

Middlesex University Research Repository:
an open access repository of

Middlesex University research

http://eprints.mdx.ac.uk

Vince, J A, 1975.
Picaso: a computer language for art & design.

Available from Middlesex University’s Research Repository.

Copyright:

Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this thesis/research project are retained by the author and/or other
copyright owners. The work is supplied on the understanding that any use for commercial gain is
strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without
prior permission and without charge. Any use of the thesis/research project for private study or
research must be properly acknowledged with reference to the work’s full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations
taken from it, or its content changed in any way, without first obtaining permission in writing from the
copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:
eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

PICASO

A

COMPUTER LANGUAGE

FOR

ART & DESIGN

by

JA Vince

1975

BRUNEL UNIVERSITY

ABSTRACT

PICASO is a computer language specifically

designed to enable the artist/designer to

use the digital computer as a graphic tool.

It is a unique development in that it provides

the artist for the first time, an integrated

range of sophisticated graphic software in a

format meaningful to the non-numerate user.

This thesis examines the problem area of art

and design,
-

and reviews relevant computer

software that is currently available. It

continues to define the software requirements

of the artist and designer, and illustrates

how these are met by PICASO.

f

0

-CONTENTS

INTRODUCTION

2 STATEMENT OF THE PROBLEM

2.1 COMPUTER ART

2.2 THE GROWTH OF COMPUTER ART

2.3 THE PRESENT PROBLEM

STATE OF THE ART

3.1 COMPUTER GRAPHICS IN EDUCATION

3.2 COMPUTER GRAPHICS IN ART & DESIGN

COMPUTER ART SOFTWARE REQUIREMENTS

4.1 LANGUAGE TYPE

4.2 LANGUAGE PHILOSOP'HY

4.3 EXISTING SOFTWARE

5 PICASO '

5.1 DESIGN PHILOSOPHY

5.2 SYSTEM STRUCTURE

5.3 LANGUAGE SYNTAX AND SEMANTICS

5.4 PICASO SPATIAL CONVENTIONS

5.5 PICASO STRUCTURES

5.6 STRUCTURE MANIPULATION

5.7 PICASO DRAWING COMMANDS

5.8 PICASO STRUCTURE ANALYSIS COMMANDS
1

5.9 PICASO SURFACES

5.10 PICASO SPECIAL EFFECTS

5.11 PICASO FUNCTIONS

5.12 PICASO ARRAY HANDLING COMMANDS

PAGE

1

3

8

10

20

PAGE

PICASO EXAMPLES 71

6.1, EXAMPLE OF THE 2-D LIBRARY

6.2 EXAMPLE OF THE 3-D LIBRARY

6.3 SHAPE MANIPULATION

6.4 SURFACES

6.5 SPECIAL EFFECTS

6.6 VARIOUS EXAMPLES

APPLICATION AREAS FOR PICASO 89

7.1 ART & DESIGN

7.2 MATHEMATICS

7.3 ENGINEERING

CONCLUSIONS 95

9 APPENDICES

9.1 SUMMARY

9.2 SUMMARY

9.3 SUMMARY

9.4 SUMMARY

9.5 SUMMARY

OF

OF

OF

OF

OF

PICASO

PICASO

PICASO

PICASO

PICASO

98

SYSTEM COMMANDS

INPUT/OUTPUT COMMANDS

SHAPES

OBJECTS

STRUCTURE MANIPULATING

COMMANDS

9.6 SUMMARY OF PICASO PLOTTING COMMANDS

9.7 SUMMARY OF PICASO STRUCTURE ANALYSIS COMMANDS

9.8 SUMMARY OF PICASO FUNCTIONS

9.9 SUMMARY OF SPECIAL EFFECTS

9.10 SUMMARY OF ARRAY HANDLING COMMANDS

PAGE

9.11 SUMMARY OF PICASO SURFACE COMMANDS

9.12 PICASO DATA STRUCTURE

9.13 WINDOWING ALGORITHM

9.14 ISOMET ALGORITHM

10 REPERENCES

11 PICASO USER MANUAL

120

122

0

1

0

1 INTRODUCTION

There has never been a deliberate attempt to create

and develop computer artg its existence and evolution

has always been unstable and uncontrolled which has

accounted for considerable waste of effort and time

in rediscovering well established graphic concepts.

Consequentlyq artists working with computers have a

serious communication handicap in that there is not

available a universal language to interface the artist

to the computer, which requires them to master

unsuitable programming languages to achieve relatively

primitive graphic effects.

PICASO is a modular structured language developed by

the author for the artist or designer, enabling him

to manipulate real and abstract graphic concepts

without the burden of advanced programming. PICASO

has also been designed to work with a small digital

computer with the minimum of graphic hardware,

namely a graph plotter, and yet produce sophisticated

graphic output.

The creation of PICASO is We reililt of several years

research by the author into computer graphics to

discover and establish the important problem areas

encountered by the novice, and its development has

been influenced considerably by the opinions of artists

working with computers.

2

1 INTRODUCTION Continued.

This thesis describes the problems encountered by

computer artists and how PICASO offers a real and

original contribution to the development of computer

graphics in the areas of art and design.

0

3

STATEMENT OF THE PROBLEM

2.1 COMPUTER ART

Computer art is an art form that has emerged over

the past two decades involving the digital computer

and graphic peripherals to express graphic ideas.

The art form is unique in that it permits the artist

to explore techniques that were avoided due to the

time and skills required, and also provides a vast

source of graphic effects that are unique to the

computer.

The earliest forms of computer art consisted of

generating pictures on a line printer to create

images from patterns of characters and ovor-printing

them to create shading. ' Obviously, this had

limited applications but was a first stop to

realising the potential of the computer as a graphic

tool.

The development of the digital plotter and the

graphic display provided two important tools for

the artist, as these permitted the creation of

simple line drawings. However, the control of

these ideas demanded a programming expertise that

is not common among artists. This severe user

restriction has inhibited the growth of computer

art as a universally available art form.

p

q

2.2 THE GROWTH OF COMPUTER ART

As early as 1960, the Boeing Company were using the

computer to draw three-dimensional human figures to

assist designers in the ergonomics of cockpit designq

and since this pLoneor work computer graphics has

continued to play a major role in computer aided design.

Computer art however, emerged in the wake of computer

graphics exploiting software primarily designed for

engineers to the advantage of the artist.

0
The lack of specific software at this time severely

restricted the growth of computer artq as it has been

estimated that in 1971 no more than 1000 researchers

were working on computer. art in the entire world

Even today in 1975 there is still a real problem with

the availability of software, whilst one institution

might have access to advanced graphic hardware and the

latest softwarej another might not be beyond the stage

of reproducing simple geometric patterns on a graph

plotter. So ýthe problem with growth is not just a

question of rate, but that it has not boon geographically

uniform.

5

2.3 THE PRESENT PROBLEM

Investigations have shown that the majority of computers

in educational establishments with graphic equipment

are not exploiting the full capability of this equipment,

due to the limited software available. This situation is

so serious that immediate steps have boon taken to

organise at a national level theacqui-sition of graphic
(2)

software, and the redistribution to educational users.

Therefore the present problems are the lack of general

graphic software at a global level and specifically

softwaroe for the artist/designer.

It is incorrect to believe that there is a total absence

of graphic ýoftwarej obviouslyýit must and does existy

but it tends to fall into various categories.

Machine dependent software

It is not always possible to design software to be

independent of hardware, for example a language like
(3)

SPROGS has been specifically designed to operate a

SD4020 microfilm recorder, but there is software

available that is machine dependent from the aspects of

core requirement and compiler availability. Often one

can attempt to implement algorithms developed on large

machines, only to discover that the programmer made no

attempt to conserve core space, with the result that the

user with a small or medium size computer is unable to

use the program. There exists also other software that
(4)

requires associated programming languages such as PL1
(5)

and APL language5-that are still not universally

6

0

available.

Specialist software

The nature of computer graphics is such that it is not,

and probably will not be supported in the near future

by a universal language; this has resulted in the use

of existing languages and the development of specialist

graphic languages to cope with individual problem areas.
(6) (7)

MULTIPATCH a language for interactive design and COMPAX

a language for scene analysis are totally different in

structureq syntax and application, but they are both

useful graphic languages, This specialisation of

languages presents a problem to the user investigating

several problem areas simultaneously, but is of little

assistance to the artist/designer who is unable to define

the extent of his problem area.

Expensive software

All software is expensive, and Lickliderts article in
(8)

1969 'A Picture is Worth a Thousand Words- and It Costs'

still holds true today.
(9)

The DISSPLA package is probably one of the most

sophisticated graphic software systems available. It is

machine and device independento implemented in FORTRAN9

works in two and three dimensions with or without hidden-

line removal, but as one can appreciate it has a

correspondingly high outright purchase price. The

educational user might require DISSPLA's featuresl but

could not afford them.

7

Here then is the dilemma. On one hand the artist needs

graphic software, and on the other, software is

available but is either too expensiveg unproven,

unsuitable, too specialised or machine dependent.

In spite of these limitationsl computer art has

managed to survive and grow into a world-wide activityq

and has had considerable influence on art and design.

41

8

STATE OF THE ART

3.1 COMPUTER GRAPHICS IN EDUCATION

With the advent of mini-computer graphic systems,

computer graphics, is now within the budget of many

educational institutions. It has already influenced

many areas of education, and it is difficult to

isolate one subject that has remained untouched.

The author's personal work alone has involved him

in civil engineering, electrical engineering, control-

engineering, music, mathematics, fine art, and graphic

design. Unfortunately this influence has been local

rather than global, and has treated privileged, areas

of activity where there exists adequate expertise, but

many under privileged areas where there is a dosiro

to enjoy the same facilitiesq but no expertise

available.

3.2 COMPUTER GRAPHICS IN ART & DESIGN

Computer graphics finds its way into art and design

through courses like DipAD in Pine Art, Graphic Design

and Interior Design. The course content depends

entirely upon the graphics system implemented, and

consequently Varies considerably. This is an

unfortunate state of affairs, but little can be done

until the softwaro aspect is formalized.

In the authorts experience, computers can produce a

wide variety of responses from art studentsv ranging

9

from a total rejection to complete absorption in

computer techniquest neither of which is totally

healthy. An initial reaction is to regard the computer

as totally non-creative, whic h is true in some

respects, but difficult to prove until the. student

has had a chance to experience using the machine.

At first, the whole concept of using computers in

the area of art appears foreign, but students who

study the subject with an open mind discover that

there is a real place for the computer.

A good graphics system can teach art students many

things about their own subject. It can help

formalize many abstract concepts concerning space,

symmetry, perspective etc., and even provide a

completely new insight into shapes and objects and

their topological properties.

There will always be students who remain unconvinced

about the use of computer techniques in art, and

perhaps the image of the computer together with

unsuitable softwareq has a lot to answer for in

this context. Perhaps the next generation of

software will assist in providing greater cohesion

in this entire subject area.

10

4 SOFTWARE REQUIREMENTS FOR ART & DESTGN

4.1 LANGUAGE TYPE

The most popular language for implementing graphic

programs is FORTRAN, as it provides features for

expressing mathematical ideas that can directly

represent graphic concepts. However, for an artist

the use of FORTRAN creates two major problems; the

first is learning FORTRAN, and the second is the

acquisition of programming techniques such as data

structure handlingg algorithms-, and possibly vector

0
analysis, coordinate geometryp topology and matrix

theory. The author has actually taught FORTRAN to

artists and discovered from first-hand experience

the conceptual problems this language poses to the

artistic intellect.

The artist obviously requires a language that handles

directly graphic concepts, and therefore calls for

a special language. Although many languages have

been developed there is not one that has managed to

acquire the status of a language like FORTRAN or ALGOL.

Some of these existing languages are described in

Section 4-3.

4.2 LANGUAGE PHILOSOPHY

The majority of problem- oriented languages enable a

user to identify system elements, groups, procedures

and operations with names familiar and relevant to the

user. Therefore any graphics language must be

capable of handling ideas such as spacep formo

11

movement, texture and colour etc, in a way that is

natural for the artist. He must be able to express

his thoughts in a notation that will not hide the

meaning of his ideas. The following features are

considered essential requirements for such a

language.

4.2.1 SPACE

The language must permit the user to handle two and

three-dimensional spaces so that 3-D objects may be

manipulated together with 2-D shapes with equal ease.

4.2.2 FORM

The data structure handling shapes and objects

should enable essential features of form to be

controlled such as: verticesq surfaces, visibility,

size, displacement etc..

4.2.3 VIEWPOINT

A two-dimensional space presents no unusual problems

regarding a viewpoint, howeverg three-dimensional

systems must provide natural perspective trans-

formations for all viewpoints.

4.2.4 MOVEMENT

Both the observer and object must be capable of

movement within space.

4.2-5. SCENE ANALYSIS

A graphic scene m"st be available for analysis to

12

permit development by the user before a final

drawing is created.

4.2.6 IANGUAGE SYNTAX

The hardest aspect of learning any computer language,

is understanding the syntax, therefore the non-

numerate user must not be faced with problems such

as precedence relationships, evaluation procedures

and algorithm design.

4.2-7-LANGUAGE SEMANTICS

The language semantics must be clear and precise,

with meaningful graphic names associated with

programmirig elements with the minimum amount of

symbolic notation.

4.2.8 IMPLEMENTATION

Assuming that the previous. graphic requirements can

be met, the remaining features relate to the method

of implementation.

If the language is to enjoy a wide range of users, it

must be implemented in a language that is readily

available, and also be independent of hardware

configurations.

The life of the language will depend upon its

effectiveness in solving problems, and as the

boundaries, of art and design are virtually undefinedg

its life will ultimately depend on how far it can be

extended.

13

4.3 EXISTING SOFTWARE
(ILO)

In May 1963, L. G. Roberts published a paper

illustrating ;ý solution to the hidden-line problem.

During the following twelv-e'years many researchers

developed other elegant solutions to the same problem,
(11) (12) (13)

notably, Warnock, Loutrel, and Matsushita.

It is strange that what appears on the surface to be

a trivial problem, has-attracted so much devoted

attention. Even today this one aspect of computer

graphics still attrhcts the inquisitive mind, to

discover new methods of resolving the problem.

This complete problem area is concerned. with similar

conceptual problems, and the deep undeirlying

complexity has created virtual world-wide activity in

computer graphicsq from the formulation of graphic

languages, to the production of computer aided motion

pictures.

Solutions to these problems tend to be of a mathematical

or logical natureq and demand a skill in computer

programming to implement them. Obviously the non-

numerate person would be unable to cope in this

situation, and is why the majority of artists are

unable to develop their own software.

Knowlton describes programmers and artists as "creativet

imaginative, intelligent, energetic, industriousq

14

competitive, and driven", but programmers were "logicalg

inhibited, methodical... 11, whilst artists were "alogical
(14)

impulsive, and intuitive". This gross difference

in behaviour, in the author's opiniong is why the artist

is unable to cope with the algorithmic nature of

scientific programming languages.

(15)
Knowlton's collaboration with Mrs. Schwartz although

resulted in several creative productions, had similar

problems. The programmer (Knowlton) was unable to

influence the artistic content of the project, and the

artist (Schwartz) was unable to contribute to the

programming side of the work. This division of effort

is completely unrealistic from both sides, for ideally

there should be no need for a programmer. The artist

must be in a position to control and guide the entire

project from conceptp through implementation to the

f inal goal.

In comparison to technical graphic software systems,

there are very few systems supporting the art and

design area. However the relevant systems are

discussed below.

4.3.1 TARPS (KNOWLTON 1971)

0 TARPS (Two-dimensional Alphanumeric Raster Picture

System) was written by Knowlton at the University of

California. Ile describes this language as a set of

macros written in terms of BELFIX which describe

15

operations on a large 92xl26 array of alphanumeric

characters. The films he produced with Vanderbeek

were rather limited in their scope, as they were only

concerned with the manipulation of patterns of
(14)

characters. Knowltons own criticism was "I was

disappointed in the language- it seemed too restrictive".

4.3.2 EXPLOR (KNOWLTON 1970)

EXPLOR (EXplicit Patterns, Local Operation and

Randomness). Thiswas also written at the University

of California and was developed in a collaboration

with Lillian Schwartzq resulting in the films "UFO's

and Pixillation".

Again, Knowlton was not completely satisfied with the

language because of the lack of feedback into the

language design process by the users.

It should be realised that TARPS and EXPLOR were not

attempts to completely interface the artist to the

computer, one can regard them as exploratory systems

in the area of animation.

EXPLOR is currently being implemented at Imperial

College London.

4.3.3 PDL (G. WYVILL 1972)

PDL (Pictorial Description LanguaCe) was written by

WYVILL at the University of Bradford, to produce

computer drawings with a small budget. This might only

16

consist of a mini-computer, teletype and a digital

plotter.

It is. aimed at the artist/designer and includes

important language features such as programmer

defined words for shapes, simple syntax and an

efficient data base system. The main restriction

with PDL is its limitation to work in two dimensions.

A completely new design philosophy is required to

include the handling of 3-D structures.

4-3.4'SPROGS (R. E. THOMAS 1974)

SPROGS (SD 4020 PDP15 Rapid Output Graphics System)

was developed by Thomas at the Atlas Computer

Laboratory. It is a language consisting of a set of

FORTRAN subroutines that interface the user to the

SD 4020 microfilm recorder, and VT04 refreshed

display.

It is an extremely powerful language to handle an

equally powerful computer system. In some respects

this is a disadvantage as its user is restricted

to the sophisticated computer hardware necessary to

drive the recorder.

The language does not appear to contain a large

library of shapesq and. those that do exist are two-

dimensional. The creation of 3-D objects is left to

the user. SPROGS also requires a reasonable ability

in FORTRAN programming, and thus restricts its use in

the area of art and design.

17
4.3-5. CAMP &, CAMPER'(FRANCIS, TIOPGOOD & RALPHS 1973)

CAMP (Computer Aided Motion Pictures) was developed at

the Atlas Computer Laboratory, from an original idea

by S. Anderson to produce an efficient picture language

for producing computer animated films.

CAMPER is basically a 3-D extension of the 2-D CAMP

package.

The authors of the system claim that no knowledge of

computer programming languages is required te use it.

The user writes a program by creating a sequence of

CAMP statements that have a standard format. In this

way the beginner need not be concerned with memorizing

different statement structures.

The prime objective of CAMP is to interface the user

to a microfilm recorder without the user being aware

of the underlying comlexity that actually exists. So

often when a problematical hardware feature is

disguised by software, the problem is not always

removed, but transformed. CAMP seems to overcome

this aspect.

4.3.6 GINO (WOODFORD et al 19621

GINO (Graphical INput and Output) was developed by

the University of Cambridge Computer Aided Design Groupq

and was designed and implemented as a general purpose

graphics package.

The GINO system is accessed via a high-level language

18

0

normally FORTRAN9 which enables the user to developq

manipulate and eventually, display a graphic scene.

Probably the greatest advantage of this system is its

ability to be interfaced with any system of hardware.

It includes all the features one expects from a

sophisticated commercial package and consequently

demands a high-level programming expertise from the

user. GINO has not been designed to cater for the

user working in art and design, but could play an

important role in implementing such a system.

4.3.7 ART1 ýNASII & WILLIAMS 1970)

ART1 was developed at the University of New Mexico

to permit students to produce graphic output using

a line-printer or teletype. Obviously the limitations

are considerable, but it presents a simple and practical

method of introducing computing concepts to art

students.

At present Teeside Polytechnic are using the package

in their DipAD and are hoping to develop an inter-

active version.

4.3.8 PLAD (SAUNDERS, R 1972)

PLAD (Programming Language for Art and Design) was

written by Roger Saunders as a B. Sc. project at

Brighton Polytechnic. It is based upon the language

ART1, but provides a formal problem-oriented language

19

to express primitive graphic ideas that is not

available in ART1. The output is in the form of

patterns of characters that may be overprinted to

achieve shading, and therefore has limited applications.

Although this is an excellent tool for the artist,

it still does not provide a language that can be

used with a wide variety of graphic problems.

0

20

5 PICASO

5.1 DESIGN PHILOSOPHY

PICASO has been designed to satisfy a need for

software in the area of art and design. The design

specification for the language was as follows:

1) allow the U5er to manipulate graphic

concepts in a meanigful way,

2) maintain language syntax and semantics

at a non-technical level,

ensure an extensible language,

0 machine independent,

permit interfacing with various graphic

peripherals,

permit implementation on small memory

computers, and

be easily implemented by other users.

The design of any program normally requires some

sort of compromise in the design specification or

mode of implementation to ensure a successful

completion. to the project. If any compromise

occurred in the design of PICASO it was rarely

detrimental to the above specification, but did

cause great concern when algorithms were developed

to produce surfaces with hidden-lino removal, and

still allow them to be implemented on small machines.

The small-machine environment makes great demands

upon a programmer's creativityq especially in

discovering algorithmic techniques to implement

21

ideas that at first sight demand a vast memory.

Whenever there was a choice between object run-time

and memory, the former-was sacrificed, but to help

offset this, the coding stage was greatly influenced

by statement execution times with the emphasis on

efficiency.

The project demanded extensive research to establish

existing software and the retrieval of papers concerned

with important concepts such as hidden-line removal,

windowingg perspective etc. Although this was an

essential exercise, the author was unable to implement

these ideas without sacrificing the design specification.

As a result of this, considerable time and effort was-

devoted to research into algorithms to solve the same

problems within the small machine environment. The

outcome of this work established a highly integrated

structure that enabled PICASO to be designed in modules.

From the outset, the complete modularity of the system

permitted it to be thoroughly tested with the intro-

duction of a new module which has given PICASO a high

level of integrity.

A detailed evaluation of how the system was implemented

f ollows.

22

5.2 SYSTEM STRUCTURE

PICASO is derived from the words:

PIcture Computer Algorithms Subroutine Orientated,

and consists of an integrated system of procedures that

are sensitive to a common data structure'to handle two

and three-dimensional graphic structures.

The system is implemented in FORTRAN IV to ensure that

it is machine independent and easily implemented by

other users.

Figure 5.2.1 shows a block diagram illustrating the

underlying concepts employed in PICASO. The user is

permitted to work in two and three-dimensional space

in the same program and manipulate shapes and objects

with equal ease. The shape and object libraries supply

a comprehensive range of structures including polygonsg

ellipses, cubesq cones, spheres etc., and external

structures may be input via any peripheral capable of

communicating coordinate data.

