Middlesex
University
London

Middlesex University Research Repository:
an open access repository of
Middlesex University research

http://eprints.mdx.ac.uk

Vince, J A, 1975.
Picaso: a computer language for art & design.
Available from Middlesex University’s Research Repository.

Copyright:
Middlesex University Research Repository makes the University’'s research available electronically.

Copyright and moral rights to this thesis/research project are retained by the author and/or other
copyright owners. The work is supplied on the understanding that any use for commercial gain is
strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without
prior permission and without charge. Any use of the thesis/research project for private study or
research must be properly acknowledged with reference to the work’s full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations
taken from it, or its content changed in any way, without first obtaining permission in writing from the
copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:
eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

PICASO

A

COMPUTER LANGUAGE
FFOR

ART & DESIGN

J A Vince

1975

BRUNEL UNIVERSITY

”Hn a

ABSTRACT

PICASO is a computer language specifically

designed to enable the artist/designer to

use the digital computer as a graphic tool.

It is a unique development in that it provides
the artist for the first time, an integrated
range of sophisticated graphic software in a

format meaningful to the non-numerate user.

This thesis examines the problem area of art
and design, and reviews relevant computer
software that is currently‘available. It
continues to define the software requirements
of the artist and designer, and illustrates

how these are met by PICASO.

- CONTENTS PAGE

1 INTRODUCTION 1

2 STATEMENT OF THE PROBLEM 3

2.1 COMPUTER ART

2.2 THE GROWTH OF COMPUTER ART

2.9 THE PRESENT PROBLEM

3 STATE OF THE ART 8

3.1 COMPUTER GRAPHICS IN EDUCATION

3.2 COMPUTER GRAPHICS IN ART & DESIGN

Uy COMPUTER ART SOFTWARE REQUIREMENTS 10

4.1 LANGUAGE TYPE
4.2 LANGUAGE PHILOSOPHY

4,3 EXISTING SOFTWARE

5 PICASO 20

5.1 DESIGN PHILOSOPHY

5,2 SYSTEM STRUCTURE

5.3 LANGUAGE SYNTAX AND SEMANTICS

5.4 PICASO SPATIAL CONVENTIONS

5.5 PICASO STRUCTURES

5.6 STRUCTURE MANIPULATION

5.7 PICASO DRAWING COMMANDS

5.8 PICASO STRUCTURE ANALYSIS COMMANDS
5.9 PICASO SURFACES

5.10 PICASO SPECIAL EFFECTS

511 PICASO FUNCTIONS

5.12 PICASO ARRAY HANDLING COMMANDS

7

PAGE

PTICASO EXAMPLES 71

6.1 EXAMPLE OF THE 2-D LIBRARY

6.2 EXAMPLE OF THE 3-D LIBRARY

6.3 SHAPE MANIPULATION

6.4 SURFACES

6.5 SPECIAL EFFECTS

6.6 VARIOUS EXAMPLES

APPLICATION AREAS FOR PICASO 89

7.1 ART & DESIGN

7.2 MATHEMATICS

7.3 ENGINEERING

CONCLUSTIONS 95

APPENDICES 98

9.1 SUMMARY OF PICASO SYSTEM COMMANDS

9,2 SUMMARY OF PICASO INPUT/OUTPUT COMMANDS

9.3 SUMMARY OF PICASO SHAPES

9.4 SUMMARY OF PICASO OBJECTS

9.5 SUMMARY OF PICASO STRUCTURE MANIPULATING
COMMANDS

9.6 SUMMARY OF PICASO PLOTTING COMMANDS

9.7 SUMMARY OF PICASO STRUCTURE ANALYSIS COMMANDS

9.8 SUMMARY OF PICASO FUNCTIONS

0.9 SUMMARY OF SPECIAL EFFECTS

9.10 SUMMARY OF ARRAY HANDLING COMMANDS

PAGE

9.11 SUMMARY OF PICASO SURFACE COMMANDS

9.12 PICASO DATA STRUCTURE
9.13 WINDOWING ALGORITHM

9.14 ISOMET ALGORITHM

10 REFERENCES - 120

11 PICASO USER MANUAL 122

1 INTRODUCTION

There has never been a deliberate attempt to create

and develop computer art, its existence and evolution

has always been unstable and uncontrolled which has
accounted for considerable waste of effort and time

in rediscovering well established graphic concepts,
Consequently, artists working with computers have a
serious communication handicap in that there is not
available a universal language to interface the artist
to the computer, which requires them to master

unsuitable programming languages to achieve relatively

primitive graphic effects,

PICAS0 is a modular structured language developed by

the author for the artist or designer, enabling him
to manipulate real and abstract graphic concepts

without the burden of advanced programming. PICASO
has also been designed to work with a small digital

computer with the minimum of graphic hardware,

namely a graph plotter, and yet produce sophisticated

graphic output.

The creation of PICASO is The result of several years
research by the author into computer graphics to
discover and establish the important problem areas
encountered by the novice, and its development has

been influenced considerably by the opinions of artiéts

working with computers,

1 INTRODUCTION Continued.

This thesis describes the problems encountered by
computer artists and how PICASO offers a real and
original contribution to the development of computer

graphics in the areas of art and design.

2 STATEMENT OF THE PROBLEM

2.1 COMPUTER ART

Computer art is an art form that has emerged over
the past two decades involving the digital computer
and graphic peripherals to express graphic ideas.
The art form is unique in that it permits the artist
to explore techniques that were avoided due to the
time and skills required, and also provides a vast

source of graphic effects that are unique to the

computer.
The earliest forms of computer art consisted of

generating pictures on a line printer to create

images from patterns of characters and over-printing

them to create shading. Obviously, this had

limited applications but was a first step to

realising the potential of the computer as a graphic

tool.

The development of the digital plotter and the
graphic display provided two important tools for
the artist, as these permitted the creation of
simple line drawings. However, the control of
these ideas demanded a programming expertise that
is not common among artists. This severe user
restriction has inhibited the growth of computer

art as a universally available art form,

2.2 THE GROWTH OF COMPUTER ART

As early as 1960, the Boeing Company were using the
computer to draw three-dimensional human figures to
assist designers in the ergonomics of cockpit design,

and since this pioneer work computer graphics has

continued to play a major role in computer aided design.
Computer art however, emerged in the wake of computer
graphics exploiting softwgre primarily designed for
engineers to the advantage of the artist.

The 1ac£ of specific software at this time severely
restricted the grpwth of computer art, as it has been

estimated that in 1971 no more than 1000 researchers

were working on computer. art in the entire worldgl)
Even today in 1975 there is still a real problem with
the availability of software, whilst one institution
might have access to advanced graphic hardware and the
latest software, another might not be beyond the stage
of’ reproducing simple geometric patterns on a graph

plotter. So the problem with growth is not Jjust a

qQuestion of rate, but that it has not been geographically

uniform,

2.3 THE PRESENT PROBLEM

Investigations have shown that the majqrity of computers

in educational establishments with graphic equipment

are not exploiting the full capability of this equipment,
due to the limited software available, This situation is

so serious that immediate steps have been taken to

organise at a national level the acquisition of graphic

(2)

software, and the redistribution to educational users,
Therefore the present problems are the lack of general

graphic software at a global level and specifically

software for the artist/designer.

