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Abstract

Charles Peirce (1839-1914) was one of the most important logicians of the
nineteenth century. This thesis traces the development of his algebraic logic from his

early papers, with especial attention paid to the mathematical aspects. There are three

main sources to consider.

1) Benjamin Peirce (1809-1880), Charles’s father and also a leading American
mathematician of his day, was an inspiration. His memoir Linear Associative Algebra
(1870) is summarised and for the first time the algebraic structures behind its 169
algebras are analysed in depth.

2) Peirce’s early papers on algebraic logic from the late 1860s were largely an
attempt to expand and adapt George Boole’s calculus, using a part/whole theory of
classes and algebraic analogies concerning symbols, operations and equations to
produce a method of deducing consequences from premises.

3) One of Peirce’s main achievements was his work on the theory of relations,
following in the pioneering footsteps of Augustus De Morgan. By linking the theory
of relations to his post-Boolean algebraic logic, he solved many of the limitations that
beset Boole’s calculus. Peirce’s seminal paper ‘Description of a Notation for the
Logic of Relatives’ (1870) is analysed in detail, with a new interpretation suggested
for his mysterious process of logical differentiation.

Charles Peirce’s later work up to the mid 1880s is then surveyed, both for its
extended algebraic character and for its novel theory of quantification. The
contributions of two of his students at the Johns Hopkins University, Oscar Mitchell
and Christine Ladd-Franklin are traced, specifically with an analysis of their problem-
solving methods. The work of Peirce’s successor Emst Schroder is also reviewed,

contrasting the differences and similarities between their logics.

During the 1890s and later, Charles Peirce tumed to a diagrammatic
representation and extension of his algebraic logic. The basic concepts of this
topological twist are introduced. Although Peirce’s work in logic has been studied by
previous scholars, this thesis stresses to a new extent the mathematical aspects of his

logic — In particular the algebraic background and methods, not only of Peirce but also

of several of his contemporaries.
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Chapter 1 Introduction

1.1 Philosopher and Logician

As both philosopher and logician, Charles Sanders Peirce (1839-1914) was
neglected by the philosophical community of his time and misunderstood by the
logicians. He was one of the principal founders of modern logic and the inventor of
the influential philosophy of ‘pragmatism’. Although his influence is currently being
recognised by modern logicians, with the publication of a volume of essays and
papers! arising out of the important Sesquicentennial International Congress held at
Harvard University in 1989 to celebrate his birth in 1839, Peirce is still the victim of
historical ignorance. The pioneering algebraic logic of Peirce and Schréder was
largely eclipsed until the 1940s by the mathematical logic of Gottlob Frege, Guiseppe
Peano and Bertrand Russell, with the result that we are only now coming to realise
and discover the power of Peirce’s logical work. In this thesis I start with his father
Benjamin Peirce’s linear associative algebra and then consider this and other early
influences on the logic of Peirce. A discussion of the early algebraic logicians such as
Boole, Jevons and De Morgan follows, culminating in a detailed analysis of Peirce’s
seminal paper ‘Description of a Notation for the Logic of Relatives’ (1870). His
further developments of the 1880s, including quantificational logic are also traced. At

the end of his life, Peirce looked to his graphical logic system - the existential graphs -

to provide the logic of the future.

Even though commentators have recognised Peirce as one of the foremost
American logicians, the mathematical techniques that he used have not been closely
considered. I provide such an analysis, in particular looking at the problem-solving
techniques employed not only by Peirce but also by his graduate students Christine
Ladd-Franklin, and Oscar Howard Mitchell and his logical successor Ernst Schréder.
The notations and philosophy of these logicians have been previously documented,
but any study of the algebraic methods used by these logicians when they came to
apply their logics has until now, been lacking. A review showing the development of

his algebraic logic and that of his followers is also included in the last chapter.

! (Houser, Roberts, and Van Evra 1997).