Algorithms may then be used to manipulate structures

within the conceptual and projection spaces before

finally being realised on the projection space which

represents the computer graphic media, such as a digital

plotter of display screen.

The realisation of 2-D shapes is a simple process of
If

interpreting the shape's spatial frame of reference as

the projection frame of reference, but 3-D objects are

realised by locating an observer within the object's

conceptual spaco, and viewing through a picture plane

which represents the projection space. The mode of

23

viewing may be true three-point perspective or wide-

angle perspective, but could be extended to include any

type of mathematical projection.

To permit the user to optimise a scene, algorithms are

available to reference the conceptual and projection

spaces and supply spatial and graphic information back

to the user who is then able to control the growth and

development of his work.

0

24

0

P--
: 2; U)
H'

P., H

P 0
U)

-1 U) H
z I

9
pq
H

p pq
p P-4 0

0H0
C\t ý4

H z ý--4

P-f P4
w P.,

HC)

0U
I

0 U2 En

U) H

0 -00- Z

H 0

0

rgure

25

5.3 LANGUAGE SYNTAX AND SEMANTICS'

PICASO is an integrated set of FORTRAN subroutines and

functions that may be called or referenced by a main

program. The modularity'is such, that a beginner is

required to know extremely little about the syntax of

FORTRAN apart from the CALL statementg howeverg there

are three programming concepts that must be understood,

namely: numbers (INTEGER and REAL), variables and

sequential processingg but these are relatively easy

to comprehend.

A typical program will only consist of CALL statements,

apart from STOP and END, with the underlying complexity

of the system completely transparent to the user, but

the language semantics are made self-evident by the

choice of procedure names. The following program might

be attempted by someone who has only had approximately

two to three hours tuition in PICASO, but allows him

to immediately appreciate and handle three-dimensional

objects and realise perspective views.

CALL START

0

CALL ORIGIN(

CALL EYE(

CALL CUBE(BOX9

CALL ROw3D(BOXj

CALL FINIS11(

STOP

arguments are

omitted for clarity.

END

26

The objective of the program is to initialise plotting,

(CALL START) establish a now origin on the paper, (CALL

ORIGIN) and locate an observer in the 3-D conceptual

space (CALL EYE). A cube is called from the object

library (CALL CUBE) and given the name BOX, and a

regular row of cubes is drawn in perspective as seen-

by the observer (CALL ROW3D). 'Finally, plotting is

terminated9the program stopped (CALL FINISH and STOP).

The ability to identify structures by real-world names

is an essential requirement of any graphics language,

and what the PICASO user is Actually doing when he

identifies an object by a name, is reference a FORTRAN

vector that stores the vertex data of the structure.

Once the user has written several programs consisting

entirely of CALL statements9 he is in a position to

use arithmetic statements and the DO statement which

provide programming techniques to solve quite complex

problems. Independent of the language chosen, the user

would have to master and understand its syntax and

semanticst and it is believed that these aspects of

PICASO, have been maintained at a level that is

acceptable to the non-numerate user.

0

27

5.4 PICASO SPATIAL CONVENTIONS

As described in section 5.2. PICASO employs a

conceptual and projection space that are referenced

by conventional methods. The axial systems are shown

in Figure 5.4.1.

2-D 3-D

i op X -. 1; -o--X
SPATIAL CONVENTIONS I

Figure 5.4.1

0

For the two; -dimensional mode the conceptual and

projection space origins are coincident, whereas the

three-dimensional mode enables the origin of the

projection space picture plane, to be located

anywhere on the line connecting the observer's eye,

and the point under observation in the 3-D conceptual

space. Figure 5.4.2 illustrates this transformation

process diagramatically. -

A common feature of algorithms creating perspective

transformations, is their excessive execution time

due to the use of trigonometric function5q consequenilyq

PICASO employs a labelled-common block to hold partially

evaluated data co ncerning direction cosines, the eye

28

location and the point under observation; this avoids

the repetitive, evaluation of items that are constant

for a given observer's location. The common block

also communicates the mode of projection which can

either be true or wide-angle perspective, but as

these transformations are produced by one module,

any future requirement can be catered for by

substitution of this module.

y

Object

.A Focal
Point

.

. 0. ,-

46 Picture
Plane

Observer

PERSPECTIVE

TRANSFORMATION

x
Figure 5.4.2

0

29

5.5 PICASO STRUCTURES

A PICASO structure may either be a two-dimensional

shape or a three-dimensional object,. and is stored in

a FORTRAN vector as shown in Appendix XII.

A structure may consist of one or more continuous

sequences of vertices, that are eventually connected

by straight lines when realised on the projection

space. These contours may be open or closed depending

on whether the first vertex is referenced again as a

terminal vertex. A 2-D contour is nothing more than

a line existing on a surface, namely the picture planev

howeverg a 3-D contour may be interpreted as a surface

existing in conceptual space and be used to assemble

transparent or opaque objects.

The vertex sequence has great significance, as it is

used to provide hidden-line removal, masking, windowing

and shading, but this is explained later in section 5-7-

PICASO permits the user to access structures in two

modes, either from the internal library, or from an

external source via an input peripheral. The contents

of the 2 and 3-D libraries is shown in appendices III

and VI.

The author believes that a structure library is an

0 extremely important aspect of any graphics language,

as it can determine whether the user will succeed iný

mastering the system, or surrender through frustration

30

in being unable to reproduce any form of graphic output.

At present, the subroutine SHAPE and OBJECT are used

to access structures from punched cards, future

routines are planned to access vertex data from other

sources of coordinate data.

The majority of shapes are generated by functions, but

the system includes others such as HORSE, FACE and

13UTFLY (butterfly) etc., that are actually stored in

coordinate form; this is included because the beginner

is then able to handle familiar shapes and thus

acquirean immediate confidence in the language.

Obviously this aspect of PICASO is completely extensible

and will depend entirdly upon the needs of the user.

The family of function derived shapes consists of

standard mathematical forms and provides the user with

anything from a line to a hypotrochoid.

All structures are assigned a programmer defined

REAL FORTRAN name, and are manipulated, and drawn

by reference to this name.

31

0

5.6 STRUCTURE'MANIPULATION

An essential feature of computer graphics is structure

manipulation, and PICASO includes a powerful system

of commands enabling the user to control and manipulate

precisely any PICASO structure. These commands are

listed in appendix V.

The basic operations to control size, displacement
_

and rotation are_obvious requirements, but the artist

is always interested in transformations that probably

have no direct application in standard graphic systems,

but are useful from an artistic point of view.

Consequentlyv the author designed many unusual

algorithms to complement the standard list of procedures;

some of these are now explained.

5.6.1 CYCLE

Any PICASO contour consists of vertices connected by

straight lines. What CYCLE does, is to move the position

of a vertex to a new position on the line connecting

it to its neiGhbour, If this process is repeated

continuously, some effective designs result. Three

examples are shown in Figure 5.6.1.

5.6.2 ASMDSH

PICASO's graphic power derives from the ability to

handle complex geometric structures by name, and

manipulate them as. an entity. At an early stage in

this project, the author considered the graphic

32

analogue of-the FORTRAN arithmetic-statement, For -

example, the following statement:

I=J+KxL

could be written in graphic concep-ýý-as:

0

where a triangle is multiplied by a circle and added

to a square, producing some resultant shape. ASMDSH

(Add, Subtract, Multiply and Divide SHapes) is the

result of considerable research into this problem,

and performs four arithmetic operations upon any PICASO

structure by manipulating the numeric values of the

vertex coordinates. When-structures contain unequal

numbers of vertices, linear interpolation establishes

intermediate positions. ASMDSII provides a powerful

method of generating-families of. shapes that would

be extremely difficult to define mathematically, due

to the nature of their derivation.

Figure 5.6.2 shows the effects of addingt subtracting,

multiplying and dividing a circle and a triangle.

5.6.3 FORM3D

Provides a quick method of creating distorted 3-D

surfaces from 2-D shapes. The user supplies a PICASO

shapet together with a open 2-D contour which 'forms'

the z-coordinate thus forming the third dimension.

Figure 5.6.3 shows the result of an elephant formed

by a bend.

33

' -LBU4- v ýýs Us
-L

34

0

ASMDSII

-�
__) ..

35

FORM3D

Fir. ure 5.6.3

36

5.6.4 TRACE

TRACE generates a new shape that results from tracing

a point a specified distance in or outside some PICASO

shape. The result depends entirely upon the convex

and concave features of the original shape, and often

suprises the user. Figure 5.6.4 illustrates the effect

of tracing around a horse and tracing inside a butterfly.

5.6.5 TRANSH

Shape transformation has often been exploited in

computer artv and PICASO is'supplied with the subroutine

TRANSH to-transform any 2-D contour into another, or

any 3-D surface into another. When a sequence of

transformations are superimposed upon one another, a

distinctive and effective'picture results. Figure

5.6.5 shows a square-law transformation of a face into

a square@

0

37

38

TRANSII

Figure 5.6.5

39

5.6.6 WARP2D &, WARM

These two subroutines enable the user to establish

different laws to control the conceptual space, thus

creating 'space-warp' effects. For example, it might

be required to apply a logarithmic law to the

z-direction, a hyperbolic law to the y-direction, and

a square law to the x-direction, and then view a

system of objects through a wide-angle lens. The less

esoteric operation of folding about the x-axis could

be achieved by making the x-coordinate function equal

to : F(x)= ABS(x); this effect is shown in Figure 5.6.6

with a rhinosceros.

0

4o

WARP2D

Figure 5.6.6

41

5.7 PICASO DRAWING COMMANDS

The PICASO drawing commands transform data from the

conceptual space to the projection space. At the

individual structure level this includes DRAW and

DRAW3D which manipulate a single shape or object

respectively; but at the group structure level,

shapes and objects may be referenced by rows and two

types of regular grids.

One practical problem with the projection space is being

capable of containing the contents of the transformed

conceptual space. To safeguard the user from drawing

beyond the boundaries available, a powerful windowing

facility is included which accepts any mu, ltiple

contour PICASO shape to window the projection space.

If the window shape contains contours with their

vertices specified in a clockwise sense, then these

behave as transparent windows9 but counter-clockwise

contours mask the drawing. The example shown in

Figure 5-7-1 is of a scene with and without a window-.

The technique employed in this process is explained

in Appendix XIII.

When an observer is located in 3-D conceptual space,

care must be taken to ensure a location is chosen

that is physically meaningful, as this can result

in a confused distorted projection. For example,

if the observer's eye was inside an object, vertices

behind the eye would not be seen and must be clipped

42

WINDOW

Figure 5.7.1

43

UNSEEN

DRAW3D

Figure 5.7.2

44

from the final projection. DRAW3D which realises

projections of objects, includes this clipping feature.

The minimum distance before clipping occurs, is

normally 1.0 inch, but this is adjustable to enable

cross-sections of objects to be produced.

Figure 5.7.2 shows views of a cone as the observer

moves through its interior.

Hidden-line removal only odcurs at the individual

structure level, and is achieved by testing the sense

of th4 vertices when a surface is projected onto the

picture plane. If the vertex sense is found to be

counter-clockwise, then it is being viewed from

behind, and may be removed by the user. Figure

5.7.3 shows a cube and cone-with and without

hidden-lines removed. This feature requires initially

that all surfaces are declared in a clockwise

sequencev which is a PICASO convention.

Two simple methods are available for producing textureq

and they are HATCH and STIPLE. HATCH will draw a

series of parallel lines within a PICASO shape at any

angle or separation; STIPLE will create a random

pattern of dots inside any PICASO shape. Figure 5.7.4

shows examples of HATCH and STIPLE.

Although it is assumed that PICASO stru'ctures consist

of vertices joined by straight lines, it is very

useful to be aVlo to join them together with a smooth

curve.

Figure 5.7.3

45

46

STIPLE

HATCH

Figure 5.7.4

47
(16)

An existing algorithm was modified to accept the

data structure of PICASO, which uses a cubic spline

to join together vertices. This routine SMOOTH, works

for open or closed contours and an example is shown

in Figure 5.7-5.

A complete list of plotting commands is shown in

Appendix VI.

0

48

SMOOTH

1-1

DRAW2D

Figure 5.7-5

49

0

5.8 PICASO STRUCTURE ANALYSIS COMMANDS

The analytical commands represent an important

feature of PICASO in that they permit graphic problem

solving in a non-interactive mode. It is not

essential that all graphic programs have to engage

the user in a real-time dialogue with the program,

many types of problems may be solved by advance

analysis which develops useful skills'in problem

solving, and can provide a deeper understanding to

the problem area. Appendix VII contains the list of

commands at present available in PICASO, but is

expected to grow in content as other graphic effects

are demanded.

The concept of inside and'outside is quite important

to many aspects of computer graphicsv therefore, a

special function was developed for PICASO, this is

INSIDE. INSIDE is a logical function that returns

a value of TRUE. if a given point is found to be

'inside, a specified PICASO shape. The shape may

be multiple-contour, and the vertex sequence of these

contours is highly significant to the operation of

INSIDE.

When a PICASO contour has vertices in a clockwise

sense, INSIDE will be TRUE. for all points linsidet

the contour, but for a counter-clockwise contour

INSIDE will be FALSE.. By altering the sense of

contours with REVERS, the user is able to create

50

complex shapes that include holes. Figure 5.8.1 shows

two systems of contours and the interpretation of

inside and outside.

OUTSIDE

INSIDE
OUTSIDE

Figure 5.8.1

The-two functions CLOCK and CLOK3D may be -used to

detect the vertex sense of 2 and 3-D contours

respectively, and CLOK3D is actually "sod by DIRAW3D

to produce hidden-line removal. This type of function

is very useful in software writing as it permits

statements such as:

IF(CLOCK(Atl)) CALL REVERS(A, l)

which represents a powerful graphic operation.

Further shape and object analysis is performed by the

functions:

51

NDIMEN which returns the dimension of the

structure,

NUNES which returns the number of contours in

a structurel

NPOINT which returns the number of vertices in

a contour,

and the three general type functions:

XCOORD4

YCOORD owhich return the respective coordinate

ZCOORD. of a vertex.

These permit the user to retrieve important'

characteristics of structures in conceptual space.

52

0

5.9 PICASO SURFACES

Computer drawn surfaces have always played a useful

means of communicating large quantities of data

effectivelyg they are also aesthetically pleasing to

the 'artistic eye?, and have already been used in

computer artý17)

PICASO includes a variety of simple ways of creating

three-dimensional surfaces that may be exploited to

create very effective graphic output.

There are basically three ways of simulating surfaces

on a plotter or visual display. The first consists

of reducing the surface to a number of parallel lines,

the second divides the surface into rectangular tiles,

and the third, shades the surface either with dots

for the plotter, or alters the screen intensity for'

a graphic display. PICASO incorporates all three

techniquesq however the shading algorithms are still

in the process of development.

The subroutine SURFAC uses the first technique of

assembling a surface from a number of lines, and

includes an effective hidden-line algorithm.

SURFAC produces a front-elevation view of a surface

that is generated by spinning a PICASO open contour

about some vertical axis. The user supplies

information concerning the contour, position of

53

rotation, the angle of elevation etc, and SURFAC

provides a realistic surface. Two such surfaces are

illustrated in Figure 5.9-1.

The subroutine ISOMET generates a surface composed of

rectangular opaque tiles viewed inisometric projectionO

Again the user supplies similar information as supplied

to SURFACp and the drawings in Figure 5.9.2 result. '

The style of surface created by SURFAC and ISOMET is

limited as they only permit symmetrical surfaces.
0

Consequently, two extra routines were developed to

enable irregular line and tiled surfaces to be drawn,

those are HIDE and ASOMET.

HIDE draws out one line supplying hidden-line

removal based upon the previous lines drawn, and the

user develops a surface by calling HIDE with new data.

ASOMET accepts a matrix of numbers, that represent

vertical measurements on a surface at regular positions.

From thisq an isometric view is produced. An example

is shown in Figure 5.9-3.

The isometric view is popular in computer graphics

as it allows a simple algorithm to remove hidden-linos;

a perspective view made from any point in space

requires considerable execution time and memory.

Howevert a technique employed in SURF3D, breaks up

a surface into rectangular tiles and then tests to see

if it is seen. Although there are areas where the

54

surface remains-transparent- it is still very, effective.

Figure 5.9.4 shows two views of the same surface, with
ý- 11 i

and without hidden-lines.

Contour maps are extensively used in geographic

problemsq but were included in PICASO to complete the

range of surface techniques.

MAP2D produces a plan view of a contour map whilst

MAP3D realises a-3-D perspective view, with each

contour in its true position in space. Data are

supplied in the form of ýL matrix together with a

range of heights to search for. Figure 5.9.5 shows

how the same set of data is interpreted by the two

programs.

Surfaces that form solid objects may also be created

with equal ease by the subroutine SILUET. This

develops a tiled opaque or transparent surface

by rotating an open 2-D PICASO shape about a vertical

axis, the resulting envelope creates the surface.

Figure 5.9.6 illustrates various examples produced

by SILUET.

55

SURFAC

Figuro 5.9.1

56

Figure 5.9.2

Figure 5.9.3

57

58

SURF3D

P': LgUre -'). 9.4

59

MAP2D

MAP3D

Figure

6o

SILUEIT

Figure 5.2.6

61

5.10 PICASO SPECIAL EFFECTS

PICASO special effects are created by a series of

subroutines that produce a final graphic effect,

without the requirement of user programming. These

are useful from an educational aspect when teaching

the beginner, as programs consisting of no more than

six statements can produce suprising graphic output.

Perhaps the best example of this is the routine

CONECT, which produces a popular example of computer

art. CONECT accepts a PICASO shape and joins every

verte; to every other vertex by a straight line.

Two examples of CONECT are shown in Figure 5.10.1.

A three-dimensional version CONEC3 performs the same

operation on PICASO objects.

GROW9 GROW2D, and GROW3D are a family of subroutines

to simulate recursive growth patterns. In the 2-D mode

(GROW), a shape is drawnp and the sam'o shape is drawn

at every vertex of the original shape; this process

may be continued to any depth, but excessive execution

time dictates a final limit. Figure 5.10.2 shows a

pentagon 'grown' to a depth of two.

t

MODS11 is derived from the words"modulate shape?.

This performs a substitution process on a PICASO

shape by replacing a line Joining two vertices by

an open 2-D PICASO contourg creating a simple

modulation effect. The process may be repeated to a

depth that is dictated by available memory space,

Figure 5.10.3 shows the result of modulating a

hexagon by a parabola.

SNOW is another type of recursive program which

turns'every line joining two vertices into a small

tsnow-flakel. The process may be repeated to any

depth, but requires enormous amounts of processor

time when the shape is large and the depth exceeds

four. Figure 5-10.4 shows an original five-pointed

star And a snowflake version grown to a depth of

three.

These sub3ýoutines are only written as an aid to the

beginner, but it is clear that they will grow in

number as future demands are made upon the system

62

A complete list of subroutines is given in Appendix IX-.

I

63

CONECT

Pig-ore 5.10.1

64

GROW2D

FIgure 2.10.2

65

\11"-i

MODS11

Figure 5.10.3

66

SNOW

LLff-uIr
-0 10.4

67

5.11 PICASO PUNCTIONS

Generally, students learning to use PICASO tend to

experiment with the structure handling routines

before working with functions. Functions are only

normally used when conventional methods break-downg

or an effect relies entirely upon their use.

The majority of the functions are related to shape

generation, and duplicate the shapes contained in

the PICASO shape library. The functions always begin

with
Ln X or Y, for example XPARAD & YPARAB identify

the coordinates of a particular point on a parabolic

curve. When three dimensional trajectories are

required, they may be created from combinations of

these generators. For example, a 3-D spiral

could be formed from a 2-D Archimedean spirai(XASPIR

& YASPIR) and a line (XYZLIN), the actual orientation

in space would depend on how the functions were

assigned to the axes of space.

To maintain user mathematics at a bare minimum, the

functions are supplied with general characteristics

of the shape together with the vertex required

relative to the total number of vertices on the shape,

e. g. the third vertex out of 20. This procedure

is found to work very well in practice.

Other functions include TAKE and ITAKE which return

68

a-pseudo-random REAL or INTEGER number respectively ,

from a specified range. These functions are useful

when a random element is needed to control the size

and position of structures in space. An example is

shown in Figure 5.11.1 which illustrates a wide-angle

view of cubes with random size and position in space.

A complete list of functions is shown in Appendix VIII.

0

69

a

cl

TAKE & FISIII

Figure 5.11.1

70

5.12 PICASO ARRAY HANDLING COMMANDS

The majority of FORTRAN c'ompilers only permit 2-D

arrays. , This was regarded as a severe limitation

to a'graphics language, that worked in a three

dimensional mode. Consequently, an entire range

of subroutines and functions was designed to access

and initialise one, two and three-dimensional REAL,

INTEGER and LOGICAL arrays; these are listed in

Appendix X.

v

71

6 EXAMPLES OF PICASO PROGRAMS

This section is concerned with the practical aspects

of PICASO, but as it is impossible to explore every

facet of the language various small programs have been

written that illustrate typical graphic output.

6.1 EXAMPLE OF THE 2-D LIBRARY

An Archimedean spiral has been chosen to illustrate

the multitude of effects that can be realised with

just one basic curve.

The format for the spiral is:

CALL ASPIRA(ARRAYIRADIUS, CYCLESIN)

where:

ARRAY is the name given to the spiral

RADIUS is the final radius of the spiral

CYCLES is the number of convolutions

N is the number of points on the

spiral.

An example could be:

CALL ASPIRA(SPIRALt2.0,4.01201)

This statement generates an Archimedean spiral

SPIRAL, consisting of 201 points, with four

convolutions and a final radius of two inches.

If the user wanted to actually plot out this curve,

the following program would be required:

DIMENSION SPIRAL(4o5)

CALL START

CALL ORIGIN(5-0,5.0)

72

-", ASPIRA(SPIRAL', 2.014.01201) CALL

CALL DRAW(SPIRAL, 1.010.0,0.0)

CALL FINISII(10.0)

STOP

END

and the output would be as shown in Figure-6.1.1.

Figure 6.1.1

A slight modification to-thi, s program produces the

examples shown in Figure.. 6.1.2. The actual change

is in the number of, convolutions'.

0

73

k, 3-gure 6.1.2

74

6.2 EXAMP-LE'_'OF THE 3 -D LIDRARY

This example illustrates how a wide-angle view

could be made of a 20 by 20 grid of cubes. The

stages of the program design are:

1) Initialise plotting.

2) Select an origin on the plotter paper.

3) Generate one cube.