It is incorrect to believe that there is a total absencCe

of graphic éoftware, obviously it must and does exist,

but it tends to fall into various categories.

Machine deEendent software

It is not always possible to design software to be
indepe?dﬁnt of hardware, for example a language 1like
3

SPROGS has been specifically designed to operate a

SD4020 microfilm recorder, but there is software
available that is machine dependent from the aspects of
core requirement and compiler availability., Often one
can attempt to implement algorithms developed on larege
machines, only to discover that the programmer made no
attempt to conserve core space, with the result that the

user with a small or medium size computer‘is unable to

use the program, There exists also other software that

(%)
require? ?ssociated programming languages such as PL1
D

and APL » languages that are still not universally

available.

Sgecialist software

The nature of computer graphics is such that it is not,
and probably will not be supported in the near future
by a universal language; this has resulted in the use

of existing languages and the development of specialist
graphic languages to cope with individual problem areas,
MULTIPATCH(6)a language for interactive design and COMPAX(7)
a language for scene analysis are totally different in
structure, syntax and application, but they are both
useful graphic languages. This specialisation of
languages presents a problem to the user investigating
several problem areas simultaneously, but is of 1little

assistance to the artist/deéigner who is unable to def'ine

the extent of his problem area.

Eernsive software

All software is expensive, and Licklider's article in

(8)

1969 'tA Picture is Worth a Thousand Words-~ and It Costs'!

still holds true today.

The DISSPLAF9)package is probably one of the most
sophisticated graphic software systems available, It is
machine and device independent, implemented in FORTRAN,
works in two and three dimensions with or without hidden-
line removal, but as one can appreciate it has a

correspondingly high outright purchase price. The

educational user might require DISSPLAt!'s features, but

could not afford them,

Here then is the dilemma. On one hand the artist needs

graphic sof'tware, and on the other, software is
available but is either too expensive, unproven,

unsuitable, too specialised or machine dependent.

In spite of these limitations, computer art has

managed to survive and grow into a world-wide activity,

and has had considerable influence on art and design.

3 STATE OF THE ART

3.1 COMPUTER GRAPHICS IN EDUCATTION

With the advent of mini-computer graphic systems,
computér graphics is now within the budget of many
educational institutions. It haé already influenced
many areas of education, and it is difficult to

isolate one subject that has remained untquched.

‘The author's personal work alone has involved him

in civil engineering, electrical engineering, control-
engin;ering, music, mathematics, fine art, and graphic
design. Unfortunately this influence has been local
rather than global, and has treated privileged areas
of activity where there exists adequate expertise, but
many under privileged areas where there is a desire

to enjoy the same facilities, but no expertise

available.

3.2 COMPUTER GRAPHICS IN ART & DESIGN

Computer graphics finds its way into art and design
through courses like DipAD in Fine Art, Graphic Design

and Interior Design. The course content depends

entirely upon the graphics system implemented, and

consequently varies considerably, This is an
unfortunate state of affairs,but littie can be done

until the software aspect is formalized,

In the author's experience, computers can produce a

wide variety of responses from art students, ranging

from a total rejection to complete absorption in
computer techniques, neither of which is totally
healthy. An initial reaction is to regard the computer
as totally non-creative, which is true in some
respects, but difficult to prove until the .student

has had a chance to experience using the machine.

At first, the whole concept of using'computers in
the area of art appears foreign, but students who

study the subject with an open mind discover that

there is a real place for the computer,

A good graphics system can teach art students many

things about their own subject. It can help
formalize many abstract concepts concerning space,
symmetry, perspective etc., and even provide a

completely new insight into shapes and objects and

their topological properties,

There will always be students who remain unconvinced
about the use of computer techniques in art, and
perhaps the image of the computer together with
unsuitable software, has a lot to answer for in

this context. Perhaps the next generation of

sof'tware will assist in providing greater cohesion

in this entire subject area.

10

Y SOFTWARE REQUIREMENTS FOR ART & DESIGN

4,1 LANGUAGE TYPE

The most popular language for implementing graphic

programs is FORTRAN, as it provides features for
expressing mathematical ideas that can directly
represent graphic concepts. However, for an artist
the use of FORTRAN creates two major problems; the
first is learning FORTRAN, and the second is the
acquisition of programming techniques such as data
structure Handling, algorithms, and possibly wvector
analygis, coordinate geometry, topology and matrix
theory. The author has actually taught FORTRAN to
artists and discovered from first-hand experience

the concepEual problems this language poses to the

artistic intellect.

The artist obviously requires a language that handles
directly graphic concepts, and therefore calls for

a special 1angﬁage. Although many languages have
been developed there is not one that has managed to
acquire the status of a language like FORTRAN or ALGOL.

Some of these existing languages are described in

Section 4.13.

4.2 LANGUAGE PHILOSOPHY

E

The majority of problem- oriented languages enable a
user to identify system elements, groups, procedures
and operations with names familiar and relevant to the

user. Therefore any graphics language must be

capable of handling ideas such as space, form,

11
movement, texture and colour etc, in a way that is
natural for the artist. He must be able to express
his thoughts in a notation that will not hide the
meaning of his ideas. The following features are
considered essential requirements for such a
language.

4,2.1 SPACE

The language must permit the user to handle two and
three~-dimensional spaces so that 3-D objects may be

manipulated together with 2-D shapes with equal ease.

4.2.2 FORM

The data structure handling shapes and obJjects
should enable essential features of form to be

controlled such as: vertices, surfaces, visibility,

size, displacement etc..

4,2.3 VIEWPOINT

A two-dimensional space presents no unusual problems
regarding a viewpoint, however, three-dimensional
systems must provide natural perspective trans-

formations for all viewpoints,

4.,2.4 MOVEMENT

Both the observer and object must be capable of

movement within space,

4.,2.5 SCENE ANALYSTIS

A graphic scene must be available for analysis to

permit development by the user before a final

drawing is created.

4.2,6 LANGUAGE SYNTAX

The hardest aspect of learning any computer language,
is understanding the syntax, therefore the non-
numerate user must not be faced with problems such

as precedence relationships, evaluation procedures

and algorithm design.

L,2.7 "LANGUAGE SEMANTICS
The language semantics must be clear and precise,

with meaningful graphic names associated with

programming elements with the minimum amount of

symbolic notation.