The main publications of Charles Peirce’s work on logic that have been cited
in this thesis are Writings of Charles S. Peirce, A Chronological Edition, edited by M.
Fisch, E. Moore et alii, Indiana University Press, Bloomington, USA, (1982 -),
referred to by ‘W’ followed by volume and page numbers, and Collected Papers of
Charles Sanders Peirce, vols. 1-6 edited by C. Hartshorne and P. Weiss, vols. 7-8
edited by A. Burks, Harvard University Press, (1931-1958), referred to by ‘CP”
followed by volume and page numbers, or CP followed by volume, period and

paragraph numbers. For example CP 4.429 refers to Collected Papers, volume 4,
paragraph 429. Peirce’s unpublished papers are referenced by MS for manuscript

followed by the folder number assigned in (Robin 1967). Victor Lenzen brought the
Peirce manuscripts to Harvard from Peirce’s home after his death in 1914. The
Department of Philosophy at Harvard then arranged the preparation of the Collected
Papers that were published in six volumes between 1931 and 1935.

However this was a poor edition which had an adverse as well as a positive
effect on Peirce scholarship with editors Paul Weiss and Charles Hartshorne deleting
or changing sections of the manuscripts. This section highlights the fact that Peirce’s
own signs which were carefully chosen as icons for the sixteen binary connectives
were replaced by more conventional symbols of the editors’ choosing. Not only were
they the wrong signs but they lacked any attempt at iconicity. Arthur Burks produced
volumes 7 and 8 in the mid 1950s and Max Fisch directed the sorting of the papers
into proper order for the first time in 1972, starting the Peirce Edition Project which
plans to publish 30 volumes of the Chronological Edition of his writings. It 1s this
latter edition which has led to a fruitful study of Peirce’s work in logic. Some of
Peirce’s (pioneering) studies are inevitably ambiguous here and there and I have
chosen reasonable interpretations in certain places, particularly in the 1870 paper
‘Description of a Notation for the Logic of Relatives’. There now follows a brief

summary of the ‘story’.

1.2 Benjamin Peirce’s LAA (1870)

Benjamin Peirce’s Linear Associative Algebra first published in lithographic



form in 18702, was his main algebraic work and is important because it marks the first
stage in the development of modern day linear algebra. The main points of LAA are
outlined in Chapter 2, along with some biographical comments about this remarkable
man. In painstaking detail, after a few pages of definitions and axioms, Benjamin
listed all possible linear associative algebras in the form of their multiplication tables
for systems of up to six units resulting in a definition of 163 algebras and six subcases

Another feature of LAA is the extreme brevity of its proofs. H. A. Newton

testifies: ¢ . . . [his] demonstrations are given only in outline being in respect of

fullness the entire opposite of Euclid’ (Newton 1881, 168). This eccentric style as
shown 1n the expositions of LAA was a distinct disadvantage. As his student and then
colleague Thomas Hill affirmed, Benjamin had a ‘...habit of using simple
conceptions, axioms and forms of expression, without reference to established usage
to produce demonstrations ...[of] exceeding brevity’ (Pycior 1989, 144). This family
trait was handed down to Charles.

In Chapter 2, I supply an analysis of two such proofs in particular the proof of
the axiom that ‘In every linear associative algebra there is at least one idempotent or
one nilpotent expression’. I also analyse many of the multiplication tables for the
algebras supplying any calculations omitted by Benjamin and pointing out errors that
have never before been corrected. This is a valuable exercise in both understanding
the reasoning behind Benjamin Peirce’s 169 multiplication tables where the algebraic
explanations are often omitted, and in highlighting errors in his own working both in

the 1879 lithograph and in the 1881 American Journal of Mathematics version.

