming the source points will have two 

comers; inner and outer. 
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Chapter 

5 

BEM For A Hollow Sphere 

"When a distinguished elderly scientist says something is possible, he is 
probably right; when he says something is impossible he is probably 
wrong" 

5.1 INTRODUCTION 

Anhur C. Clarke 

1969 

ThiS chapter concentrates on fmding an alternative method to those suggested in 

Chapter 4, concerning the problems associated with the comers and edges and to 

look at the limitations of having long and slender geometries in BEM analysis. 

Initially, a thick walled hollow sphere is considered to look at the comer problems. The 

selection of a thick wall is to avoid any problems that may be caused by having a thin and 

long structure. 

Having completed the appropriate treatment of comers and edges, attention is paid to long 

and slender structures. Previous research suggests that serious problems arise when dealing 

with structures of such geometry (Bakr 1983, Brebbia & Dominguez 1989, Brebbia & 



M. Karamanoglu 1992 Chapter 5: BEM For A Hollow Sphere 

x 3 ! 
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p= 1MPa 

S2 

I I + / ~\ Xl 
Sharp comer Sharp comer 

-----

Figure 5.1: Boundary conditions for the hollow hemisphere used for the 
analysis. 

Walker 1980). Problems of this kind are not unique to BEM and they also appear in FEM 

applications where the structure under consideration involves elements with a large aspect 

ratio (Cook et. al. 1989). The selected thick hollow sphere has an internal radius of 0.5m 

and an outer radius of 1.0m. The applied boundary conditions are shown in Figure 5.1. 

5.2 BEM IMPLEMENTATION OF A HOLLOW SPHERE 

The BEM formulation for the hollow sphere is similar to the one used for the hemisphere 

in Chapter 4. In this case, there is one more surface to consider in order to take into account 

the inner surface, S3' Note that the axis of symmetry is not discretized. As in Chapter 4, 

the BEM equation for the horizontal component of the surface displacements can be written 

by considering the formulation derived in Chapter 2. The formulation is very similar to the 

one used in Equation (4.2), but extra terms are required to cover the inner surface. These 

are the integrals concerning the surface displacement fields and the surface tractions. On 

the inner surface the surface tractions are zero as there is no applied pressure, so this term 
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is absent from the fonnulation. Once these tenns are added on, the BEM equation for the 

hollow sphere is ready and is given in Equation (5.1). 

1 i J * * * 2. "2 U1 + S (U1P lI + U;?12 + U:PI3) Rj sm8d8d<p 
I 

J * * J" + (U1P 11 + U;?12) pdpd<p - }tJ1:P3 pdpd<p 
s s 

1 1 

+ ~ (U1P;1 + U;?;2 + U:P;3) R; sin8d8d<p 
3 

= ~ (WllP I + Wl~2 + W1:P3)R;sin8d8d<p (5.1 ) 

The implementation ofthe Equation (5.1) is almost identical to the case of hemisphere with 

the exception of considering two comers. Again all the unknown tenns are on the L.H.S. 

and all the known tenns are on the R.H.S. The same transfonnations and interpolation 

functions are used as given in Equations (3.2), (3.29 - 3.32) and (4.3 - 4.5) and are 

substituted into Equation (5.1). This leads to a system of equations that are easily written 

in the fonn of Ax = b . As before, the vector x holds mixed surface unknowns. 

5.3 RESULTS OF A THICK WALLED SPHERE 

5.3.1· Analytical Formulation 

Theoretical analysis of a thick walled sphere can be found in a book by Prescot (1961). 

The general fonnulae for a thick sphere with an inner and outer radii a and b, and the 

pressures on the inner and outer surfaces P and q is given as: 

cr = 3 3 
r b-a 

1 
{ 

3 3 } 3 3 a b 
-b q+a P +7 (q-p) (5.2) 

{ 

3 3 } 1 3 3 a b 
cr e = 3 3 -b q + a P + -3 (q - p) 

b -a 21' 
(5.3) 
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u = !..... {(1- V)O' - VO'} 1? 9 r 
(5.4) 

where 0' r and O'e represents the radial and hoop stresses and u represents the radial 

displacements. Distance r is measured from the centre of the sphere. The thick sphere used 

in this chapter is subjected to external pressure only and, therefore, Equations (5.2) and 

(5.3) simplify to: 

3 

O'=~ 
r b3 3 -a 

0' =~ 
9 b3 3 -a 

{? -I} 

{ ~-1} 2,.3 

5.3.2 - BEM Results For A Thick Sphere 

(5.5) 

(5.6) 

When the formulation explained in section 5.2 was implemented for the hollow sphere, 

initial testing was done using the double node concept on the inner and outer comers. 

Ordinary Gauss integration was used for the comer elements. On surfaces S 1 and S3 the 

Composite Mapping was used to evaluate the singular integrals and the Convergence 

Method method was used on surface S2' All the non-singular integrals were evaluated using 

ordinary Gauss quadrature. The surface divisions for S l' S2 and S3 were 7,4 and 5 

respectfully. Twenty segments were generated around the q> direction. The elements on 

the ftrst three and the last three segments had a ftxed number of quadrature order of 15x16 

and all the other elements had a quadrature order of 12x12. These results are given in 

Figures 5.1,5.2,5.3 and 5.4. 

The CPU time for this analysis took 18 minutes on an mM 4381 mainframe to form the 

system matrices. The reduction of this large amount of CPU time is discussed in section 

5.6. As for the hemisphere example in Chapter 4, there were severe local errors on the 

comers. However, for the displacements on surfaces SI and S3' more accurate surface 
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Figure 5.2: Comparison of resultant displacements on surface S,. 
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Figure 5.3: Comparison of resultant displacements on surface S3. 
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Figure 5.5: Comparison of tractions on surface S2. 
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displacement values can be obtained by taking an average of the results on each surface, 

especially when the comer node result is not included (see Figures 5.2 & 5.3). 

5.4 SEMI-CONTINUOUS ELEMENTS 

5.4.1· Position of the End Node 

Use of the double node approach in section 5.3 showed severe errors on the nodes belonging 

to the corner elements. In this section, the nodes on the corners will be moved away from 

the corners, towards the inside of the corner elements. The nodes at the other end of these 

elements are to remain in their previous positions, making these elements semi-continuous. 

The new position of the midside nodes will then be adjusted to suit the existing interpolation 

formulae. 

Comer element 

t 

Corner element 

Figure 5.6: Use of semi-continuous elements to prevent the corner problems. 
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Table 5.1: Comparison of the extrapolated results for the semi-continuous elements. 

S 1 Resultant Displacement - outer comer 2.23 1.05 I 0.58 

S2 Horizontal Displacement - inner comer 1.14 0.86 0.66 

S2 Horizontal Displacement - outer comer 1.16 0.58 0.89 

S2 Traction - inner comer 1.04 1.20 I 1.11 

S2 Traction - outer comer 1.92 0.73 0.91 

S3 Resultant Displacement - inner comer 0.25 0.23 0.22 

The optimum position of the shifted node was not known. To determine this, a series of 

tests were conducted using the same sphere and the mesh throughout the tests. The distance 

between the outer and the inner nodes, t, was taken as a percentage of the actual element 

size (see Figure 5.6). The values of t were taken between 30% and 90% with increments 

of 10 %. A further value of 99% was also tried to see the effect of numerical instability of 

the system matrix A. 

The results of surface displacements for S l' S2' S3 and surface tractions for surface S2 are 

given in Figures 5.7-5.10 respectively. The most accurate results appear to be obtained for 

t values of 50%, 60% and 70%. To get the most accurate position for the offset nodes, the 

results for the 50%, 60% and 70% offset positions are plotted together with the offset nodes 

extrapolated to the comers and compared in Figures 5.11-5.14 as before. The summary of 

the fmdings are given in Table 5.1 above. By looking at the results given in Table 5.1, the 

accuracy of the extrapolated results seem to get better as the fraction t approaches 70%. 

However, when t=80% the results get worse. There is also evidence that a unique value 

for the optimum position for the outer node, which will provide the most accurate solution 

for the displacements and the tractions for all the comer nodes, is not available. 
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5.4.2· Relationship Between Node Position and Gauss Points 

In a paper, Xu and Brebbia (1986) suggest that there is a relationship between the optimum 

location of the nodes in a discontinuous element and the Gauss integration points. However, 

their investigation is based purely on numerical experimentation. They claim that for 

minimal error in results, the position of the node inside a discontinuous element should 

coincide with a Gauss integration point. In their tests, linear discontinuous elements were 

used throughout in their mesh. However the elements used in this work are quadratic, 

continuous everywhere except for the four elements fonning the inner and the outer 

comers, which are semi-continuous. 

From the numerical tests carried out in the previous section, values of t less than 0.5 and 

bigger than 0.7 did not produce satisfactory results. Better results are achieved within the 

region of 0.5 and 0.7. This shows that not all the Gauss points available can be used to 

produce results with minimal error. In the work carried out at present, the order of Gauss 

quadrature was set to 16 for the integration of the singular elements. The projection of the 

Gauss points onto the comer element on S 1 surface is given in Figure 5.15. 

Gauss Angle Angle 
Abcisa 1; e « 

0.9894 89.93 12.79 

0.9446 89.64 12.50 

0.8656 89.14 11.99 

0.7554 88.43 11.28 

0.6179 87.54 10.40 

0.4580 86.52 9.37 

0.2816 85.38 8.24 

0.0950 84.18 7.04 

~e = 90 -77.1428 = 12.8572 

R'Ni0 

AA 
0.99 

0.97 

0.93 

0.88 

0.81 

0.73 

0.64 

0.54 

0.64 

0.81 

0.93 

e= 83.5714° (01 

0.54 

0.73 

0.88 

0.99 1.0.
97 e= 90.0000° (1) 

Figure 5.15: Mapping of Gauss points over the comer element on SI. 
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To test the validity of the claim by Xu et. al., several Gauss points were selected as the 

location for the end node on the semi-continuous elements (see the table in Figure 5.l5 ). 

Identical mesh and Gauss quadrature order were used for t= 0.54, 0.64, 0.73 and 0.81. The 

aim is to see if the errors in the displacements and the tractions would be minimized at one 

of these Gauss points. The results of the displacements and the tractions are plotted in 

Figures 5.18-21. A summary of these results and a comparison with other values of tare 

given in Table 5.2. These errors are given at the actual nodes instead of the mesh points. 

The intention was to avoid possible errors that may be caused by the extrapolation of the 

results to the mesh points. A graphical illustration of Table 5.2 is also given in Figure 5.16. 

A comparison of the results given in Table 5.2, when extrapolated to the mesh points are 

given in Table 5.3 and graphically illustrated in Figure 5.17. 

It is interesting to see that not all the node positions corresponding to the Gauss point 

locations give the best accuarcy. However, it is clear that the best results are obtained when 

t is between 0.60 and 0.73 where errors of under 0.51% are seen. There is also a clear 

indication that in this range, the error in the results are minimised at the Gauss points; 

namely at 0.64 and 0.73. This is also valid when the extrapolated results are considered 

and errors around 1 % are determined. Although the minimum errors were obtained at t = 
0.64 and t = 0.73, other t locations corresponding to the Gauss points gave much worse 

results compared to locations that did not corresspond to the Gauss points. This shows that 

not all the locations corresponding to the Gauss points give the best results. It is also evident 

that the optimum node position detennined in one Gauss order will not be the same location 

in another Gauss order since the location of the end node is a function of the Gauss abscissa. 

Until a mathematical relationship between the Gauss points and the optimum node location 

can be established, the optimum location for the nodes in a semi-continuous or 

discontinuous elements should be determined by experimental methods for each of the 

Gauss quadrature orders to be used in the actual analysis. For a Gauss order of 16, the best 

location could be taken as 0.64 but for a different Gauss order this value would not be 

appropriate. Optimum location for Gauss order of 12 is discussed in Chapter 6. 
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Table 5.2: Comparison of the results at the comer nodes to investigate the effect of end 
nodes coinciding with the Gauss points. 

SI Resultant disps. - outer corner 

S2 Horizontal Disps.- outer corner 

S2 Horizontal disps. - inner corner 

S3 Resultant Disps. - inner corner 

S2 Traction - outer comer 

S2 Traction - inner comer 

~ 
il • .. 
:s 

3 

2.5 

g 1.S 

s 
l; 

Ji 
N 

O.S 

o 

I~ 
E~ 

~~ 

t---

k-

0.63 0.52 0.44 

0.90 0.61 0.46 

0.44 0.33 0.28 

0.38 0.29 0.25 

0.17 0.07 0.01 

0.25 0.17 0.09 

~ - ....... 

0.40 0.41 0.35 0.84 0.60 

0.32 0.51 0.36 3.00 1.87 

0.23 0.24 0.21 0.42 I 0.30 

0.20 0.21 0.17 0.36 I 0.27 

0.07 0.14 0.15 2.93 1.78 

0.04 0.05 0.08 0.05 0.14 

J \ 
I \ 
I ~ , 

I 
if/ ~. 

::::-- v -f ~-... 
~~ 
~ .. 

O.S 0.54 0.6 0.64 0.7 0.73 0.8 0.81 

--- S 1 dlsp. - ouler -+- S2 dlsp. - oulo' -*"" S2 dlsp. - Innor 
-El- S3 dlsp. - Inner ~ S2 trccllcn - outer ..... S2 trccllon - Innar 

Figure 5.16: Plot of the errors in the nodal results shown in Table 5.2. 
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Table 5.3: Comparison of the extrapolated results at the comer nodes to investigate the 
effect of end nodes coinciding with the Gauss points. 

SI Resultant disps. - outer comer 2.23 1.45 1.05 0.70 0.58 0.43 1.08 0.71 

S2 Horizontal Disps.- outer comer 1.16 0.73 0.86 0.36 0.89 0.57 5.11 3.08 

S2 Horizontal disps. - inner comer 1.14 0.99 0.58 0.76 0.66 1.32 0.72 I 0.56 

S3 Resultant Disps. - inner comer 0.25 0.23 0.23 0.20 0.22 0.12 0.23 0.29 

S2 Traction - outer comer 1.92 1.30 0.73 0.31 0.91 0.44 10.79 6.23 

S2 Traction - inner comer 1.04 1.00 1.20 1.16 1.11 1.09 0.74 I 0.79 

" ~ • L 

" 

t2 

to 

1 & 
s 
15 
L 

~ 
N 

o 

\ 

/ \ 
/ \ 
/ / ~ 
/1 ~ 

~iI-. 