4,2.8 ITMPLEMENTATION

Assuming that the previous graphic requirements can
be met, the rgmaining features relate to the method
of implementation,

If the language is to eﬁjoy a wide range of users, it
must be implemented in a language that is readily
available, and also be independent of hardware

configurations.

The life of the language will depend upon its
effectiveness in solving problems, and as tho
boundarigs'of art and design are virtually undefined,

its life will ultimately depend on how far it can be

extended,

12

13
4.3 EXISTING SOFTWARE
, (10)
In May 1963, L.G. Roberts published a paper
illustrating a solution to the hidden-line problen,
During the following twelVe years many researchers
developed other elegant solutions to the same problem,

(11) (12) (13)

notably, Warnock, Loutrel, and Matsushita.

It is strange that what appears on the surface to be

a trivial problem, has-attracted so much devoted

attention., Even today this one aspect of computer

graphics still attracts the inquisitive mind, to

discover new methods of resolving the problem,

This complete problem area is concerned with similar
conceptual problems, and the deep underlying
complexity has created virtual world-wide activity in
computer graphics, from the formulation of graphic

languages, to the production of computer aided motion

pictures,

Solutions to these problems tend to be of a mathematical
or logical nature, and demand a skill in computer
programming to implement them. Obviously the non-
numerate person would be unable to cope in this
situation, and is why the majority of artists are

unable to develop their own software,

Knowlton describes programmers and artists as "creative,

imaginative, intelligent, energetic, industrious,

14

competitive, and driven", but programmers were "logical,

inhibited, methodical...", whilst artists were "alogical
(14)

impulsive, and intuitive". This gross difference

in behaviour, in the authors opinion, is why the artist

is unable to cope with the algorithmic nature of

scientific programming languages.

(15)

Knowlton's collaboration with Mrs. Schwartz although
resulted in several creative productions, had similar
problems, The programmer (Knowlton)1was pnable to
influence the artistic content of the project, and the
artist (Schwartz) was unable to contribute to the
programming side of the work. This division of effort

is completely unrealistic from both sides, for ideally

there should be no need for a programmer. The artist
must be in a position to control and guide the entire

project from concept, through implementation to the

ffinal goal.

In comparison to technical graphic software systems,
there are very few systems supporting the art and

design area., However the relevant systems are

discussed below.

4,3.1 TARPS (KNOWLTON 1921)

TARPS (Two-dimensional Alphanumeric Raster Picture
System) was written by Knowlton at the University of

California. He describes this language as a set of

macros written in terms of BELFIX which describe

operations on a large 92x126 array of alphanumeric
characters, The films he produced with Vanderbeek
were rather limited in their scope, as they were only

concerned with the manipulation of patterns of
(14)

characters, Knowltons own criticism was "T was

disappointed in the language- it seemed too restrictive',

4,3.2 EXPLOR (KNOWLTON 1970)

EXPLOR (EXplicit Patterns, Local Operation and
Randomness), This was also written at the University
of California and was developed in a collaboration

with Lillian Schwartz, resulting in the films "UFO's

and Pixillation".

Again, Knowlton was not completely satisfied with the
language because of the lack of feedback into the

language design process by the users.

It should be realised that TARPS and EXPLOR were not

attempts to completely interface the artist to the

computer, one can regard them as exploratory systems

in the area of animation,

EXPLOR is currently being implemented at Imperial

College London,

4.3.3 PDL (G.WYVILL 1972)

PDL (Pictorial Description Language) was written by

WYVILL at the University of Bradford, to produce

computer drawings with a small budget. This might only

16

consist of a mini-computer, teletype and a digital

plotter,

It is aimed at the artist/designer and includes
important language features such as programmer

defined words for shapes, simple syntax and an

efficient data base system., The main restriction

with PDL is its limitation to work in two dimensions.,

A completely new design philosophy is required to

include the handling of 3-D structures.

4,3.4 SPROGS (R.E.THOMAS 1974)
SPROGS (SD 4020 PDP15 Rapid Output Graphics System)
was developed by Thomas at the Atlas Computer

Laboratorﬁ. It is a language consisting of a set of

FORTRAN subroutines that interface the user to the

SD 4020 microfilm recorder, and VTO4 refreshed

display.

It is an extremely powerful language to handle an

equally powerful computer system., In some respects

this is a disadvantage as its user is restricted

to the sophisticated computer hardware necessary to

drive the recorder.

The language does not appear to contain a large

library of shapes, and those that do exist are two-

dimensional. The creation of 3-D objects is left to

the user. SPROGS also requires a reasonable ability

in FORTRAN programming, and thus restricts its use in

the area of art and design,

17
4.3.5 CAMP & CAMPER (FRANCIS, HOPGOOD & RALPHS 1973)
CAMP (Computer Aided Motion Pictures) was developed at
the Atlas Computer Laboratory, from an original idea
by S.Anderson to produce an efficient picture language

for producing computer animated films.

CAMPER is basically a 3-D extension of the 2=D CAMP

package.

Therauthors of the system claim that no knowledge of
computer programming languages is required to use it.
The user writes a program by creating a sequence of
CAMP statements that have a standard format. In this

way the beginner need not be concerned with memorizing

different statement structures.

The prime objective of CAMP is to interface the user
to a microfilm recorder without the user being aware

of the underlying comlexity that actually exists. So
often when a problematical hardware feature is
disguised by software, the probleﬁlis not always

removed, but transformed. CAMP seems to overcome

this aspect.

4L.3.5 GINO (WOODFORD et al 1965)

GINO (Graphical INput and Output) was developed by

the University of Cambridge Computer Aided Design Group,
and was designed and implemented as a general purpose
graphics package.

The GINO system is accessed via a high-level language

18

normally FORTRAN, which enables the user to develop,
manipulate and eventually display a graphic scene.
Probably the greatest advantage of this system is its

ability to be interfaced with any system of hardware.

It includes all the features one expects from a
sophisticated commercial package and consequently
demands a high=level programming expertise from the
user. GINO has not been designed to cater for the
user working in art and design, but could play an

important role in implementing such a system.

h.3.7 ART1 (NASH & WILLTAMS 1970)

ART]1 was developed at the University of New Mexico

to permit students to produce graphic output using

a line-printer or teletype. Obviously the limitations
are considerable, but it presents a simple and practical

method of introducing computing concepts to art

students,

At present Teeside Polytechnic are using the package

in their DipAD and are hoping to develop an inter-

active version,

4.3.8 PLAD (SAUNDERS,R 1972)

PLAD (Programming Language for Art and Design) was

written by Roger Saunders as a B.,Sc. project at
Brighton Polytechnic. It is based upon the language

ART1l, but provides a formal problem-oriented language

19
to express primitive graphic ideas that is not
available in ART1l. The output is in the form of
patterns of characters that may be overprinted to

achieve shading, and therefore has limited applications.

Although this is an excellent tool for the artist,
it still does not provide a language that can be

used with a wide variety of graphic problems.