1.3 Later Papers: the Development of Peirce’s Algebraic Logic

Algebraic logic as developed in different ways by George Boole (1815-1864)
and Augustus De Morgan (1806-1871) attempted to express the laws of thought or the
processes of thinking and logical deduction in the form of mathematical equations.
Using the traditional syllogism as introduced by Aristotle and developed by the
medieval scholars as a starting point, these logicians were interested in problem

solving and deducing conclusions by applying mathematical techniques. In contrast to

2 (B. Peirce 1870) was first published as a lithograph. It was edited by C. S. Peirce and reprinted in
American Journal of Mathematics 1881, vol. 4, 97-2209.

3



mathematical logic, Boole used letters to represent classes of objects, rather than sets
of objects. There was no elementhood relation but only the relations of proper and

improper inclusion were used.

Charles Peirce’s primary interest in algebraic logic came from the logic of
George Boole. In Chapter 3, I highlight the three main areas where Boole’s logic

departed from an arithmetic system, namely the operation of division, the index law
and the interpretation of symbols.? By analysing Peirce’s early Harvard Lectures in
terms of the definitions of the logical terms, the operations, zero and unity, and
comparing them with Boole’s definitions in both Mathematical Analysis of Logic
(1847), and Laws of Thought (1854), I show that Peirce seems to be working from
Laws of Thought (1854), rather than the earlier work. I also analyse in detail an
example of logical elimination in Peirce’s ‘Harvard Lecture III’ (1865), using Boole’s

Development Theorem, any ‘proof” being completely omitted by Peirce. The example

given 1s that of the well-known syllogism:

All men are animals
Socrates 1s a man
Therefore Socrates is an animal.

In contrast to his earlier complete acceptance of Boole’s logic, Peirce now
began to improve its deficiencies (‘enormous deficiencies’) as Peirce was to say In
‘Harvard Lecture VI’ (1865), which soon became apparent. He was to extend Boole’s
calculus by providing the missing operation of division, for which I suggest the
definition ‘x = b/a = b + v(1-a) ’, where v refers to the indeterminate class meaning
‘some, all or none’, thus forming Boole’s main method of quantification. I analyse
the meaning of v in Boole’s logic showing that Boole had different interpretations for
v at different times. I also show that Peirce made a serious misreading of Boole’s
view of the nature of numerical coefficients which resulted in an error when he came
to demonstrate a Boolean example. It is a matter of some interest that this error
involved an equation of the form x + x = x. Boole expressly ruled out such equations

but Peirce was to incorporate the rule in his new operation of addition, which he

3 Boole himself claimed there was only one point of divergence in the laws of logic and those of

number - he probably had in mind the Index Law i.e. x2 = x in (Boole 1854, 11).
4



discovered independently of but subsequently to W. Stanley Jevons (1835-1882).
This operation extended Boolean addition to cover non-disjoint classes.

In Chapter 3 I outline the logic of Jevons and consider his approach to the
relationship between mathematics and logic, which was completely different from that
of Boole’s. In fact in his Formal Logic (1864), Jevons was one of the first proponents
of the logistic view that logic is the basis of mathematics. However his method of
inference which consisted of taking all possible combinations of the terms of the
premises and their complements, combining each of these terms separately with both
sides of a premise and then eliminating to find the solution, is a longer and more

tedious method than Boole’s methods. It is interesting to note that Jevons disagreed

with Boole in two key areas.

Firstly he proposed the operation of addition between classes, which can be
defined as a+ b =a + b - ab for non-distinct classes a and b. This culminated 1n
Jevons’ law of unity a + a = a, which Boole completely rejected. Secondly because of
the above law of unity, Jevons objected to both addition and subtraction as processes
of logic, and although he used the operations of multiplication and addition in his own

algebraic logic, he preferred to consider them as the logical operations of combination

and separation.

So by 1867, when Peirce came to write ‘On an Improvement in Boole's
Calculus’, he was aware that a major limitation of Boole’s algebraic logic was 1in the
area of quantification, in that it could not properly express particular (or categorical)
propositions such as ‘Some X is Y’. To this end he defined his operation of addition
and 1ts inverse, logical subtraction. Furthermore I show that he introduced a new
operation of logical division, probably to complete the algebraic analogy. However

shortly after this, he discovered the work of De Morgan on the copula.