4) Select a point of observation.

5) Draw a 3-D grid.

6) Terminate plotting.

The output, shown in Figure 6.2.1 was produced by

the following program:

DIMENSION C(98)

CALL START

CALL ORIGIN(5-095-0)

CALL CUBE(Cvl. O)

CALL FISHI(5-0,5.0, -20.0,5.0,5.0,0. o, 4.0)

CALL GRID3D(C92.092091.5,2001-590.0o0.090,0t-1)

CALL FINISII(10.0)

STOP

END

S

75

GRID3D & FISIII

Figure 6.2.1

76

-6-3 EXAMPLE OF SHAPE'MANIPULATION

An interesting manipulative command is PULL, which

distorts shapes by pulling or compressing them in a

specified direction.

This example draws out four views of a horse that is

being compressed vertically. The program design

stages are:

1) Initialise plotting.

2) Select an origin on the plotter paper.

3) Generate a horse.

4) Repeat four times.

4.1) Pull horse

4.2) Draw horse

4-3) Change origin

5) Terminate'plot'ting.

The output shown in Figure 6.3.1 was produced by

the following program:

DIMENSION 11(237), P(237)

CALL START

CALL ORIGIN(5. Ot2.0)

CALL HORSE(II)

DO 1 I=lp4

0

CALL PULL(HgO. Olo. oggo. O, FLOAT(I)/4. o, p)

CALL DRAW(P, 1.0,0.0, o. 0

CALL ORIGIN(O. 091.0)

1 CONTINUE

CALL FINISII(10.0)

STOP -

END

77

PULL

Figure 6.3.1

78

6.4 EXAMPLE OF SURFACES

This example shows how shapes may be generated from

others, and their eventual use in sweeping out a

surface.

The requirements of this program are to create a

surface of a waveform which consists of a linearly

damped cosine wave.

The design stages of the program are:

1) Initialise plotting.

2) Select an origin on the plotting paper.

3) Generate a cosine wave.

4) Generate a line.

5) Create a damped cosine wave with ASMDSII.

6) Draw the surface with SURFAC.

7) Terminate plotting.

The surface in Figure 6.4.1 was produced by the following

program:

DIMENSION A(203), B(7), W(200), OV(200), LTN(200)

CALL START

CALL ORIGIN(5-095.0)

CALL SINE(Agi. 0,4.0,90.0,1260.0,100,0.0, i. o)

CALL LINE091.09'1. Otl. 020.092)

CALL ASMDSH(AqlqBjlqAq3)

CALL SLMFAC(A96.0120096.0,50,30.0,3.093.09

1 WjOVqUN, 0. OtO. 0)

CALL FINISH(10.0)

STOP

END

79,

SURFAC

Figure 6.4.1

80

6.5 EXAMPLE OF SPECIAL EFFECTS

In this example, CONECT is used to join together

vertices on a 20 pointed star.

The program design stages are:

1) Initialise plotting.

2) Select an origin on the plotter paper.

3) Generate a 20 pointed star.

4) Call CONECT.

5) Terminate plotting.

The following program produced the output shown in

Figure

DIMENSION A(50)

CALL START

CALL ORIGIN(5.0,5.0)

CALL STAR(A, 20,2.0,0.. 5),

CALL CONECT(All. 090.090.0)

CALL FINISII(10.0)

STOP

END

0

81

CONECT

Figure 6.5.1

82

0

6.6 VARIOUS EXAMPLES

EXAMPLE I

Reference to Figure 6.6.1 will show a5 by 20 grid

of cubes that have been 'cycled' 10 times. The secret

of the solution is to identify that the complete

drawing consists of two different rows of cubes

interwoven together.

The first row has the cubes displced by:

X=cube width

Y=0.0

Z=cube width

and the second row has the cubes offset by:

X=cube width

Y=1.0

Z=cube width

The program design stages are:

1) Initialise plotting.

2) Select an origin on the plotter paper.

3) Generate a cube.

4) Select an observation point.

5) Repeat the following 10 times:

5-1)Repeat the following 10 times:

5.1.1) Draw row of cubes.

5.1.2) Draw row of offset cubes.

5.1-3) Change offset variables.

5.2) Cycle cube.

6) Terminate plotting.

The output illustrated in Figure 6.6.1 was produced

by the following program:

83

DIMENSION C(98)

CALL START

CALL ORIGIN(O. 091.0)

CALL CUBE(C, 1.0)

CALL EYE(10.0910.0t-20.090.090.090.0)

DO 1 I=1910

Y=0.0

Z=0.0

DO 2 J=1910

CALL'ROw3D(Cgl. 0,591.090.011.090. OgYgZ, -l)

CALL ROw3D(C9l. Ot5tl. 0,0.0,1.091.09Y+1.09

1 Z+1.00-1)

Y=Y+2.0

Z=Z+1.0

2 CONTINUE

CALL CYCLE(C9190.19C)

1 CONTINUE

CALL FINIS11(10.0)

STOP

END

A similar drawing is shown in Figure 6.6.2, but the

scene is seen through. a wide-angle lens.

84

i em 6.6.1

85

Figure 6.6.2

86

EXAMPLE 11

The butterfly shown in Figure 6.6.3 was created by

repeatedly tracing around the contour of a butterfly

at distances increasing according to a square law.

The program design stages are:

1) Initialise plotting.

2) Select an origin on the plotter paper.

3) Generate a butterfly.

4) Repeat 20 times:

4.1)Draw butterfly.

4.2) Increase tracing distance.

5) Terminate plotting.

The following program produced the drawing shown in

Figure 6.6.2.

DIMENSION B(209), C(209)

CALL START

CALL ORIGIN(5.095.0)

CALL BUTFLY(B)

DO 1 I=1920

CALL TRACE(B, FLOAT((1-1)x(i-1))/4oo. 0, C)

CALL DRAW(Cpl. OvO. 090.0)

1 CONTINUE

CALL FINISH(10.0)

STOP

END

A similar drawing shown in Figure 6.6.4 was produced

by the same program with more tracing.

87

TRACE

Figure-6.6.3

88

TRACE

Figure 6.6.4

89

7, APPLICATION AREAS FOR PICASO

The terms of reference for this project were to

develop a computer graphics system, that could be

easily used by people working in the areas of art

and design. The result has been the graphics system

PICASO.

Throughout the evolution of PICASO, the author has

been aware of its potential as a general purpose

Graphics system. In fact it is difficult to specify

a technical area that could not in some way use the

system to some advantage. This section continues

to examine three different application areas where

PICASO is already having some influence.

4F

90

7.1 ART & DESIGN

PICASO has been primarily designed to enable the

artist/designer to use the graphic capabilities of

the digital computer. The contents of the language

has been formalised to anticipate the requirements-

of this type of user and the program examples in

Section 6 illustrate the effectiveness and simplicity

of the language.

The author has been teaching PICASO with a high degree

of success to the following courses:

DipAD Fine Art (FT) Middlesex Polytechnic.

DipAD Graphic Design (FT) Middlesex Polytechnic

Computer Graphics in Middlesex Polytechnic.

Art & Design.

0

The system has also been implemented at the Slade

School of Art on an IBM 36o system, and is being used

by post-graduate students in Fine Art. It is also to

be implemented at the Royal College of Art in the near

future.

There are numerous application areas for computer

graphics in art and design, some of them being:

1) Pattern generation,

2) Pabric design,

3) Animation,

4) Technical drawing aid for 2 and 3-D workq

5) Sculpture,

6) Cover design,

91

Fine art.

In all of these areas there is a place for computer

graphics to assist the design process, not as a

replacement for artistic creativity, but as a stimulus

to explore and invent.

0

92

7.2 MATHEMATICS

Much of mathematics is concerned with the analysis of

systems existing in space, and even when there is not

a direct association with space , the spatial analogue

can present a very realistic interpretation of the

system.

As PICASO was developing, the author became aware of

the potential of the system in teaching geometric

concepts in mathematics. So often in mathematics,

a congept is misunderstood_because the student

cannot visualise what is really happening in space;

but with, PICASO, the student has a means of simulating

the mathematical model graphically. For example,

there are two subroutiiies MATOP2 and MATOP3 which

perform matrix multiplication upon two and three-

dimensional structures. These allow the student to

experiment and investicate directly, the relationships

between matrices and the movement of objects in space.

The solution of equations is often taught from a

graphical aspect, and PICASO has features that could

be employed in this area.

Functions of the form:

Constant=f(x, y)

could be represented as a two-dimonsienal array and

viewed as a three-dimen. sional surface. This type of

picture reveals so much data that a truer insight is

often gained by this approach.

93

Other areas of mathematics that could be affected

include:

1) Function generation,

2) Rotations and reflections

3) Mappings,

4) Surfaces,

5) Vectors.

0

94
7.3 ENGINEERING

Engineering can cover so many different areas that

it might be useful to mention just two application

areas with which the author has been associated.

The first is in civil engineering. Students studying

for the BSc in Civil Engineering at Middlesex

Polytechnic are taught PICASO as a general purpose

graphics language. It is used iýi a wide variety of

ways, from the analysis of experimental data, to the

realisation of three-dimensional views of bridges and

buildings. As this type of student already has an

understanding of FORTRAN9 the teaching of PICASO is

just anatural extension to the language, and presents

no problem to the student.

The second application is in control engineering, where

PICASO is being employed as a method of identifying

conditions of stability in hypothetical non-linear

control systems. The technique employed, is to

interpret the stability equation as a three-dimensional

surfacog draw this with PICASO and then identify the

topological characteristics that reflect the stability

of the system.

It is believed that this combination of activities is

unique in this field, and that it could develop into

a general method of systems analysis. Students

studying control systems at Middlesex Polytechnic are

to be taught PICASO in order that they might use it

in this modo of analysis.

95

8- CONCLUSIONS

Although PICASO has only been operational for a few

months, it is already implemented in one University

and three Polytechnics, with the prospect of being

adopted by every Polytechnic in Great Britain. It

is also to be made available to every interested

educational institution.

This immediate response reflects the success of PICASO,

for no matter how sophisticated a graphics-language

might, be, unless it can provide quality drawings for

the non-technical userv it has failed. The art-work

supplied with this thesis illustrates the wide range

of graphic effects that can be achieved with PICASO.

They have been produced by the author, who is not an

artistv not for any artistic end, but simply to

express the effectiveness of PICASO in various graphic

modes.

PICASO has already been taught by the author to many

types of students working in art and desiang engineering

and mathematics to establish any weaknesses in the

language. Although minor adjustments have been madeq

the underlying structure has withstood this exacting

and final method of testing computer packages.
0

PICASO has for the first time enabled the author to

successfully teach computer graphics to the non-

numerate student.,, Previous attempts had failed

96

due to technical problems raised by students, such as:

"What is a radian? "

"What is the distance between these

two points? "

"Do these lines intersect? "

"How can I shade this shape? "

Mow can I test this point to see if -

It Is inside this shape? "

These problems and many moret destroyed the normal

teaching continuity, and eventually displaced the

objective of the course to such a distance, that this

goal was never achieved.

The teaching methodology with PICASO is completely

different. A course begins with a brief talk about

computers and how they can be made to draw. The

student is then introduced to essential concepts of

the language such as numbers, variables, space and

then shown how to code. Ile is then given the PICASO

User Manual shown in Section 11, and then taken

through some simple example programs. After this

introduction, he writes his first program and this is

normally after one hours tuition. Subsequent programs

require very little effort as they have a consistent

format.

Some time can be spent on two-dimensional workq but

97

the student often wishes to explore three-dimensions

and surfaces; this demands an explanation of the 3-D

spatial conventions and the significance of the picture

plane. The student then continues to use PICASO

in various projects where he-develops his ideas in

greater depth.

PICASO is an extensible language and already includes

many additions proposed by students on previous

courses. The ease with which this can be performed

is essential to the continued use of PICASO, and the

author is determined that PICASO will continue to

enjoy its early success by supporting the software

until some independent scheme can be arranged to

maintain it.

PICASO has been designed to be used. The author now

hopes that it will be used to design.

0

98

9.1 APPENDIX I

Summary of PICASO system commands.

EYE Establishes the position of the observer

in the 3-D conceptual space.

FINISH Terminates plotting.

FISHI Establishes the position of a wide-angle

observer in the 3-D conceptual space.

ORIGIN Establishes a new origin on the 2-D

projection space.

PLANE Alters the distance between the picture

plane and the observer.

START Initializes plotting.

WINDOW Creates a virtual window on the 2-D

projection plane.

0

99

9.2 APPENDIX II

Summary o'f PICASO input/output commands.

ARRAY1 Reads from punched cards a REAL one-

0

dimensional array.

ARRAY2 Reads"from punched cards a REAL two-

dimensional array.

ARRAY3 Reads from punched cards a REAL three-

dimensional array.

IRRAY1 Reads from punched cards an INTEGER one-

dimensional array.

IRRAY2 Reads from punched cards an INTEGER two-

dimensional array.

IRRAY3 Reads from punched cards an INTEGER three-

dimensional array.

LRRAYl Reads from punched cards a LOGICAL one-

dimensional array.

LRRAY2 Reads from punched cards a LOGICAL two-

dimensional array.

LRRAY3 Reads from punched cards a LOGICAL three-

dimensional array.

OBJECT Reads from punched cards a PICASO 3-D

object.

PRINT Prints to a line-printer a PICASO

structure.

PUNCH Punches onto punched car ds a PICASO

structure.

SILAPE Reads from punched cards a PICASO 2-D

shape.

100

0

9.3 APPENDIX III

Summary of PICASO shapes.

AGNESI Fermat's 'Witch of Agnesil curve.

ARC, Circular arc.

ASPIRA Archimedean spiral.

AS1. 'PR0: [Astroid.

BUTFLt Butterfly.

CARDI Cardioid.

CUDPAR Cubic parabola.

DLINE Dashed line.

DELTOI Deltoid.

DOT Dot.

ELLIPS Ellipse.

EPITRO Epitrochoid.

FACE Human face.

GRILL Regular grill of lines.

HORSE Horse.,

HYPERB Hyperbola.

HYPOTR Hypotrochoid.

LEPANT Elephant.

LINE Line.

LISSAJ Lissajous figure.

LSPIRA Logarithmic spiral.

PARAB Parbola.

POLYGN Regular polygon.

ISLECTNG Rectangle.

RHINO Rhinosceros.

101

APPENDIX III Continued.

RHODON Rhodon.

SHARK Shark.

SINE Sinusoid.

SQUARE Square.

STAR Regular star.

102

9.4 APPENDT

Summary

BOX

CONE

CYLIND

DOT3D

GRIL3D

LINE3D

SPHERE

K IV

of PICASO objects.

Box.

Cone.

Cylinder.

Dot.

Regular grill of lines.

Line.

Sphere.

0

103

9.5 APPENDIX V
.1

Summary of, PICASO structure manipulating commands.

ASMDSH Adds,
'subtracts,

multiplies and divides

two PICASO STRUCTURES.

COPYSII Makes a copy of a PICASO structure.

CYCLE Moves vertices along lines to their

nearest neighbour.

EXTSH Extracts a contour or surface from a

PICASO structure.

FIT Adjusts a 2-D PICASO contour to fit

between two points.

FORM3D Creates a 3-D PICASO surface from a 2-D

shape moulded to some contour.

JOIN Augments a PICASO structure by another.

MATOP2 Performs a2 by 2 matrix multiplication

on a PICASO shape.

MATOP3 Performs a3 bY 3 matrix multiplication

on a PICASO object.

MIRROR Produces a mirror, image of a PICASO shape.

ýJJX2D Exchanges X and Y coordinates in a PICASO

shape.

MIX3D Exchanges X, Y and Z coordinates in a

PICASO object.

0

NORMAL Adjusts a vertex to a specific position

and makes corresponding adjustments to the

rest for a PICASO shape.

NORM3D Adjusts a vertex to a position and makes

correspondine adjustments to the rest for

PICASO object.

lo4
9.5 APPENDIX V Continued.

PERSIIP Generates a PICASO shape from a perspective

view of a PICASO object.

PULL Distorts a PICASO shape in a specified

direction.

REMOVE Removes a contour or surface from a PICASO

STRUCTURE.

REVERS Reverses the vertex sequence in a PICASO

structure.

RIPPLE Alters the starting vertex for a PICASO

CONTOUR OR SURFACE.

ROTATE Rotates a PICASO shape abo"t a fixed

point.

SHIFT Shifts a PICASO shape in a given direction.

SHIFT3 Shifts a PICASO object in a given direction.

SIZE Alters the size of a PICASO shape.

SIZE3 Alters the size of a PICASO object.

STICK Sticks two open PICASO contours together.

THICK Creates a 3-D extrusion of a PICASO shape.

THIN Creates a 2-D projection of a PICASO object.

TRACE Traces around a PICASO shape.

TRANSH Transforms one PICASO structure into

another.

TRANSP Transposes a PICASO shape into'a 3-D PICASO

SURFACE.
0

TURN3D Rotates a PICASO object about an axis.

WARM Subjects a PICASO shape to now laws of space

WARP3D Subjects a PICASO object to now laws of

space,

105

0

9.6 APPENDIX VI

Summary of PICASO plotting commands.

DRAW Drdws out a PICASO shape.

DRAW2D" Draws out a PICASO shape in perspective,

DRAW3D Draws out a PICASO object.

DSHAPE Draws out a dashed PICASO shape.

DSHLNE Draws out a dashed line.

FILL Draws out a tesselation of PICASO shapes.

FILL2D Draws out a tesselation of PICASO shapes

in perspective.

FILL3D Draws out a tesselation of PICASO objects.

GRID Draws out a regular grid of PICASO shapes.

GRID2D DRAWS out a regular grid of PICASO shapes

in perspective.

GRID3D Draws out a regular grid of PICASO objects.

HATCH Hatches in a PICASO shape with parallel

lines.

MASK Draws out a PICASO shape masked by

anotlier.

ROW Draws out a row of PICASO shapes.

ROW2D Draws out a row of PICASO shapes in

perspective.

ROW3D Draws out a row of PICASO objects.

PLIT Moves the plotter pen to a now position.

SMOOTH Draws out a PICASO shape with its vertices

connected by a cubic spline curve.

STIPLE Draws as pecified number of random dots

inside a PICASO shape.

lo6

9.7 APPENDIX VII

Summary of PICASO structure analysis commands.

CLOCK Determines whether a PICASO contour is

clockwise or counter-clockwise.

CLOK3D Determines whether a PICASO surface is

clockwise or counter-clockwise.

CLOSE Closes a PICASO contour.

CLOSED Determines whether a PICASO contour or

surface is closed or open.

CROSS Determines whether two lines intersect

and the nature of the intersection.

HULL Determines the rectangular hull of a PICASO

shape.

INSIDE Determines whether a given point is in or

outside a PICASO shape.

NDIMEN Determines the core requirement of a

PICASO structure.

NLINES Determines the number of contours or

surfaces in a PICASO structure,

NPOINT Determines the number of vertices in a

PICASO contour or sutface.

NSUB Determines the data structure position

for the start of a PICASO contour or

surface.

4F
NXSTJB Determines the data structure position

for the X-coordinate of a Given vertex.

NYSUB Determines the data structure position

for. the Y-coordinate of a given structure.

107

9.7 APPENDIX VII Continued.

NZSTIB Determines the data structure position

for the Z-coordinate of a given vertex.

SENSE Determines the spatial relationship

between a point and a line. I

SLOPE Determines the slope of a line joining

two vertices in a PICASO, shape.

0

108

9.8 APPENDIX VITT

Summary of PICASO functions.

ITAKE Generates a ranom INTEGER number

0

between two boundaries.

PERSP Calculates the picture pl ane position of

a point in 3-D space.

TAKE Generates a random REAL numb er between two

boundaries.

XARC Returns the X-coordinate of a point on a

circular arc.

XCOORD Returns the X-coordinate of a given vertex.

XELLIP Returns the X-coordinate of a point on an

ellipse.

XEPIT Returns the Xeoordinate of a point on an

epitrochoid.

XIIYPER Returns the X-coordinate of a point on a

hyperbola.

XIIYPOT Returns the X-coordinate of a point on a

hypotrochoid.

XLISS Returns the X-coordinate of a point on a

Lissajous figure.

XLSPIR Returns the Xooordinate of a point on a

logarithmic spiral.

XMIRRO Returns the X-coordinate of the reflection

of a point.

XPARAB Returns the Xsoordinato of a point on a

parabola.

109

9.8 APPENDIX VIII Continued.

XPERSP Returns the X-coordinate of the picture

plane position of a point in 3-D space.

XPOLY Returns the X-coordinate of a point on a

regular polygon.

XROT Returns the X-coordinato of a point

rotated about a given fixed point.

XSIN returns the X-coordinate of a point on a

sinusoid.

XYVLIN Returns the X, Y or Z-coordinate of a

point on a line.

YARC Returns the Y-coordinate of a point on a

circular arc.

YCOORD Returns the Y-coordinate of a given vertex.

YELLIP Returns the Y-coordinate of a point on an

ellipse.

YEPIT Returns the Y-coordinate of a point on an

epitrochoid.

YHYPER Returns the Y-coordinate of a point on a

hyperbola.

YHYPOT Returns the Y-coordinate of a point on a

hypotrochoid.

YLISS Returns the Y-coordinate of a point on a

Lissajous figure.

YLSPIR Returns the Yooordinate of a point on a
0

logarithmic spiral.

YMIRRO Returns the Y-coordinate of the point

reflected about a line.

4

110

9.8 APPENDIX VTII Continued.

YPARAB Returns the Y-coordinate of a point on a

parabola.

YPERSP Returns the Y-coordinate of the picture

plane position of a point in 3-D space.

YPOLY Returns the Y-coordinate of a point on a

regular polygon.

YROT Returns the Y-coordinate of a point

rotated about a given fixed point.

YSIN Returns the Y-coordinate of a point on a

sin-usoid.

ZCOORD Returns the Z-coordinate of a given vertex.

0

0

ill

9.9 APPENDIX IX

Summary of special effects.

CONECT Connects every vertex on a PICASO shape

to every other vertex, with lines.

CONEC3 Connects every vertex on a PICASO object

to every other vertex with lines.

GROW Draws a PICASO shape located at every

vertex of itself to any depth.

GROW2D Draws a PICASO shape located at every

vertex of itself to any depthq in

perspective.

GROW3D Draws a PICASO object located at every

vertex of itself to any depth.

MODSH Modulates the boundary of a PICASO shape

by an open PICASO contour.