20
PTCASO

5.1 DESIGN PHILOSOPHY

PICASO has been designed to satisfy a need for
software in the area of art and design. The design
sPeqification for the language was as follows:
1) allow the user to manipulate graphic
concepts in a meanigful way,

2) maintain language syntax and semantics

at a non-technical level,
3) ensure an extensible language,

4) machine independent,

5) permit interfacing with various graphic

peripherals,

6) permit implementation on small memory

computers, and

7) be easily implemented by other users.,

The design of any program normally requires some
sort of compromise in the design specification or

mode of implementation to ensure a successful
completion- to the project. If any compromise

occurred in the design of PICASO it was rarely
detrimental to the above specification, but did
cause great concern when algorithms were developed

to produce surfaces with hidden-line removal, and

still allow them to be implemented on small machines.,

The small-machine environment makes great demands
upon a programmer's creativity, especially in

discovering algorithmic techniques to implement

21
jdeas that at first sight demand a wvast memory.
Whenever there was a choice between object run-~time
and memory, the former was sacrificed, but to help
offset this, the coding stage was greatly influenced

by statement execution times with the emphasis on

efficiency.

The project demanded extensive research to establish
existing software and the retrieval of paﬁers concerned
with important concepts such as hidden-~line removal,
windowing, perspective etc. Although this was an
essential exercise, the author was unable to implement

these ideas without sacrificing the design specification.

As a result of this,considerable time and effort was

devoted to research into algorithms to solve the same

problems within the small machine environment, The

outcome of this work established a highly integrated

structure that enabled PICASO to be designed in modules.

From the outset, the complete modularity of the system
permitted it to be thoroughly tested with the intro-

duction of a new module which has given PICASO a high

level of integrity.

A detailed evaluation of how the system was implemented

ffollows.

22
5.2 SYSTEM STRUCTURE

PICASQO is derived from the words:

PIcture Computer Algorithms Subroutine Orientated,

and consists of an integrated system of procedures that
are sensitive to a common data structure to handle two

and three-dimensional graphic structures.

The system is implemented in FORTRAN IV to ensure that

it is machine independent and easily implemented by

other users.

Figure 5.2.1l shows a b;ock diagram illustrating the
underlyving concepts employed in PICASO. The user is
permitted to work in two and three-dimensional space

in the same program and manipulate shapes and objects
with equal ease. The shape and object libraries supply
a comprehensive range of structures including polygons,

ellipses, cubes, cones, spheres etc., and external

structures may be input via any peripheral capable of

communicating coordinate data.

Algorithms may then be used to manipulate structures

within the conceptual and projection spaces before

finally being realised on the projection space which

represents the computer graphic media, such as a digital

plotter of display screen,

The realisation of 2-D shapes is a simple process of
interpreting the shape's spatial frame of reference as
the projection frame of reference, but 3-D objects afe
realised by locat;ng an observer within the object!'s

conceptual space, and viewing through a picture plane

which represents the projection space. The mode of

23
viewing may be true three-point perspective or wide-

angle perspective, but could be extended to include any

type of mathematical projection,

e

To permit the user to optimise a scene, algorithms are
available to reference the conceptual and projection

spaces and supply spatial and graphic information back
to the user who is then able to control the growth and

development of his work.

24

HION

dAAYASHO OLLOALOUC

SNHLIHOOTV
ONILVINdINVI
LOALEO

AHVHETI']
LOdrdo a-¢

SNHLIYHOOIV

SISATVNV
ANIOS

ddS

AYvVYdIT
AdVHS d-2

d0VdS

TVALdIINOD

SIWNHLIJOODIV
ONLILVINdINVIA
HdVHS

L J

OSVOILd d0 WVYDVId 3D071d

Figure §5,2.1

25
5.3 LANGUAGE SYNTAX AND SEMANTICS

PICASO is an integrated set of FORTRAN subroutines and
functions that may be called or referenced by a main
program. The modularity is such, that a beginner is
required to know eitremely little about the syntax of

FORTRAN apart from the CALL statement, however, there

are three programming concepts that must be understood,

namely: numbers (INTEGER and REAL), variables and

sequential processing, but these are relatively easy

to comprehend,

A typical program will only consist of CALL statements,

apart ffom STOP and END, with the underlying complexity
of the system completel& tranSparentl to the user, but

the language semantics are made self-evident by the
choice of procedure names. The following program might

be attempted by someone who has only had approximately

two to three hours tuition in PICASO, but allows him

to immediately appreciate and handle three~dimensional

objects and realise perspective views,.
CALL START
CALL ORIGIN(
CALL EYE(

arguments are

CALL ROW3D(BOX,

)
)

CALL CUBE(BOX,)
) omitted for clarity.
)

CALL FINISH(
STOP

END

26

The objective of the program is to initialise plotting,
(CALL START) estabiish a new origin on the paper,(CALL
ORIGIN) and locate an observer in the 3-D conceptual
space (CALL EYE). A cube is called from the object
library (CALL CUBE) and given the name BOX, and a
regular row of cubes is drawn in perspective as seen .
by the observer (CALL ROW3D). ' Finally, plotting is

terminated,the program stopped (CALL FINISH and STOP).

The ability to identify structures by real-world names
is an essential requirement of any graphics language,
and what the PICASO user is dctually doing when he

identifies an object by a name, is reference a FORTRAN

vector thathgtores the vertex data of the structure.

Once the user has written several programs consisting
entirely of CALL statements, he is in a position to

use arithmetic statements and the DO statement which
provide programming techniquesﬂto solve quite complex
problems. Independent of the language chosen, the user
would have to master and understand its syntax and
semantics, and it is believed that these aspects of
PICASO have been maintained at a level that is

acceptable to the non-numerate user.

=7
5.4 PICASO SPATTIAL CONVENTIONS

As described in section 5.2, PICASO employs a

conceptual and projection space that are referenced
by conventional methods. The axial systems are shown

in Figure 5.4.1,

y ' y

X

SPATTAIL, CONVENTIONS
Figure 5.4.1

For the two-dimensional mode the conceptual and R

projection space origins are coincident, whereas the

three-dimensional mode enables the origin of the
projection space picture plane, to be located
anywhere on the line connecting the observer's eve,
and the point under observation in the 3D ;onceptual

space, Figure 5.4.2 illustrates this transformation

process diagramatically.

A common feature of algorithms creating perspective
transformations, is their excessive execution time

due to the use of trigonometric functioné, consequently,

PICAS0 employs a labelled-common block to hold partially

evaluated data concerning direction cosines, the eye

28

location and the point under observation; this avoids
the repetitive. evaluation of items that are constant
for a given observer's location. The common block

also communicates the mode of projection which can
either be true or wide-angle perspective, but as
these transformations are produced by one module,
any future requirement can be catered for by

substitution of this module.