1.4 The Theory of Relations

De Morgan had realised the inadequacies of syllogistic logic and claimed that
some way of representing relations other than the identity relation was needed. His

theory of relations involved expressing inferences in logic in terms of composition of

relations:

X.. LY XisanLofY



X.LY XisnotanLofY.
Peirce developed and extended De Morgan’s work on the theory of relations. I look
specifically at a series of papers written by De Morgan entitled ‘On the Syllogism: I
to ‘On the Syllogism: IV’, (written in the period 1846-1849). These papers contain
his logical development of relations and are of particular significance to Peirce.

He issued a challenge to contemporary logicians: Deduce ‘every head of a man
is the head of an animal’ from ‘every man is an animal’ using only the traditional
identity copula. Charles Peirce found this irresistible. He combined his own theory of
relations with an extended and improved version of Boole’s algebraic logic 1n a
seminal paper: ‘Description of a Notation for the Logic of Relatives, resulting from an
Amplification of the Conceptions of Boole’s Calculus of Logic’ shortened here to
DNLR (1870). For the first time, Boole’s part/whole class calculus was combined
with De Morgan’s theory of relations to form an algebraic logic equivalent to today’s

predicate logic. This thesis also explains Peirce’s mysterious ‘logical differentiation’.

What for example is the interpretation of d{x2) = 2x1,dx where each symbol

represents an operation or class? Although the algebraic machinery to support ‘logical
differentiation’ is highly developed, Peirce omitted to provide the verbal translation,

which has led to much speculation by modem day scholars.

1.5 Description of a Notation for the Logic of Relatives

Having incorporated a theory of relations into Boolean algebraic logic, Peirce
developed a powerful notation and problem-solving algebraic logic equivalent to first
order predicate logic. This was first published as DNLR (1870). A weakness of
Boole’s logic, (soon realised by Peirce), is that it is not able to express satisfactorily
categorical or particular propositions of the form ‘Some X is Y’. It was precisely this
problem of quantification that inspired Peirce to make the ‘Amplification’. Sections
of DNLR were amended just before being sent to the printers, mainly in the light of
De Morgan’s superscript notation for quantification, as used in his operation of
involution. It is not therefore surprising that Peirce makes so many errors in his
proofs. In many cases he cites incorrect formulae numbers which makes it even more

difficult to follow his sketchy proofs. I suggest that this was caused by the fact that

additional formulae inserted just prior to printing were not taken account of in the
6
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final numbering. In Chapter 4, I supply an analysis and expansion of some of his
proofs, tracking down the correct formulae where appropriate.

There follows a discussion of Peirce’s logical terms. A term is used by Peirce
In an analogous manner to an algebraic term, but while such a term represents a
quantity, a logical term represents either a predicate (in first order logic) or a
proposition (second order logic). I clarify the main misconceptions of DNLR, one of
which is the confusion surrounding his interpretation of the ‘individual’, defined as an
‘absolute term’. The question involved here is what is an absolute term and is 1t a
class? My answer is that an absolute term e.g. ‘woman’ is a representative member of
a class denoting that class, but it is only an instance or ideal member of that class. So
Peirce’s absolute term is neither a class nor a specific individual. However such
absolute terms may represent specific individuals, (as in a linear combination), while a
class 1s made up of an aggregation of specific individuals.

The second main misconception is the blurring of the boundaries of ‘relation’
and ‘relative term’. Note that Peirce’s algebraic logic is the ‘logic of relatives’ not De
Morgan’s ‘logic of relations’. Peirce first defined the relative term s as ‘whatever 1s
the servant of ' (W2, 369). Some commentators have identified these relative
terms with relations. Others with classes associated with the relation. I am more
inclined to this latter view. However relative terms can be understood as
significations of linguistic items which are derived from verb phrases (e.g. serves a
master) with a blank for a noun (e.g. whatever is a servant of ). This
changed in 1882 when he defined a relative term as a class of ordered pairs, 1.e. as
what we recognise today as a relation. Any difficulty that arises in the minds of Peirce
commentators lies back in the 1870 DNLR paper where he seems to have confused
relations with relative terms.