~ !::-- -i lJL -I II- j --., t:-- -- Ii" ~ 

0.5 0.5. 0.6 0.&4 0.7 0.1J 0.8 0.81 

-at- 5 t dlsp. - outer -+- 52 diap. - out.r ~ 52 dlsp. - Inner 
-€- 53 dlsp. - tnner "*" 52 troctlon - out .. ..- 52 traction - Inner 

Figure 5.17: Plot of the errors in the extrapolated results for the comer nodes 
shown in Table 5.3. 

- 84-



0
0

 
V

I 

2.
80

 

2.
79

 

2.
78

 

2.
77

 

2.
76

 

2.
75

 

2.
74

 

2.
73

 

2.
72

 o 

6
. 

V
 0 I 

10
 

t=
 0

.5
4 

t=
O

.6
4 

t =
 0.7

3 

t=
0

.8
1

 

A
na

ly
ti

ca
l R

es
ul

t 

20
 

30
 

40
 

50
 

60
 

70
 

80
 

90
 

A
ng

le
 e

 
F

ig
ur

e 
5.

18
: R

es
ul

ta
nt

 d
is

pl
ac

em
en

ts
 o

n
 s

ur
fa

ce
 S

I 
ob

ta
in

ed
 w

it
h 

t 
=

 0
.5

4
,0

.6
4

,0
.7

3
 a

nd
 0

.8
1 

w
hi

ch
 c

or
re

sp
on

ds
 to

 th
e 

G
au

ss
 p

oi
nt

s.
 

(H
ol

lo
w

 h
em

is
ph

er
e 

in
ne

r 
ra

di
us

 O
.5

m
, 

ou
te

r r
ad

iu
s 

l.O
rn

) 

~
 

~
 ~ ~ 0 ()

Q
 C
 -\0 \0
 

N
 



0
0

 
0

\ 

3.
00

 

2.
95

 [
 . L 

/::
:,. 

t=
 0

.5
4 

2.
90

 f-- , 
V

 
t=

 0
.6

4 

e 
2.

85
 t 

\0
 

I 0 .....
 

0 
t 
=

 0.7
3 

+
 

t=
 0

.8
1 

-
~ 

0
0

 
2.

80
 

=
 

Q
) e Q
) 

2.
75

 L 
u t':S

 
~ 

- ~ 
A

na
ly

ti
ca

i R
es

ul
t 
-
-
-
-
w

'
 

.....
 

0 
2.

70
 -

§ .:::
 ::s 0

0
 

2.
65

 -
Q

) 

~
 

2.
60

 -

2.
55

 -

2.
50

 .5
 

.6
 

.7
 

.8
 

.9
 

1.
0 

R
ad

iu
s 

I 
m

 

F
ig

ur
e 

5.
19

: 
H

or
iz

on
ta

l d
l'
l'
l ..

 K
m

l(
'n

t .
. 
o

n
 ..

 ur
fa

c~
 S
~ 

oh
ta

in
ed

 w
it

h 
t 
=

 0.
54

,0
.6

4,
0.

73
 a

nd
 0

.8
1 

w
hi

ch
 c

or
re

sp
on

ds
 to

 t
he

 G
au

ss
 p

oi
nt

s.
 

(H
ol

lo
w

 h
em

is
ph

er
e 
in
n~
f 

r:
ld

lU
 .. 

n 
~
m
.
 I

lu
tn

 f<
kl

lU
 .. 

1.
O

m
) 

~
 

~
 

~
 9 8 (J

Q
 -c: ..- \0
 

\0
 

tv
 



3.
02

 

3.
 0

1 
~;

::
=:

:6
::

-

3.
00

 

2.
99

 

2.
98

 

2.
97

 

2.
96

 

2.
95

 o 

t 
. E

xt
ra

po
la

te
d 

re
su

lt
 

10
 

20
 

30
 

40
 

50
 

60
 

A
ng

le
 e

 

A
na

ly
ti

ca
l R

es
ul

t 

6 
t=

 0
.5

4 

V
 

t=
O

.6
4 

0 
t=

0.
73

 

-I
-

t=
 0

.8
1 

I 

70
 

8
0

 
90

 

F
ig

u
re

 5
.2

0:
 R

es
ul

ta
nt

 d
is

pl
ac

em
en

ts
 o

n 
su

rf
ac

e 
S3

 o
bt

ai
ne

d 
w

it
h 

t 
=

 0
.5

4,
 0

.6
4,

 0
.7

3 
an

d 
0.

81
 w

hi
ch

 c
or

re
sp

on
ds

 to
 t

he
 G

au
ss

 p
oi

nt
s.

 
(H

ol
lo

w
 h

em
is

ph
er

e 
in

ne
r 

ra
di

us
 0

.5
m

, o
ut

er
 ra

di
us

 1
.O

m
) 



0
0

 
0

0
 

~
 

Q
.. ~
 -tfl c: 0 .....
 .... u ~
 

~
 

-1
.1

 

-1
.2

 

-1
.3

 

-1
.4

 

-1
.5

 

-1
.6

 

-1
.7

 .5
 

6 V
 0 T
 

t=
0

.5
4

 

t=
O

.6
4 

t=
 0

.7
3 

t=
 0

.8
1 

A
na

ly
ti

ca
l R

es
ul

t 

t -
E

xt
ra

po
la

te
d 

re
su

lt
 

.6
 

.7
 

R
ad

iu
s 

/ 
m

 
.8

 
.9

 
1.

0 

F
ig

ur
e 

5.
21

: 
T

ra
ct

io
ns

 o
n 

sw
fa

ce
 S

2 
ob

ta
in

ed
 w

it
h 

t 
=

 0
.5

4,
 0

.6
4,

 0
.7

3 
an

d 
0.

81
 w

hi
ch

 c
or

re
sp

on
ds

 t
o 

th
e 

G
au

ss
 p

oi
nt

s.
 

(H
ol

lo
w

 h
em

is
ph

er
e 

in
ne

r 
ra

di
us

 0
.5

m
, o

ut
er

 ra
di

us
 l

.O
rn

) 

~
 

~
 

e; 3 § 0 Q
Q

 -c >
-

\0
 

\0
 

N
 



M. Karamanoglu 1992 Chapter 5: BEM For A Hollow Sphere 

5.5 INCREASING THE EFFICIENCY 

In all of the previous calculations the mesh around the x3 -axis was generated using a 

constant segment length. i.e. the surface was divided into equally spaced segments in <p 

direction. Normally the number of segments were predefined and a typical value used was 

20. The quadrature order used for all the elements except the ones with singularities was 

constant and it was set to be 8 by 8 or 10 by 10. Such high quadrature orders for elements 

away from the singularities are not necessary to maintain an acceptable level of accuracy. 

Since the bulk of the CPU time is taken by the amount of integration, a scheme was devised 

to minimize the number of elements in <p direction and also allow the quadrature order of 

the elements to reduce as they get further away from the singular points. To avoid rapid 

changes to the element size in <p direction the following was adopted: 

• Make all of the elements on <p= 0 have the same length in <p 
direction as their length in e direction. This would make these 
elements square. 

• The first segment is reflected to the opposite side. 

• The rest of the surface between the first and the opposite 
segment is divided into segments which is incremented by 
1.0, 1.5,2.0,2.5,3.0 etc. multiplied by the ftrst segment. 

• The created mesh is mirror-imaged to the opposite side to 
form the complete mesh. 

Once the number of elements on surface S 1 is set, then the size of each element in e direction 

is calculated. By applying the algorithm described above the coordinates for the elements 

in <p direction are calculated. In this way the total number of elements are greately reduced. 

Another way that was implemented to reduce the CPU time was to allow variable 

quadrature orders during the execution of the program. Three levels of quadrature order 

were set before the execution. Again the mirror image mechanism was used to assign the 

quadrature orders. The order was reduced as the integration progressed in the 
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q> = 13.50· 

X2I 

LXI 

Figure 5.22: A typical allocation of segments in <p direction to reduce the CPU 
time by allowing incremental segment size based on the element length in e 
direction and also variable quadrature order for integration. 

counterclockwise direction. The fIrst segment is the one with the singularity and the 

integration order was set to the highest. This was 16 by 15. The elements, belonging to the 

segments one before and one after the first segment was also set to this order. The 

quadrature order for the next two segments was set to 8 by 8 and also for the two segments 

on the other side. The elements in the rest of the segments were integrated using a 4 by 4 

quadrature order. A diagram showing the implementation of the two methods described 

above is given in Figure 5.22 above. 
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5.6 THIN WALLED HOLLOW SPHERE 

The hollow sphere geometry used in the previous sections had a wall thickness of 0.5 m. 

Such wall thickness was selected to avoid the problems that may be caused by having long 

and slender geometry. In this section, the limitation of BEM for dealing with long and 

slender geometries is investigated. 

The cone to be used in Chapter 6 has a wall thickness of 5 mm and a height of 100 mm. 

This gives an aspect ratio of 20: 1. In packages for FEM analysis such as PAFEC, there is 

a limit to the ratio oflongest to the shortest side of an element and this is limited to 5:1. In 

BEM, there is a limitation for having elements too close to each other. In a short course in 

BEM applications, Mercy & Trevelyan (1986) gave some guidelines on the ratio of element 

length to the distance between them. These were based on their experience in FEM 

applications and they are: 

> 5: 1 Avoid. 

3:1-5:1 Check results. 

< 3: 1 Normally O.K. 

<2: 1 O.K. 

In the hollow sphere example, when the wall thickness is reduced to 5 mm, the limitation 

about the distance between the elements on the inner and outer surfaces becomes a major 

concern. The number of elements have to be increased to reduce the ratio. For convenience, 

this ratio will be referred to as SOT in this thesis ( S over T ; S being the element length 

and T being the wall thickness). 
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5.6.1 - Element Size Limitation 

To see the significance of the SOT ratio, two tests were conducted. The fIrst was to maintain 

the hollow sphere dimensions constant and to change the SOT ratio by varying the number 

of elements on the inner and outer surfaces. The second was to keep the SOT ratio constant 

and reduce the wall thickness by increasing the inner radius. The aim of this test was to 

see the effect of having elements too close together. 

Table 5.4 shows the summary of the results of the fIrst test. The SOT ratio varied between 

1.0 and 3.5. As the element size increased on surfaces SI and S3' the error in the results 

also increased. The most sensitive results were the horizontal displacements on the surface 

S2' Although the averaged displacement results on the surfaces SI and S3 were not as bad 

as the S2 displacements, the error in the nodal displacements was much bigger. For 

Table 5.4: Summary of results of a hollow hemisphere with various SOT ratios. The 
dimensions were kept constant. (Inner radius = 0.045m; outer radius = 0.050m) 

1.0 16 2 14 21 0.07 0.39 0.01 0.03 132 x 132 I 987 

1.5 10 2 9 17 0.06 4.51 0.13 0.44 88 x 88 639 

2.0 8 2 7 15 0.39 16.62 0.49 0.79 72 x 72 410 

2.5 6 2 6 13 1.39 41.32 1.47 0.26 60x 60 I 275 

3.0 5 2 5 13 2.53 58.14 2.75 1.14 27 x 27 I 205 

3.5 4 2 4 11 .3.98 57.54 4.15 1.22 23 x 23 I 141 

t - Results are averaged over the surface concerned. 
t - Results are taken at the midside node along the surface S2. 
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example, for the SOT=3.5, the SI displacement at 9= O' resulted in +10.2% of error and 

at the other end -27.9% of error. However, when all the results were averaged, the errors 

were minimized and gave only an average error of 3.98%. This implies that averaging of 

the results cannot be used as a good measure of the reliability of the error estimates. 

Therefore, inspection of all the results are necessary and these can be seen in Figures 

5.23-5.26. According to these figures, the best results are obtained at SOT=1.0 and the 

worst results at SOT=3.5. From Table 5.4, the surface tractions on S2 show small errors 

for all the SOT ratios. This can be explained by inspecting Figure 5.26. The errors are 

almost symmetric about the midside node and of opposite sign. As the results are given at 

this rnidside node, such small errors are expected. 

All the graphs shown in Figures 5.23-5.26, with the exception of Figure 5.24, show curves 

meeting at a certain point. On SI displacements, this is about 68', for S3 displacements this 

is at 22° and for the tractions on surface S2 the cross-over point is at half-way along the 

thickness. This pattern is not present for the S2 displacements. In this case, the whole curve 

is displaced away from the ideal curve and none of the curves cut the analytical curve. 

In a similar investigation which involved a 2-D axisymmetric formulation, Bakr (1983) 

showed that for a hollow sphere, SOT ratio of 5.0 can be tolerated if 10 Gauss points are 

used. He also shows that in the absence of sharp edges or comers, averaged errors of less 

than 1 % is possible. In the presence of a sharp comer, Bakr advises not to exceed the ratio 

of 2.0. In the hollow hemisphere example, shown in this chapter, where there are two sharp 

comers, it is shown that even with an SOT ratio of 2.0, nodal errors of upto 13% can be 

expected for the inner and outer surface displacements, whereas the average error for these 

are less than 0.5%. 

Based on the fmdings shown in this section, the SOT ratio of 1.0 is recommended for thin 

sections with sharp comers and where the accuracy of the results across the wall thickness 

is important. Otherwise SOT ratio of 1.5 can be used if the errors of about 5% across the 

wall thickness can be allowed. 
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Table 5.5: Summary ofresu1ts of a hollow hemisphere with various inner radii. The outer 
radius dimension was kept constant at 0.050 m. 

0.030 0.8 5 2 3 11 0.35 1.24 0.08 0.10 44x44 141 

0.035 0.8 7 2 5 13 0.20 0.82 0.04 0.12 60x60 275 

0.040 0.8 10 2 8 17 0.09 0.53 0.03 0.09 84x 84 590 

0.045 0.8 20 2 18 23 0.08 0.23 0.03 0.08 164 x 164 2516 

0.046 1.0 20 2 18 23 0.09 0.33 0.05 0.03 164 x 164 2513 

0.047 1.0 26 2 25 27 0.11 0.32 0.08 0.05 216 x 216 

0.048 1.0 39 2 38 35 Singular matrix 320 x 320 18036 

0.049 1.0 79 2 77 49 Data storage problems I 636 x636 

:j: - Results are averaged over the surface concerned. 
t - Results are taken at the midside node along the surface S2. 