_4 Focal
- Point
-
-
.
-
- L
-
L Picture
A_.:_: - Plane z
Observer
PERSPECTIVE
TRANSFORMATION

Figure 5.4.2

<9

5.5 PICASO STRUCTURES

A PICASO structure may either be a two-dimensional
shape or a three-dimensional object, and is stored in

a FORTRAN vector as shown in Appendix XI1T.

A structure may consist of one or more continuous
sequences of vertices, that are eventually connected
by straight lines when realised on the projection
space. These contours may be open or closed depending
on whether the first vertex is referenced again as a
terminal vertex. A 2-D contour is nothing more than

a line existing on a surface, namely the picture plane,
however, a 3-D contour may be interpreted as a surface
existing in conceptual space and be used to assemble

transparent or opaque obJjects.

The vertex sequence has great significance, as it is
used to provide hidden-line removal, masking, windowing

and shading, but this is explained later in section 5.7.

PICASO permits the user to access structures in two
modes, either from the internal library, or froﬁ an
external source via an input peripheral., The contents
of the 2 and 3-D libraries is shown in appendices IIT

and V1.

The author believes that a structure library is an
extremely important aspect of any graphics language,

as it can determine whether the user will succeed in .

mastering the system, or surrender through frustration

30

in being unable to reproduce any form of graphic output.

At present, the subroutine SHAPE and'OBJECT are used

to access structures from punched cards, future
routines are planned to access vertex data from other

sources of coordinate data.

The majority of shapes are generated by functions, but
the system includes others such as HORSE, FACE and
BUTFLY (butterfly) etc., that are actually stored in
coordinate form; this is included because the beginner
is then able to handle familiar shapes and thus
acquire an immediate conf'idence in the language.

Obviously this aspect of PICASO is completely extensible

and will depend entirely upon the needs of the user.

The family of function derived shapes consists of
standard mathematical forms and provides the user with

anything from a line to a hypotrochoid.

All structures are assigned a programmer defined
REAL FORTRAN name, and are manipulated :and drawn

by reference to this name.

31

5.6 STRUCTURE MANIPULATION

An essential feature of computer graphics is structure
manipulation, and PICASO includes a powerful system

of commands enabling the user to control and manipulate
precisely any PICASO structure. These commands are

listed in appendix V,

The basic operations to control size, displacement

and rotation are obvious requirements, but the artist
is always interested in transformations that probably
have no direct application in standard graphic systems,
but are useful from an artistic point of view.
Consequently, the author designed many unusual

algorithms to complement the standard list of procedures;

some of these are now explained,
5.6.1 CYCLE
Any PICASO contour consists of vertices connected by

straight lines. What CYCLE does, is to move the position

of a vertex to a new position on the line connecting
it to its neighbour, If this process is repeated
continuously, some effective designs result. Three

examples are shown in Figure 5.6.1.

5.6.2 ASMDSH

PICASO's graphic power derives from the ability to

handle complex geometric structures by name, and

manipulate them as an entity. At an early stage in

this project, the author considered the graphic

32
"analogue of the FORTRAN arithmetic statement. For -

example, the following statement:

I=J4+KxL

could be written in éraphic congepfgfas:

(&’:: [:liuZQSQE (:) | ‘!

where a triangle is multiplied by a circle and added

to a sqQuare, producing some resultant shape, ASMDSH
(Add, Subtract, Multiply and Divide SHapes) is the
result of considerable research i&fo this problem,

and performs four arithmetic operations upon any PICASO
structure by manipulating the numgric values of the
vertex coordinates, When‘structares contain unequal
numbers of vertices, linear interpolation establishes
intermediate positions. ASMDSH provides a powerful
method of genef;ting;families of shapes that would

be extremely difficult to define mathematically, due

to the nature of their derivation,.

Figure 5.6.2 shows the effects of adding, subtracting,

multiplying and dividing a circle and a triangle.

5.6.,3 FORM3D

Provides a quick method of creating distorted 3-D

surfaces from 2-D shapes. The user supplies a PICASO

shape, together with a open 2-D contour which !'forms'
the z-coordinate thus forming the third dimension.

Figure 5.6.3 shows the result of an elephant formed

by a bend,

33

FORM3D

Figure 5.6.3

35

5.6, 4 TRACE -

TRACE generates a new shape that results from tracing
a point a specified distance in or outside some PICASO
shape. The result depends entirely upon the convex

and concave features of the original shape, and often

suprises the user. Figure 5,6.4 illustrates the effect

of tracing around a horse and tracing inside a butterfly.

5.6.5 TRANSH
Shape transformation has often been exploited in

computer art, and PICASO iS*supﬁiied with the subroutine

TRANSH to transform any 2-D contour into another, or

any 3-D surface into another. When a sequence of
transformations are superimposed upon one another, a
distinctive and effective picture results., Figure

5.6.5 shows a square-law transformation of a face into

a square.,

37

TRACE

Figure 5.6.4

TRANSH

Figure 5.6.5

39
5.6.6 WARP2D & WARPA3D
These two subroutines enable the user to establish
different laws to control the conceptual space, thus
creating 'space-warp'! effects. For example, it might
be required to apply a logarithmic law to the
z-direction, a hyperbolic law to the y~direction, and
a square law to the x-direction, and then view a
system of objects through a'wide-ahgle lens. The less
esoteric operation of folding about the x-axis could
be achieved by making the x-coordinate function equal
to : F(x)= ABS(x); this effect is shown in Figure 5.6.6

with a rhinosceros.

WARDP2D

Figure 5.6.6

4o

5.7 PICASO DRAWING COMMANDS
The PICASO drawing commands transform data from the

conceptual space to the projection space. At the

individual structure level this includes DRAW and
DRAW3D which manipulate a single shape or object
respectively; but at the group structure level,
shapes and objects may be referenced by rows and two

types of regular grids.

One practical problem with the projection space is being
capable of containing the contents of the transformed
conceé&ual space. To safeguard the user from drawing
beyond the boundaries available, a powerful windowing
facility is included which accepts any multiple

contour PIbASO shape to window the projection space.

Tf the window shape contains contours with their

vertices specified in a clockwise sense, then these

behave as transparent windows, but counter-clockwise

contours mask the drawing. The examﬁle shown in

Figure 5.7.1 is of a scene with and without a window.
The technique employed in this process is explained

in Appendix XIIT.

When an observer is located in 3-D conceptual space,
care must be taken to ensufe a location is chosen
that is physically meaningful, as this can result
in a confused distorted projection. For example,
if the observer's eye was inside an object, vertices

behind the eye would not be seen and must be clipped

42

WINDOW

Figufe De7ol

UNSEEN

DRAW3D

Figure 5.7.2

Wi

from the final projection. DRAW3D which realises
projections of objects; includes this clipping feature.
The minimum distance before clipping occurs, is
normally 1.0 inch, but this is adjustable to enable
cross-sections of objects to be produced.