SNOW Transforms a PICASO shape into a

crystaline form to any depth.

112

9.10 APPENDIX X

Summary of array handling commands.

FIND1 Searches a one-dimensional]REAL array

for the occurrence of a value.

FIND2 qearches a two-dimensional REAL array

for the occurrence of a value.

FIND3 Searches a three-dimensional REAL array

for the occurrence of a value.

GETI Returns a value from a one-dimensional

REAL array.

GET2 Returns a value from a two-dimensional

REAL array.

GET3 Returns a value from a three-dimensional

REAL array.

IFIND1 Searches a one-dimonsional INTEGER array

for the occurrence of a value,

IFIND2 Searches a two-dimensional INTEGER array

for the occurrence of a value.

IFIND3 Searches a three-dimensional INTEGER array

for the occurrence of a value.

0

IGETI Returns a value from a one-dimonsional

INTEGER array.

IGET2 Returns a value from a two-dimensional

INTEGER array.

IGET3 Returns a value from a three-dimensional

INTEGER array.

IPUT1 Assigns a value to a one-dimensional

INTEGER array.

113

9.10 APPENDIX X Continued.

JPUT2 Assigns a value to a two-dimensional

INTEGER array.

IPUT3 Assigns a value to a three-dimensional

INTEGER array.

LPUTl Assigns a value to a one-dimensional

LOGICAL array.

LPUT2 Assigns a value to a twodimensional

LOGICAL array.

LPUT3 Assigns a value to a three-dimensional

LOGICAL array.

PUT1 Assigns a value to a one-dimensional

REAL array.

PUT2 Assigns a value to a two-dimensional

REAL array.

PUT3 Assigns a value to a three-dimensional

REAL array.

0

114

g. '1'1 APPENDIX XI

Summary of PICASO surface commands.

HIDE Draws out a contour masked by the previous

drawn contour.

ISOMET Produces an isometric projection of a

surface generated by a rotated PICASO

contour.

MAP2D Produces a 2-D contour map of vertical

data stored in an array.

MAP3D Produces a 3-D contour map of vertical

data stored in an array!

SILUET Produces a 3-D surface by spinning a

PICASO contour.

SURFAC Produces a front-elevation view of a

surface generated by rotating a PICASO

contour.

SURF3D Realises a mesh type perspective surface

from an array containing vertical data.

0

115

9.12 APPENDIX XIT

PICASO Data structure

lst Contour 2nd Con

Eýl E; D E] 17 BI F-: 1 0
11- MY Coordinate

Vertex count

Contour count

Dimension

lst Surface 2nd Sur
3.0 E; l Eýl 1: 1 001 E-3 E: l II L-

X, Y&Z Coordinate

Vertex count

Surface count

Dimension

0

116

9.13 APPENDIX XIII

Windowing algorithm.

The function SENSE determines whether a point is to

the left, coincident or to the right of a given line

segment. Using this function it is possible to detect

if two lines intersect and the nature of the

intersection.

I

As PICASO uses a convention that clockwise contours

create transparent windows and co"nter-clockwise

opaquoq the function CROSS can return the mode

of intersection when a line segment is tested against

the windowing shape. A line intersecting a clockwise

contour is -ve, and a co"nter-clockwise is +ve. Thus

when all the intersections have been detected, they

are sorted using a binary tree sort, and the plotter

pen lowered for each -ve intersection and raised for

each +ve val"e as the line is drawn.

Figure 9.13.1 illustrates a complex window and the

intersections a line segment makes.

0

117

9.13 APPENDIX XIII Continued.

WINDOW
x 2'Y2

Transparent
+ve

I I- - *. - -II

opaque ve
I

opaque

4

+ve

-ve

x1 pyl

Figure 9.13.1

0

118

9.14 APPENDIX XIV

ISOMET Algorithm.

0

The conventional procedure of using two vectors is

employed to maintain the current upper and lower

horizons, but a space domain technique achieves

hidden-line removal.

The picture plane is divided into the six domains

shown in Figure 9.14.11 and, they are defined as

f ollows:

1) the domain

2) the domain

3) the domain

4) the domain

5) the domain

6) the domain

above the upper-horizon

below the lower-horizon

between the two horizons

where the two horizons meet

on the upper-horizon

on the lower-horizon.

4vo

FIgure 9.14.1

lig

9.14 APPENDIX XIV Continued

Any line-segment to be drawn must either stay in

one domain or cross to another, therefore a state

table can describe the action to take under any

condition. For exampleg a move from domain one to

two requires the following actions:

a) calculate the intersection with the

upper-horizon and draw this line segment,

b) calculate the intersection with the

lower-horizon and ignore this segment,

c) draw the remaining line segment and

update the lower horizon.

To ensure that the surface is completely opaque, it

is created and drawn in small rectangular tiles as

shown in Figure 5.9-3.

0

I
10 REFERENCES

Reichardt, J.
The Computer in Art, Page 8
Studio Vista,
London

2 Association of Computer Units in Colleges
of Higher Education,
CHESS Working Party,
North Staffs. Polytechnic,
Blackheath Lane,
Stafford

3 Thomas, R. E.
SPROGGS Manual (1974)
Atlas Computer LaboratorY,
Didcot,
Berkshire OXII OQY

4 George, J. E.
GEMS A Graphical Meta System
Department of Computer Science,
Colarado State University,
Colarado, USA

5 Bork, A. M.
APL for the SIGMA
XEROX User Group Proceedings (Dec 7 81972)
XEROX
London

121

6 Armit, A. P.
MULTIPATCH, A Language for interactive Oesign
Computer Aided Oesign Autumn 1971 Page lo

7 Narasimham, R. & Reddy, V. S. N.
Some Experiments in Scene Generation using COMPAX
Tata Institute of Fundamental Research,
IFIP Working Conference on Graphical Languages,
North-Holland Press

.
8 Licklider, J. C. R.

A Picture is worth a thousand Words ... and it costs.
SJCC 1969
AFIPS Press,
Montvale,
New-Jersey, 617

9 DISSPLA (Display Integrated Software System and
Plotting Language)
Integrated Software Systems Corporation,
San Diego,
California, USA

122

10 Roberts, L. G.
-Machine Perception of Three Dimensional Solids
Technical Report 315 (may 1963)
MIT Lincoln Laboratory,
Cambridge, USA

Warnock, J. E.
A Hidden Surface Algorithm for Computer
Generated Half-tone Pictures
Technical Report 4-15 (1969)
Computer Science Oepartment,
University of Utah,
Salt Lake City, USA

12 Loutrel, P. P.
A Solution to the Hidden line Problem for
Computer Drawn Polyhedra,
IEEE Transactions on Computers,
Vol C-19 No 3 March 1970 Page. 205

13 Matsushit6, Y.
Hidden line Elimination from a rotating object,
CACM Vol 15 No 4 Page 245 April 1972

14 Knowlton, K.
Graphic Languages,
Proceedings of the Working Conference on
Graphic Languages (1972)
North-Holland Press

15 Knowlton, K. & Schwartz
Films "PIXILLATIONS & UFO'S" (1970 1971)
University of California,
Oepartment-of Computer Science,
Santa. -Cruz, USA

16 Bush, D. J. & Bell, M.
SPLINT, ACubic Spline Package (1974)
Middlesex Polytechnic,
Computer Centre,
Queensway,
Enfield,
Middlesex

Csuri, C. . The Computer in Art, Page 40
Jasia Reichardt,.
Studio Vista,
Londo n

9

, 122

PICASO USER MANUAL

U10,2/Xl

PICASO SYSTEM

EYE
FINISH
FISHI
ORIGIN
START
WI NDOW
FACTOR

SYSTEM COMMANDS

UIO. 2/Xl

PICASO SYSTEM , PLOTTING, COMMANDS

DRAW
DRAw2D
DRAw3D
DSHAPE
DSHLNE

FILL
FI LL21)
GRID
GRID2D
HATCH
HIDE
I SOMET
MASK
PLIT
ROW

Row2D
SHADE
SIILUET
SMOOTH
STIPLE
SURFAC

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM SHAPE GENERATION

AGNESI

ARC
ASPIRA
ASTROI
CARD I
CUBPAR
DELTOI
DOT
ELLI PS
EPITRO
GRILL
HYPERB
HYPOTR
LINE
LINE31)
LISSAJ
LSPIRA
PARAB
POLYGN
ýECTNG

RHODON

SINE,
SQUARE
STAR

t

(1)26.03.75

U10.2/Xl

PICASO SYSTEM OBJECT GENERATION

BOX
CYBE
PYRAM

(1)26.03.75

U10.2/Xl

PICASO SYSTEM SHAPE MANIPULATION

COPYSH
EXPLOD
EXTSH
FIT
FORm3D
JOIN
MIRROR
mix2D
mix3D
NORMAL
PERSHP
PULL
REMOVE
REVERS
RIPPLE
ROTATE
SHIFT
SH I FT3
SIZE
STICK
TRACE
TRANSH
TRANSP
TURN31)

W26.03.75

UIO. 2/Xl

PICASO SYSTEM SHAPE ANALYSIS

CLOCK
CLOK31)
CLOSED
CROSS
HULL
INSIDE
ND I MEN
NILINES
NPO I NT
NSUB
NXSUB
NYSUB
NZSUB
SENSE
SLOPE

(1)26.03.75

U10.2/Xl

PICASO SYSTEM FUNCTIONS

ITAKE
PERSP
POSCON
TAKE
XARC
XCOORD
XELLIP
XEPIT
XHYPER
XHYPOT
XLISS
XLSPIR
XMIRRO
XPARAB
XPERSP
XPOLY
XROT
XSIN
XYZLIN
YARC
YCOORD
YEPIT
YELLI P
YHYPER
YHYPOT
YLISS,,
YLSPIR
YMIRRO
YPARAB
YPERSPS
YPOLY

YROT
YSIN

ZCOORD

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM

CONECT
CYCLE
GROW
GR0 W2. D
MODSH
SNOW

SPECIAL EFFECTS

_,
W26.03.75

UIO. 2/Xl

PICASO SYSTEM AGNESI

NAME AGNESI (Witch of Agnesi)

FUNCTION Stores Fermat's Witch of Agnesi curve in an array

ARGUMENTS (ARRAY, XSPAN, YSPAN, N)

ARRAY (Real array) stores the 2-d Picaso Agnesi curve
XSPAN (Real inches) is the width of the curve
YSPAN (Real inches) is the height of the curve
N (Integer) is the number of steps in the curve

EXAMPLE CALL AGAIESI(A, 5.0,5.0., 20)

This statement stores in A the Witch of Agnesi

curve 5.0 inches wide and 5.0 inches high, in

20 steps

NOTES 1. No plotting takes place

(1)26.03.75

I

U10.2/Xl

PICASO SYSTEM ARC

NAME ARC

FUNCTION Stores a circular Arc in array

ARGUMENTS (ARRAY, X, Y, RADIUS, THETA., PHI., N)

ARRAY (Real array) stores the Arc

X, Y (Real inches) is the centre of revolution

RADIUS (Real inches is the radius of curvature
THETA (Real degrees) is the starting angle of the

Arc

PHI (Real degrees) is the angle of rotation in a

clockwise sense

N (Integer) is the number of steps to perform
the rotation

EXAMPLE CALL ARC(SpO. 0,0.0,5.0,90.0., 90.0,20)
This statement stores an Arc in S with the

centre of revolution at the origin and radius
5.0 inches. The starting angle is 90.0 0 and

0 the rotated angle is 90.0

NOTES 1. No plotting ýakes place

(1)26.03.75

Ul 0.21X1

CASO SYSTEM ARRAYI

ARRAY1 '(One Oimension Array)

NCTION Reads in punched card data and stores it in a One
Dimension Array

GUMENTS (ARRAYCOL)

ARRAY (Real array) is the name of the array
COL (Integer) is the number of columns in the

array

tAMPLE CALL ARR, 4Yl(B, 20)

This statement reads in sufficient cards to

store 20 numbers in B.

1. The format of the cards is (10F8.0) therefore a
decimal point should be punched in the data.

A number must be punched within its allocated 8

columns.
2. For the above example 2 cards are required but

partially punched cards are accepted as the final

card.

J26.03.75

UIO. 2/Xl

PICASQ SYSTEM ARRAY2

NAME '. ARRAY2 (Two Dimension Array)

FUNCTION Reads in punched card data and stores it in a Two
Dimension Array

ARGUMENTS (AMYCOL, ROW)
ARRAY (Real array) is the name of the array
COL (Integer) is the number of columns in the

array
ROW (Integer) is the number of rows in the array

EXAMPLE CALL ARR, 4Y2(B, 18., 2)

This-statement reads in sufficient cards to

store 36 numbers in B.

NOTES 1. The format of the cards is (10F8.0) therefore a
decimal point shou, ld be punched in the data.
A number must be punched within its allocated 8
columns.
2. For the above example 4 cards are required.

(2)26.03.75

UIO. 2/Xl

PICASO SYSTEM ASPIRA

NAME ASPIRA (Archimedean Spiral)

I
FUNCTION Stores an Archimeadean Spiral in array

ARGUMENTS (ARRAY, RADIUS, CYCLES, N)
ARRAY (Real array) stores the spiral
RADIUS (Real inches) is the final radius of the

spiral
CYCLES (Real) is the number of rotations in the

spiral
N (Integer) is the number of points in the curve

EXAMPLE CALL ASPIRA (S, 4.0,2.0,60)
This statement stores an archimedean spiral in
the array S with 2.0 cycles and a final radius
of 4.0 inches.

)

1 NOTES 1. No platting takes place

?f

I
W26.03.75

U10.2/Xl

PICASO SYSTEM ASTROI

NAME ASTROI (Astroid Roemer 1674)

FUNCTION Stores an astroid in array

ARGUMENTS (ARRAYWIDTHN)
ARRAY (Real array) stores the astroid

WIDTH (Real inches) is the maximum radius of the

astroid
N (Integer) is the number of points in the curve

EXAMPLE CALL ASTROI (A, 2. Oj 60)

This statement stores an astroid of 2.0 inches

radius in A.

y
+

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl
0

PICASO SYSTEM BOX

NAME BOX

FUNCTION Stores a 3-d Picaso box in array

ARGUMENTS (ARRAYj LENGTH, HEIGHT. WIDTH)

ARRAY (Real array) stores the 3-d Picaso box

LENGTH (Real inches) is the X-length of the box

HEIGHT (Real inches) is the Y-height of the box

WIDTH (Real inches) is the Z-depth of the box

EXAMPLE CALL BOX (B, 2.0,1.0,1.0)
This statement stores a box in B 2.0 inches
long 1.0 inch high and 1.0 inch deep

B

NOTES 1. No plotting takes place
2. Array must be dimensioned (98)

(1)26.03.75

U10.2/Xl

PICASO SYSTEM CARDI

NAME CARDI (Cardioid)

FUNCTION Stores a cardioid curve in an array

ARGUMENTS (ARRAY., XSPAN, N)
ARRAY (Real array) stores the 2-d Picaso cardioid

curve
XSPAN (Real inches) is the width of the cardioid

from the origin to the right-hand end inter-
section with the X-axis

N (Integer) the number of steps in the curve

EXAMPLE CALL CARDI(C, 4.0,50)
This statement stores in array Ca cardioid
curve 4.0 inches wide in 50 steps

Gýo

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM CLOCK

NAME CLOCK (Clockwise)

FUNCTION Determines whether a 2-d Picaso contour is clockwise
or anti-clockwise

ARGUMENTS (AMYN)

ARRAY (Real array) stores a 2-d Picaso shape
N (Integer) is the number of the contour

EXAMPLE I=CLOCK (BOX, 1)
This statement sets I. TRUE. if the first

contour of box is clockwise else I is FALSE.

NOTES 1. Clock is a logical function

(1)26.03.75

lw;, U10.2/Xl

PICASO SYSTEM CLOOD

NAME CLOK30 (Clockwise 3-d)

FUNCTION Determines whether a 3-d Picaso contour is clockwise

or anti-clockwise

ARGUMENTS (ARRAY. N. sizEx,, Y., z)

ARRU (Real array) stores a 3-d Picaso object
N (Integer) references the contour
SIZE (Real) is the degree of enlargement or

reduction
Xý Y, Z (Real) is'the amount of shift applied to the

object

EXAMPLE I =CLOK3D (BOX, 1,1.0,0 - 0,0 - 0,0 - 0)
This statement sets I TRUE. if the 1st contour
of box is clockwise else I is set FALSE..

NOTES 1. Clok3d is a logical function

(1)26.03.75

U10.2/Xl

PICASO SYSTEM CLOSED

NAME CLOSED

PUNCTION Oetermines whether a 2-d Picaso contour is open or
Closed

ARGUMENTS (ARRAYNC)
ARRAY (Real array) stores a 2-d Picaso shape

NC (Integer) is the number of the contour

EXAMPLE J<LOSED(BOXl)
J is set TRUE. if the first contour of box

is closed, else J is FALSE.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM CONECT

NAME CONECT (Connect)

FUNCTION Draws out a 2-d Picaso shape and connects every
vertex with every other vertex with lines

ARGUMENTS (AMY, SIZE, XS, YS)
ARMY (Real array) stores a 2-d Picaso shape
SIZE (Real) is the degree of enlargement or reduc-

tion of the drawn shape relative to the

original stored in array
xS, YS (Real inches) is the degree of shift applied

to the shape

EXAMPLE CALL CONECT (HEX., 1.0,0.0,5.0)

This statement draws out the shape shown
below, assuming that hex stores a hexagon

-)k

NOTES 1. The Picaso shape may be open or closed

(2)26.03.? 5

U10.2/Xl

PICASO SYSTEM COPYSH

NAME COPYSH (Copy Shape)
I

FUNCTION Makes a copy of a Picaso shape

ARGUMENTS (AMMY1, ARRAY2)

ARRAY1 (Real array) stores a Picaso shape or object
ARRAY2 (Real array) stores a copy of the shape or

object stored in Arrayl.

EXAMPLE CALL COPYSH (A., B)
This statement copies the shape or object stored in
A into B.

NOTES 1. No plotting takes place

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM CROSS

NAME CROSS

FUNCTION Determines whether two lines cross, and the nature
and type of intersection

ARGUMENTS (X1, Y1, X2, Y2, X3, Y3, X4, Y4, XIsYI)
X1.0 Y1 (Real) is the first point on the reference

line

X2j Y2 (Real) is the last point on the reference
line

X3, Y3 (Real) is the first point on the test line
X4., Y4 (Real) is the last point on the test line
XIjYI (Real) is the point of intersection if the

lines cross or touc h

EXAMPLE lýCROSS(0.0,0.0,1.0,1.0, XAYAXBYBXIYI)

This statement determines if the given two

lines intersect

NOTES 1. The following illustrate the type of intersections

91

2. Cross is an integer type function

ý(V 26.03.75

UID, 2/Xl

PICASO SYSTEM CUBE

NAME CUBE

FUNCTION Stores a regular cube in a Picaso array

ARGUMENTS (ARRAYiSIDE)

Array (Real array) receives the cube
Side (Real inches) is the size of the cube

EXAMPLE CALL CUBE (C, 1.0)
This statement stores a cube size 1.011 in C
Array C must be dimensioned C(98)

NOTES 1. All surfaces are clockwise
2. The lower left-hand corner is on the origin

>1

x

4

(1)26.03.75

U10.2/Xl

PICASO SYSTEM CUBPAR

NAME CUBPAR (Cubic Parabola)

FUNCTION Stores a cubic parabola in array

ARGUMENTS (ARRAY, XSPAN, YSPAN, N)

AMY (Real array) stores the cubic parabola

XSPAN (Real inches) is the X-width of the curve
from the origin

YSPAN (Real inches) is the height of the curve

N (Integer) is the number of points in the

curve

EXAMPLE CALL CUBPAR(C., 2.0,2.0-, 20)

This statement stores a cubical parabola in

C 4.0 inches wide 2.0 inches high

Y
NOTES 1. No plotting takes place

(1)26.03i? 5

U10.2/Xl

PICASO SYSTEM CYCLE

NAME CYCLE (Re-cycle coordinates)

FUNCTION Takes every point defining a 2-dimensional Picaso

shape and moves it clockwise or anti-clockwise
towards its nearest neighbour

ARGUMENTS (ARRAYjKFARRAyl)
ARRAY (Real array) stores a 2-dimensional Picaso

shape
K (Integer) 'kVE a Clockwise

-VE a Anti-clockwise

(Real) is the degree of rotation minimum value

= 0.0 max = 1.0

ARRAY1 (Real array) stores the cycled shape

EXAMPLE CALL CYCLE (SQUARE, 1,0.5, SQUARE)

This statement takes the shape stored in

square and rotates the points clockwise by
50%. The cycled shape is re-stored in square.

NOTES 1. No plotting takes place

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM DELTOI

NAME OELTOI (Oeltoid)

FUNCTION Stores a deltoid curve in array

ARGUMENTS (ARRAY, RADIUS, N)
ARRAY (Real array) stores the deltoid curve

RADIUS (Real inches) is the maximum radius of the

deltoid

N (Integer) is the number of points in the

curve

EXAMPLE CALL DELTOI (D, 1.0,5 0)
This statement stores a Deltoid in D of
radius 1.0 using 50 points

/
I

NOTES 1. No plotting takes place

W26.03.75

U10.2X1

PICASO SYSTEM DOT

NAME DOT

FUNCTION Stores the coordinates of a point

ARGUMENTS (ARRATAY)
ARRAY (Real array) stores the dot
X, Y- (Real inches) is the dotýlocation

EXAMPLE CALL DOT (D_, 5.0,5.0)
This statement stores the position of a dot
in D.

*(Dor)

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM DRAW

NAME ORAW

FUNCTION Plots a 2-dimensional Picaso shape

ARGUMENTS (ARRAY., SIZE. X, Y)
AFMAY (Real array) stores a 2-d Picaso shape

SIZE (Real) is the degree of enlargement or reduc-
tion of the drawn shape relative to the

original stored in array
X_, Y (Real inches) is the amount of shift applied

to the drawn shape

EXAMPLE CALL DRAW(BOX, 2.0,5.0,5.0)

This statement draws out the shape stored in

box twice its original size displaced 5.0

inches along the X-axis and 5.0 inches along
the Y-axis.

I: j

NOTES 1. All size changes are made relative to the origin,
for example the point (1.0,1.0) with a size value of
2.0 is transformed to (2.0,2.0).