The findings of the second test, where the SOT ratio was kept constant and the wall 

thickness was reduced by increasing the inner radius, are given in Table 5.5. All of the 

results have a very low percentage of error in their averaged values. However, when the 

nodal values are examined in Figures 5.27-5.30, it is clear that such small percentage of 

errors are not just confmed to the averaged values but to all of the nodal values too. 

Selection of the SOT ratio of 0.8 and 1.0 which were used for the second test proved that 

reliable and accurate results can be expected for small and large wall thicknesses. 

Tests of wall thicknesses from 20mm down to 3mm showed very similar error values and 

this again reflects the importance of the role that SOT ratio plays when dealing with thin 

and long structures where elements are close together. It is also interesting to see that there 

was no sign of interference from the two sharp comers on all the results shown in Figures 

5.27-5.30. 
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5.6.2 - Limitation of the System Matrix 

Selection of small SOT ratios, such as 1.0, forces a large number of elements to be generated 

and this is reflected in the CPU times (see Table 5.5). Storage oflarge mes can also cause 

some problems and may result in the termination of the analysis. 

Further reduction of the wall thickness was not possible for two reasons. The first cause 

was found when an attempt was made to run the analysis with a wall thickness of 2mm. 

Although the calculation of the system matrix was not a problem, the solution of this matrix 

was not possible because of many similar rows being generated and this caused the matrix 

to be singular. 

The second cause that prevented testing the hollow hemisphere became apparent when the 

wall thickness was set to 1mm. Before running into problems of having similar rows in 

the system matrix, there was demand for an unrealistic amount of storage area needed for 

the system matrix. At the time of running out of disk storage, the CPU time required to 

determine the system matrix was so large that it was decided to abandon the testing at this 

stage. There was also every chance of obtaining another singular system matrix. 
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Chapter 

6 

BEM For A Cone 

"Why does this mag nijicent applied science which saves work and makes 
life easier bring us so little happiness? The simple answer runs: Because 
we have not yet learned to make sensible use of it. " 

Albel1 Einstein 

1931 

6.1 - INTRODUCTION 

A nalysis of a nose cone has been the main concern in this thesis. The work presented 

in this chapter uses the fmdings described in the previous chapters, and these are 

applied to a nose cone. All of the work presented in the previous chapters are systematically 

implemented in this chapter. 

As the analysis of the nose cone is the prime object of this thesis, the BEM formulation 

developed so far is fully implemented and a comprehensive set of results are obtained. This 

includes surface displacements, internal displacements, and internal and surface stresses. 

All of these results are calculated directly with the exception of the surface stresses. These 

are calculated from the surface displacements using natural cubic splines. 
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X3 
Arc I 

/ 
Arc 4 P=l MPa 

/ 

o 
r 

p=o 

-~--t O-;T 0 
Sharp corner 

~ Xl 

Sharp corner 

Figure 6.1: Proflle and boundary conditions of a nose cone used for the 
analysis 

The profile of the nose cone used in this chapter is made of two circular arcs for the outer 

surface and two circular arcs for the inner surface. Arc land arc 2 form the outer surface 

S, whereas arc 3 and arc 4 form the inner surface S3' These surfaces are joined by surface 

S2 (see Figure 6.1). 

Again, a uniform external pressure of lMPa is exerted in the outwards direction. The 

vertical displacements of the structure on surface S2 are restrained in the x3 direction and 

only the horizontal movement is allowed in x, and x2 directions along the surface S2' 

Semi-continuous quadratic elements are used at the two sharp comers, and continuous 

quadratic elements for the rest of the structure. The nwnber of segments are again 

detennined by the method described in section 5.5 in order to maintain square elements 

around the path where the nodes are placed. 
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Chapter 6: BEM For A Cone 

- Xl 

oA 

Figure 6.2: Diagram showing the parameters used in the calculation of the 
jacobian for the large arc of the cone. 
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6.2 • BEM IMPLEMENTATION OF A CONE 

The implementation of the BEM to a nose cone is shown in this section. The fonnulation 

is very similar to the one used for the hollow sphere in Chapter 5. However, as there are 

two separate arcs for the inner and outer surfaces, slightly different equations are used, as 

each arc had a different origin. For arcs I and 4, the origin for the integration purpose is 

taken at Orand for arcs 2 and 4 at OR (see Figure 6.1). 

The BEM equation for the cone is similar to Equation (5.1) with the following exceptions. 

The integrals involving the surface SI and the surface S3 are broken down to two separate 

integrals to deal with the two separate arcs that fonn these surfaces. This of course required 

different jacobians for these integrals. The jacobians for the arcs 1 and 4 present no 

diff' I th' .., h . f' d th 2 . 2s d 2 . 2S lCU ty as err ongm IS on t e axIS 0 rotatIon, x
3

, an ese are r sm an r. sm 
o I 

respectively, where r. and r represent the radii for these arcs. 
I 0 

The origin of the large arcs 2 and 3 is a distance d away from the rotation axis. As the 

integration advances in the <p direction, the location of this origin varies with the angle <po 

To take this effect into account, a new variable R is defined which will enable the rotation 
!jl 

of the origin of the large arcs (see Figure 6.2). For a given point on arc 2, the following 

can be written: 

dA = (R sinS - d) R d<pdS 
o 0 

(6.1) 

Similarly for a point on arc 3 the jacobian becomes: 

dA = (R.sinS - d) R d<pdS 
I 0 

(6.2) 

The values of R , R., r , r. and d are calculated before hand. Details of these are given in 
o I 0 1 

Appendix B and are further discussed in section 6.3. 
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The integration on the surface S2 is unchanged. When the above equations are implemented 

for all the surfaces, the complete BEM equation for the horizontal component of the surface 

displacements and tractions can be written as follows: 

1 j f * * * 2. "2 UI + Ar}U,PIl + UI1'2 + U:P'3) to smSdSd<p 
I 

+ f (1I IP;, + U71*12 + IIY/'3) (R sinS - d) R dSd<p Arc 0 0 
1 

f * * f" + (U,PII + U:P12) pdpd<p - 11-'1:P3 pdpd<p 
S s 

1 1 

+ ~}U,P;, + UI1;2 + U:P;3) (RjsinS - d) RjdSd<p 
J 

f * • * 2. + Ar}U'P" + UI112 + U:P'3) tj smSdSd<p 
4 

= ~}WIIP, + wl 712 + w l :P3)r:sinSdSd<p 
I 

+ f (WIIP1 + W,112 + w,~n3) (R. sinS - d) R.dSd<p Arc 3"" 
(6.3) 

Numerical implementation of the Equation (6.3) is identical with the hollow hemisphere 

in Chapter 5. Quadratic elements are used for the mesh and the system equations are 

determined as before. As all the knowns are on the R.H.S. and all the unknowns are 

arranged to be on the L.H.S. of the Equation (6.3), no real problem is encountered in 

forming the A x = b. 

6.3 - COORDINATE GENERATION FOR THE CONE 

The geometry of the nose cone used in this chapter is formed by taking two arcs of two 

different size circles and merging these two arcs at a common tangent to form the outer 

surface. The inner surface is also formed in a similar way by choosing smaller radii for the 

other two arcs. These two surfaces are rotated about the vertical axis, X3 to form the cone. 
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,. 

t 

H 

h 

L ___ _ 
I 

d b 1 

Figure 6.3: Parameters used in the detennination of the cone geometry. 

The height of the cone, H, the base radius b and the tip radius r are specified to form the 
o 

outer surface. With these parameters known, Equation (6.4) is used to find a suitable large 

arc. Given the wall thickness, the inner surface can also be formed (see Figure 6.3) to 

generate the nose cone. 

2 2 
b

2 + h -1~ 
R = (b _ ,.2) 02

0 

d=R -b 
o 

-\ d aT = tan It 

(6.4) 

(6.5) 

(6.6) 
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Because of the different origins for different surfaces, new equations for the coordinates 

of the nodes are calculated as follows. For the outer large arc, arc 2: 

Xi =R sinS.-d 
I 0 I 

i 
X

2
=0 

X
3
; =R cosS. 

o I 

J. = (R sinS. - d) cos<p. 
I 0 J J 

i
2
' = (R sinS. - d) sin<p. 

o J J 

X
3
' = R cosS. 

o J 

For the small arc, arc 1, the coordinates are: 

i • S x = r sm . 
I 0 I 

; 
x2 =0 

X3
i 
= r cosS. + h o I 

XI' = r sinS .cos<p. 
o J J 

X
2
' = r sinS .sin<p. 

o J J 

X
3
' = r cosS. + h 

o J 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

Similar equations are written for the nodes on the arcs 2 and 3 by replacing r with r. and 
o I 

R with R .. The equations for calculating the coordinates on surface S2 is not changed. 
o I 
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6.4 - SURFACE DISPLACEMENTS 

This section concentrates on the surface displacements and the tractions on the surface S2' 

Results are given for cones of 10 and 5 mm wall thicknesses and a height of 80mm. Further 

tests with various cone heights were conducted and for all the cones tested, base radius 

was selected to be 60mm. 

6.4.1· BEM Model 

Equation (6.2) was implemented using quadratic elements to detennine the unknown 

surface displacements and the tractions. The same integration procedure described in 

Chapter 5 was used and also the SOT ratio of 1.0 was maintained when generating the 

mesh. 

Initially, a 10mrn wall thickness and a base radius of 60mm and a cone height of 80mm 

was tested. The mesh used for this structure involved 4 elements on arcs 1& 4 and 10 

elements on arcs 2 & 3. On the flat surface, surface S2' 2 elements were used. The number 

of segments generated around the <p direction was based on the element size on arc 2, which 

was around 20 segments (see Figure 6.4). A similar mesh was created for the Smm wall 

thickness and this is shown in Figure 6.S with 3 elements on arcs 1& 4 and 16 elements 

on arcs 2 & 3. Surface S2 was divided into 2 elements. 

There was no analytical solution or experimental result available for the geometry 

generated. The only way to check these results was to compare them against another 

method, even though some disagreements were expected. Therefore, the same problem 

was modelled using the same mesh in a fmite element package, namely PAFEC®. The 

results were then compared. Once satisfied with the comparison, further analysis was 

perfonned on the cone, such as different wall thicknesses and aspect ratios of height and 

base radius. These are discussed in section 6.6. 
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x x X X X X 

X X X 

x 

x 

x 

x 

x 

x 

x 

x 

x 

Figure 6.4: TheBEM mesh used for the cone with 10 mm wall thickness. Inner 
and outer surfaces were divided into 14 and the base surface was divided into 
2 quadratic elements. Initially, the internal points were distributed along the 
mid-wall. Semi-continuous comer elements are not shown in this mesh. 
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x 

Figure 6.5: The BEM mesh used for the cone with 5 mm wall thickness. Inner 
and outer surfaces were divided into 19 and the base surface was divided into 
2 quadratic elements. Initially, the internal points were distributed along the 
mid-wall. Semi-continuous comer elements are not shown in this mesh. 
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6.4.2· FEM Model 

The Pafec FEM model contained 28 8-noded isoparametric rectangular elements of type 

36210. The analysis was done in 2-D axisymmetric mode so that the vast amount of data 

generated by the Pafec program was minimized. A typical mesh is shown in Figure 6.6. 