Figure 5.7.2 shows views of a cone as the observer

moves through its interior.

Hidden-=1ine removal only occurs at the individual
structure level, and is achieved by testing the sense
of thé vertices when a surface is projected onto the
picture plane. If the vertex sense is found to be
counter-clockwise, then it is being viewed from
behind, and may be removed by the user. Figure
5.7.3 shows a cube and cone.- with and without
hidden-lines removed. This feature requires initially
that all surfaces are declared in a clockwise

sequence, which is a PICAS0O convention.

Two simple methods are available for producing texture,
and they are HATCH and STIPLE., HATCH will draw a
series of parallel lines within a PICASO shape at any

angle or separationjy STIPLE will create a random

pattern of dots inside any PICASO shape., Figure 5.7.4

¥

shows examples of HATCH and STIPLE.

Although it is assumed that PICASO structures consist

. of vertices joined by straight lines, it is very

useful to be able to join them together with a smooth

curve.,

DRAWJ3D

Figure 5-213

SSSSSS

(16)

An existing algorithm was modified to acéept the
data structure of PICASO, which uses a cubic spline
to join together vertices. This routine SMOOTH, works

for open or closed contours and an example is shown

in Figure 5.7.5.

A complete list of plotting commands is shown in

APP endix VI °

SMOOTH

DRAWZD

Figure 5-2:5

48

58 PICASO STRUCTURE ANALYSTS COMMANDS

The analytical commands represent an important
feature of PICASO in that they permit graphic problem
solving in a non-interactive mode. It is not
essential that all graphic programs have to enéage
the user in a real-time dialogue with the program,
many types of problems may be solved by advance
analysis which develops useful skills'in problem
solving, and can provide a deeper understanding to

the problem area. Appendix VII contains the list of

commands at present available in PICASO, but is

expected to grow in content as other graphic effects

are demanded.,

The concept of inside and'oufside is quite important
to many aspects of computer graphics, therefore, a
special function was developed for PICASO, this is
INSIDE, INSIDE is a logical function that returns

a value of ,TRUE, if a given point is found to be
'inside' a specified PICASO shape. The shape may
be multiple-contour, and the vertex sequence of these

"contours is highly significant to the operation of

INSIDE,

When a PICASO contour has vertices in a clockwise
sense, INSIDE will be ,TRUE, for all points !'inside!
the contour, but for a counter-clockwise contour
INSIDE will be ,FALSE.,. By altering the sense of

contours with REVERS, the user is able to create

50
complex shapes that include holes, Figure 5.8.1 shows

two systems of contours and the interpretation of

inside and outside,

OUTSIDE

&*5&&

Figure 5.8.1

The- two functions CLOCK and CLOK3D may be used to

detect the vertex sense of 2 and 3-D contours
respectively, and CLOK3D is actually used by DRAW3D

to produce hidden-line removal, This type of function
is very useful in software writing as it permits

statements such as:

IF(CLOCK(A,1)) CALL REVERS(A,1)

which represents a powerful graphic operation.

Further shape and object analysis is performed by the

functions:

NDIMEN which returns the dimension of the
structure, I

NLINES whjch returns the number of contours in
a structure,

NPOINT which returns the number of vertices in
a contour,

and the three general type functions:
XCOORD
YCOORD pwhich return the respective coordinate

ZCOORD of a vertex,

These permit the user to retrieve important

characteristics of structures in conceptual space.

51

52
5.9 PICASO SURFACES
Computer drawn surfaces have always played a useful
means of communicating large quantities of data
effectively, they are also aesthetically pleasing to
the tartistic eye'!, and have already been used in

(17)

computer art

PICASO includes a variety of simple ways of creating
three-dimensional surfaces that may be exploited to

create very effective graphic output.

There are basically three ways of simulating surfaces
on a plotter or wvisual display. The first consists

of reducing the surface to a number of parallel lines,
the second divides the surface into rectangular tiles,

and the third, shades the surface either with dots
for the plotter, or alters the screen intensity for

a graphic display. PICASO incorporates all three

techniques, however the shading algorithms are still

in the process of development.

The subroutine SURFAC uses the first technique of

assembling a surface from a number of lines, and

includes an effective hidden-line algorithm.
SURFAC produces a front-elevation view of a surface

that is generated by spinning a PICASO open contour

about some vertical axis. The user supplies

information concerning the contour, position of

53
rotation, the angle of elevation etc, and SURFAC

provides a realistic surface. Two such surfaces are

illustrated in Figure 5.9.1.

The subroutine ISOMET generates a surface composed of
rectangular opaque tiles viewed inisometric projection.

Again the user supplies similar information as supplied

to SURFAC, and the drawings in Figure 5.9.2 result.

The style of surface created by SURFAC and ISOMET is
limited as they only permit symmetrical surfaces,

Consequently, two extra routines were developed to

enable irregular line and tiled surfaées to be drawn,

these are HIDE and ASOMET.
HIDE draws out one line supplying hidden=line
removal based upon the previous lines drawn, and the

user develops a surface by calling HIDE with new data.

ASOMET accepts a matrix of numbers, that represent

vertical measurements on a surface at regular positions.

From this, an isometric view is produced. An example

is shown in Figure 5.9.3.

The isometric view is popular in computer graphics

as it allows a simple algorithm to remove hidden-lines;

a perspective view made from any point in space

requires considerable execution time and memory.

lHlowever, a technique employed in SURF3D, breaks up

a surface into rectangular tiles and then tests to see

if it is seen. Although there are areas where the

54
surface remains- transparent - it is still very effective.
Figure 5.9.4 shows two views of the same surface, with

and without hidden-lines.

Contour maps are extensively used in geographic
problems, but were included in PICASO to complete the
range of surface techniques.

MAP2BWproduces a plan view of a contour map whilst
MAPﬁb fealises a 3=-D perspective view, with each
contour in its true position in space. Data are
supplied in the form of a matrix together with a
range of heights to search for. Figure 5.9.5 shows

how the same set of data is interpreted by the two

programs.,

Surfaces that form solid objects may also be created

with equal ease by the subroutine SILUET. This
develops a tiled opaque or transparent surface
by rotating an open 2-D PICASO shape about a vertical

axis, the resulting envelope creates the surface.

Figure 5.9.6 illustrates various examples produced

by SILUET.

55

ISOMET

Y
*ff”.’/’.’.”’

#&&
A\
N

2SS N
A

N
SN

wale
B #ﬂflfff
RSN\

S OaS)
oW

Fi ure 5-9-2

ASOMET

58

59

MAPZD

MAPTID

e D

. Pipure 5.0

60

61

5.10 PICASO SPECIAL EFFECTS

PICASO special effects are created by a series of
subroutines that produce a final graphic effect,
without the requirement of user programming. These
are useful from an educational aspect when teaching
the beginner, as programs congisting of no more than
six statements can produce suprising graphic output.
Perhaps the best example of this is the routine
CONECT, which produces a popular example of computer

art, CONECT accepts a PICASO shape and Joins every

vertex to every other vertex by a straight line.