W26.03.75

U10.2/Xl

PICASO SYSTEM DRAw2D

NAME ORAW2D (Draw a 2-d shape in 3-d)

FUNCTION Draws out a 3-d version of a 2-d Picaso shape by

transposing coordinates

ARGUMENTS (ARRAY, SIZE, X, Y, Nl, N2, N3, V)

ARRAY (Real array) stores a 2-d Picaso shape

SIZE (Real) is the degree of enlargement or

reduction
X, Y (Real) ip the degree of shift applied to the

2-d shape

N1, N2, (Integer) determine the transposition
N3 N1 N2 N3 x yz IN 3-0

12 3 x yV
13 2 x Vy
21 3 y xV IN 2-D 31 2 V xy
23 1 y Vx
32 1 V yx

V (Real) is the value for the third dimension

EXAMPLE CALL DRAW2D(A., 1.0., 0.0,0.0,3,1., 2,2.0)

This statement produces the following trans-
formation

Y4

x

NOTES 1. The position of the eye is set by 'eye'

(1)26.03.75

U10.2/Xl

PICASO SYSTEM DRAw3D

NAME DRAW3D (Draw a 3-d Object)

FUNCTION Draws out a 3-d view of a 3-d Picasoobject

ARGUMENTS (ARRAY, SIZE, X, Y, Z, L)

ARRAY (Real array) stores a 3-d Picaso object

SIZE (Real) is the degree of enlargement or

reduction
X, Y, z (Real) is the degree of shift applied to the

object
L (Integer) if L is +VE all lines are drawn.

If L is -VE s ome hidden-line removal occurs

EXAMPLE CALL DR. 4W3D(BOX, 1.0-, O. O, 0.0,0.0, -l)
This statement draws out the object stored in

box with hidden-line removal

NOTES The position of the eye is set up by 'eye' or 'fishi'

(1)26.03.75

U10.2/Xl

PICASO SYSTEM DSHAPE,

NAME DSHAPE Wash Shape)

FUNCTION Oraws out the 2-dimensional Picaso shape with broken

lines

ARGUMENTS (ARRAY, SIZE, X, Y, DASH)

ARRAY (Real array) stores a2-d Picaso shape

SIZE (Real) is the degree of enlargement or reduc-
tion of the drawn shape relative to the

original stored in array
X, Y (Real inches) is the amount of shift applied

to the drawn shape

DASH (Real inches) is the length of the dash

EXAMPLE CALL DSHAPE (BOX, 1.0,0.0,0.0,0.1)

This statement draws out the shape stored in
box at its original size with zero displace-

ment. The broken line is 0.1 inch

.f
ýo- 71

(1)26.03.75

UIO. 2/Xl

PICASO SHAPE DSHLNE

NAME DSHLNE Washed Line)

FUNCTION Draws a broken line between two points

ARGUMENTS W, Y1, X2, Y2, DASH)

X1, Y1 (Real inches) coordinate of 1st point
X2, Y2 (Real inches) coordinate of 2nd point
DASH '(Real inches) is the length of the broken line

I

EXAMPLE CALL DSHLIVE (0.0,0.0,4.0., 5. Oj 0.25)

This statement draws a broken line in lengths
4 inch long between the origin and the point
(4.0,5.0).

01*
4.0. p T-O

00,

(1)26.03.75

U10.2/Xl

PICASO SYSTEM ELLIPS

NAME ELLIPS (Ellipse)

FUNCTION Stores an ellipse in array

ARGUMENT (AMY, MAJOR, MINOR, N)

ARRAY (Real array)

MAJOR (Real inches)

ellipse
MINOR (Real inches)

ellipse

stores the ellipse
is the major radius of the

is the minor radius of the

N (Integer) is the number of points on the

curve?

EXAMPLE CALL ELLIPS(E, 4.0,2.0,60)
This statement stores an Ellipse in E with
diameters 8.0 inches by 4.0 inches

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM EPITRO

NAME EPITRO (Epitrochoid)

FUNCTION Stores a epitrochoid in array

ARGUMENTS (ARRAY, RADFIX, RADMOV, DIST, N)

ARR4Y (Real array) stores the 2-d epitrochoid
RADFIX (Real inches) is the radius of the fixed

circle

RADMOV (Real inches) is the radius of the moving

circle

DIST (Real inches) is the distance of the traced

point that exists on the moving circle to its

centre

N (Integer) is the number of points on the

curve

EXAMPLE CALL EPITRO(E, 2.0,1.0,1.0,60)

This statement represents a 1.011 radius
circle moving around a fixed 2.011 radius
circle. The point traced is 1.0" from the

centre.

/
�I

'1 I +
\\-

.1
04,

/

W26.03.75

U10.2/Xl

PICASO SYSTEM EXPLOD

NAME EXPLOD (Explode)

FUNCTION Adjusts the size of a shape relative to a specified

point

ARGUMENTS (ARRAYj

ARRAY

XP, YP
F
ARRAY2

XP, YP., F., ARRA Y2)

(Real array) stores the two-dimension Picaso

shape
(Real inches) is the centre of the explosion
(Real) is the degree of size change
(Real array) stores the exploded shape

EXAMPLE CALL EXPLOD (BOX-, 0.0., 0.0,2.0, BOX)
This statement doubles the size of the shape

stored in box about the origin

-----I

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM EXTSH

NAME EXTSH (Extract shape)

FUNCTION Extracts a contour from a 2-dimensional Picaso shape

ARGUMENTS (AMY. NCCONTOR)

ARRAY (Real array) stores the 2-d Picaso shape
NC (Integer) references the contour to be

extracted
CONTOR (Real array) receives the extracted contour

EXAMPLE CALL EXTSH (BOX, 1, C)

This statement extracts the first contour of
box and stores it in C.

Box

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM EYE

NAME EYE

FUNCTION Establishes the position of the eye and the point

under observation

ARGUMENTS (XEYEZE3X3y3 Z)

XE, YE, ZE(Real inches) are the coordinates of the eye
in 3-d space

X, Y, Z (Real inches) are the coordinates of the

point in space the eye is looking towards

EXAMPLE CALL EYE (0 - 0., 0-0,0 - 0-, 0.0,5.0., 10.0)

This statement places the eye at the origin
and points it towards the point specified

y

EY

A

NOTES 1. Eye must be called before calling any 3-d sub-
routine
2. The picture plane is set 10.0 inches from the eye
3. Ey'e may be called many times
4. The point the eye is looking at is centered on
the origin

(1)26.03.75

U10.2/Xl

PICASO SYSTEM FILL

NAME FILL

FUNCTION Oraws a regular grid of 2-d Picaso shapes allowing

for alternate horizontal and vertical shift to be

applied

ARGUMENTS (ARRAY, SIZE, NX, XSP, XSH, NY, YSP, YSH, X, Y)

ARRAY (Real array) stores a 2-d Picaso shape

SIZE (Real) is the degree of enlargement or

reduction of the drawn shape relative to the

original stored in array

NX (Integer) is the number of shapes in the 1X'

direction

XSP (Real inches) is the distance between points

on two shapes in the 'X' direction

XSH (Real inches) is the amount of shift applied
to even numbered rows

NY (Integer) is the number of shapes in the 'Y'

direction

YSP (Real inches) is the distance between points

on two shapes in the 'Y' direction

YSH (Real inches) is the amount of shift applied
to even numbered columns

X, Y (Real inches) is the amount of shift applied
to the entire gr id

EXAMPLE CALL FILL(HEX., 1.0,3,1.50,0.0,2,1.732,0.5,0.0,0.0)

This statement produces a tesselated space of
Hexagons (assuming Hex stored a Hexagon)

s

(1)26.03.75

UIO, 2/Xl

PICASO SYSTEM FILL2D

NAME FILL2D (Draw a 2-d grid in 3-d)

FUNCTION Oraws out a three-dimensional version of a 2-d
Picaso shape

ARGUMENTS (ARRAYiSIZEjX. PyiNX. *XSP3XSH3NY., YSPjYSHN1, N2, N3, V)

ARRAY (Real array) stores a 2-d Picaso shape
SIZE (Real) is the size factor

xjY (Real inches) is the degree of shift applied
to the 2-d shape

NX (Integer) is the number of shapes in the Ix,
direction

XSP (Real inches) is the distance between points

on two shapes in the 'x' direction

XSH (Real inches) i's the amount of shift applied
to even numbered rows %

NY (Integer) is the number of shapes in the ly,
direction

YSP (Real inches) is the distance between points
on two shapes in the 'y' direction

YSH (Real inches) is the amount of shift applied
to even numbered columns

N1., N2., (Integer) determine the transformation
N3

N1 N2 N3 xyZ IN 3-0

123 xyV
132 xVy
213 yxV
312 IN 2-0 Vxy
231 yVx
321 Vyx

V (Real) is the va lue for the third dimension

(1)26.03.75

U10.2/Xl

PICASO SYSTEM FILL2D

EXAMPLE CALL FILL2D(HEX, 1.0,0.0., 0.0,3,1.5,0.0,2,1.732,0.5,1,2,3,2.0)

This statement produces the following trans-

position

y

x

NOTES 1. The position of the eye must be specified by a
call on eye or fishi

(1)26.03.75

U10.2/Xl

PICASO SYSTEM FINISH

NAME FINISH

FUNCTION Enables plotting to be completed and moves the pen
beyond the drawing to prevent it being overdrawn by

the'next program

ARGUMENTS W
x (Real inches) is the distance moved by the pen

after completing the drawing

EXAMPLE CALL FINISH (10.0)

Completes plotting and moves the pen 10.011

along the X-axis relative to the origin

NOTES 1. The distance moved is relative to the origin

W26.03.75

U10.2/Xl

PICASO SYSTEM FISHI

NAME FISHI (Fish-eye)

FUNCTION Establishes the position of the eye and the radius of

a wide-angle lens and the point under observation

ARGUMENTS (XEYEZEXYZ, R. 4DIUS)

XE, YE, ZE(Real inches) are the coordinates of the eye
in 3-d space

X., Y-, Z (Real inches) are the coordinates of the point
in space thp eye is looking towards

RADIUS (Real inches) is the radius of the lens

EXAMPLE CALL FISHI(0.0,0.0,0.0,0.0,5.0,10.0,1.0)

This statement places the eye and a wide-angle
lens of radius 1.01' at the origin and points
it towards the point specified
YA

EYJ

x

NOTES 1. Fishi must be called to establish the wide-angle
lens
2. The picture plane is set 10.0" from the eye
3. Fishi may be called many times
4. The point the eye is looking towards is centered
on the origin

W26.03.75

UIO. 2/Xl

PICASO SYSTEM GRID

NAME GRIO

FUNCTION Plots out a regular grid of 2-dimensional shapes

ARGUMENTS (ARRAY., SIZE, NX, XSP, NY., YSP, X, Y)

ARRAY (Real array) stores a 2-d shape
SIZE (Real) is the degree of enlargement or reduc-

tion of the drawn shape relative to the

original stared in array

NX (Integer) is the number of shapes to be drawn

in the X-direction

XSP (Real inches) ýs the horizontal displacement

between two shapes

NY (Integer) is the numbr of shapes to be drawn

in the Y-direction

YSP (Real inches) is the vertical displacement

between two shapes
X, y (Real inches) is the amount of shift applied

to the grid of shapes

EXAMPLE CALL GRID(SQUARE, 1.0,3., 1.2,2,1.2,0.0,0.0)

Draws out the shape stored in Square 6 times

at the original size in a grid format 3 by 2.

The entire grid is displaced zero inches from

the origin.

XSP

T
YSP
I

NOTES 1. Observe that XSP and YSP are not distances between
two shapes, but are distances between the same point
on displaced shapes

(1)26-03.75

U10.2/Xl

PICASO SYSTEM FIT

NAME FIT

FUNCTION Adjusts a 2-d Picaso open contour such that the end

points are located at specific positions in space

ARGUMENTS (ARRAY., X1., Y1., X2, Y2, FARRAYA)

ARRAY (Real array) stores the 2-d Picaso contour
x1, Y1 (Real inches) are the coordinates of the

first point
X2, Y2 (Real inches) are the coordinates of the

second point
F (Real) is a multiplication factor effecting

the amplitude of the contour
ARRAYA (Real array) stores the adjusted contour

EXAMPLE cALL FIT (A., 0.0., 0.0.9 1.0., 1.0,1.0.9 A)

A

This statement takes the curve stored in A
and adjusts the coordinates such the Ist and
last coincide with the origin and 1.0,1.0.

NOTES 1. No plotting takes place

(1) 26.03.75

U10.2/Xl

PICASO SYSTEM GRID2D

NAME GRI02D (Draw a 2-d grid in 3-d)

FUNCTION Oraws out a three-dimensional version of a 2-d Picaso

grid

ARGUMENTS (ARRAY., SIZE, X., T, NX., XSP., NY., YSP, Nl, N2, N3-, V)
ARRAY (Real array) stores a 2-d Picaso shape

SIZE (Real) alters the size of the final drawing by

'size' times

X, Y (Real inches) is the degree of shift applied
to the 2-d grid

NX (Integer) is the number of shapes in the Ix,

direction

XSP (Real inches) is the distance between points

on two shapes in the 'x' direction

NY (Integer) is the num ber of shapes in the ly,
direction

YSP (Real inches) is the distance between points
on two shapes in the 'y' direction

N1, N2 (Integer) determine the transformation
N3 N1 N2 N3 xyZ IN 3-0

12 3 xyV
13 2 xVy
21 3 yxV
31 2 Vxy IN 2-D
23 1 yVx
32 1 Vyx

V (Real) is the value for the third dimension

EXAMPLE CALL GRID2D(SQpl. 0,0.0., O. O., 4,1.0,3,1.0., l., 3., 2,1.0)
This statement produces the following trans-

position

(1)26.03.75

U10.2/Xl I

PICASO SYSTEM GRID2D

Si

NOTES 1. The position of the eye must be specified by a
call on eye or fishi.

M26.03.75

UIO, 2/Xl

PICASO SYSTEM GROW

NAME GROW (Recursive growth)

FUNCTION Oraws out a recursive growth pattern using vertices

of any shape as the centre of growth for more shapes

ARGUMENTS (ARRAY, SIZE, X, Y, N, STACK)
ARRAY (Real array) stores a 2-d Picaso shape
SIZE (Real) alters the size of the final drawing by

Isize' times

X, Y (Real inches) is the degree of shift applied
to the entire structure

N (Integ er) is the depth of growth
STACK (Real array) is an array supplied to grow to

enable the recursive growth to be computed

EXAMPLE CALL GROW(HEX. 9 0.0., 0.0,3, STACK)
This statement produces the following output

assuming that hex contains a regular hexagon

NOTES 1. The array stack must be dimension
3*DEPTH*NV

where NV is the number of vertices in the shape
(1)26.03.75

U10.2/Xl

PICASO SYSTEM GRow2D

NAME GROW2D (Grow a 2-d shape in 3-d)

FUNCTION Draws out a recursive growth pattern using vertices
of any shape as the centre of growth for more shapes
in 3-d.

ARGUMENTS (AMY, SIZE, X, Y, N, N1, N2, N3., V., STACK)

ARRAY (Real array) stores a 2-d Picaso shape
SIZE (Real) alters the size of the final shape
X, Y (Real is the degree of shift applied to the

2-d shape
N (Integer) is the depth of growth
N1., N2., (Integer) determine the transposition (see
N3

grow)
V (Real) is the value for the third dimension
STACK (Real array) ip a work array required by

Grow2d and is dimensioned:

STACK(3*N*NV) where NV is the number

of vertices in array

EXAMPLE CALL GROW2D(A, 1.0,0.0,0.0., 3,1,3,2., 1.0, STACK)

This statement allows the shape in 'A' to

grow to a depth of 3 one inch above the X, Z

plane
V4

71

NOTES 1. The position of the eye must be specified by

calling eye or fishi

W26.03.75

U10.2/Xl

PICASO SYSTEM HATCH

NAME HATCH

FUNCTION Hatches a 2-d Picaso shape with parallel lines

ARGUMENTS (ARRAYi THETA, SPACE)

ARRAY (Real array) stores a 2-d Picaso shape
THETA (Real degrees) is the angle of the lines

SPACE (Real inches) is the distance between lines

EXAMPLE CALL HATCH (A, 45.0,0.1)
This statement draws parallel lines at 45 0

0.111 apart over the shape stored in

I "-) [

NOTES 1. Clockwise contours create a shape, holes are
created by anti-clockwise contours

W26.03.75

U10.2/Xl

PICASO SYSTEM HIDE

NAME HIDE

FUNCTION Draws out the contents of an array depending upon
the contents of two arrays storing upper and lower

contours

ARGUMENTS (AMY., OVER., UNDER., N., NLINE, WIDTH., DIST., XS., YS)
ARRAY (Real array) stores a 2-d Picaso contor
OVER (Real array) is used by hide to maintain the

upper contour
UNDER (Real array) is used byhide to maintain the

lower contour
N (Integer) is the number of elements in the

array (also over & under)
NLINES (Integer) is the number of the line being

drawn

WIDTH (Real inches) is the length of the line

DIST (Real inches) is the distance between lines
XSJYS (Real inches) is the degree of shift applied

to the line

EXAMPLE CALL HIDE(ARRAY, OVER, UNDER, 3,20,5.0,0.1,0.0., 0.0)
This statement could produce the output
shown below

A, /A/l

WAIC

NOTES 1. Array, over & under must be dimensioned

W26.03.75

U10.2/Xl

PICASO SYSTEM HULL

NAME HULL (Ractangular Hull)

FUNCTION Oetermines the minimum and maximum X and Y values of

a 2-dimensional Picaso shape

ARGUMENTS (ARRAY, XMIN, XMAX, YMIN., YMAX)

ARRAY (Real array) stores 2-d Picaso shape

XMIN (Real inches) minimum X coordinate
XMAX (Real inches) maximum Y coordinate
YMIN (Real inches) minimum y coordinate
YMAX (Real inches) maximum Y coordinate

EXAMPLE CALL HULL (BOX, XMIN., XMAX, YMIN, YMAX)

This statement returns values of XMIN, XMAX,
YMIN & YMAX for the shape stored, in Box

r--- -- -;

4b

..
JTS23

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM HYPERB

NAME HYPERB (Hyperbola)

FUNCTION Stores a Hyperbola in array

ARGUMENTS (ARRAY, SPAN, DIST, N)

ARRAY (Real array) stores the hyperbola

SPAN (Real inches) is the width and height of the

curve
DIST (Real inches) is the distance of the curve

from the X or Y axis at the limits of the

curve
N (Integer) is the number of points in the

curve

EXAMPLE CALL HYPERB (H., 2.0,0.5,10)

This statement stores a hyperbola in H 2.0

by 2.0 inches, 0.5 inches from the origin

axes

NOTES 1. No plotting takes place

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM HYPOTR

NAME HYPOTR (Hypotrochoid)

FUNCTION Stores a Hypotrochoid curve as a 2-d Picaso shape

ARGUMENTS (ARRAY, RADFIX, RADMOV, DIST., N)

ARRAY (Real array) stores the 2-d hypotrochoid

RADFIX (Real inches) is the radius of the fixed

circle
RADMOV (Real inches) is the radius of the'moving

circle
DIST (Real inches) is the distance of the traced

point that exists on the moving circle to its

centre
N (Integer) is the number of points on the

curve

EXAMPLE CALL HYPOTR(H42.0,1.0,1,0,60)
This statement represents a 1.011 radius

circle moving inside a fixed 2.011 radius

circle. The point traced is 1.011 from the

centre.

/

NOTES 1. No plotting takes place

(1)26.03.75

2r1, U10.2/Xl

PICASO SYSTEM INSIDE

NAME INSIOE

FUNCTION Determines whether the point X, Y is in or outside
a shape

ARGUMENTS (ARRAY., XY)
ARRAY (Real array) stores a 2-d Picaso shape
X, Y (Real inches) references the point to be

tested

EXAMPLE J- INSIDE (BOX, 0.0,1.0)
This statement sets J=. TRUE. If the point
(0.0,1.0) is inside the shape stored in box

else J=. FALSE.

TRUE. D
-FALSE.

NOTES 1. A clockwise contour creates a surface whilst an
anti-clockwise contour creates a hole

. F'flSE.

2. Inside is a logical function

(1)26.03.75

U10.2/Xl

PICASO SYSTEM IRRAYI

NAME IRRAY1 (Integer one dimension array)

FUNCTION Reads in punched card data and stores it in a one-
dimension array

ARGUMENTS (ARRAYCOL)

ARRAY (Integer array) is the name of the array
COL (Integer) is the number of columns in the

array

EXAMPLE CALL IRRAY1 (K, 21)

This statement reads in sufficient cards to

store 21 numbers in K.

NOTES 1. The format of the cards is (10IB) the numbers must
be right-justified

2. For the above example 3 cards are required:

(1)26.03.75

U10.2/Xl

PICASO SYSTEM IRRAY2

NAME IRRAY2 (Integer two dimension array)

FUNCTION Reads in punched card data and stores it in a two
dimension array

ARGUMENTS (AMY. *COL, ROW)
ARRAY (Integer array) is the name of the array
COL (Integer) is the number of columns in the

array
ROW (Integer) is the number of rows in the array

EXAMPLE CALL IRRAY2 (K, 21,2)
This statument reads in sufficient cards to

store 42 numbers in K.

NOTES 1. The format of the cards is (1018) the numbers must
be right-justified

2. For the above example 6 cards are required:

(1)26.03.75

U10.2/Xl

PICASO SYSTEM ISOMET

NAME ISOMET (Isometric surface)

FUNCTION Draws an isometric projection of a tiled surface
created by rotating a 2-d contour about an axis

ARGUMENTS (ARRAY, LX, NX, LY, NY, ANGLE, XC, YC, WARRAy, SOLID j OVER I UNDER j XS., Ys., V)

ARRAY (Real array) stores a 2-d open Picaso. contour

LX (Real inches) is the width of the surface
NX (Integer) is the number of points across the

surface
LY (Real inches) is the depth of the surface
NY (Integer) is the number of points in the

depth of the surface

ANGLE (Real degrees) is the angle the surface makes

with the X-Z plans
XC, YC (Real inches) are the coordinates of the axis

about which rotation occurs
WARRAY (Real array) is a work array required by isomet

and is dimensioned (2, NX+NY)

SOLID (Integer array) is a work array required by
isomet and is dimensioned (NX+NY)

OVER (Real array) is a work array required to store
the upper horizon and is dimensioned (NX+NY)

UNDER (Real array) is a work array required by isomet
to store the lower horizon and is dimensioned
(NX+NY)

XSj YS (Real inches) are the coordinates of the near-
est corner relative to the origin

V (Real inches) is the height of the surface
beyond the range of the contour

(1)26.03.75

U10.2/Xl

PICASO SYSTEM I SOMET

EXAMPLE CALL ISOMET(A., 6.0,20,6.0,20,30.0,3.0,3.0, W; SOU, 0.0,0.0,0.0)
This statement produces an isometric projec-
tion of a surface produced by rotating the

contour stored in A about the point 3.0,3.0.