fIJLe NOSE CONE TEST HEIGHT-O.OB BASE-R-O.06 RTtP-a.OJ THICKNESS-C.OI fINE MESH 

• _~_~_ _________________________ .71 I_I ..• , 

1"",,,,\10 "10 :'0 ~o 0,0 ,..,. 
I, ,10 ,I, ~o SlRVClURAL 

I'tULTlPlY Bf to -1 UM1 S 

~~~[t[ 
";'IEV fROM ):.. 0.0000 

y.. 0.0000 
1" 1.000 

Lx 
1 TOV~ROS VIEWER 

WHOLE StRUCTURE DRAWN 

DRAWHIG NO. 

SCALE .. 2.400 

ORAVU1G lYPE" 2 

Figure 6.6: The FEM mesh used for comparing the BEM results. Care was taken 
to maintain the same nodal positions as the BEM mesh shown in Figure 6.4 for 
direct comparison. 
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6.5 - INTERNAL DISPLACEMENTS 

The fonnula for the internal displacements is similar to Equation (2.53). However, this 

equation is written for one continuous surface and in the presence of body forces. Equation 

(2.53) can easily be modified for the cone used in this chapter to take into account of the 

different surfaces and arcs. In the absence of body forces, the equation giving the internal 

displacements in XI direction, at any point within the cone wall, is: 

U~ = f (WIIPI + WI~2 + w13P3)r:sin9d9d<p 
Arc 

I 

. + f (l1'IIPI + WI~2 + wl n3) (R. sin9 - d) R.d9d<p 
A~ Y I I 

1 

- L}UIP;I + U:R;2 + U~;3) r~ sin9d9d<p 
t 

- t}UIP;1 + 1I:R;2 + U~;3) (Rosin9 - d) Rod9d<p 
1 

f. •• f. 1\ - (UIPII + U~12) pdpd<p - WI~3 pdpd<p 
S s 

1 1 

- L}UIP;I + U:R;2 + U~;3) (R jsin9 - d) Rp9d<p 
3 

f .• • 2. 
- Ar}UIPII + U:R12 + U~I3) rj sm9d9d<p (6.19) 

A similar equation can also be written for the displacements in the X3 direction (U~). The 

variables PJ' P
2 

and P
3 

are the components of the external pressure. When Equation (6.19) 

is implemented, these can be written in terms of the resultant external pressure using 

Equation (3.7). 

The numerical results of these displacements are given at various distances away from the 

inner wall surface for both the lOmm and 5mm wall thicknesses. Comparisons are also 

made with the FEM results for the internal displacements at mid-wall position and they 

are given in Section 6.6. 
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6.6 - COMPARISON OF BEM AND FEM DISPLACEMENTS 

The following results are detennined for a cone .of height 80mm, base radius of 60mm, tip 

radius of 30mm and wall thicknesses of lOmm and 5mm. The results for the lOmm and 

5mm wall thicknesses are given in sections 6.6.2 and 6.6.3 respectively. 

The displacements are compared at various parts of the cone. These include the surfaces 

S" S2 and S3' Displacements along e = 00 and e = ft are also compared. Tractions on 

surface S2 are also shown. On all the graphs, centred symbols represent the point results 

obtained by the BEM and the cubic spline fitted solid lines represent the FEM results. 

6.6.1 - Optimising Node Positions 

In Chapter 5 it was shown that for a Gauss order of 16, the optimum position for the 

semi-continuous element node is to use t=0.64. However, in this chapter the highest Gauss 

order was 12. Therefore new t value was required for the optimum results. Tests similar to 

those in Chapter 5 were conducted to establish the optimum position of the end node of 

the semi-continuous element. In this case the actual cone geometry was used and the results 

were compared against the FEM ones. Test were conducted for the t values of 0.56,0.68 

Table 6.1: Comparison of the extrapolated results at the comer nodes with 
various t values. 

· - outer corner 1.95 0.43 0.60 1.35 

· - inner corner 1.06 0.46 0.59 0.90 

· - inner corner 0.65 0.34 0.44 0.61 

1.83 1.70 1.49 5.90 

S2 tractions - inner comer J 2.42 1.24 2.47 2.69 

t -4 elements on surface S2 * -2 elements on surface S2 
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and 0.79. The results are illustrated in Figures E.1-EA in Appendix E and a summary is 

also given in Table 6.1. For the Gauss order of 12, the optimum results were obtained with 

the t value of 0.56. 

The effect of having too many elements on the S2 surface was also investigated. For t=0.56, 

the S2 surface was divided into 2 and 4 elements. Since the wall thickness was only 10 mm, 

having 4 elements caused some deficiencies in the comer areas. The results of S2 surface 

having 4 elements are illustrated in the Figures E.5-E.7 in Appendix E, and also a 

comparison is given in Table 6.1. 

6.6.2· Wall thickness = 10mm 

The following results shown in Figures 6.7, 6.8, 6.9 and 6.10 are for a cone with lOmm 

wall thickness and compare very well with the FEM results. 

The problem of selecting internal points too close to the surface is shown well in Figure 

6.10, particularly when nodes are placed 1mm away from both surfaces. The sign of 

oscillations developing in these results is very clear. 

It is a general belief that the distance between the internal points and the surface shou\tl ~ 

greater than the size of the surface elements. However, it is shown in Figure 6.10 that" Ith 

the correct selection of the element size and the number of Gauss points, an a(rurat(" 

analysis, involving internal points which are very close to the surface, can be made pm .. Ih\(" 

In the example discussed in this section, the element size on arc 2, which dominated ",urf au," 

S" was 9Amm and the wall thickness was 10nnn. A variable number of Gauss points were 

used and although the elements close to the internal point were integrated using 12 by 12 

Gauss order, this was reduced to 4 by 4 for all other elements. However, excellent results 

were obtained even at points placed 3mm away from the boundary surfaces. This shows 

that results very close to the surface can be determined. It will be shown in Section 6.6.3 

that internal points much closer to the surface can also be placed. 
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6.6.3· Wall thickness = Smm 

Having completed a set of results with a 10mm wall, another cone of the same base radius, 

tip radius and height with 5mm wall thickness was tested. 5mm wall thickness is the main 

interest in this thesis as the investigation is concentrated on thin structures. 

Results for the same parameters as in the previous section were obtained and they are 

illustrated in Figures 6.11, 6.12, 6.13 and 6.14. The selected mesh was more dense than 

the lOmm one as the SOT ratio was to be maintained at around 1.0 for all the surfaces. 

Therefore, 19 elements were used for both the inner and the outer surfaces, whereas two 

elements were used for the flat surface, S2' For the small arc on the outer surface, 3 elements 

were used and the remaining 16 were distributed on the large arc. The same allocation of 

elements was also done on the inner surface. On surface S2' 4 elements were too dense and 

resulted ~ a singular system matrix. The number of the elements on the S2 surface was 

then reduced to 2 elements which solved the problem. 

All the results given in Figures 6.11-6.14 have been compared with the results obtained 

using FEM. They all showed very close agreement with the.FEM results with the exception 

of the tractions on surface S2' This was due to having two small elements on surface S2' 

However, a minimum of two elements were necessary so that semi-continuous element 

could be used. In Figure 6.14, the internal displacements showed remarkable accuracy even 

for points placed at Imm away from the inner and outer surfaces. 

6.6.4· Various Cone Heights 

Further investigation was conducted to see the effect on the surface displacements at 

various cone heights with the same base radius and wall thickness. In this test, the wall 

thickness was kept at 10mm and the outer base radius at 60mm. As the largest 

displacements occured on the inner surface, S3' the comparison is done on these 

displacements and they are shown in Figure 6.15. 
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6.7 - INTERNAL STRESSES 

In this section the internal stresses are worked out using Equation (2.54) without the volume 

integral which represents the body forces. The calculated BEM stresses are then compared 

with the FEM results. By symmetry, the shear stresses 0'12 and 0'23 are zero and therefore, 

are not compared. The cone considered has outer surface dimensions of 60mm base radius, 

tip radius of 30mm, height of 80mm and wall thickness of 5mm. 

Although the internal stresses are calculated at Imm intervals across the wall, only the 

mid-wall stresses are compared. Nodal values are compared for the shear stress 0'13' hoop 

stress 0' and the Von Mises equivalent stress 0' . The equivalent stress, defined in tenus 
qKp e 

of the global directional stresses, is given below (see, for example, Pafec, 1975): 

0'= , 

X3 

x2 
e .... 

2 2 2 2 2 2 
(all - 0'22) + (0'22 - 0'33) + (all - 0'33) + 6 (0'12 + 0'23 + 0'13) 

2 

0'99 

<p 
XI 

Figure 6.16: Diagram showing the two hoop stresses 0'99 and O'cp<p used in the 
nodal stress comparison. 

- 128 -

(6.20) 



M Karamanoglu 1992 Chapter 6: BEM For A Cone 
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- FEM results 
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Figure 6.17: Comparison of BEM and FEM Von Mises and Hoop Stress 
(O'<p<p) at mid-wall of the cone. ( Wall thickness=5mm) 
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t::::. BEM Shear Stress ( (113) 

- FEM results 
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Figure 6.18: BEM and FEM comparison of Shear Stress 0'13 at mid-wall 
thickness for the cone. (Wall thickness=5mm) 
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Figure 6.17 shows the hoop stress cr and the von Mises equivalent stress cr detennined 
~~ e 

at the mid-wall for the cone with a 5mm wall thickness. A good agreement with the FEM 

results is obtained. This is also reflected in the shear stress results shown in Figure 6.18. 

The shear stress is maximum along e = 400
• The angle theta is measured clockwise from 

the x3 axis to XI axis as shown in Figure 6.16. 

6.7.1· Stresses Close To Surface: 

As discussed in Chapter 1, the stresses for the internal points very close to the boundary 

are expected to show substantial errors due to the singular nature of the BEM formulation. 

This effect is demonstrated here by showing the hoop stress cr and Von Mises equivalent 
~~ 

stress cr at internal points across the wall thickness at small intervals. Results for both wall 
e 

thicknesses, 5mm and lOmm, are shown in Figures 6.19-6.22. For both the wall 

thicknesses, the results calculated at lmm from the inner and outer surfaces showed very 

large errors and these appeared as severe oscillations. However, at points placed 2mm or 

more away from the boundary surfaces, good results are obtained. Comparison of these 

results with the FEM analysis at the mid-wall support this claim (see Figures 6.18 and 

6.19). 

For the lOmm wall thickness, the internal point stresses results are shown at 1, 2,4,6, 8 

and 9mrn away from the inner surface. For the 5mm wall thickness, These are shown at 1, 

2, 3 and 4mm away from the inner surface. 
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Figure 6.19: Von Mises stresses at various distances away from the inner wall. 
(Wall thickness=lOmm) 
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Figure 6.18: Hoop Stress O'cpcp determined at various distances away from the 
inner wall surface. (Wall thickness=lOmm) 
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Figure 6.21: Von Mises stresses at various distances away from the inner wall. 
( Wall thickness=5mm) 
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Figure 6.22: Hoop Stress a~ determined at various distances away from the 
inner wall surface. (Wall thickness=5mm) 
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~8-SURFACESTRESSES 

The stresses on the boundary cannot be determined by using the formulation derived for 

the stresses at internal pointS. This is due to the singular behaviour of the third order tensors 

S,-" and D
k
" shown in Equations (2.55) and (2.56) when the point under consideration is 

I<'J 'J 

placed on the boundary. For this reason, the surface stresses are determined by using the 

surface displacements. This section shows the details of this method. 

6.8.1 - Stress - Strain Relationship 

To determine the stresses, the strains must be determined ftrst. The following equations 

show the stress - strain relationship: 

E =.! {O' - vO' - vo } 
rr E rr 99 !PCP 

(6.21) 

E99 = ~ { 0'99 - VOrr - VOcpcp} (6.22) 

E = .! {O' - VO' - Vo } cpcp E cpcp rr 99 
(6.23) 

On the inner surface, the radial stress is equal to zero as there is no pressure acting on that 

surface. Therefore, only Equations (6.22) and (6.23) are required. The two hoop stresses 

can be rewritten in terms of the hoop strains as follows: 

0' _ E { 
99 - 1 _ V2 E99 + VO' cpcp} (6.24) 

o _ E { 
cpcp - 1 _ V2 Ecpcp + V0'99} (6.25) 

The next step is to determine the two hoop strains from the surface displacements, and this 

is shown in the next section. 
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6.8.2· Strain - Displace.ment Relationship 

" 

R 
, 

" 

de 

e 
T 

0/ u a ~ 
" 

ee 

, 
b 

Figure 6.23: Diagram showing the vectors used for the calculation of the 
tangent strains. 

The tangential strains (hoop strains) Eee and Ecpcp are determined in this section. Figure 6.23 

, / 

shows two surface points a and b, displaced to a and b respectively. It also shows the 
, , 

vectors associated with the displaced shape in the Xl and X3 plane. The vector a b can be 

written in terms of the other vectors forming the polygon, such that: 

, , , 
ab = u+ab 

= ab + (u + 8u) 

Therefore, 

a' b' = ab + (u + ou) - u 

a'b' = R 8e ee + (u + ou) - u 
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u = ur(9) e,(9) + ue(9) ee(9) (6.30) 

(u +Ou) = ur(9 + (9) e,(9 + (9) + ue(9 + (9) ee(9 + (9) (6.31) 