Two examples of CONECT are shown in Figure 5.10.1.

A three-dimensional version CONEC3 performs the same

operation on PICASO obJjects,

GROW, GROW2D, and GROW3D are a family of subroutines
to simulate recursive growth patterns. In the 2-D mode
(GROW), a shape is drawn, and the same shape is drawn

at every vertex of the original shapej this process
may be continued to any depth, but excessive execution
time dictates a final limit. Figure 5.10.2 shows a

pentagon !'grown' to a depth of two.

MODSH is derived from the words 'modulate shape',
This performs a substitution process on a PICASO
shape by replacing a line joining two vertices by
an open 2-D PICASO contour, creating a simple

modulation effect. The process may be repeated to a

62
depth that is dictated by available memory space.

Figure 5.10.3 shows the result of modulating a

hexagon by a parabola.

SNOW is aﬁother type*of recursive program which
turns every line Jjoining two vertices into a small
'snow-flake', The process may be repeated to any
depth, but requires enormous amounts of processor
time when the shape is large and the depth exceeds
four. Figure 5.10.4 shows an original five-pointed
star and a snowflake version grown to a depth of

three.
These subroutines are only written as an aid to the
beginner, but it is clear that they will grow in

number as future demands are made upon the system

A complete list of subroutines is given in Appendix IX.

i \W

T

\\:*/{II‘ 1A // j
": RS 'q"’i

\\\ NI ////
,#ﬁigﬂ g,,‘. ".‘:'1.-'*1‘ . 'r*;
KRR IS CAAISS

ST AN
AR

""‘ |k_': _ :E? o a-.;!: :— ;. 'rlll WA
AN RLARAN
e A WIPT WY, e ‘"

S a2 TN N

: %
= y
%’2 ’,’ _" " “
/ 5

»

\/
'
A

l‘h‘%
N/ / ‘r?
/ / SOHHTT7ARARN

GROWZD

Figure 5,10,2

64

N4

MODSH

Figure 5,10.3

SNOW

66

5.11 PICASO FUNCTIONS

CGenerally, students learning to use PICASO tend to
experiment with the structure handling routines
before working with functions. Functions are only

normally used when conventional methods break-down,

or an effect relies entirely upon their use.

The majority of the functions are related to shape
generation, and duplicate the shapes contained in

the PICASO shape library. The functions always begin
with an X or Y, for example XPARAB & YPARAD identify
the coordinates of a particular point on a parabolic
curve., When three dimensional trajectories are
required,'they may be created from combinations of
these generators. For example, a 3=D spiral

could be formed from a 2-D Archimedean spiral (XASPIR

& YASPIR) and a 1line (XYZLIN), the actual orientation
in space would depend on how the functions were

assigned to the axes of space.

To maintain user mathematics at a bare minimum, the
functions are supplied with general characteristics
of the shape together with the vertex required

relative to the total number of vertices on the shape,

e.g. the third vertex out of 20, This procedure

is found to work very well in practice.

Other functions include TAKE and ITAKE which return

68
a - -pseudo-random REAL or INTEGER number respectively .

from a specifiied range. These functions are useful
when a random element is needed to control the size
and position of structures in space. An example is
shown in Figure 5.11.1 which jillustrates a wide-angle

view of cubes with random size and position in space.

A complete list of functions is shown in Appendix VIII,.

¥ iwan

.~ TAKE & FISHI

Figure 5.,11.1

5.12 PICASO ARRAY HANDLING COMMANDS

The majority of FORTRAN compilers only permit 2D
arrays. This was regarded as a severe limitation

to a graphics language, that worked in a three
dimensional mode. Consequently, an entire range

of subroutines and functions was designed to access

and initialise one, two and three-dimensional REAL,
INTEGER and LOGICAL arrays; these are listed in

Appendix X.

/0

71
6 EXAMPLES OF PICASO PROGRAMS

This section is8 concerned with the practical aspects
of PICASO, but as it is impossible to explore every
facet of the language various small programs have been

written that illustrate typical graphic output.

6.1 EXAMPLE OF THE 2<«D LIBRARY

An Archimedean spiral has been chosen to illustrate

the multitude of effects that can be realised with

just one basic curve,

The format for the spiral is:

CALL ASPIRA(ARRAY,RADIUS,CYCLES,N)

where:

ARRAY is the name given to the spiral
RADIUS is the final radius of the spiral

CYCLES 1is the number of convolutions

N is the number of points on the
spiral.

An example could be:

CALL ASPIRA(SPIRAL,2,0,4.0,201)
This statement genefates an Archimedean spiral
SPIRAL, consisting of 201 points, with four
convolutions and a final radius of two inches.
If the user wantéd to actually plot out this curve,

the following program would be required:
DIMENSION SPIRAL(405)

CALL START

CALL ORIGIN(5.0,5.0)

CALL 'ASPTIRA(SPIRAL,2.0,4.0,201)
CALL DRAW(SPIRAL,1.0,0.0,0.0)
CALL FINISH(10.0)

STOP

END

and the output would be as shown in Figure 6.1.1.

Figure 6.1,1

A slight modificationjyolthis program produces the

examples shown in:Fiéu??16.1.2. The actual change

4

is in the number of .convolutions.

73

ASPIRA

>

uihti:
v RNLR BB

R T

. Suy
a8’ NN
!I‘“‘!W\ .'ﬂ‘""'l
HAAA NS
ALY N AT %R
CLULAA L EPNL
-TIALT Y NI
‘ﬁ\\hﬁh\h\ 4 derl'J
X AAL Y An gt
i “‘k‘_‘“‘h rl ‘.r.-'r‘...‘.
X XY ALY Wakhioan !
ATy . ANRLX K
nwrm‘ﬁn‘\\\u “ Sy tax Wy e e ve
umrv__._..mrms.un r wuwumnwunr#mmﬁ&f
b MY Y XD AXIOR N X XN NS
NI X VIO IO
n.‘v, o:oﬂtﬁv. v* v.ou' Ovhﬂ_..v O.A .Nvtf_-.
B DU X M A ANPILAK -v*%,
X IPOUK IR A CTRIMNY
ﬂ A ﬂrlﬂxr J :ﬂtt hw 4
QORRNTENNS: 8925278028
LR rr:u
4 N
) ...‘_....J
THIRRR
. -
. .

BOBEIRr». 9 ¢ P
BESBET & 2V,

SNRE’ g
FBREFVE2Pd7PFe" 4”0 &"

BBV 4P B E7a"a"a"a
& MY LA Y

B Fed.Parg

S 23S T % TN

L1S B T L 1N
BN BAIRRY BT
L1191 i 1N 2

L 111 %1% S

L 1131 191

L L1 3 8 1% 89

Figure 6.,1,2

Wi

6.2 EXAMPLE OF THE 3-D LIBRARY
This example illustrates how a wide-angle view
could be made of a 20 by 20 grid of cubes. The
stages of the program design are:
1) Initialise plotting.
2) Select an origin on the plotter paper.
3) Generate one cube,
) Select a point of observation.
5) Draw a 3-D grid.