. v>

(1)26.03.75

4- x5

t U10.2/Xl

PICASO SYSTEM ITAKE

NAME ITAKE (Integer take)

FUNCTION Selects an integer random number from a specified
range

ARGUMENTS (IJ)
(Integer) defines low-order range
(Integer) defines high-order range

EXAMPLE K =ITAKE (-3,2)

This statement Selects a random number
between the range -3 to 2 inclusive

(2)26.03.75

U10.2/Xl

PICASO SYSTEM JOIN

NAME JOIN

FUNCTION Joins together two Picaso structures

ARGUMENTS (ARRAYA, ARRAYB)

ARRAYA (Realarray) stores a Picaso structure
ARR4YB (Real array) stores a Picaso structure and

receives the shape stored in arraya

EXAMPLE CALL JOIN (A, B)
This statement copies across the structure

stored in 'A' and stores it behind IBI,

NOTES 1. Join may be used for 2 or 3 dimensioned structures

(1)26.03.75

U10.2/Xl

PICASO SYSTEM LINE

NAME LINE

FUNCTION Stores a line in array

ARGUMENTS (ARRAY, Xl, Yl, X2, Y2, N)
ARRAY (Real array) stores the line

X1, Y1 (Real inches) are the coordinates of one end
of the line

X2, Y2 (Real inches) are the coordinates of the

other end of the line

N (Integer) is the number of points on the line

EXAMPLE CALL LINE (A, 0.0,0.0,1.0., 1.0., 5)
This statement stores a line in A between the

origin and 1.0,1.0 in 5 points

N
----V

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM LINE3D

NAME LINE3D (Line in 3-d)

FUNCTION Stores a three-dimensional line as a Picaso structure

ARGUMENTS (ARRAY, X1, Y1, Z1., X2, Y2-, Z2)
ARRAY (Real array) stores the 3-d Picaso line
X1, Y1, Z1(Real inches) references the first point
X2, Y2, Z2(Real inches) references the second point

EXAMPLE CALL LINE3D(A, 0.0,0.0., O. O., 1.0,1.0., 1.0)

This statement stores A line starting at the

origin and finishing at X=Y=Z=1.0"

y

4

X

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM LISSAJ

NAME LISSAJ (Lissajous Curves)

FUNCTION Stores a lissajous figure in an array

ARGUMENTS (ARRAY, XSPAN, YSPAN., F, D, N)
ARRAY (Real array) stores the lissajous curve
XSPAN (Real inches) is the width of the curve
YSPAN (Real inches) is the height of th e curve

(Real) is a factor affecting the number of
loops in the 'X' direction

D (Real radians) is a displacement value
N (Integer) is the number of points in the

curve

EXAMPLE CALL LISSAVA., 2.0,1.0,1.0., 0.0,100)

00

NOTES 1. No plotting takes place

(1)26.03.75

U10,2/Xl

PICASO SYSTEM LSPIRA

NAME LSPIRA (Logarithmic Spiral)

FUNCTION Stores a logarithmic spiral in array

ARGUMENTS (ARRAY, RADIUS, CYCLES., N)

ARRAY (Real array) stores the spiral
RADIUS (Real inches) is the final radius after the

specified number of revolutions
CYCLES (Real) is the number of revolutions
N (Integer) is the number of points in the

curve

EXAMPLE CALL LSPIRA(S, 3.0,2.0,60)
This statement stores a logarithmic spiral
in S with 2.0 revolutions, the final radius
is 3.0 inches

NOTES 1. No plotting takes place

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM MASK

NAME MASK

FUNCTION Draws a shape masked by another

ARGUMENTS (ARRAY, X. YP WARRAY)

ARRAY (Real array) stores a 2-d Picaso shape to be

masked
X. OY (Real inches) is the amount of shift applied

to the drawn shape
WARRAY (Real array) stores a 2-d Picaso shape that

masks array

EXAMPLE CALL MASK (A, 0.0,0.0, B)
This statement draws out shape A masked by

shape B.

rý7 -£21 -s A01

NOTES 1. The masking shape is not drawn

2. Clockwise masking contours produce holes anti-
clockwise contours mask

(1)26.03.75

U10.2/Xl

PICASO SYSTEM MIRROR

NAME MIRROR (Mirror Image)

FUNCTION Produces a reflection of a 2-dimensional Picaso

shape about a specified line

ARGUMENTS (ARRAY, Xl, Yl, X2, Y2, ARRAYl)
ARRAY (Real array) stores a 2-d Picaso shape
X1, Y1 (Real inches) is one point on the mirror line

X2., Y2 (Real inches) is a second point on the mirror
line

ARRAY1 (Real array) stores the reflected shape

EXAMPLE CALL MIRROR (TRIANG, 5.0,0.0,5.0,10.0, REFLEC)

This statement derives the reflection of the

shape stored in Triang about the line passing
through the points (5.0,0.0), (5.0,10.0). The

reflection is stored in Reflec.

NOTES 1. No plotting takes place

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM mix2D

NAME MlX2D (Mix coordinates in a 2-d shape)

FUNCTION Interchanges the coordinates of a 2-d Picaso shape

ARGUMENTS (ARRAY, N1, N2, ARRAYA)

ARRAY (Real array) stores a 2-d Picaso shape
Nl,, N2 (Integer) reference the X&Y coordinates

positions
N1 N2 xy OLD COORDINATES

11xx

y NEW COORDINATES
21yx

22yy

ARRAYA (Real array) stores the 'Mixed, shape

EXAMPLE CALL MIX2D (A, 2,1, B)

This statement interchanges the X and Y
coordinates stored in'thb shape A and stores the
result in B.

/
`ý A9

NOTES 1. No plotting takes place
2. The vertex sequence is reversed
3. N1 & N2 may be +VE or -VE to enable the sign of
coordinates to be changed.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM mix3D

NAME MIX30 (Mix coordinates in a 3-d object)

FUNCTION Interchanges the coordinates of a 3-d Picaso object

AUGMENTS (ARRAY, Nl, N2, N3, ARRAYA)

ARMY (Real array) stores a 3-d Picaso object

N1, N2, N3 (Integer) reference the X, Y &Z coordinate

positions
N1 N2 N3 XYz OLD

COORDINATES

123XYz

132XzY

213YXz NEW

231YzX COORDINATES

312zXY

321zYX

ARRAYA (Real array) stores the 'mixed' object

EXAMPLE CALL MIX3D (A, 2,1,3, B)

This statement interchanges the X and Y

coordinates and leaves the Z coordinate

untouched, storing the result in B.

NOTES 1. No plotting takes place
2. The vertex sequences are reversed
3. N1, N2 & N3 may be +VE or -VE to enable the sign

of coordinates to be changed.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM MODSH

NAME MODSH (Modulate Shape)

FUNCTION Modulates the lines describing a 2-dimensional

Picaso shape with a 2-dimensional Picaso contour

ARGUMENTS (ARRAY, CONTORF., ARRAYl)
ARRAY (Real array) stores a 2-d Pica8o shape

CONTOR (Real array) stores a 2-d Picaso contour
F (Real) is the amplitude factor for contor

ARRM (Real array) will store the modulated shape

EXAMPLE CALL MODSH (BOX., CON, 1.0., BOXV

This statement takes the shape stored in box

and joins the points with the contour stored
in con. The contour in con is unmodified as
F=1.0 the modulated shape is stored in boxi.

El
--A- CON

NOTES 1'. No plotting takes place
2. Arrayl must not be array

(1)26.03.75

U10.2/Xl

PICASO SYSTEM NDIMEN

NAME NOIMEN (Dimension)

FUNCTION A function to calculate the number of elements
required to contain a given Picaso structure.

ARGUMENTS (ARRAY)

AMY (Real array) stores a Picaso structure

TYPE Ndimen is an integer type function

EXAMPLE I ýNDIMEN (BOX)

This statement returns the number of posi-
tions used by the shape stored in box.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM NUNES

NAME NLINES (Number of lines)

FUNCTION This function determines the number of lines

contained in a 2-dimensional Picaso shape.

ARGUMENTS (ARRAY)

ARRAY (Real array) stores a Pica8o structure

FUNCTION Mines is an integer function

EXAMPLE INLINES(BOX)

This statement determines the number of lines

stored in box.

(1)26.03.75

UIO. 2/Xl

PICAW SYSTEM NORMAL

NAME NORMAL (Normalize)

FUNCTION Adjusts the coordinates of a 2-dimensional Picaso

shape such that a specific point is located at a
given coordinate. The rest of the points are
normalized about this point.

ARGUMENTS (ARRAY, NL., NP, X, Y)

ARRAY (Real array) stores a 2-d Picaso shape
NL (Integer) references the line containing

the point
NP (Integer) references the point on the line

X, Y (Real inches) is the coordinate of the point

EXAMPLE CALL NORMAL (BOX, 1,1,0.0,0.0)
This statement adjusts the coordinates of box

such that the ist point on the Ist line is

set to (0.0,0.0)

NOTES 1. No plotting takes place

(1)26.03.75

U10.21X1

PICASO SYSTEM NPOINT

NAME NPOINT (Number of points)

FUNCTION Ret. urns the number of points in a contour an a Picaso
structure.

ARGUMENTS (ARRAY., NC)
ARRAY (Real array) stores a2 or 3-d Picaso

structure
NC (Integer) references the contour

EXAMPLE N=NPOINT(BOXl)
This statement establishes how many points
there are on the first contour of box.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM NSUB

NAME NSUB (Subscript number)

FUNCTION Returns the subscript of the point count descriptor

in the l'th contour of a Picaso structure

ARGUMENTS (ARRAYL)
ARRU (Real array) stores a2 or 3-d Picaso

structure
L (Integer) references the contour in the

structure

EXAMPLE N =NSUB (BOX, 2)

This statement returns the subscript of the

2nd point count descriptor.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM NXSUB

NAME NXSUB (Number of X subscript)

FUNCTION Returns the number of the X subscript of a point in a.
Picaso structure

ARGUMENTS (ARRAYNCNP)

ARRAY (Real array) stores a Picaso structure
NC (Integer) references the contour
NP (Integer) references the vertex

EX, AMPLE N =IVXSUB (A, 1,1)
This statement sets N to the xsubscript of
the first vertex on the first contour

1.

(1)26.03.75

"' ýI" U10.2/Xl

PICASO SYSTEM NYSUB

NAME NYSUB (Number of Y subscript)

FUNCTION Returns the number of the Y subscript of a point in a

Picaso structure

ARGUMENTS (ARRAY3NC3NP)

ARMY (Real array) stores a Picaso structure

NC (Integer) references the contour

NP (Integer) references the vertex

EXAMPLE N =NYSUB (A, 1,1)
This statements sets N to the Y subscript of
the first vertex on the first contour

(1)26.03.75

U10.2/Xl

PICA80'SYSTEM NZSUB

NAME NZSUB (Number of Z subscript)

FUNCTION Returns the nu
,
mber of the Z subscript of a point in

a Picaso structure

ARGUMENTS (ARRAY, NCNP)

ARRAY (Real array) stores a Picaeo structure
NC (Integer) references the contour
NP (Integer) references the vertex

EXAMPLE . N=NZSUB(A, 1,1)
This statement setý N, to the Z subscript of
the first vertex on the first contour

(1)26.03.75

U10.2/Xl

PICASO SYSTEM OBJECT

NAME OBJECT

FUNCTION Reads in a three-dimensional Picaso structure from
cards and stores it in an array

ARGUMENTS (ARRAY)
ARRAY (Real array)

EXAMPLE CALL OBJECT(BOX)
This statements reads in a shape and stores it
in box.

NOTES 1. Each point requires 3 coordinates
X cols 4-13
Y cols 14-23
Z cols 24-33

2. Each surface is terminated by
EOL cols 1-2

3. Each object is terminated by
EOS cols 1-3

4. Each surface should be specified in a clock-wise
sense.

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM ORIGIN

NAME ORIGIN

FUNCTION Changeq the position of the origin

ARGUMENTS Q., Y)
X, Y (Real inches) specifies the position of the

new origin relative to the existing origin

EXAMPLE CALL ORIGIN (5.0,5.0)
This changes the Origin to a point 5.0 inches
from the x-axis and 5.0 inches from the

Y-axis

NOTES 1. The origin can not be located off thn
2. Ouring the origin change the pun ir, tip

(1)26-03.75

UIO. 2/Xl

PICASO SYSTEM PARAB

NAME PARAB (Parabola)

FUNCTION Stores a parabolic curve in an array

ARGUMENTS (ARRAY

ARRAY

XSPAN

YSPAN

N

XSPAN, YSPAN, N)

(Real array) stores the parabola
(Real inches) is the total width of the

parabola
(Real inches) is the height of the parabola
(Integer) is the number of points in the

curve

EXAMPLE CALL PARAB(A, 4.0,4.0,20)

This statements stores a parabola in A, 4.0
by 4.0 inches

1-0

NOTES 1. No plotting takes place

W26.03.75

UIO. 2/Xl

PICASO SYSTEM PERSP

NAME PERSP (Perspective)

FUNCTION Transforms a point in 3-d space onto a 2-d picture

plane to obtain perspective or wide-angle effects.

ARGUMENTS (X., YZ, XWYW)
XYZ (Real inches) are the coordinates of the

point in 3-d space
XW, YW (Real inches) are the coordinates of the

transformed point on the window plane

EXAMPLE CALL PERSP (5.0,2.0,1.0, X., Y)

This statement sets X, Y to the perspective

view of 5.0,2.0,1.0)

y
A

[S. 0,2.0,1 -
43

, .
"A

A polfjr

.1/, .0

)c

NOTES 1. Normal perspective is obtained if eye has been

previously called. Wide- angle effects are obtained
if fishi has been called
2. No plotting takes place

(1)ý6.03.75

UIO. 2/Xl

PICASO SYSTEM PLIT

NAME PLIT

FUNCTION Is the basic plotting command in the Picaso system

ARGUMENTS (Xy3PEN)

x3y (Real inches) is the point to which the pen
moves

PEN (Integer) is the pen control parameter
PRn=2zPen Down

Pen=3zPen Up

Pen=-VEzChange Origin

EXAMPLE CALL PLIT (1.0,1.0,2)
This statements moves the pen from its present
condition to the point 1.0,1.0 with the pen
down

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM POLYGN

NAME POLYGN (Polygon)

FUNCTION Stores a regular polygon as a 2-dimensional Picase

shape

ARGUMENTS (ARRAY, RADIUS, N)

ARRAY (Real array) stores the polygon
RADIUS (Real inches) is the radius of the polygon
N (Integer) is the number of sides

EXAMPLE CALL POLYGN (S, 1.0,10 0)
This statements stores a 100 sided Polygon

of radius 1.0 inch in S, with the origin
at the centre

5/

NOTES 1. No plotting takes place
2. The first point is always:

X=Radius, Y=0.0
3. Coordinates are in clockwise sequence
4. The array must be dimensioned to at least
(2*N)+3).

(1)'26-03.75

U10.2/Xl

PICASO SYSTEM POSCON

NAME POSCON (Position on a contour)

FUNCTION Returns the height of the contour at a position

specified by two coordinates

ARGUMENTS (AI? RAY, NX, NY, XTNCYINC, X(,, YC, V)

A HHA Y Mu, tJ arrýjy) ijimn

contour
NX (Integer) is the number of X increments

NY (Integer) is the number of Y increments

XINC (Real inches) is the size of the X increment

YINC (Real inches) is the size of the Y increment

XC, yC (Real inches) are the coordinates of the axis

about which rotation occurs
V (Real inches) is the default value when the

extent of the contour is exceeded

EXAMPLE H=POSCON(A., 20,10,0.1,0.2,3.0,3.0,0.0)

This statement sets H to a value that is

equivalent to the height of the contour stored
in A at the specified point

VYINC
ORKIN

A

NKWXINCý

(1)26.03.75

U10.2/Xl

PICASO SYSTEM PRINT

NAME PRINT

FUNCTION Prints out the coordinate values stored in a shape

ARGUMENTS (ARRAY)

ARRAY (Real array) stores a2 or 3-d Picaso

structure

EXAMPLE CALL PRINT(BOX)
This statement produces a listing of the

coordinates of box.

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM PULL

NAME PULL

FUNCTION Stretches or shears a shape about the point X, Y

ARGUMENTS (ARRAY, X, Y, THETA, F., ARRAYB)

ARRAY (Real array) stores the shape to be stretched
X'Y (Real inches) is the point that suffers zero

stretch
THETA (Real degrees) is th e direction of stretch
F (Real) is the degree of stretch
ARRAYB (Real array) stores the stretched shape

EXAMPLE CALL PULL (A., 0.0,0.0,0.0,2.0., A)
This statement stretches shape A about the

origin in the X-direction by a factor of
2.0.

,
C)

A

NOTES

-. c> C: D
A

1. No plotting takes place

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM

NAME REMOVE

FUNCTION Removes a contour from a Picaso shape

I AR GUMENTS (ARRAYN)

ARRAY (Real array) stores a Picaso structure
N (Integer) references the contour to be

removed

REMOVE

EýAMPLE CALL REMOVE (BOX, 2)

This statement removes the second contour
from box and shifts remaining contours along

NOTES 1. Applies to 2 and 3-d shapes

(1)26.03.75

U0.2/X1

PICASO SYSTEM REVERS

NAME REVERS (Reverse)

FUNCTION Reverses the sequence of vertices in a 2-d Picaso

contour

ARGUMENTS (ARRAYN)

ARRAY (Real array) stores a 2-d PicaSO shape
N (Integer) references the contour to be

reversed

EXAMPLE CALL REVERS(BOXl)
This statement reverses the sequence of the

vertices in the lst contour of box.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM PYRAM

NAME PYRAM (Pyramid)

FUNCTION Stores a 3-d pyramid in an array

ARGUMENTS (ARRAY., BASE, HEIGHT)

ARRAY (Real array) stores the pyramid
BASE (Real) is the width of the pyramid
HEIGHT (Real) is the height of the pyramid

EXAMPLE CALL PYRAM(P, 1.0,2.0)

This statement stores a two-inch high

pyramid in P with a one-inch base
YA

'4

'c.

(1:)26.03.75

Ulu. 21xl

PICASO SYSTEM RECTNG

NAME RECTNG (Rectangle)

FUNCTION Stores a rectangle as a 2-dimensional Picaso shape

ARGUMENTS (ARRAY., SIDEA., SIDEB)
ARRAY (Real array) stores the rectanlge

SIDEA (Real inches) is the width

SIDEB (Real inches) is the height

EXAMPLE CALL RECTNG (R., 2.0,1.0)

This statement stores a rectangle in R with
a height of 1.0 inch and width of 2.0
inches. The lower left-hand corner is

located at the origin

tIF

NOTES 1. No plotting takes place
2. The first point is the origin
3. Coordinates are in clockwise sequence
4. The array-must be dimensioned to at least 13.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM RIPPLE

NAME RIPPLE

FUNCTION Chooses a new vertex to become the first vertex of a
closed contour

ARGUMENTS (ARRAYNCI)

ARRAY (Real array)
NC (Integer) re

rippled
(Integer) is

I=+VE Ripple

I=-VE Ripple

stores a 2-d Picaso shape
ferences the contour to be

the direction of ripple
forward

backward

EXAMPLE CALL RIPPLE (Q, 1,1)
This statement rotates the coordinates on
the lst contour of Q one step forward

NOTES 1. No plotting takes place
2. The magnitude of I is imaterial, ripple can nnly
shift one step.

03.75

U10.2/Xl

PICASO SYSTEM RHODON

NAME RHODON (Rhodonea Curve)

FUNCTION Stores a rhodonea curve as a 2-d Picaso shape

ARGUMENTS (ARRAY, RADIUS, NP, N)

ARRAY (Real array) stores the 2-d rhodonea
RADIUS (Real inches) is the radius of the curve
NP (Integer) is the number of petals in the

curve
(Integer) is the number of points in the

curve

EXAMPLE CALL RHODON(R, 2.0., 4,100)

This statement stores a 4petaled rhodonea
in R.

+
NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM ROTATE

NAME ROTATE

FUNCTION Rotates a 2-d Picaso shape about a specified point

ARGUMENTS (ARRAY, XP, YP, THETA, ARRAYA)

ARRAY (Real array) stores a 2-d Picaso shape
XP, YP (Real inches) is the centre of rotation
THETA (Real degrees) is the amount and direction of

rotation
+VE Anti-clockwise

-VE Clockwise

ARRAYA (Real array) receives the rotated shape

EXAMPLE CALL ROTATE (S, 0.0,0.0,40.0, S)
This statement rotates the shape stored in
S 40.0 degrees about the origin

'C

01 .I

.. '
00 1+0 0

A-1 -A---[

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM ROW

NAME ROW

FUNCTION Plots out a row of 2-dimensional Picaso shapes

ARGUMENTS (ARR4y,, SIZE, N., XSP., X, Y)

ARRAY (Real array) stores a 2-d Picaso shape
SIZE (Real) is the degree of enlargement or

reduction of the drawn shape relative to the

original stored in array
N (Integer) is the number of shapes to be

drawn

XSP (Real inches) is the horizontal displacement
between two shapes

YSP (Real inches) is the vertical displacement

between two shapes
X. Sy (Real inches) is the amount of shift applied

to the row of shapes

EXAMPLE CALL ROWBOX, 1.0,3,1.0,1.0,0.0-, 0.0)
Oraws out 3 shapes stored in box with their

original size, displaced 1.0 inch horizontally

and vertically, the entire row is shifted zero
inches from the origin.