However; 

e = e + 0gee , , (6.32) ~~' 
, e =e - 0ge (6.33) e e , 

dOe, 

[ 
aUe 

(u + ou) - u = ur(9) + a9 09 ] [e,(9) + 09 ee(9) ] 

aUe 
+ [Ue(9) + a9 09] [ee(9) - 09 e ,(9) ] 

- u
r
(9) e,(9) - ue(9) ee(9) (6.34) 

au au 2 

(u + ou) - U = ur(9) e,(9) + ur(9) 09 ee(9) + a~ 09 e,(9) + a~ 09 ee(9) 

aUe aUe 2 
+ ue(9) ee(9) - ue(9) os er(9) + ae 09 ee(9) - a9 0 9 e,(9) 

- u
r
(9) e,(9) - ue(9) ee(9) (6.35) 

Ignoring the second order tenns and collecting the similar tenns together, Equation (6.35) 

simplifies to: 

(u + Ou) - U = oe {[ ~;' - u,(e) ] e ,(e) + [ ~:' + u,<e) ] e.(e)} (6.36) 

Substituting Equation (6.36) into Equation (6.29); 

I I If au ] [aue ]} ab = 091l a~ - ue(9) e,(9) + R + a9 + ur(9) ee(9) (6.37) 
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, , 
lab I-Iabl 

Eaa = I a b I 

lai I = ~ a'b'. a'b' 

Rewriting Equation (6.37), 

Let, 

, , {[ 1 dUr ua(e)] [1 dUa ur(e)] } 
ab = Roe R de -R e/e) + 1 + R de +R ea(e) 

1 dUa ur 
fa= R de + R 

1 dUr Ua 
f =--+-
r R de R 

Substituting Equations (6.41) and (6.42) into (6.40); 

a'b' =R oe[ (1 +fa)ea(e)+frer(e) ] 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

a'b'. a'b'=R oe[ (1 +fa) ea(e)+frer(e) l R oe[ (1 +fa) ea(e) + trer(e) ] 

(6.44) 

= R2 02e [ ( 1 + fa)2 + f~ ] (6.45) 

= R
2
02e [ 1 + 2 fa + t~ + t~ ] (6.46) 

Ignoring the high order tenns; 

" " 2 2 
ab .ab=R oe(1+ 2ta) 

(6.47) 
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1 

la'b'l =R09(1+2fa ) (6.48) 

Using only the first two tenns of binomial series; 

( 1 + x )" = 1 + l1X (6.49) 

gives; 

I a' b' I = R 09 ( 1 + fa ) (6.50) 

Substituting this result into Equation (6.38); 

R 08 ( 1 + fa ) - R 09 
Eaa = R 09 (6.51) 

1 aUa u
r 

Eaa = fa = R a9 + R (6.52) 

By similar analysis the hoop strain in the <p direction is detennined as; 

U1 1 aU2 
E tptp = R + R a<p 

tp 

aU
2 

Because of the symmetry, d<p = 0, and therefore; 

U
1 

E =­
tp<p R 

<p 

(6.53) 

(6.54) 

The definition of R is given in Figure 6.2. The tangential strains can now be calculated 
tp 

using Equations (6.52) and (6.54). However, the Eaa is in tenns of the displacement u
r 

and 

au 
the derivative a:' These tenns should be expressed in tenns of the known displacements 
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U3 e3 

Ur er 

lie ee 

Figure 6.24: Diagram showing the vector components of a surface 
displacement. 

U
1 

and u
3 

and they are worked out in the following way (see Figure 6.24). The displacement 

vector u can be written as follows: 

U = ulei + u3e3 = ueee + u/, (6.55) 

The tangential displacement lie can be written in terms of the known displacements III and 

u
3 

as follows: 

Ue = ulei . ee + u3e3 . ee (6.56) 

The dot product of two vectors is defined as follows: 

a.b = lallbl cosa (6.57) 

where a is the angle between these vectors a and b. For vectors of unit magnitude, the dot 

product simply reduces to the cosine of the angle between the two vectors. 
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Hence from Figure (6.24); 

e1 • ee = cos e (6.58) 

',. ',= cos ( ~ + 9)= - sin9 (6.59) 

Now, substituiting Equations (6.58) and (6.59) into Equation (6.56); 

Ue = utcose - u3sine (6.60) 

Similarly for the U displacement: , 

U = ulet • e + u3e • e , r II r 
(6.61) 

", = IIICOs( ~ - 9)+ u,cos9 (6.62) 

U, = ulsine + u3cose (6.63) 

au 
To determine the derivative ae

e
, Equation (6.60) is differentiated with respect to angle e 

using the product rule: 

aUe . aUI aU3 • 

ae = -utsme + ae cose - u3cose - ae sme (6.64) 

aUe aliI all 
ae = ae cose - a; sine - fI, (6.65) 

au 
It was decided at this stage to express a: in terms of the arc length as the preliminary 

investigation showed discontinuities in the slopes of ul and 113 at the intersection of the two 

arcs forming the surfaces if e was kept as a parameter. 
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Hence: 

But, 

au} au} as 

ae =a; ae 

aU3 aU
3 

as 

Te=a; ae 

s=Rde 

as 
ae=R 

Therefore; 

au} au} 
-=-R 
ae as 

aU
3 

aU
3 -=-R 

ae as 

(6.68) 

(6.69) 

aUe au} au 
ae = as R cose - a: R sine - u r 

Chapter 6: REM For A Cone 

(6.66) 

(6.67) 

arc s 
R 

(6.70) 

(6.71) 

(6.72) 

Substituting Equation (6.72) into Equation (6.52), simplifies to the following: 

au} aU3 . 
tee = as cos e - as sm e (6.73) 
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6.8.3· Use of Cubic Spline 

Having detennined the necessary expressions to calculate the tangential strains, the next 

step is to calculate the displacement derivatives required by Equation (6.72). These 

derivatives can be calculated from the quadratic shape functions used for the BEM 

elements, but the first derivative would not be continuous, in general, at the ends of each 

element and this would show in the strains and, therefore, stresses. 

This is best explained by considering a small number of the elements and comparing the 

fIrst derivative of the displacements. For example, the derivatives of four elements on the 

inner surface that belong to the large arc were calculated using both the quadratic 

fonnulation and the cubic spline fonnulation. The results for quadratic fonnulation are 

given in Figure 6.25 and for the cubic spline they are plotted in Figure 6.26. A very noticable 

difference in the end nodes of the quadratic elements are seen and this is also reflected in 

the final stress values. 

In a different study (see Beswick, 1992b), a circular ring section under a point load was 

tested to see the result of using quadratic elements for stresses across the thickness. The 

results were taken at the 45° line across the thickness. The two extreme points which were 

on this line, were also the end nodes of the quadratic elements. The results were both 

compared with BEM analysis using BEASY® and the analytical theory. All the internal 

points agreed with the theoretical results except the surfce points, where an error of 3.3% 

was seen. The same problem was again solved with BEASY®, but this time the mesh was 

modified so that the results were taken along a line that corresponded to the midside nodes. 

The previous errors seen on the surface nodes had now diminished. The detailes are given 

in Appendix C. Due to the apparent discontiniuties in the derivatives, as shown in Figure 

6.25, a cubic spline was fItted through the displacement points available, and their 

derivatives determined accordingly. Since by defInition, a cu bic spline is C, the derivatives 

were of quadratic order and smooth results obtained as the continuity of the derivatives 

was maintained. The fonnulae used are given below ( Stoer and Bulirsch, 1983). The 
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'9 o ..... 
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Figure 6.25: The derivative of the vertical displacements detennined using 
quadratic variation. (Each interval shows an element) 
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Figure 6.26: The derivative of the vertical displacements detennined using 
cubic spline fit. (Each interval shows an element) 
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y 

S(x) 

y; 

1'111( Itj .. I 

;-1 

.. 
x 

;+1 

Figure 6.27: Parameters used for the spline fitting. 

Yj+2 

i+2 x 

variable defmitions are given in Figure (6.27). The second derivatives of the knots are 

" referred as the moments and are defined as M. == S (x.) . , , 

3 3 1 2) (x.-x) (x-x. I) (x.-x) .h. 
S(x) = Mj_1 '(\1.. +Mj 6~~ + 'h. yj-l-iMj-J , , , 

(x - x j_ l ) 1 h~) + )' --M h. j 6 j , 
forxE [x' j ,x.] ,i=1,2, ... ,,, ,- , (6.74) 

2 2 
I (x.-x) (x-x. I) 1 h. 

S (x) = -Mj_1 '2h. + Mj 2h'.- + h. (yj - Yj_l) - ~ (Mj - Mj_l ) (6.75) 
, " 

for x E [x'
j 

, x.] , ;=1,2, ... ,,, ,- , 

" (x.-x) (x-x. I) 
S (x) = Mi_1 'h. +Mj ' h.'- for x E [x'

j 
, x.] , ;=1,2, ... ,,, ,- , (6.76) 

, , . 
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From the information given so far, there are 11-1 equations and 11+1 unknown moments. 

Therefore, two further equations are required and these can be gained from the end 

conditions. This leads to a linear system of equations for the moment M .. In matrix notation, 
1 

it can be shown as follows: 

2 1 0 Mo 'Yo 
a l 2 ~I MI 'YI 

a2 2 ~2 M2 'Y2 
= (6.77) 

a,,_1 2 ~"_I M ,,-1 'Y,,_I 
0 1 2 M 'Y" " 

where, 

h. 
1 

a = h 
j h'+ j+1 1 

(6.78) 

hj+1 -1- a. 
- 1 ~j = h.+ h

j
+

1 I 

(6.79) 

_ 6 {1 1 } 'Yj - h.+h. h(Yj+1 -Yj )- -,;(Yj-Yj- I ) 
1 1+1 1+1 j 

for ;=1, 11-1 (6.80) 

If the fust derivatives are specified at x = x and x = x : 
o " 

s' (xo) = Y' (xo) (6.81) 

, , 
S~)=y~) 

II " 

(6.82) 
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therefore, 

- 61 YI -Yo ') Yo-71 h - Yo 
I I 

(6.83) 

-~1' -Y" -Y,,-I ) Y,,- h Y" h 
" " 

(6.84) 

For the cone used in this chapter, the slopes for the horizontal displacements u
l 

(see 

Figure 6.28); 

Y -v 
I - 0 

Yo= hI Y,,=O 

and for the vertical displacements u
3

: 

Yo=O 
YI-YO 

Y = h III 

(6.85) 

(6.86) 

The fonnulation given in this chapter is implemented for the inner surface of the cone and 

the results are shown in Section 6.9. 

6.9 - RESULTS 

This section is divided into three sub-sections. First section, section 6.9.1, gives a set of 

sample results obtained by using the BEM displacements and the cubic spline fit. The next 

section, section 6.9.2, shows the effect of the change in height over the inner surface 

stresses. Section 6.9.3 compares a selection of cone height results of the inner surface, with 

the results obtained by using the FEM analysis. 
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6.9.1· Results - BEM Spline Fit 

In this section, the results of a cone of 80mm high, 60mm outer base radius and 5mm wall 

thickness are given. The bounadry conditions are those illustrated in Figure 6.1. Figure 6.28 

shows the horizontal and vertical displacements on the inner surface of the cone. These 

results were determined using the spline formulation given in section 6.8.3. The derivatives 

of the displacements are given in Figure 6.29. It is these values that were used to calculate 

the strains which are given in Figure 6.30. 

As pointed out in section 6.8.2, the displacement derivatives were calculated with respect 

to the inner surface arc length. To maintain consistency, all of the following results shown 

in Figures 6.28-6.31 were plotted against the arc length. The hoop stresses O'ee and O'!pIII are 

given in Figure 6.31. The direct stresses 0'", 0'22' 0'33 and the shear stress 0'13 are also 

compared with the FEM results. These BEM stresses were determined from the calculated 

hoop stresses O'ee and O'!pIII by using the following relationships: 

2 
0'" = O'ee cos e 

0' = 0' 22 !pili 

. 2e 
0'33 = O'ee sm 

. 2e 2e 
- 0'" sm - 0'33COS 

0"3 = sin2e 

(6.87) 

(6.88) 

(6.89) 

(6.90) 

The details of these relationships are given in Appendix D. These stresses are also compared 

with the FEM results and they are given in Figures 6.32-6.34 where excellent agreement 

between theses results can be seen. 
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6.9.2· Results - Various Cone Heights 

In this section, three sets of results are provided for cones of 10mm wall thickness and 

outer base radius of 6Omm. The cone heights tested are 8Omm, 100mm, 120mm, 140rnrn, 

160mm and 18Omm. The compared stresses are hoop stress 0' ,Von Mises stress 0' and 
qKp l' 

the shear stress 0')3' From the results, it is clearly shown that as the cone height increases, 

the hoop stress and the Von Mises stress at the base of the cone also increase and, decrease 

at the nose section ofthe cone. However, these stresses tend to pick up again at the tip. The 

shear stress is maximum at around the point where two arcs merge on the inner surface. 

The results are shown in Figures 6.35-6.37. 

6.9.3· Results - FEM-BEM Comparison 

The results explained in section 6.9.2 are only the BEM results. In this section, a selection 

of these results are compared with the results obtained by using the FEM. The mesh used 

for the FEM model matches identically with the BEM mesh on the inner and outer surfaces 

with the exception that the FEM mesh elements across the wall thickness is divided into 

two so that several internal points were also obtained. 

Again, the hoop stress O'qKp' the Von Mises stress O'v and the shear stress 0'13 are compared 

for the cone heigths of 80rnrn, 100mm,14Omm and 180mm. The BEM results agree well 

with the FEM results except for the point very close to the tip of the cone. These are given 

in Figures 6.38 and 6.39. 

The comparison of the shear stress 0')3 is given in Figure 6.40. The results indicate that 

there is practically no change in the shear stress at the merging point of the two arcs 

irrespective of the change in the cone height. 
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Chapter 

7 

Further Developments 

"Only in men's imagination does evelY truth find an effective and 
undeniable existence. Imagination, not invention, is the supreme master 
of art as of life." 

7.1 - INTRODUCTION 

Joseph Conrad 

1912 

I n this chapter, investigations to take the present work one step further are discussed. 

One of the areas in need of further investigation is to increase the ability of BEM to 

deal more efficiently with long and slender sections. It is shown in this work that by having 

two surfaces very close together, similar rows are obtained in the system matrices which 

cause singular solutions. This is due to the fact that as the geometrical position of the nodes 

on two different surfaces becomes similar, the resulting coefficients also become similar, 

and hence this results in similar rows in the system matrices. This type of limitation also 