I show clearly in Chapter 4, that the real problem is in fact the quite different
issue of the general confusion between ‘absolute terms’ and ‘relative terms’. Peirce
used absolute terms and relative terms interchangeably. In order to achieve this he
used the ‘comma operator’ that converts absolute terms to relative terms. For
example, consider the absolute term ‘servant’, s. This 1s transformed by the comma
operator into s, or ‘whatever is the servantof __ °. Peirce scholars have claimed

that he confused the relative term ‘whatever is the servant of > with the class

7



of servants which represents the relation, so that all relative terms are in fact really
relations. My point is that he uses ‘servant’ as an absolute term and not as a class at
all but a representative member of a class. As such, it is not a direct representation of
a relation.

Peirce later moved away from relative terms to emphasise relations between
classes. The change is most clearly stated in his 1897 paper ‘The Logic of Relatives’
as the change from classes to relations or as he wrote: ‘The best treatment of the logic
of relatives, as I contend, will dispense altogether with class names and only use ...

verbs’ (Peirce 1897; CP3, 290). It was probably effected because propositions could
now be simplified to a variable signifying the relation, subscripts signifying the
individuals and a quantifying symbol.

This key area of Peirce’s logic, namely exactly what did he mean by a ‘relative
term’ has also been addressed by Robert W. Burch in (Burch 1997) which claims that
it makes little difference whether we talk of relations or of relatives. Since Peirce was
clear in his aim of separating the syntax from the semantics of his logic, it is
conceivable that relative terms indicate classes or functions or even objects depending
on the universe of discourse taken. Burch agrees that Peirce does focus on the class
definition of relative term in at least his 1870 paper, but argues that there 1s no reason
to deny that Peirce is constructing a logic of relations since he is discussing relations
by concentrating attention on their bearers. By using a graphical formulation, Burch
claims to show that Peirce’s logic of relatives as expressed in 1870 is at least as
powerful in expressive capability as first order predicate logic with 1dentity.

In the later sections of DNLR (1870), Peirce introduces a new and mysterious
process - that of logical differentiation. Directly analogous to mathematical
differentiation, it uses logical terms instead of mathematical variables. Chapter 4

takes an original turn when I introduce new interpretations for these variables that

serve to clarify Peirce’s process. Associated with and essential to logical
differentiation, is an understanding of his use of logical terms, his process of logical
multiplication, the logical analogy to the binomial theorem, infinitesimal relatives, the
concepts of numerical coefficients and the number associated with each term. All
these concepts are discussed in this section. I also analyse the algebraic development

of logical differentiation and consider in depth one application of the process. Peirce

8



provided here an ingenious analogy to mathematical differentiation. I am able to
follow the process and identify some errors made by him in this section. This part of
DNLR comes just before that on ‘backward involution’, which we know was added
quickly to the final proof of the paper. The fact that these sections were written

without revision could account for the fact that Peirce did not give English

translations. The result was to make the work even more obscure. By providing such

Interpretations that follow simply from the definitions, I shed some light on this

mysterious process.

1.6 The Theory of Quantification

In Chapter 5, I consider Peirce’s algebraic logic post DNLR, including a
review of his main successors Oscar Mitchell (1851-1889), Christine Ladd-Franklin
(1847-1930) and Emst Schréder (1841-1902). There was a decade of little further
algebraic work apart from the introduction of three main innovations - duality, modal
logic and transaddition. In 1883, Charles Peirce published a volume entitled Studies
in Logic, by Members of the Johns Hopkins University (Peirce 1883). Looking in
more detail at the work of Ladd-Franklin and Mitchell who were graduate students
taking Peirce’s logic course at the Johns Hopkins University, I analyse their different
versions of algebraic logic for problem solving. This is an area that has been
neglected by historians. Not only do I clarify their algebraic methods but I have also
been able to 1dentify errors in working or minor slips in specific logical problems that
surprisingly, have not been discovered before. I summarise the development of the
quantifier and look at the advantages of Peirce’s quantification theory over his
algebraic logic.