NOTES 1. Observe that XSP and YSP are not distances between
two shapes, they are the distances between the same
point on the displaced shapes.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM Row2D

NAME ROW2D (Draw a 2-d row in 3-d)

FUNCTION Draws out a three-dimensional version of a 2-d Picaso

row of shapes

ARGUMENTS (ARRAY4 SIZE, N, XSP, YSP, X-, Y, N1, N2, N3-, V)
ARM (Real array) stor es a 2-d Picaso shape
SIZE (Real) alters the size of the final shape by

'size' items

N (Integer) is the number of shapes in the row
XSP (Real inches) is the distance between points

on two shapes in the 'X' direction
YSP (Real inches) is the distance between points

on two shapes in the 'Y' direction
X, Y (Real inches) is the degree of shift applied

to the 2-d ro w
N1, N2, (Integer) det ermine the transformation
N3 N1 N2 N3 xYZ (IN 3-D)

12 3 xYV
13 2 xVY

YxV
IN 2-0

31 2 VxY
23 1 YVx
32 1 VYx

V (Real inches) is the value of the third
dimension

(1)26.03.75

U10 -2/Xl

PICASO SYSTEM

EXAMPLE CALL ROW2D(SQ, 1.0,3,1.5,1.5,0.0,0.0,1,2,3,1.0)
This statement produces the following

transformation:
y

tz,

x

Row2D

(1)26; ý03.75

U10.2/Xl

PlqASO SYSTEM

NAME SENSE

SENSE

FUNCTION Determines whether a point is to the left, in-line

or to the right of a reference line

ARGUMENTS (XP., YP., Xl., Yl., X2, Y2)
XP, YP (Real inches) is the Position of the test

point
X1, Y1 (Real inches) are the coordinates of the

first point on the line
X2, Y2 (Real inches) are the coordinates of the

secon d point a n the line
SENSE Is an Integer Function

-1 if XP, YP, is to the right
0 if XP, YP is in-line

+1 if XP, YP is to the left

0 xf, Ye

4
xe)ye 4 xe

jyp

(1)26.03.75

U10,2/Xl

PICASO SYSTEM SHADE

NAME SHADE

FUNCTION Shades a 2-d Picasoshape with parallel lines

ARGUMENTS (AMY., THETA., SPACE)

ARRAY (Real array) stores a 2-d Picaso shape
THETA (Real degrees) is the slope of the lines

SPACE (Real inches) is the distance between the

shading lines

EXAMPLE CALL SHADE (A., 45.0,0.1)
This statement shades the shape stored in A

0 with line 0.111 apart at 45

r

NOTES 1. A clockwise contour is assumed to be solid whilst
in anti-clockwise contour creates a hole.

W26.03.75

U10,2/Xl

P ICASO SYSTEM SHAPE

NAME SHAPE

FUNCTION Reads a 2-dimensional Picasoshape from punched
cards and stores it in a real array.

ARGUMENT (ARRAY)

I
ARRAY (Real array) accepts the 2-d Picaso shape

EXAMPLE CALL SHAPE (STARS)

This statement reads in the next Picaso shape
and stores it in the array Stars.

NOTES 1. The array must be declared on a dimension

statement and must be large enough to store the

entire shape.
2. No plotting takes place.

(1)26.03.75
1

U10,2/Xl

PICASO SYSTEM SHIFT

NAME , SHIFT

FUNCTION AlterB the location of a 2-dimenBional PicaSO Bhape

ARGUMENTS (ARRAY., X., Y)
ARRAY (Real array) stores a 2-d Picaso shape
X., Y (Real inches) is the degree of shift

EXAMPLE CALL SHIFT (BOX, 3.0,1.0)
This statement shifts the coordinates stored
in Box. 3.0 inches along the X-axis and 1.0
inch along the Y-axis

NOTES 1. No plotting take5. 'place

)

.1 (1)26.03.75

U10.2/Xl

PICASO SYSTEM SHIFf3

NAME SHIFT3 (Shift 3-d)

FUNCtION Alters the location of a 3-d Picaso object

ARGUMENTS (ARRAYX., YZ)

ARRAY (Real array) stores a 3-d Picaso object
X, Y, Z (Real inches) is the degree of shift

EXAMPLE CALL SHIFT3 (BOX. * 1.0,1.0., 1.0)
This statement adds 1.0 inch to every

coordinate of box.

NOTES 1. No plotting takes place

(1)26.03. P5

UIO. 2/Xl

PICASO SYSTEM SILUET

NAME SILUET (Silhouette)

FUNCTION Draws out a tiled version of a 2-d contour rotated
about an axis

ARGUMENTS (ARRAY, SIZE, X, Y, Z., ANGS., ANGF, N., L)

ARRAY (Real array) stores a 2-d Picaso open contour
SIZE (Real) alters the size of the drawing
X., Y., Z (Real) is the amount o f shift applied to the

object
ANGS (Real degrees) is the starting angle of rota-

tion

ANGF (Real degrees) is, the final angle of rotation
N (Integer) is the number of rotational steps
L (Integer) if L is -VE a degree of hid den-line

removal is included. If L is +VE all lines

are drawn

EXAMPLE CALL SILUET(Ail-O., 0.0,0.0,0.0,0.0,360.0,20., l)
This statement draws out a complete rotation
of the contour stored in A.

NOTES 1. The position of the eye must be specified by
calling eye or fishi

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM SINE

NAME SINE (Sine wave)

FUNCTION Stores a sine wave in an array

ARGUMENTS (ARRAY, Afflý LENGTH, ANGS, ANGF, N, XP, YP)

ARRAY (Real array) stores the 2-d Picaso sine wave
AMP (Real inches) the amplitude of the sine wave
LENGTH (Real inches) the length of the waveform
ANGS (Real degrees) the starting angle of the

waveform
ANGF (Real degrees) the final angle of the wave-

form

N (Integer) number of steps in waveform
XP, YP (Real inches) the coordinate of the first

point

EXAMPLE CALL SINE(S, 1.0,2.0,0.0,180.0,20., 0.0,0.0)
This statement stores a waveform consisting
of a half-sine wave in S.

ns

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM SIZE

NAME SIZE-

FUNCTION Changes the size of a 2-dimensional Picaso shape

ARGUMENTS (ARRAY., F., X., Y)
ARRAY (Real array) stores a 2-d Picaso shape
F (Real) is the size change factor

X, Y (Real inches) is the centre of the size
change

EXAMPLE CALL SIZE (BOX, 3.0,1.0,1.0)
This statement modifies the shape coordinates
stored in box by a factor of 3.0 relative to
the point (1.0,1.0). For example, the point
(2.0,2.0) becomes (4.0,4.0)

NOTES 1. No plotting takes place

(1)26.03.75

U10,2/Xl

PICASO SYSTEM SMOOTH

NAME SMOOTH

FUNCTION Draws a smooth curve (Cubic Spline) through a given
set of data points stored as a 2-d Picaso shape

ARGUMENTS (ARRAY., SIZE, X, Y, WARRAY)
ARRAY (Real array) storps a 2-d Picaso shape
SIZE (Real) alters the size of the drawn shape by

a'fact or of 'size'.

X, Y (Real inches) is the degree of shift applied
to the shape

WARRAY (Real array) is a work array required by

smooth . It has dimensions (5, N) where N is

equal to the number of vertices in any con-
tour o f the shape

EXAMPLE CALL SMOOTH (A, 1.0,0.0,0.0, W)
This statement draws a curve through the shape
stored in A.

(1)26-03.75

U10.2/Xl

PICASO SYSTEM SLOPE

NAME SLOPE

FUNCTION Calculates the slope in degrees of a 2-d Picaso shape

ARGUMENTS (ARRAYNCNL)

ARR4Y (Real array) stores a 2-d Picaso shape
NC (Integer) references the contour
NL (Integer) references the line

EXAMPLE A =SLOPE (BOX, 1,2)

This statement calculates the angle of the

second line on the first contour of box.

......................

0

NOTES 1. Slope is a real function
2. If a contour has N vertices, Lhen there are N-1
lines

(1)26.03.75

L110.21XI

PICASO SYSTEM SNOW

NAME SNOW (Snowflake Curve)

FUNCTION Develops a snowflake curve from a 2-d Picaso shape

ARGUMENTS (ARRAY, XO, YOF., DEPTH)

ARRAY (Real array) stores the 2-d Picaso shape to

be transformed

XO. 9 YO (Real inches) is the degree of shift to be

applied to the final shape
F (Real) is the degree of enlargement or

reduction of the drawn shape relative to the

original stored in array
DEPTH (Real) is the degree of crystalisation

EXAMPLE CALL SNOW(F., 0.0,0.0,1.0,3)
This statement crystalises the shape F to a
depth of 3 with zero shift and no size change

JAJJ

NOTES 1. Plotting does take place
2. Depth should not exceed 4
3. Clockwise shapes growanti-clockwise reduce

(1)26.03.75

U10.2/Xl

PICASO SYSTEM SQUARE

6

NAME SQUARE

FUNCTION Stores a square as a 2-dimensional Picaso shape

ARGUMENTS (ARRAYSIDE)

AMY (Real array) stores the square
SIDE (Real inches) is the size of the square

EXAMPLE CALL SQUARE (S, 1.0)
This statement stores a square with sides 1.0
inch long, and the lower left-hand corner at
the origin.

NOTES 1. No platting takes place
2. The first point is the origin
3. Coordinates are in clockwise sequence
4. The array must be dimensioned to at least 13.

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM STAR

NAME STAR

FUNCTION Stores a regular star as a 2-d Picaso shape

ARGUMENTS (ARRAY, NPRADOUTRADIN)

ARRAY (Real array) stores the 2-d Picaso star
NP (Integer) is the number of points to the star
RADOUT (Real inches) is the readius of the outer

point
RADIN (Real inches) is the radius of the inner point

EXAMPLE CALL STAR (S, 4,2.0_, 1.0)

This statement stores a 4-pointed star in S.

NOTES 1. No plotting takes place
2. If there are N points to a star then there will
be 2*N+l vertices. This implies that the array must
be dimensioned at least 4*N+5.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM START

NAME START I

FUNCTION Initialises all plotting processes

ARGUMENTS None

EXAMPLE CALL START

This statement enables all plotting commands
to function

NOTES 1. It is only necessary to call start before plotting

(1)26.03.75

U Yxi 10.2

PICASO SYSTEM STICK

NAME STICK

FUNCTION Takes two 2-dimensional Picaso shapes and adjusts the

coordinates of the second shape such that its first

point is coincident with the last point of the first

shape

ARGUMENTS (ARRAYA, ARR4YBARRAYC)

ARRAYA (Real array) stores a 2-d Picaso shape
ARRAYB (Real array) stores a 2-d Picaso shape
ARRAYC (Real array) receives the two shapes connected

together

EXAMPLE CALL STICK (A, B, C)

This statement connects shape B to shape A and
stores the result in C.

C.

NOTES 1. No plotting takes place
2. Arraya may be a complex shape but only the first
line is used
3. Arrayb must only contain one line
4. Arrayc will store arraya followed by arrayb
5. Arrayc must be large enough to contain arraya and
arrayb.

(1)26.03.75

U10.2/Xl

PICASO SYSTEM ST I PLE

NAME STIPLE (Stipple)

FUNCTION Draws a random pattern of dots within a given shape

ARGUMENTS (ARR4YN)

ARRAY (Real array) stores a 2-d Picaso shape
N (Integer) is the number of dots to draw

EXAMPLE CALL STIPLE(B,, 100)
This statement draws 100 dots inside the

shape B.

NOTES 1. The shape in 'B' is not drawn

(1)26.03.75

U10,2/Xl

PICASO SYSTEM SURFAC

NAME Surfac (Surface)

FUNCTION Creates a three-dimensional surface by rotating a
two-dimensional contour about an axis

ARGUMENTS (ARRAYj LX3 NX., LY, NY, ANGLE., XC, YC., WARRAY., OVER., UNDER. XS, YS)

ARRAY (Real array) stores a 2-d Picaso open contour

LX (Real inches) is the width of the surface

NX (Integer) is the number of points across the

surface
LY (Real inches) is the depth of the surface

NY (Integer) is the number of lines creating the

surface
ANGLE (Real degrees) is the angle the surface makes

with the X-Z plans
XC, YC (Real inches) are the coordinates of the axis

about which rotation occurs
WARRAY (Real array) is a work array required by

surfac and must be dimensioned W)

OVER (Real array) is a work array required by surfac
to maintain the upper horizon and must be
dimensioned W)

UNDER (Real array) is a work array required by

surfac to maintain the lower horizon and must
be dimensioned (NX)

XS3 YS (Real inches) is the degree of shift appl . ied
to the entire surface relative to the origin

EXAMPLE CALL SURFAC(C., 6.0., 50,6.0,50,30.0,3.0,3.0., ARRAY., OVER, UNDER., 0.0,0.0)
This statement rotates a contour stored in C
about the point (3.0., 3.0) and draws a non-
transparrent surface

(1)26.03.75

U10.2/Xl

PICASO SYSTEM SURFAC

NOTES 1. The following diagram illustrates the significance
of the arguments:

r-b,
Z

Xs) y5 q ýx

+0 le I.; "i

(1)26.03.75

U10). 2/Xl

PICASO SYSTEM TAKE

NAME TAKE (Choose a real random number)

FUNCTION Chooses a random number from a specified range

ARGUMENTS (A, B)
A (Real) defines low-order range
B (Real) defines high-order range

EXAMPLE X=TAKE(-2.0., 10.0)

This statement sets Xa random number between

the range -2.0 to 10.0 inclusive

(1)26.03.75

U10.2/Xl

PICASO SYSTEM TRACE

NAME TRACE

FUNCTION Traces around a 2-d Picaso shape a given distance

ARGUMENTS (ARRAY, DIST, ARRAYA)

ARRAY (Real array) stores a 2-d Picaso shape
DIST (Real inches) is the tracing distance

ARRA YA (Real array) receives the traced shape

EXAMPLE CALL TRACE (A, 0.2, B)
This statement traces 0.211 away from A

and stores the shape in B.

CALL TRACE (C, 0.2, O)

NOTES 1. No plotting takes place
2. Open contours are treated as illustrated above

(1)26.03.? 5

U10.2/Xl

PICASO SYSTEM TRANSH

NAME TRANSH (Transform shapes)

FUNCTION Transforms one 2-dimensional shape into another in a
given number of steps

ARGUMENTS (ARRAYAjLA, ARRAYB., LBARRAYCF)

ARRAYA (Real array) stores the 2-d Picaso shape to be

transformed

LA (Integer) references the contour on Arraya that

is transformed

ARRAYB (Real array) stores the 2-d Picaso shape guid-
ing the transformati on

LB (Integer) references the contour o n Arrayb

that guides the tran sfor mation

ARRAYC (Real array) stores the transformed shape
F (Real) is the degree of transformat ion

EXAMPLE CALL TRANSH (A, 1, B, 1, C, 0.5)

This statement transforms the first contour of
A into the first contour of B by 50% and stores
it in C.

>I

NOTES 1. No platting takes place

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM TRANSP

NAME TRANSP (Transpose)

FUNCTION Transposes a 2-d Picaso shape into a 3-d

object

ARGUMENTS (ARRAY., ARRAYA)

ARRAY (Real array)
ARRAYA (Real array)

stores a 2-d Picaso shape
receives the 3-d Picaso shape

EXAMPLE CALL TR, 4NSP(A. *B)
This statement transposes the 2-d shape in A.
into a 3-d object by including aZ coordinate
set to 0.0 and stores it in B.

W26.03.75

U10.2/Xl

PICASO SYSTEM TUROD

NAME TURN3D (Turn in 3 dimensions)

FUNCTION Turns a 3-d Picaso object about one axis

ARGUMENTS (ARRAYj

ARRAY
THETA
CH, CV

N

ARRAYA

THETA, CH, CV, N., ARRA YA)

(Real array) stores a 3-d Picaso object
(Real degrees) is the angular rotation
(Real) are the coordinates of the rotational

centre
(Integer) references the axis unrotated,
W, Y=-2 & Z=-3
(Real array) receives the rotated object

EXAMPL5 CALL TURNO (B, 20.0,0.0,0.0,1, C)

This statement rotates IBI about the X axis

and the result in C.

y

'42

x

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM WINDOW

NAME WINDOW

FUNCTION Establishes a boundary to confine plotting to occur
only within a specified shape

ARGUMENTS (ARRAY)
ARR4Y (Real array) stores a 2-d Picaso shape

EXAMPLE CALL WINDOW(A)
This statement arranges the shape stored in

A to window all future plotting. If 'A'

stores a hexagon the following could result

71

VVIPJIDOW
u

Nk

k.

--- --
--/

Jr

NOTES 1. The window shape is not drawn
2. The windowing is canceled by calling call window
(0.0)

3. The origin of the window coincides with the

plotting origin
4. Clockwise window contours create holes anti-
clockwise window contours mask
5. A window shape may have many contours so long as
any line drawn does not intersect with more than 10
lines

6. The window shape cannot be drawn whilst windowing
occurs

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XARC

NAME XARC (X-coordinate of an Arc)

FUNCTION Returns the X-coordinate of a point on an Arc

ARGUMENTS (Xj Yj RADIUS, THETA, PHI., I., N)

X., y (Real inches) are the coordinates of the

centre of revolution
RADIUS (Real inches) is the readius of curvature
THETA (Real degrees) is the starting angle of the

arc
PHI (Real degrees) is the swept angle in a

clockwise direction

I (Integer) is the position on the curve

relative to N.

N (Integer) is the number of points on the

curve.

EXAMPLE X=XARC(0.0,0.0,2.0,180.0,90.0,2,100)
This statement sets X to the X-coordinate

of the 2nd of an arc consisting of 100, points

too
Ilk

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XCOORD

NAME XCOORO (X coordinate)

FUNCTION Is a function returning the X coordinate of a
specified point in a Picaso structure

ARGUMENTS (ARRAYNL, NP)
ARRAY (Real array) stores a Picaso structure
NL (Integer) references the contour or surface

containing the point
NP (Integer) references the point

EXAMPLE XýXCOORD 0=, 1., 1)

This statement returns the X coordinate of
the first point on the first contour of bix.

NOTES 1. No plo. tting takes place
2. Xcoord is a real type function

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XELLIP

NAME XELLIP (X coordinate. of an ellipse)

FUNCTION Returns the X-coordinate of a specific point on an
ellips

ARGUMENTS (MAJOR, MINOR, I, N)

MAJOR (Real inches) is the major radius of the

ellipse.
MINOR (Real inches) is the minor radius of the

ellipse
I (Integer) is the number of the point on the

ellipse
N (Integer) is the maximum number of points on

the curve

EXAMPLE C=XELLIP (3.0,2.0,20., 100)
This statement sets C to the 20th X-coordinate
of an ellipse containing 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XEPIT

NAME XEPIT (X-coordinate of an epitrochoid)

FUNCTION Returns the X-coordinate of a specific point on an
epitrochoid

ARGUMENTS (R4DFIXRADMOVIDIST. I., N)

RADFIX (Real inches) is the radius of the fixed

circle
RADMOV (Real inches) is the radius of the moving

circle
DIST (Real inches) is the distance of the traced

point that ex ists on the moving circle to
its centre

I (Integer) is the number of the point an the

curve
N (Integer) is the maximum number of points

on the curve

EXAMPLE C=XEPIT(3. Oj 1.0,0.5,20,100)
This statement sets C to the 20th X-coordinate
of an epitrochoid containing 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

U10.21YI

PICASO SYSTEM XHYPER

NAME XHYPER (X-coordinate of a hyperbola)

FUNCTION Returns the X-coordinate of a specific point on a
hyperbola

ARGUMENTS (SPANDISTIN)

SPAN (Real inches) is the width and height of 'he

curve relative to the X&Y axes
DIST (Real inches) is the distance of the curve

from the X or Y axis at the limits of the

curve
I (Integer) is the number of the point on the

curve
N (Integer) is the maximum number of points on

the curve

EXAMPLE C=XHYPER(2.0,0.5,20,100)

This statement sets C to the 20th X-coordinate
of a hyperbola consisting of 100 points

NOTES 1. No plotting takes place

M26.03.75

U10.2/Xl

PICASO SYSTEM XHYPOT

NAME XHYPOT (X-coordinate of a hypotrochoid)

FUNCTION Returns the X-coordinate of a specific point on a
hypotrochoid

ARGUMENTS (RADFIXRADMOV, DIST, I, N)

RADFIX (Real inches) is

circle
RADMOV (Real inches) is

circle
DIST (Real inches) is

point on the mov
(Integer) is the

the radius of the fixed

the radius of the moving

the distance of the traced

ing circle to its centre

number of the point on the

curve
N (Integer) is the maximum number of points on

the curve

EXAMPLE C=XHYPOT (3.0-9 1.0,0.5,20_, 100)
This statement sets C to the 20th X-coordinate

of a hypotrochoid consisting of 100 points

NOTES

A-91,

(2)26.03.75

1. No plotting takes place
2. The curve is clockwise

U10.2/Xl

PICASO SYSTEM XLISS

NAME XLISS (X-coordinate of a lissajous curve)

FUNCTION Returns the X-coordinate of a specific point on a
lissajous curve

ARGUMENTS (XSPAN., YSPANF., DIpN)
XSPAN (Real inches) is the width of the curve
YSPAN (Real inches) is the height of the curve
F (Real) is a factor affecting the number of

loops in the 'X' direction
D (Real radians) is a displacement value

(Integer) is the number of the point on the

curve
N (Integer) is the maximum number of points on

the curve

EXAMPLE C=XLISS (2.0,2.0,1.0,0.0,20,100)
This statement sets C to the 20th X-coordinate

of a lissajous curve consisting of 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XLSPIR

NAME XLSPIR (X-coordinate of a logarithmic spiral)

FUNCTION Returns the X-coordinate of a specific point on a
logarithmic spiral

ARGUMENTS (RADIUS, CYCLES, I, N)

RADIUS (Real inches) is the final radius of the

spiral

CYCLES (Real) is the number of cycles in the spiral

I (Integer) is the number of the point on the

curve

N (Integer) is the maximum number of points on

the curve

EXAMPLE C =XLSPIR (3.0,2.0,20,100)

This statement sets C to the 20th X-coordinate

of a spiral consisting of 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XMIRRO

NAME XMIRRO (X-coordinate of a mirror-image)

FUNCTION Returns a mirror-image X-coordinate of a given point

ARGUMENTS (XYX1, Yl, X2, Y2)

X, Y (Real

point

X1, Y1 (Real

point
X2, Y2 (Real

point

inches) are the coordinates ot the
to be reflected
inches) are the coordinates of one
on the mirror
inches) are the coordinates of another
on the mirror

EXAMPLE C= XMIRRO (1.0,2.0,2.0,0.0,2.0,1.0)

This statement sets C to the X-coordinate of
the reflected point 1.0,2.0

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XPARAB

NAME XPARAB (X-coordinate of a parabola)