6) Terminate plotting.

The output shown in Figure 6.2.,1 was produced by
the following program:

DiﬁENSION c(98)

CALL START

CALL ORIGIN(5.0,5.0)

CALL CUBE(C,1.0)

CALL FISHI(5.0,5.0,-20.0,5.0,5.0,0.0,4.0)

CALL GRID3D(C,2.0,20,1.5,20,1.5,0.0,0.0,0.0,-1)

CALL FINISH(10.0)
STOP

END

————
——
A
-——

GRID3D & FISHI

Figure 6.2.1

6.3 EXAMPLE OF SHAPE MANTPULATION

An interesting manipulative command is PULL, which

distorts shapes by pulling or compressing them in a

specified direction.

This example draws out four views of a horse that 1is
being compressed vertically. The program design
stages are:
1) Initialise plotting.
2) Select an origin on the plotter paper.
3) Generate a horse.
4) Repeat four times.
%.1) Pull horse
4.2) Draw horse
4,3) Change origin

5) Terminate}ﬁlofting.

The output shown in Figure 6.3.1 was produced by

the following program:

DIMENSION H(237),P(237)
CALL START
CALL ORIGIN(5.0,2.0)
CALL HORSE(H)
DO 1 I=1,4
CALL PULL(H,0.0,0,0,90,0,FLOAT(I)/4.0,P)
CALL DRAW(P,1.0,0.0,0.0)
CALL ORIGIN(0.0,1,0)
1 CONTINUE '

CALL FINISH(10.0)

- eSTOP- . - e .

END

PULL

Figure 6,3.,1

77

6.4 EXAMPLE OF SURFACES

This example shows how shapes may be generated from
others, and their eventual use in sweeping out a
surface.,
The requirements of this program are to create a
surface of a waveform which consists of a linearly
damped cosine wave,
The design stages of the program are:

1) Initialise plotting.

2) Select an origin on the plotting paper.

3) Generate a cosine wave.

t) Generate a line.

5) Create a damped cosine wave with ASMDSH,

6) Draw the surface with SURFAC,
7) Terminate plotting.
The surface in Figure 6.4.1 was produced by the following

programs:

DIMENSION A(203),B(7),w(200),0v(200),UN(200)

CALL START

CALL ORIGIN(5.0,5.0)

CALL SINE(A,1.0,4.0,90.0,1260,0,100,0.0,1.0)
CALL LINE(,1.0,1.,0,1.0,0.0,2)

CALL ASMDSH(A,1,B,1,A,3)

CALL SURFAC(A,6.0,200,6,.0,50,30.0,3.0,3.0,

1 w,0V,UN,0.0,0,0)

CALL FINISH(10.0)

STOP

END

SURFAC

6.5 EXAMPLE OF SPECTAL EFFECTS

In this example, CONECT is used to join together
vertices on a 20 pointed star.
The program design stages are:
1) Initialise plotting.
2) Select an origin on the plotter paper,
3) Generate a 20 pointed star.
) Call CONECT.
5) Terminate plotting.

The following program produced the output shown ih

Figure 6.5.1.
DIMENSION A(50)

CALL START
CALL ORIGIN(5.0,5.0)
CALL STAR(A,20,2.0,0.5)
CALL CONEéT(A,l.o,o.d,o.o)
CALL FINISH(10.0) |
STOP

END

80

o’ h__..._ﬁ/

.

7, fy

r \f. !

\.__«._;_uv ..q__w. ..M-..?’
20/ In nI“ﬂ-ﬂ.uui

L)
O
- ar @
-“..u. Y

Y

- T

’f

1 B
il A 4

b .-.‘. & .\\\\p P, “
TRl PN

Y w g—

. e
PX ¥ T\
S e

et

-r.‘.ll

S

s

P02

xS

|
o

1 L

LA

&

'#

B it

[

¥x

i
¥

3\

w'.t .

N .

N

W

o

et

e

- -
L]

':-‘-

il

]

XY R
e YAl
., .nﬂf.ﬂ.z..?. “:,, c..-‘nt'..ﬂ..llﬂm

al

B

: L
11e" of ..ﬁh..?
= /

~ ..-'..*‘W.hiﬁ

CONECT

Fi ure 6-5'1

82

6.6 VARTIOUS EXAMPLES

EXAMPLE 1
Reference to Figure 6.6.1 wili show a 5 by 20 grid
of cubes that have been t!'cycled! 10 times. The secret
of the solution is to identify that the complete
drawing consists of two different rows of cubes
interwoven together.
The first row has the cubes displced by:
X=cube width
Y=0.0
Z=cube width
and the second row has the cubes offset by:
X=cube width
Y=1.0
Z=cube width
The program design stages are:
1) Initialise plotting.
2) Select an origin on the plotter paper.
3) Generate a cube.
) Select an observation point.
5) Repeat the following 10 times:
5.1)Repeat the following 10 times:
5.1.1) Draw row of cubes.
5.1.2) Draw row of offset cubes.
5.1.3) Change offset variables.,
5.2) Cycle cube,
6) Terminate plotting.

The output illustrated in Figure 6.6.1 was produced

by the following program:

 DIMENSION c(98)
CALL START
CALL ORIGIN(0.0,1.0)
CALL CUBE(C,1.0)
CALL EYE(10.0,10.0,-20.0,0.0,0.0,0,0)

DO 2 J=1,10
CALL ROW3D(C,1.0,5,1.0,0.0,1.0,0.0,Y,Z,-1)
CALL RoWw3D(C,1.0,5,1.0,0.0,1.0,1.0,Y+1.0,
1 Z+1.0,=~1)
Y=Y+2,0 |
- Z2=2+1,0
2 CONTINUE
CALL CYCLE(C,1,0.1,C)
1 CONTINUE
CALL FINISH(10.0)
STOP

END

A similar drawing is shown in Figure 6.6.2, but the

scene is seen through a wide-angle lens.

84

= W

Figure 6,.6.1

T L Y e T I S

2
Figure 6.6,
#

85

86

J EXAMPLE II F | 1) T) o -4 L™ _I'--E-h + Y - 1 * o 1 ""u."-”-"ll T W F Y
| —— e ——

The butterfly shown in Figure 6,6.3 was created by
repeatedly tracing around the contour of a butterfly
at distances increasing according to a square law,
The program design stages are:
1) Initialise plotting.
2) Select an origin on the plotter paper.
3) G;nerate a butterfly.,.
) Repeat 20 times: -,
4,1)Draw bu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>