appears in fracture mechanics, where the nodes on both surfaces of a crack often share the 

same special location when the crack is closed. One way to get around this problem is 

suggested by Portela et. al. (1991) where a different formulation is used for each of the 

crack surfaces. This method is known as the Dual Boundary Element Method (DBEM). 
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7.2 - DBEM APPLIED TO CRACK PROBLEMS 

The DBEM uses two independent equations. In Portela's case, the displacement and the 

traction boundary integral equations are used. One of these equations is used for one side 

of the crack and the other equation is used for the other side of the crack. 

The displacement equation is given in Equation (2.60) and it is repeated here, for the benefit 

of the reader, without the body force term. 

~ u/(x') + f P;k(X',x) uk(x) dS(x) = f W;k(x',x) Pk dS(x) 
S s 

(7.1) 

The stress equation for a boundary point x', derived by Cruse (1977), in the absence of the 

body forces, is: 

-2' 0' ,,(x') + f Sk"(x',x) uk(x) dS(x) = f Dkj' Pk dS(x) 
IJ S IJ S '1 

(7.2) 

By using the relationship given in Equation (2.2), the traction equation is written as follows: 

-2' P.(x') + It.(x') f S~.(x',x) uk(x) dS(x) = It.(x') f D/ej,Pk dS(x) 
I J S "'J J S '1 

(7..3) 

where Itj(x') denotes the j component of the outward normal to the surface, at the point x'. 

Equation (7.1) and (7.3) form the bases of the DBEM formulation. 

7.3 - DBEM APPLIED TO CONE 

These two equations were used to model the cone geometry discussed in Chapter 6. 

Equation (7.1) was used to formulate the outer and base surfaces, S, and S2' The surface 

S3 was formulated using Equation (7.3). However, on the inner surface, S3' there were no 

tractions and therefore, Equation (7.3) was simplified to: 
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n.(x') f Ski'(x',x) Uk(x) dS(x) = 0 
J S J 

(7.4) 
3 

Equation (7.1) was already implemented for the surfaces S I and S2 using quadratic 

elements. The integration routines were also successfully implemented. In Equation (7.4), 

the kernel Skij exhibits a hypersingularity of the order ~ . Hypersingular kernels arise 

whenever the nonnal derivative of a conventional boundary integral is taken. This is due 

to the fact that hypersingular integral equations involve the derivatives of already strongly 

singular kernels. 

The existing Composite Mapping integration was developed for a singularity of order ~ , 

and when the integral was transfonned into polar coordinates, the order of the integral 

reduced by one. This process is detailed in Chapter 3. The same procedure can be applied 

to the integral in Equation (7.4) which will make the integral a fmite-part integral of order 

2 (see Kutt, 1975) and is also equivalent to the Hadamard principal-value, provided the 

integrand is C2 continuous (see Portela, 1992) . To maintain the C2 continuity requirement 

on the integral Equation (7.4), elements of cubic variation were used on the inner surface 

and quadratic on the other two surfaces. 

However, at this stage, it was decided to test the convergence of the integral Equation (7.4) 

on a singular element on the inner surface of a hollow hemisphere by using the refinement 

technique illustrated in Chapter 3. However, convergence of the Equation (7.4) over a 

singular element was not achieved using the refmement type integration. The same test 

was also tested with discontinuous quadratic elements which satisfied the continuity 

requirements, but no improvements on the results were seen. 

Although the DBEM method is reported to work well on 2D applications (Portela et. al., 

1992), difficulty in the evaluation of the hypersingular integrals of order ~ present in 3D 

applications has been a limiting factor in this study. Further investigation into this problem 

is necessary and perhaps a more advanced integration scheme can be developed employing 
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a Kutt type fonnulation with A. = 2. It is worth noting here that a Kutt fonnulation of this 

order will have complex abscissas in the fonnulation and complex number manipulations 

will be necessary in the programming. 

7.4 - NEW INTEGRATION METHODS 

Recently, attempts have been made to solve the hypersingular integrals, which appear in 

the B EM fonnulation, directly. Gray et. al. (1990) used a direct analytical integration with 

a limiting process on flat elements. Another way was proposed by Krishnasamy et. al. 

(1990), who interpreted the hypersingular integrals in tenns of the Hadamard fmite-part 

integrals and then converted these into regular line and surface integrals through a use of 

Stoke's theorem. Since no integration by parts was perfonned, the problem was still 

fonnulated in tenns of the original variables. 

Guiggiani et. al. (1991a, 1991b, 1991c), showed that all hypersingular integrals arising in 

the BEM could be directly transfonned into ordinary integrals in the local plane of the 

intrinsic coordinates through simple but rigorous manipulations. Firstly, it was shown that 

no unbounded tenns arise in the limiting process. This process was then translated in tenns 

of intrinsic coordinates and through some suitable expansions, all of the singular integrals 

were evaluated analytically and the limit was carried out exactly. The remaining regular 

integrals were then integrated using an ordinary Gauss quadrature oflow order. It was also 

shown that the method provides good results even on curved elements. 

By using these methods described above, it would be possible to overcome some of the 

problems outlined in this thesis. For example, it would be to possible evaluate problems 

with thin sections using BDEM and also to detennine the whole stress tensor directly on 

the boundary. 
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Chapter 

8 

Conclusions 

"Mathematics, rightly viewed, possesses not only truth, but supreme 
beauty - a beauty cold and austere, like that of sculpture." 

Be111'and Russel 

1918 

I n this thesis, Boundary Element Method fonnulation and its application in three 

dimensional elasticity analysis have been presented by making use of Elements oflinear 

and quadratic variations. However, it was found that a quadratic element fonnulation, 

which turned out to be easier to implement, gave more accurate results. The main object 

of this study has been the application of the BEM for a nose cone which concentrated on 

several key areas of the method. 

Calculation of the diagonal terms of the system matrix was done explicitly so improvements 

on the integration of singular integrals could be made. Two different integration methods 

were tested. Convergence Method was based on dividing the singular elements into smaller 

areas and summing the results until they converged within a predescribed percentage of 
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error. With the Accelerated Convergence Method developed here, where the element 

division factor was increased from 2 to 10, the number of iterations necessary to produce 

the same percentage of error was dropped from 7 to 4 which saved considerable CPU time. 

Further increases in the element division number was possible, but the danger of 

approaching the singular point too quickly and reaching the limit of the computer was 

increasing. With a division number of 50, the number of iterations were reduced to 3 but 

the risk of having a premature end to the program execution was far too great. Therefore, 

it was decided to keep the number of iterations to 4. Throughout this research work, a 

division number of 10 was used. 

Another integration method, Composite Mapping, which was used to integrate singular 

double integrals was also used. This method used both Gauss and Kutt quadratures. The 

rectangular elements were divided into triangular elements and Composite Mapping was 

then applied to evaluate the integral without any iteration. The Kutt integration method is 

based on the finite- part integral formulation and this was implemented in the BEM. 

The result was that Composite Mapping was found to be more efficient than the Acce lerated 

Convergence Method and it was used to evaluate the singular integrals on the inner and 

outer surfaces. On the flat surface, S2, the singular integrals were evaluated using ,the 

Accelerated Convergence Method. 

However, in circumstances where the validity of the numerical answer is uncertain, such 

as the A(2,1) coefficient of the system matrix, a convergence type integration method 

would be more advantageous because it would be possible to monitor the convergence of 

such coefficient, whereas the Kutt type integration method would fail to indicate 

non-convergence. 

U sing unequal size elements caused some problems in the determination of the surface 

displacements in the solid sphere analysis. This problem was solved by subdividing the 

larger singular element concerned and performing the integration on the now two identical 
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sized elements and then adding the contribution coming from the excess area separately. 

This method significantly improved the accuracy of a mesh that contained unequally 

spaced elements. 

For the solid sphere of radius I metre, good results with internal displacement errors under 

0.5% were achieved at nodes as close as 0.003 metres to the surface. However, for the 

internal stresses, accurate results at nodes so close to the surface could not be achieved. 

For example, in the solid sphere case, the direct stress (j33 was determined at 5.4% at a 

distance of 0.98 metres. This was due to the more severe singularity presence in the 

calculation of the third order tensors multiplying the displacements. 

Investigation into the comer problems revealed some interesting results. Initially a double 

node approach was implemented to solve these problems. However, the results obtained, 

showed that two nodes sharing the same geometrical space, with some of the variables at 

these nodes eliminated from the system matrices, was not suitable. Therefore, another 

alternative was tried. This was to use two semi-continuous elements at the comers and a 

hollow hemisphere was used to develop this method. The comer node of a continuous 

quadratic element sharing the comer was pulled back into the element slightly to form a 

semi-continuous element. The midside node position was adjusted accordingly. 

The position of the comer node was optimized experimentally for a fixed quadrature order. 

The tests were done using a 16 by 16 rule and it was found that the most accurate results 

were obtained when the comer node was placed between 60% and 70% of the element 

length. i.e.whent= 0.6 - 0.7 . Further tests were done to link the position of the gauss points 

and the position of the comer node to the accuracy of the surface displacements. It was 

found that there is an optimum position of the comer node which coincided with the gauss 

point. For Gauss order of 16, this was at t=0.64 and for quadrature order of 12, the best 

results were obtained when t=0.56. 
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An investigation into the relationship between the element size and the wall thickness for 

a hollow geometry was conducted. For a long and slender section, like the hollow sphere 

and the cone geometries used in this work, in the presence of small wall thicknesses such 

as 5nun or less, it was discovered that the element size should be made the same size as 

the wall thickness (SOT=1.0). Under these conditions the errors determined on all the 

surface results were less than 0.5%. 

The selection of the SOT ratio was confmned in two tests. In the fIrst test, the inner and 

the outer radii were kept constant at 45nun and 50nun respectively. The number of elements 

on the inner and outer surfaces were adjusted to determine the SOT ratios. SOT ratios of 

1.0 to 3.5 were tested. The best result was obtained when the SOT ratio was 1.0, which 

resulted in errors less than 0.5%. At larger SOT values, the nodal values on the inner and 

outer surfaces showed considerable errors but when averaged, these dropped to acceptable 

levels. In case of SOT=3.5, the outer surface displacement at the comer node gave 28% 

error but when the outer surface displacements were averaged, this resulted in only 4% 

error. For SOT ratios greater than 1.0, all the results showed greater errors at the comer 

nodes. 

In the second test, the outer radius was kept constant at 50mm but the inner radius 

dimension was varied between 30nun and 49nun. The SOT ratio was kept constant by 

altering the element numbers on the inner and outer surfaces. The tests showed that for a 

fairly thick walled sphere (50nun outer radius, 20mm wall thickness), an SOT ratio of 0.8 

gave around 1 % error and took 2.3 minutes of CPU time. When the wall thickness was 

reduced to 3mm, errors of less than 0.5% were recorded but the CPU time went upto 77 

minutes. 

It was also found in the second test that there was no increase in the errors at the nodes 

near or at the comers from 20mm thickness down to 3nun wall thickness. This shows that 

although very accurate results can be achieved, SOT value of 1.0 can be expensive 

especially in three dimensional analysis which was implemented here. However, this 
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approach can significantly improve the results in 2-D and axisymmetric analysis dealing 

with long and slender sections with and without the sharp comers. 

The wall thickness that was the main concern in this study was 5mm. When test results of 

SOT=1.0 were compared with SOT=0.8, no significant increase in the results were seen 