FUNCTION Returns the X-coordinate of a point on a parabola

ARGUMENTS (XSPANYSPANIN)

XSPAN (Real inches) is the width of the curve
YSPAN (Real inches) is the height of the curve
I (Integer) is the number of the point on the

curve
N (Integer) is the maximum number of points on

the curve

EXAMPLE C=XPARAB(4.0,4.0,20,100)
This-statement sets C to the X-coordinate of
the 20th point on a parabola consisting of 100

points

NOTES No plotting takes place

(1)26.03.75

UC 11U. 2/Xl

PICASO SYSTEM XPERSP

NAME XPERSP (X-perspective)

FUNCTION Transforms a 3-d point onto a 2-d picture plane

ARGUMENTS (XY., Z)
X. IYIZ (Real) are the coordinates of a point in 3-d

space

EXAMPLE XWýXPERSP (1.0,1.0,1.0)

This statement sets XW to the X-coordinate

of the point (1-0., 1.0.91.0) on the picture
plane

NOTES 1. The'position of the eye must be specified by a
call on eye or fishi
2. Xpersp is a real function

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XPOLY

NAME XPOLY (X-coordinate of a Polygon)

FUNCTION Returns the X-coordinate of a point on a polygon

ARGUMENTS (RADIUSIN)
RADIUS (Real inches) is the radius of the polygon
I (Integer) is the position on the polygon
N (Integer) is the number of points on the

polygon

EXAMPLE X=XPOLY(2.0,6., 8)

This statement sets X to the X-coordinate of
the 6th point on a polygon consisting of 8

points

NOTES 1. No plotting takes place
2. If there are N points on the polygon there are
N-1 sides

(1)26.03.75

U10.2/Xl

PICASO SYSTEM XROT

NAME XROT (X-coordinate rotated)

FUNCTION Returns the X-coordinate of a point rotated theta

degrees

ARGUMENTS (XYXPYPTHETA)

X, Y (Real

point
XP., YP (Real

centr
THETA (Real

-VE r.

inches) are the coordinates of the
to be rotated
inches) are the coordinates of the

e of rotation
degrees) is the angle of rotation
clockwise +VE _= anti-clockwise

EXAMPLE XýXROTO-0,1-0,0.0,0.0,45.0)

This statement sets X to the X-coordinate of
the point (1-0.91.0) rotated about the origin
45.0 degrees

NOTES 1. No plotting takes place

M26.03.75

UIO. 2/Xl

PICASO SYSTEM XSIN

NAME XSIN (X-coordinate of a sinewave)

FUNCTION Returns the X-coordinate of a sinewave

ARGUMENTS (AMP, WAVE, ANGST, ANGFIN, I., N)

AMP (Real inches) is the amplitude of the sinewave
WA VE (Real inches) is the length of the si newave
ANGST (Real degrees) is the starting angle of the

sinewave
ANGFIN (Real degrees) is the finishing angle of the

sinewave
I (Integer) is the number of the point on the

sinewave relative to N
N (Integer) is the number of points on the

sinewave

EXAMPLE X=XSIN(2.0,4.0,0.0,360.0,20,100)

This statement sets X to the X-coordinate of
the 20th point on a sinewave containing 100

points

NOTES 1. No plotting takes place

(1)26.03.75

L110.2/Xl

PICASO SYSTEM XYZLIN

NAME XYZLIN (X, Y or Z-coardinate of a line)

FUNCTION Returns the X, Y or Z-coordinate of a point on a line

ARGUMENTS (ClC2, IN)
C1 (Real inches) is the X, Y or Z-coordinate of

one end of th e line

C2 (Real inches) is the X, Y or Z-coordinate of
the other end of the line
(Integer) is the number of the point an the

line

N (Integer) is the number of points on the
line

EXAMPLE YýXYZLIN(O. 0,4.0,20,100)
This statement sets Y to the 20th value
between 0.0 and 4.0 when there exists 100

values

NOTES 1. No plotting takes place
2. The returned value may be interpreted as an
X, Y or Z value

(1)26.03.75

U10.2 / Xl

PICASO SYSTEM YARC

NAME YARC (Y-coordinate of an arc)

FUNCTION Returns the Y-coordinate of a point on an arc

ARGUMENTS Q3Y, RADIUS, THETA, PHI, I, N)
X'y (Real inches) are the coordinates of the

centre of revolution
RADIUS (Real inches) is the radius of curvature
THETA (Real degrees) is the starting angle of the

arc
PHI (Real degrees) is the swept angle in a

clockwise direction
I (Integer) is the position on the curve rela-

tive to N
N (Integer) is the number of points on the

curve

EXAMPLE Y=YARC(0.0,0.0,2.0,180.0,90.0,2,100)

This statement sets Y to the Y-coordinate of
the 2nd point of an arc consisting of 100

points

NOTES 1. No plotting takes place

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM YCOORD

NAME YCOORD (Y-coordinate)

FUNCTION Is a function returning the Y-coordinate of a speci-
fied point in a Picaso structure

ARGUMENTS (ARRAYNL, NP)
ARRAY (Real array) stores a Picaso structure
NL (Integer) references the contour or surface

containing the point
NP (Integer) references the point

EXAMPLE YýYCOORD(BOX, 1,1)

This statement returns the Y -coordinate of
the first point on the first contour of box

NOTES 1. No plotting takes place
2. Ycoord is a real type function

(1)26.03.75

U10.2/Xl

PICASO SYSTEM YELLIP

NAME YELLIP (Y-coordinate of an ellipse)

FUNCTION Returns the Y-coordinate of a specific point on an

ellipse

ARGUMENTS (MAJOR, MINOR, I_, N)

MAJOR (Real inches)

ellipse
MINOR (Real inches)

ellipse

is the major radius of the

is the minor radius of the

(Integer) is the number of the point on the

ellipse
N (Integer) is the maximum number of points on

the curve

EXAMPLE C=YELLIP(3.0,2.0,20,100)

This statement sets C to the 20th Y-coordinate

of an ellipse containing 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

L'10.2/Xl

PICASO SYSTEM YEPIT

NAME YEPIT (Y-coordinate of an epitrochoid)

FUNCTION Returns the Y-coordinate of a specific point on an
epitrochoid

ARGUMENTS (RADFIXRADAfOVDIST., I., N)

RADFIX (Real inches) is the radius of the fixed

circle
RADMOV (Real inches) is the radius of the moving

circle
DIST (Real inches) is the distance of the traced

point that exi, sts on the moving circle to its

centre
(Integer) is the number of the point on the

curve
N (Integer) is the maximum number of points on

the curve

EXAMPLE C=YEPIT(3.0,1.0., 0.5., 20., 100)
This statement sets C to the 20th Y-coordinate

of an epitrochoid containing 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

U)/Xl. 10.2

PICASO SYSTEM YHYPER

NAME YHYPER (Y-coordinate of a hyperbola)

FUNCTION Returns the Y-coordinate of a specific point on a
hyperbola

ARGUMENTS (SPANjDISTIIN)

SPAN (Real inches) is the width and height of the

curve relative to the X and Y axes
DIST (Real inches) is the distance of the curve

from the X or Y axis at the limits of the

curve
(Integer) is the number of the point on the

curve
N (Integer) is the maximum number of points on

the curve

EXAMPLE C= YHYPER (2.0,0.5,2 0,100)
This statement sets C to the 20tý Y-coordinate

of a hyperbola consiting of 100 points

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM YHYPOT

NAME YHYPOT CY-coordinate of an hypotrochoid)

FUNCTION Returns the Y-coordinate of a specific point on a
hypotrochoid

ARGUMENTS (RADFIXRADMOV, DIST, I, N)
RADFIX (Real inches) is

circle

RADMOV (Real inches) is

circle

DIST (Real inches) is

point on the mov
I (Integer) is the

the radius of the fixed

the radius of the moving

the distance of the traced
ing circle to its centre

number of the point on the
curve
(Integer) is the maximum number of points on
the curve

EXAMPLE C=YHYPOT (3. O., l. 0., 0.5,20., 100)

ThisIstatement sets C to the 20th Y-coordinate

of a hypotrochoid consisting of 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

U10.2/Xl

PICASO SYSTEM YLISS

NAME YLISS (Y-coordinate of a lissajous curve)

FUNCTION Returns the Y-coordinate of a specific point on a
lissajous curve

ARGUMENTS (XSPANYSPANFD., IN)

XSPAN (Real inches) is the width of the curve
YSPAN (Real inches) is the height of the curve
F (Real) is a factor affecting the number of

loops in the 'X' direction

D (Real radians) is a displacement value
(Integer) is the number of the point on the

curve
N (Integer) i's the maximum number of points on

the curve

EXAMPLE C=YLISS(2.0,2.0,1.0., 0.0., 20,100)

This statement sets C to the 20th Y-coordinate

of a lissajous curve consisting of 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

UIO, 2/Xl

PICASO SYSTEM YLSPIR

NAME YLSPIR (Y-coordinate of a logarithmic spiral)

FUNCTION Returns the Y-coordinate of a specific point on a
logarithmic spiral

ARGUMENTS (RADIUSj CYCLES., I., N)
RADIUS (Real inches) is the final radius of the

spiral
CYCLES (Real) is the number of cycles in the spiral
I (Integer) is the number of the point on the

spiral
N (Integer) is the maximum number of points or

the spiral

EXAMPLE C=YLSPIR(3.0,2.0,20,100)

This statement sets C to the 20th Y-coordinate

of a spiral consisting of 100 points

NOTES 1. No plotting takes place
2. The curve is clockwise

(1)26.03.75

U10.2/Xl

PICASO SYSTEM YMIRRO

NAME YMIRRO (Y-coordinate of a mirror-image)

FUNCTION Returns the Y-coordinate of a reflected point

ARGUMENTS (XYX1, Yl, X2, Y2)

X., y (Real inches) are the coordinates of the

point to be reflected
x1., Y1 (Real inches) are the coordinates of one

point on the mirror
X2j Y2 (Real inches) are the coordinates of

another point on the mirror

EXAMPLE C=YMIRRO (1.0,2.0,2.0,0.0., 2.0,1.0)
This statement sets C to the Y-coordinate of
the reflected point 1.6,2.0.

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM YPARAB

NAME YPARAB (Y-coordinate of a parabola)

FUNCTION Returns the Y-coordinate of specific point on a
parabola

ARGUMENTS (XSPANYSPANIN)
XSPAN (Real inches) is the width of the curve
YSPAN (Real inches) is the height of the curve
I (Integer) is the number of the point on the

curve
(Integer) is the maximum number of points on
the curve

EXAMPLE C=YPARAB(4.0,4.0., 20,100)
This statement sets C to the Y-coordinate of
the 20th point on a parabola consisting of loo
points

NOTES 1. No plotting takes place

(1)26.03.75

U10,2/Xl

PICASO SYSTEM YPERSP

NAME YPERSP (Y-perspective)

FUNCTION Transforms a 3-d point onto a 2-d picture plane

ARGUMENTS (XY., Z)
X, Y, Z (Real) are the coordinates of a point in 3-d

space

EXAMPLE YW= YFERSP (1.0,1 - 0,1 - 0)
This statement sets YW to the Y-coordinate of
the point (1.0,1.0,1.0) on the picture plane

NOTES 1. The position of the eye must bo specified by a call
on eye or fish. i

2. Ypersp is a real function

(1)26.03.75

U10.2/Xl

PICAIO SYSTEM YPOLY

NAME YPOLY (Y-coordinate of a polygon)

FUNCTION Returns the Y-coordinate of a point on a polygon

ARGUMENTS (RADIUSIN)

RADIUS (Real inches) is the radius of the polygon
(Integer) is the position on the polygon
relative to N

N (Integer) is the number of points on the

polygon

EXAMPLE Y=. YPOLY (2.0,6,8)

This statement sets Y to tye Y-coordinate of
the 6th point on a polygon consisting of 8

points

NOTES 1. No plotting takes place
2. If there are N points on the polygon there are
N-1 sides

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM YROT

NAME YROT (Y-coordinate rotated)

FUNCTION Returns the Y-coordinate of a point rotated theta

degrees

ARGUMENTS Q, Y, XTý, YFý, THETA)
X, Y (Real inches) are the coordinates of the

point to be rotated
XP, YP (Real inches) are the coordinates of the

centre of rotation
THETA (Real degrees) is the angle of rotation

-VE=- clockwise +VE=- anticlockwise

EXAMPLE Y= YROT (1.0,1 - 0,0.0,0.0,4 5.0)

This statement sets Y to the Y-coordinate

of the point (1.0,1.0) rotated about the

origin 45.0 degrees

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM YSIN

NAME YSIN (Y-coordinate of a sinewave)

FUNCTION Returns the Y-coordinate of a sinewave

ARGUMENTS (AM7ý WAVE, ANGST, ANGFIAI, I., N)

AMP (Real inches) is the amplitude of the sine-

wave
WA VE (Real inches)is the length of the sinewave
ANGST (Real degrees) is the starting angle of the

sinewave
ANGFIN (Real degrees) is the finishing angle of the

sinewave
I (Integer) is the number of the point on the

curve
N (Integer) is the number of points on the

sinewave

EXAMPLE Y=YSIN(2. O., 4.0,0.0,360.0,20,100)

This statement sets Y to the Y-coordinate of
the 20th point on a sinewave containing 100
points

NOTES 1. No plotting takes place

(1)26.03.75

U10.2/Xl

PICASO SYSTEM ZCOORD

NAME ZCOORD (Z-coordinate)

FUNCTION Returns the Z-coordinate of a specified vertex on a
3-d Picaso object

ARGUMENTS (ARRAYNL, NP)

ARRAY (Real array) stores a 3-d Picaso object
NL (Integer) is the surface containing the point
NP (Integer) is the number of the point on the

nl1th surface

EXAMPLE Z=ZCOORD(S, 1., l)

This statement sets Z to the Z-coordinate of
the first point on the object

I

(1)26.03.75

UIO. 2/Xl

PICASO SYSTEM ERROR MESSAGES

1 DRAW DIMENSION OF SHAPE ARRAY 0 2.0

2 DRAW CONTOURS IN SHAPE ARRAY < 1,0

3 DSHAPE DIMENSION OF SHAPE ARRAY 0 2.0

4 ISOMET DIMENSION OF CONTOUR ARRAY 0 2.0

5 MODSH DIMENSION OF MODULATING SHAPE ARRAY 0 2.0

6 MODSH DIMENSION OF SHAPE ARRAY ý 2.0

7 XCOORD INVALID VERTEX NUMBER
8 YCOORD INVALID VERTEX NUMBER
9 ZCOORD INVALID VERTEX NUMBER

10 GRow2D DIMENSION OF SHAPE ARRAY 0 2.0

11 GRow2D CONTOURS IN SHAPE ARRAY < 1.0
12 TURN31) DIMENSION OF SHAPE ARRAY 0 3.0
13 ROTATE DIMENSION OF SHAPE ARRAY 0 2.0
14 TRANSH DIMENSION OF SHAPE ARRAYS UNEQUAL
15 TRANSH DIMENSION OF SHAPES 0 2,0 OR 3,0
16 TRANSH INVALID CONTOUR NUMBERS IN FIRST SHAPE
17 TRANSH INVALID CONTOUR NUMBERS IN SECOND SHAPE
18 CLOOD DIMENSION OF SHAPE CONTOUR 0 3.0
19 REMOVE INVALID CONTOUR NUMBER
20 NORMAL DIMENSION OF SHAPE ARRAY 0 2.0
21 NORMAL INVALID LINE NUMBER
22 NORMAL INVALID POINT NUMBER
23 EXTEND DIMENSION OF SHAPE ARRAYS UNEQUAL
24 EýTEND INVALID CONTOUR NUMBER -
25 SHIFT DIMENSION OF SHAPE ARRAY 0 2.0
26 EXPLOD DIMENSION OF SHAPE ARRAY 0 2.0
27 MIRROR DIMENSION OF SHAPE-ARRAY 0 2.0
28 MIRROR CONTOURS IN SHAPE ARRAY < 1.0
2 PULL DIMENSION OF SHAPE ARRAY ý 2,0
9-9
30 PULL CONTOURS IN SHAPE ARRAY e, 1,0

(1)26.03.75

U10.2/Xl

PICASO SYSTEM ERROR MESSAGES

31 HULL DIMENSION OF SHAPE ARRAY 1 2.0
32 HULL CONTOURS IN SHAPE ARRAY < 1,0

33 CYCLE DIMENSION OF SHAPE ARRAY 0 2.0
34 CYCLE CONTOURS IN SHAPE ARRAY < 1.0

35 EXTSH DIMENSION OF SHAPE ARRAY 02 OR 3
36 FILL DIMENSION OF SHAPE ARRAY ý 2.0
37 FILL CONTOURS IN SHAPE ARRAY < 1.0

38 OBJECT DIMENSION OF SHAPE ARRAY A 3.0
39 OBJECT CONTOURS IN SHAPE ARRAY < 1.0

40 STICK DIMENSION OF SHAPE ARRAY 0 2.0
41 STICK DIMENSION OF 'STICK' SHAPE ARRAY ý 2.0
42 SMOOTH PERIODIC SPLINE ERROR

43 ROW DIMENSION OF SHAPE ARRAY ý 2.0
44 JOIN DIMENSION OF SHAPE ARRAYS UNEQUAL

45 JOIN DIMENSION OF SHAPES 1 2.0 OR 3.0
46 CONECT DIMENSION OF SHAPE ARRAY A2.0
47 CONECT CONTOURS IN SHAPE ARRAY < 1.0

48 DRAw2D DIMENSION OF SHAPE ARRAY 0 2.0
49 DRAw2D CONTOURS IN SHAPE ARRAY < 1,0

50 DRAw3D DIMENSION OF SHAPE ARRAY ý 3.0
51 DRAw3D CONTOURS IN SHAPE ARRAY 0 1.0

52 MPYSH DIMENSION OF SHAPES UNEQUAL

53 MPYSH INVALID CONTOUR FOR ARRAYA
54 MPYSH INVALID CONTOUR FOR ARRAYB

55 SLOPE D. IMENSION OF SHAPE ARRAY 0 2,0
56 SLOPE INVALID CONTOUR NUMBER
57 SLOPE INVALID VERTEX NUMBER
58 MPYSH INVALID OPERATOR NUMBER
59 MATOP DIMENSION OF SHAPE ARRAY 1 2,0
60 SURFAC DIMENSION OF SHAPE ARRAY 0 2,0

(1) 26.03.75

U10.2/Xl

PICASO SYSTEM ERROR MESSAGES

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

REVERS DIMENSION OF SHAPE ARRAY ý 2.0

REVERS INVALID CONTOUR NUMBER
MATOP2 CONTOURS IN SHAPE ARRAY < 1,0

INSIDE
INSIDE
TRACE
TRACE
SILUET
SI LUET
SIZE
SIZE
SNOW
SNOW

FILL2D
FI LL2D
CLOCK
SMOOTH
SMOOTH
SMOOTH
SMOOTH
CLOSED
CLOSED
WINDOW
WI NDOW
SHIFT3
SH I FT3

(1)26.03.75

DIMENSION OF SHAPE ARRAY 0 2.0

CONTOURS IN SHAPE ARRAY < 1.0

DIMENSION OF SHAPE ARRAY ý 2.0

CONTOURS IN SHAPE ARRAY < 1,0

DIMENSION OF SHAPE ARRAY 1 2,0

CONTOURS IN SHAPE ARRAY < 1,0

DIMENSION OF SHAPE ARRAY 0 2.0

CONTOURS IN SHAPE ARRAY < 1.0

DIMENSION OF SHAPE ARRAY 0 2.0

CONTOURS IN SHAPE ARRAY < 1.0

DIMENSION OF SHAPE ARRAY 0 2.0

CONTOURS IN SHAPE ARRAY < 1.0
bIMENSION OF SHAPE ARRAY 02.0

DIMENSION OF SHADE ARRAY 0M

CONTOURS IN SHAPE < 1.0

CHORDAL DISTANCES NOT INCREASING
CHORDAL DISTANCES NOT INCREASING
DIMENSION OF ARRAY 0 2.0

INVALID CONTOUR NUMBER

DIMENSION OF ARRAY 0 2.0

CONTOURS IN SHAPE ARRAY < 1,0

CONTOURS IN OBJECT ARRAY < 1,0
1 DIMENSION OF ARRAY 0 3,0

U10.2/Xl

PICASO SYSTEM ERROR MESSAGES

91 TRANSP
92 TRANSP
93 NYSUB
94 NYSUB
95 NXSUB
96 NXSUB
97 FIT
98 FIT
99 NZSUB

100 NZUB
101 HATCH
102 HATCH
103 MASK
104 MASK
105 RIPPLE
106 RIPPLE
107
108
109 'THICK

110 THICK
111 DOTUET
112 DOTUET
113 PERSHP
114 PERSHP
115 mix2D
116 mix2D

117 mix3D
118 mix3D
119 Row3D
120 NOD
121 FILOD

122 FILOD

DIMENSION OF ARRAY = 2.0

CONTOURS IN SHAPE ARRAY < 1,0

DIMENSION OF ARRAY ý2 OR 3

CONTOUR ARGUMENT TOO LARGE
DIMENSION OF ARRAY 02 OR 3

CONTOUR ARGUMENT TOO LARGE

DIMENSION OF ARRAY 02

CONTOURS IN SHAPE < 1,0

DIMENSION OF ARRAY 02 OR 3

CONTOUR ARGUMENT TOO LARGE
DIMENSION OF SHAPE ARRAY 0 2.0

CONTOURS IN SHAPE < 1,0

DIMENSION OF SHAPE ARRAY 0 2.0

CONTOURS IN SHAPE < 1.0

DIMENSION OF ARRAY 0 2.0

INVALID CONTOUR

DIMENSION OF SHAPE ARRAY ý 2,0

CONTOURS IN SHAPE ARRAY < 190

DIMENSION OF CONTOUR ARRAY 0 2.0

CONTOURS ON CONTOUR ARRAY < 1,0

DIMENSION OF SHAPE ARRAY 0 2.0

CONTOURS IN SHAPE < 1,0

DIMENSION OF SHAPE ARRAY ý 2.0

CONTOURS IN SHAPE < 1,0

DIMENSION OF, OBJECT ARRAY 0 3.0

CONTOURS IN OBJECT ARRAY 1,0

DIMENSION OF OBJECT ARRAY 3.0

CONTOURS IN OBJECT < 1,0

DIMENSION OF OBJECT ARRAY 0 3.0

CONTOURS IN OBJECT < 1.0

W26.03.75