compared to the large increase in the CPU time of 16 minutes to 42 minutes. 

An attempt was made to push the BEM model to lmm and 2mm wall thicknesses but this 

was not successful. For the 2mm case, the system matrix obtained after 134 minutes was 

singular due to very similar rows being achieved. The main reason for this was that the 

elements on the flat surface, S2, were getting too small, especially with the comer nodes 

being pulled towards the inside of the element. At this stage this problem could have been 

avoided by using just one element on the flat surface, but the CPU time of 134 minutes 

and solving a matrix of 320 by 320 was not practical. The elements on the inner and outer 

surfaces were also getting too close together which would cause instability problems in the 

system matrix as the two surfaces came closer. For the 1mm wall thickness, data storage 

problems were encountered and the analysis was not continued as negative results were 

anticipated. 

It is shown in this study that the BEM can handle long and slender sections as long as,the 

SOT ratio of 1.0 is maintained. The only disadvantage may be the larger CPU time but 

with the new developments in the computer technology in mind, this may not be an issue 

in the very near future; at least for small scale problems. 

For the cone analysis, an SOT ratio of 1.0 was maintained and for the semi-continuous 

elements, the factor twas set to 0.56 throughout the analysis as gauss order of 12 was used 

for the integration of the comer elements. Cone results were compared with the results 

obtained from FEM analysis. 

The initial comparisons included the surface displacements and tractions for cones with a 

10mm wall thickness and a 5mm wall thickness. The BEM results agreed well with the 
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FEM results. This was then extended to internal points where BEM results were obtained 

at various distances along the wall of the cones. The internal displacements obtained for 

the cone with 10nnn wall showed oscillatory results at 1nnn away from the inner and outer 

surfaces and gave good results everywhere else. For a Snnn wall thickness, better internal 

displacement results were achieved at distances as close as lnnn from the surfaces. 

However, the internal stresses gave a much different picture. Hoop and Von Mises stresses 

compared at the mid-wall of the cones agreed well with the FEM results but large errors 

occurred at nodes close to the surfaces. The oscillations were a lot more severe than the 

internal displacements at the same nodes. This was believed to be due to the higher order 

of the singularity present in the stress formulations. 

For the results obtained through direct evaluation, good agreement was seen between the 

BEM and the FEM results. However, the surface stresses were determined using the surface 

displacements as the present formulation was not suitable for the direct calculation of these 

stresses. 

It is shown in this study that by using a cubic spline fit through the displacements, improved 

results can be obtained as the first derivative required for strain calculations would be 

continuous. If quadratic variation was used as in the BEM formulation, there would be 

discontinuities in the strains and this would be reflected in the stresses. 

As the maximum stresses were expected to be on the inner surface, these stresses were 

compared with the FEM results. For the Snnn wall thickness, excellent results were 

obtained in all of the stresses. However,there was a slight disagreement at the tip of the 

cone. 

To see the variation of the stresses on the inner surface as the cone height increased with 

a fixed base radius, several cones of 10nun thick walls were tested and compared with the 

FEM results. Cone heights of upto 180nnn were tested which was three times the size of 

the base radius. Hoop, Von Mises and the shear stresses were calculated on the inner surface 
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for all the cones. For hoop and Von Mises stresses, as the cone height varied, the stress 

curves turned in an antic10ckwise direction as if they were pivoted about 28mm away from 

the origin. These stresses were deliberately plotted against the base radius which was 

common to all the cones, regardless of their height. The maximum of these stresses 

occurred at the base. The shear stress became maximum where the two arcs of the surface 

met. These results were also confirmed by the FEM. 

The slight disagreement with the FEM results which was seen on the stresses calculated 

for the 5mm wall, was also present for the 10mm wall but it was more pronounced. As the 

cone height increased, the BEM results for the hoop and Von Mises stresses gave higher 

stress values at the tip of the cone. However this disagreement was confined only to the 

fIrst element on the tip. 
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Appendix 

A 

Linear Interpolation 
Formula 

The linear interpolation fonnula used in Chapter 3 is based on a straight line equation, 

v=m9+c (AI) 

To fmd the slope m and the intercept C, two equations must be written and solved 

simultaneously. 

9=9, 
J 

9 = 9j+1 

v = ,I ~ 

V=J+l ~ 

Subtracting Equation (A2) from Equation (A3): 

'+1 ' V - ,I = m (9, 1-9') 
J+ J 

(,1+1 
- J) 

m = (9 - 9,) 
j+1 J 

(A4) 

(AS) 

v 

J+I 

J 

,I =m 9,+c 
J 

J+l =m 9, I +c 
J+ 

(A2) 

(A3) 

L-__ J-____ ~~ ___ 9 

9j 9j+1 
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A2 X a. 1 J+ 

A3 X a. 
J 

:::} 

:::} 

lia. 1 = m a. a. 1 + c a. 1 
J+ JJ+ J+ 

_J+I v a.=ma. 1 a.+ca. 
J J+ J J 

Subtracting Equation (A7) from Equation (A6) gives: 

. '+1 
va

j
+1 - V aj = c (aj+1 - aj ) 

. '+1 
c= (vaj+l-v a) 

(a. 1 - a.) 
J+ J 

(A6) 

(A7) 

(A8) 

(A9) 

Now substituting the Equations (AS) and (A9) into the general equation (AI) give: 

( 

'+1 .) lJa J+la J ,/ _,/ '·I- V ' 
v= a + /+ J 

a
j
+1 - aj aj+, - aj 

(AlO) 

Equation (AlO) can be re-written in the following form: 

.,(a-a.) .(a.,-a) 
v = v+ J + v--,-J+~-

(a. , - a.) (a. , - a.) 
J+ J J+ J 

(All) 
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Geometry 

'-0 

t 

H 

h 

L ___ _ 
- - I __ 

d r - - -- b 

Figure B.1: Parameters used in the detennination of the cone geometry. 



M.Karamanoglu 1992 Appendix B: Formulation O/Tlre Cone Geometry 

The profile of the cones to be generated in this thesis is made by joining two arcs of two 

different circles. An arc of a small circle is used to make the tip and another arc of a much 

larger circle is used to fonn the rest of the cone. The two curves are merged at an angle 

where they have a common tangent. 

Nonnally, the base radius, b, cone height, H, the tip radius, r 0 and the wall thickness, t, are 

given and the rest of the parameters are calculated from the following relationships. 

Given "0' H, b and t: 

h=H-r 
o 

2 ;2 2 
(R - r) = a + h o 0 

2 2 2 
(R - r) = (R - b) + h 

o 0 0 

R2 _ 2r R + r2 = R2 - 2R b + b2 + h2 

o 00 0 0 0 

2 2 2 
2R (b - r) = b + h - r 

o 0 0 

b2 + h2 _,.2 
R = o 

o 

2 (b _,.2) 
o 

Having detennined the radius of the outer large are, Ro, then; 

d = R -b o 

-I d aT = tan h 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

Equations (B .1), (B .6), (B. 7) and (B.8) are used to generate the profIle of the outer surface. 

Subtraction of thickness t from R 0 and "0 gives the R; and r; for the inner profIle. 
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Elements 
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Figure C.I: A Curved beam used for the comparison of tangential stress 011 at 
angle 9 = 450

. 
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Figure C.1 shows a curved beam with an inner radius RF 0.2m, outer radius Ro = O.4m, 

b = O.lm and d = 0.2m. The beam is subjected to a point load W = 0.2 MN. Comparison 

of the stress due to bending involved the theory developed by Winkler and the numerical 

analysis by the BEM. 

The irmer surface of the beam was decretized into five quadratic elements, the outer surface 

into six quadratic elements and the ends at e = 00 and e = 900 into two quadratic elements 

each. 

The object of this analysis is to compare the stresses at a distance p measured from the 

inner wall at e = 450 and show the effect of seeking stresses at an end node of a quadratic 

element which is also shared by a neighbouring element. 

From the Winkler theory ( Beswick, 1992), the tangential stress along mean radius R is 

given by: 

where, 

<T = W sin e Y 
II J 

l (R+~») J = _R2 bd + R3ln d 
(R--) 

2 

(C.1) 

(C.2) 

Table C.l: Results of Winkler stress for the curved beam at e = 450
• 

0.0 10.02 I 0.04 I 0.06 I 0.08 I 0.10 I 0.12 I 0.14 I 0.16 I 0.18 I 0.20 

::::::::1 -89.0 /-64.71-44.51-27.41-12.71 0.0 1 11.2 1 20.9 1 29.7 1 37.5 1 44.S 

-92.11-64.21-43.61-26.71-12.51-0.261 10.6120.3 I 29.3 1 37.7 147.7 
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40 

20 
('1 

.e. 
~ 

0 

--"'> 
~ -20 

! ~ / 6, Winkler 1beory 
S -40 o BEM Results .§ 
~ 
~ -60 
tI) 

.02 .04 .06 .08 .10 .12 .14 .16 .18 .20 
Point p / rn 

Figure C.2: Comparison of stress due to bending at e = 45°. 

The results given in Table C.1 are also plotted in Figure C.2. The stresses at the internal 

points compare well but the surface nodes have 3.4% error on the inner surface and 7.2% 

error on the outer surface. When the mesh for the BEM model was arranged in such a way 

that the nodes on the inner and outer surfaces at e = 45°, corresponded to a mid-point ,the 

errors at the end nodes were seen to reduce to the similar order of the error on the internal 

nodes. 
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Stress Transformations 

Determining 0'11: 

B 

X3 e 'l\C Orr 

XI 

Figure 0.1: Resolving forces to detennine the stress (JII in tenns of the 
tangential stress (Jee. 
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On the inner surface there is no pressure, therefore on the surface, the radial stress orr is 

zero. By equating the horizontal forces from Figure 0.1: 

CB 099 cos e = AB 011 

However, from the triangle ABC, 

CB =AB cos e 

Substituting Equation (0.2) into Equation (0.1) and simplifying, 

2 
0Il = 099 cos e 

X3 

e 

v B 

XI 

Figure D.2: Resolving forces to detennine the stress 033 in tenus of the 
tangential stress Oee. 
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Determining (J33: 

The stress 0'33 similarly can be detennined by resolving forces and equating the vertical 

components. From Figure 0.2, 

AB 0'33 = BC 0'99 sin e 

From the triangle ABC, 

BC=AB sin e 

Substituiting Equation (0.5) into Equation (0.4) and simplifying, 

• 2 e 
0'33 = 0'99 sm 

Determining (J13: 

(0.4) 

(0.5) 

(0.6) 

The shear stress 0'13 can be expressed in tenns of the direct stresses 0'11 and 0'33' These 

stresses are turned into forces and resolved as shown in Figure 0.3. Equating the 

perpandicular forces to the surface, 

AC O'rr = AB 0'33 cos e + AB 0'13 sin e + BC 0'11 sin e + BC 0'13 cos e (0.7) 

By using the relationships from the triangle ABC in Figure 0.3, 

AB =AC cos e (0.8) 

BC=AC sin e (0.9) 

Substituiting Equations (0.8) and (0.9) into Equation (0.7), 
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X3 

e 

AB0
3l'n 

AB °31 

AB °33 cos e 

Q, B , 

AC Orr 

XI 

U
BCOII BCOl3 

. e BC 011 Sln 

Figure 0.2: Resolving forces to detennine the shear stress 0'13 in tenns of the 
direct stresses 0'11 and 0'33. 

O'rr = 0'33 cos
2 e + 0'31 sin e cos e + 0'11 sin

2 e + 0'13 sin e cos e (D.lO) 

However, due to symmetry, the shear stresses 

0'13 = 0'31 (D.ll) 

Hence, 

O'rT = 0'11 sin
2 e + 0'33 cos

2 e + 20'13 sin e cos e (D. 12) 
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There is no pressure applied onto the inner surface, therefore the radial stress orr is zero. 

Hence, 

. 29 29 
-0'11 sm - 033 cos 

° -13 - 2 sin 9 cos 9 
(D. 13) 

. 29 29 
-0'11 sm - 033 cos 

°13 = sin 29 
(D.14) 

- 183 -



Appendix 

E 

Further Results 

This appendix holds some of the graphs which their results are used in Chapter 6. All the 

figures are for a cone with 60rnrn base radius, 80mm cone height and lOrnrn wall thickness. 

Gauss order used for the semi-continuous elements on the S2 surface are 12x12. Number 

of elements on arel, arc2, arc3 and arc4 are 4, 10, 10 and 4 respectively. For the figures 

E.I-E.4 the number of elements on the S2 surface is 2 and for the figures E.S-E.7 the number 

of elements on S2 is 4. 



-oo V
I 

e 
\Q

 '0
 --.. C

'Il c IU
 e 8 ~ Q
.. 

.;a
 

0 ~ .:::
 

:::
 

C
'Il ~
 

.8
5 

.7
5 

f r 
.6

5 

.5
5 

t 
.4

5 
r- ~ r 

.3
5 

~ r ~ 

.2
5 

r :-

.1
5 
o 

6
-

t=
 0

.5
6 

v 
t=

0
.6

8
 

0 
t=

0
.7

9
 

S
ol

id
 li

ne
: F

E
M

 tr
ac

ti
on

s 

10
 

20
 

30
 

40
 

50
 

60
 

70
 

80
 

90
 

A
ng

le
 a

 
F

ig
ur

e 
E

.1
: R

es
ul

ta
nt

 d
is

pl
ac

em
en

ts
 o

n 
su

rf
ac

es
 S

l o
f t

he
 c

on
e 

w
it

h 
va

ri
ou

s 
t 

va
lu

es
 c

or
re

sp
on

di
ng

 to
 th

e 
G

au
ss

 p
oi

nt
s 

co
m

pa
re

d 
w

it
h 

th
e 

F
E

M
 re

su
lt

s.
 (

W
al

l t
hi

ck
ne

ss
 =

 lO
m

m
, N

o.
 o

f e
le

m
en

ts
 o

n 
S2

 =
 2

) 



-00 0"
1 

e 
IQ

 '0
 .... -..
. ~ Q
) e ~ -c. .;!
l 

0 § '3 O
Il 

Q
) 

~
 

.9
0 

.8
5 

.8
0 

~ 

.7
5 

~ 

.7
0 50

 

t 
-E

xt
ra

po
la

te
d 

re
su

lt
 

51
 

52
 

5
3

 
54

 
55

 
B

as
e 

R
ad

iu
s 
I m

m
 56

 
57

 6
. 

t=
 0

.5
6 

V
 

t=
0.

68
 

o 
t=

0.
79

 

S
ol

id
 li

ne
: F

E
M

 tr
ac

ti
on

s 

58
 

59
 

60
 

F
ig

ur
e 

E
.2

: R
es

ul
ta

nt
 d

is
pl

ac
em

en
ts

 o
n

 su
rf

ac
es

 S
2 

o
f t

he
 c

on
e 

w
it

h 
va

ri
ou

s 
t 

va
lu

es
 c

or
re

sp
on

di
ng

 to
 th

e 
G

au
ss

 p
oi

nt
s 

co
m

pa
re

d 
w

it
h 

th
e 

F
E

M
 r

es
ul

ts
.(

W
al

l 
th

ic
kn

es
s 

=
 l

O
m

m
, 

N
o.

 o
f e

le
m

en
ts

 o
n 

S2
 =

 2
) 



-00 -.
l 

.8
 

6 
t=

 0
.5

6 

V
 

t=
 0

.6
8 

.7
 

0 
t=

 0
.7

9 

S
ol

id
 li

ne
: F

E
M

 tr
ac

ti
on

s 

6 
\(

) 

.6
 

'0
 .... --CIl Q
 

<
I)

 6 
.5

 
<

I)
 

u c':
I 

0
. 

C
Il .....
 

0 ~ 
.4

 
-::: C

Il 
<

I)
 

~
 

.3
 

.2
 

.1 
. 

I 
. 

o 
10

 
20

 
30

 
40

 
50

 
60

 
70

 
80

 
90

 
A

ng
le

 e
 

F
ig

u
re

 E
.3

: 
R

es
ul

ta
nt

 d
L

'p
I.

K
M

T
lm

t\
 o

n
 .
.u
rf
.K
~ 

S
l 

o
f 

th
e 

co
n

e 
w

it
h 

va
ri

ou
s 

t 
va

lu
es

 c
or

re
sp

on
di

ng
 to

 th
e 

G
au

ss
 p

oi
nt

s 
co

m
pa

re
d 

w
it

h 
th

e 
F

E
M

 re
su

lt
s.

 (
W

al
l 

th
il

ln
e,

,,
 ."

, 
W

m
m

. 
N

o 
of

 e
le

m
en

ts
 o

n 
S:

! 
=

 2) 



0
0

 
0

0
 

-

-3
.0

 

-3
.1

 

-3
.2

 

-3
.3

 

-3
.4

 

-3
.5

 

-3
.6

 

-3
.7

 ~
 r ~ 

-3
.8

 r f 
-3

.9
 ~

 

-4
.0

 50
 

51
 6

. 
t=

0
.5

6
 

\
l 

t=
 0

.6
8 

0 
t=

0
.7

9
 

S
ol

id
 li

ne
: 

F
E

M
 tr

ac
ti

on
s 

t -
E

xt
ra

po
la

te
d 

re
su

lt
 

52
 

53
 

54
 

55
 

56
 

57
 

58
 

59
 

60
 

B
as

e 
R

ad
iu

s 
I n

un
 

F
ig

u
re

 E
.4

: T
ra

ct
io

ns
 o

n 
su

rf
ac

e 
~
 o

f t
he

 c
on

e 
w

it
h 

va
ri

ou
s 

t 
va

lu
es

 c
or

re
sp

on
di

ng
 to

 th
e 

G
au

ss
 p

oi
nt

s 
co

m
pa

re
d 

w
it

h 
th

e 
F

E
M

 re
su

lt
s.

 
(W

al
l t

hi
ck

ne
ss

 =
 lO

m
m

. N
o.

 o
f e

le
m

en
ts

 o
n

 S
2 
=

 2) 



..- 0
0

 
\0

 

.9
 

.8
 

0 
In

ne
r s

ur
fa

ce
 B

E
M

 re
su

lt
s 

V
 

O
ut

er
 s

ur
fa

ce
 B

E
M

 re
su

lt
s 

.7
 

S
ol

id
 li

ne
: F

E
M

 tr
ac

ti
on

s 

e '" 
.6

 
'0

 - - a C
I)

 e 
.5

 
C

I)
 

t
)
 .., a .::!

3 0 ~ 
.4

 
~
 

en
 

~
 

.3
 

t 
-E

xt
ra

po
la

te
d 

re
su

lt
 

.1 
o 

10
 

20
 

30
 

40
 

50
 

60
 

70
 

80
 

90
 

A
ng

le
 e

 
F

ig
u

re
 E

.5
: 

R
es

ul
ta

nt
 d

is
pl

ac
em

en
ts

 o
n 

su
rf

ac
es

 S
I 

an
d 

S3
 o

f t
he

 c
on

e 
w

it
h 

t 
=

 0.5
6.

 (
W

al
l t

hi
ck

ne
ss

 =
 lO

m
m

, N
o.

 o
f e

le
m

en
ts

 o
n 

Sz
 

=
4

) 



-\0 0 

1.
00

 

.9
5 

e 
.9

0 
't:/

 0 .....
 -rIl d G

J e 
.8

5 
g Q

. 
.;1

.l 0 d ~ ~
 

.8
0 

rI
l ~
 

.7
5 

.7
0 

t 
-E

xt
ra

po
la

te
d 

re
su

lt
 

o 
1 

2 
3 

4 
5 

6 
D

is
ta

nc
e 

fr
om

 t
he

 in
ne

r w
al

l /
 m

m
 

D
 

B
E

M
 re

su
lt

s 
o

n
 s

ur
fa

ce
 S

2 

S
ol

id
 li

ne
: F

E
M

 d
is

pl
ac

em
en

ts
 

7 
8 

9 
10

 

F
ig

ur
e 

E
.6

: 
R

es
ul

ta
nt

 d
is

pl
ac

em
en

ts
 o

n 
su

rl
ac

es
 S

2 
o

f t
he

 c
on

e 
w

it
h 

t=
 0

.5
6.

 (
W

al
l t

hi
ck

ne
ss

 =
 lO

ro
m

, N
o.

 o
f e

le
m

en
ts

 o
n 

S2
 =

 4
) 



-\0 -

-2
.0

 t 
-2

.2
 

-2
.4

 ~
 

c 
~
 

B
E

M
 tr

ac
ti

on
s 

-2
.6

 
S

ol
id

 li
ne

: F
E

M
 tr

ac
ti

on
s 

-2
.8

 
..s

 ~ -
-3

.0
 f 

~ 0 "::s
 

0 '" 
-3

.2
 

... 
>

-
E-<

 

t 
-E

xt
ra

po
\a

tc
d 

re
su

lt
 

-3
.4

 t f 
-3

.6
 c , , E-

-3
.8

 c - . . r 

-4
.0

 50
 

51
 

52
 

53
 

54
 

55
 

56
 

57
 

B
as

e 
R

ad
iu

s 
I n

un
 

F
ig

u
re

 E
.7

: 
C

om
pa

ri
so

n 
o

f B
E

M
 a

nd
 F

E
M

 tr
ac

ti
on

s 
on

 s
ur

fa
ce

 S
2 

o
f t

he
 c

on
e 

w
it

h 
t 
=

 0.5
6.

 
(W

al
l t

hi
ck

ne
ss

 =
 lO

m
m

, N
o.

 o
f e

le
m

en
ts

 o
n 

S2
 =

 4)
 

o 
0 

58
 

59
 

60
 



References 

Banarjee, P.K. and R.Butterfield (1981) Boundary Element Methods In Engineering 

Science, McGraw-Hill Book Co. (UK) Ltd., London. 

Bakr (Becker), A.A.G. (1983) 'Boundary integral equation analysis of axisymmetric stress 

and potential problems' , PhD Thesis, University of London, UK. 

Beswick, G.E. (1992a) 'Application ofBEM to Linear Structures', PhD Thesis, Imperial 

College, University of London, UK. 

Beswick, G .E. (1992b) Elements of Modern Linear Elastic Stress Analysis, Pentech Press, 

Hendon, UK. 

Brebbia, C.A. and S.Walker (1980) Boundary Element Techniques In Engineering, 

Newness - Butterworths, London. 

Brebbia, C.A. (1984) The Boundary Element Method For Engineers, Pentech Press, 

London. 

Brebbia, C.A. and J. Dominguez (1989) Boundary Elements: An Introductory Course, 

Computational Mechanics, Southampton. 

Cerrolaza, M. and E. Alarcon, J. Molina (1989a) 'Accurate integration of singular kernels 

in boundary element method' , in Advances in Boundary Elements: Computations 

and Fundamentals, Vol. 1, C.A. Brebbia and J.J. Connors (eds.), pp.227-240. 

Cerrolaza, M. (1989b) 'A bi-cubic transformation for the numerical evaluation of cauchy 

principal value integrals in boundary methods', Int. J. Numer. Meth. in Engng, 

vol. 28,pp.987-999. 



M. Karamanoglu 1992 References 

Chaudonneret, M. (1978) 'On the discontinuity of the stress vector in the boundary integral 

equation method for elastic analysis', in Recent Advances in Boundary Element 

Methods, C.A. Brebbia (ed.), Pentech Press. 

Cook, R.D, D.S. Malkus and M.E. Plesha (1989) Concepts and Applications of Finite 

Element Analysis, John Wiley & Sons, New York. 

Cookson, RA. and A. EI-Zafrany (1986) 'State of the art review of the boundary element 

method', inAdvances in the Use o/Boundary Element Method/or Stress Analysis, 

The Institution of Mechanical Engineers, London. 

Cruse, T.A. (1977) 'Mathematical foundations of the boundary integral equation method 

in solid mechanics', Internal Report No: AFOSR-TR-77-1002,PrattandWhitney 

Aircraft Group. 

Floyd, C.G. (1984) 'The determination of stresses using a combined theoretical and 

experimental analysis approach', Proc. Second Int. Con! on Computational 

Methods and Experimental Measurements, C.A. Brebbia and G.A. Karamidas 

(eds.), CML Publications, Southampton, section 6, pp. 67-82. 

Gray, L.J., L.F. Martha and A.R Ingraffea (1990) 'Hypersingular integrals in boundary 

element fracture analysis' ,Int. J. Numer. Meth. in Engng, vol. 29,pp. 1135-1158. 

Guiggiani, M. and P.Casalini (1987) 'Direct computation of cauchy principal value 

integrals in advanced boundary elements ',Int. J. Numer. Meth. in Engng, vol. 

24,pp.1711-1720. 

Guiggiani, M. (1988) 'The evaluation of cauchy principal value integrals in the boundary 

element method - a review', Computers and Mathematics with Applications, 

Special Issue on BIEM/BEM. 

Guiggiani, M., G. Krishnasamy, T.J. Rudolphi and F.J. Rizzo (1991 a) 'A general algorithm 

for the numerical solution of hypersingular boundary integral equations' ,J. Appl. 

Mechanics, Trans. ASME. 

Guiggiani, M. and G. Krishnasamy, F.J. Rizzo, T.J. Rudolphi (1991b) 'Hypersingular 

boundary integral equations: a new approach to their numerical treatment' , Proc. 

IABEM-90 Cont, October 15-19, Rome, Italy, Springer-Verlag (in press). 

- 208-



M. Karamanoglu 1992 References 

Guiggiani, M. (1991c) 'Direct evaluation of hypersingular integrals in 2D BEM', Proc. 

Seventh GAMM Seminar on Numerical Techniques for Boundary Element 

Methods, January 25-27, 1991,Kiel, (to appear in Notes in Numerical Fluid 

Mechanics), Vieweg-Verlag. 

Higashimachi, T., Y. Ezawa, N. Okamoto and T. Aizawa (1986) 'Highly accurate boundary 

element method and its application to structural analysis', Bulletin of JSME, vol. 

29, pp. 1096-1103. 

Jaswon, M.A. (1963) 'Integral equation methods in potential theory - 1', Proc. Roy. Soc. 

Lond., A275, pp. 23-32 

Jun, L., G. Beer and J.L. Meek (1985a) 'Efficient evaluation of integral of order 11r, 1/r2, 

1/r3 using gauss quadrature', Engineering Analysis, 2, pp. 118-123. 

Jun, L., G. Beer and J.L. Meek (1985) 'The application of double exponential fonnulas in 

the boundary element method', Proc. Seventh Int. Con! on Boundary Element 

Methods, Vol. 2, C.A. Brebbia and G. Maier (eds.), Springer Verlag, section 13, 

pp.3-16. 

Karamanoglu, M. and G.E. Beswick (1991), 'Improving the accuracy ofBEM in the use 

of non-equidistant elements', Proc. Sixth Int. Con! on Boundary Element 

Technology, C.A. Brebbia (ed), Computational Mechanics Publications, 

Southampton, pp. 321-334 

Krishnasamy, G., L.W. Schmerr, T.J. Rudolphi and F.J. Rizzo (1990) 'Hypersingular 

boundary integral equations: Some applications in acoustic and elastic wave 

scattering',J. Appl. Mechanics, Trans. ASME, vol. 57, pp. 404-414. 

Kutt, H.R. (1975) 'Quadrature fonnulae for fInite-part integrals', CSIR Special Report, 

WISK 178, National Research Institute for Mathematical Science, Pretoria, South 

Africa. 

Labeyrie, J. and M. Blanc (1985) 'A new integration scheme in the bem to fracture 

mechanics problems', Proc. Seventh Int. Con! on Boundary Element Methods, 

Vol. 2, C.A. BrebbiaandG. Maier (eds.), CMLPublications, section 8,pp. 47-56. 

Lachat, J.C. (1975) 'A further development of the boundary integral technique for 

elastostatics' , PhD Thesis, Southampton University, UK. 

- 209-



M. Karamanoglu 1992 References 

Lera, S.G, E. Paris and E. Alli!con (1982) 'Treatment of singularities in 2-D domain using 

BreM', Appl. Math. Modelling, vol. 6, pp. 111-118. 

Massonnet, C.E. and P. Morelle (1987) 'The origin of the boundary element method and 

its variants', Proc. Ninth Int. Conf. on Boundary Element Methods, Vol. 1, W.L. 

Wendl and C.A.Brebbia (eds.), CML Publications, pp. 1-10. 

Pafec (1975) Pafec 75: Theory, Results, Pafec Limited, Nottingham. 

Portela, A., M.H. Aliabadi and D.P. Rooke (1991), 'Dual boundary element analysis of 

pin-loadedlugs',Proc. Sixth Int. Con! on Boundary Element Technology ,C.A. 

Brebbia (ed), Computational Mechanics Publications, Southampton, pp. 381-392. 

Portela, A., M.H. Aliabadi and D.P. Rooke (1992), 'Dual boundary element analysis of 

linear crack problems', in Advances in BEM for Fracture Mechanics, 

Computational Mechanics Publications, Southampton. 

Prescot, J. (1961) Applied Elasticity, 2nd ed., Dover. 

Rees, D.W.A. (1990) Mechanics of Solids and Structures, McGraw-Hill, London. 

Riccardella, P. (1973) 'An implimentation of the boundary integral technique for plane 

problems in elasticity and elastoplasticity', PhD Thesis, Carnegie-Mellon 

University, Pittsburg. 

Stoer, J. and R. Bulirsh (1983) Introduction to Numerical Analysis, Springer-Verlag, 

Berlin. 

Stroud, A.H. and D. Secrest (1966) Gaussian Quadrature Formulas, Prentice Hall. 

Symm, G.T. (1963) 'Integral equation methods in potential theory - II', Proc. Roy. Soc. 

Lond., vol. A275, pp. 33-46 

Telles, J.C.F. (1987) 'A self-adaptive co-ordinate transformation for efficient numerical 

evaluation of general boundary element integrals', Int. J. Num. Meth. in Engng, 

vol. 24, pp. 959-973. 

Xu, I.M. and C.A. Brebbia (1986) 'Optimum positions for the nodes in discontinuous 

boundary elements', Proc. Eighth Int. Con! on Boundary Element Methods, 

Vol. 2, M. Tanaka and C.A. Brebbia (eds.), CML Publications, pp. 751-767. 

- 210-


	568733_0
	568733_0001
	568733_0002
	568733_0003
	568733_0004
	568733_0005
	568733_0006
	568733_0007
	568733_0008
	568733_0009
	568733_0010
	568733_0011
	568733_0012
	568733_0013
	568733_0014
	568733_0015
	568733_0016
	568733_0017
	568733_0018
	568733_0019
	568733_0020
	568733_0021
	568733_0022
	568733_0023
	568733_0024
	568733_0025
	568733_0026
	568733_0027
	568733_0028
	568733_0029
	568733_0030
	568733_0031
	568733_0032
	568733_0033
	568733_0034
	568733_0035
	568733_0036
	568733_0037
	568733_0038
	568733_0039
	568733_0040
	568733_0041
	568733_0042
	568733_0043
	568733_0044
	568733_0045
	568733_0046
	568733_0047
	568733_0048
	568733_0049
	568733_0050
	568733_0051
	568733_0052
	568733_0053
	568733_0054
	568733_0055
	568733_0056
	568733_0057
	568733_0058
	568733_0059
	568733_0060
	568733_0061
	568733_0062
	568733_0063
	568733_0064
	568733_0065
	568733_0066
	568733_0067
	568733_0068
	568733_0069
	568733_0070
	568733_0071
	568733_0072
	568733_0073
	568733_0074
	568733_0075
	568733_0076
	568733_0077
	568733_0078
	568733_0079
	568733_0080
	568733_0081
	568733_0082
	568733_0083
	568733_0084
	568733_0085
	568733_0086
	568733_0087
	568733_0088
	568733_0089
	568733_0090
	568733_0091
	568733_0092
	568733_0093
	568733_0094
	568733_0095
	568733_0096
	568733_0097
	568733_0098
	568733_0099
	568733_0100
	568733_0101
	568733_0102
	568733_0103
	568733_0104
	568733_0105
	568733_0106
	568733_0107
	568733_0108
	568733_0109
	568733_0110
	568733_0111
	568733_0112
	568733_0113
	568733_0114
	568733_0115
	568733_0116
	568733_0117
	568733_0118
	568733_0119
	568733_0120
	568733_0121
	568733_0122
	568733_0123
	568733_0124
	568733_0125
	568733_0126
	568733_0127
	568733_0128
	568733_0129
	568733_0130
	568733_0131
	568733_0132
	568733_0133
	568733_0134
	568733_0135
	568733_0136
	568733_0137
	568733_0138
	568733_0139
	568733_0140
	568733_0141
	568733_0142
	568733_0143
	568733_0144
	568733_0145
	568733_0146
	568733_0147
	568733_0148
	568733_0149
	568733_0150
	568733_0151
	568733_0152
	568733_0153
	568733_0154
	568733_0155
	568733_0156
	568733_0157
	568733_0158
	568733_0159
	568733_0160
	568733_0161
	568733_0162
	568733_0163
	568733_0164
	568733_0165
	568733_0166
	568733_0167
	568733_0168
	568733_0169
	568733_0170
	568733_0171
	568733_0172
	568733_0173
	568733_0174
	568733_0175
	568733_0176
	568733_0177
	568733_0178
	568733_0179
	568733_0180
	568733_0181
	568733_0182
	568733_0183
	568733_0184
	568733_0185
	568733_0186
	568733_0187
	568733_0188
	568733_0189
	568733_0190
	568733_0191
	568733_0192
	568733_0193
	568733_0194
	568733_0195
	568733_0196
	568733_0197
	568733_0198
	568733_0199
	568733_0200
	568733_0201
	568733_0202
	568733_0203
	568733_0204
	568733_0205
	568733_0206
	568733_0207
	568733_0208
	568733_0209
	568733_0210
	568733_0211
	568733_0212
	568733_0213
	568733_0214
	568733_0215
	568733_0216
	568733_0217
	568733_0218
	568733_0219
	568733_0220
	568733_0221
	568733_0222
	568733_0223
	568733_0224