Ladd-Franklin’s algebraic logic is then considered. Not only was this
singularly lacking in terms of quantification, but there were also no relations or

relative terms, only the traditional identity copula. However she did clearly deal with

at least existential quantification. Her operation of V was used almost like a
quantifier symbol to denote that a particular predicate or proposition did not exist.
Existence was not so well defined, as ‘xV’ denoted that x is at least sometimes
existent. Another point of note is their use of modal values. Truth-values are used for

propositions such that aVb denotes that propositions a and b have been at some
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moment of time both true, whereas for predicates a and b, aVb denotes that a and b
are co-existent.

A discussion of Mitchell’s innovative logical ideas follows. One of these was
to separate the universe of class terms and the universe of relative terms thus showing
the way to a multi-dimensional logic. By using different universes of discourse for
predicates and propositions, Mitchell overcame a major failing of Boolean algebra 1n

its difficulty in expressing mixed hypothetical and categorical statements. Another
aspect of Mitchell’s work that is considered is his use of indices to represent

quantification because this gave Peirce the key to his own quantificational logic.
Mitchell did not use the symbols IT and T for his quantifiers. These were used, as
Peirce had used them previously in DNLR (1870), to denote infinite sums and
products in linear combinations of logical terms, not as quantifiers.

The last part of Chapter 5 comprises a discussion of some aspects of the work
of Emst Schréder. By 1879 Schroder was familiar with Peirce’s logic of relatives and
incorporated this in his later logical work. He was later influenced by Peirce’s theory
of quantification and so was able to progress from the predicate logic of Boole to the
algebraic logic of Peirce in terms of incorporating firstly his logic of relations and
secondly his quantificational logic. By this wholesale adoption of Peircean logic, he
proved himself to be a true logical successor. However the influence seems to have

been mainly one way (apart from features such as duality) which is shown in Peirce’s

rather arrogant dismissal of his logic, outlined in correspondence and other writings as

detailed in this section.

Having said that, I also note the main differences between the logical views of
Peirce and Schroder. Peirce’s main criticism of Schrdder was over the Hypothetical-

Categorical debate. Schréder held that all hypothetical propositions If 4 then B can be
reduced to categoricals All 4 is B, but not vice versa. Peirce held that categoricals are
modifications of hypotheticals. This disagreement arose because of the fundamentally
different aims of the two logicians: Peirce was interested in a calculus of logic that
covered individuals, classes and propositional logic, whilst Schréder wished to

differentiate between them, e.g. he favoured separate symbols for classes and for

propositions.,
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This section also considers a main area of neglect by historical logicians -
Schréder’s problem-solving techniques. I am able to supply an analysis of his
algebraic methods used for such a purpose. One logical problem analysed has been
previously considered when discussing the problem solving of Ladd-Franklin who
tackled the same problem but used completely different algebraic methods and
notation.

In my final chapter, I outline the influences of Benjamin Peirce, Boole, De
Morgan and Mitchell on Peirce’s algebraic logic, I consider his main achievements
and trace the new path taken by Peirce in developing post 1897, a graphical form of
logic called the existential graphs. This was predicted by Peirce to be the logic of the
future and he did very little algebraic logic work after this date. These graphs were
not at all algebraic but were a form of logical diagrams. Initially inspired by the
amateur British mathematician and philosopher Alfred Bray Kempe (1849-1922),
Peirce moved from his early form - the entitative graphs to his final form - the
existential graphs. These diagrams represented to Peirce a way of analysing logical

inference by a method superior to his previous algebraic systems. Finally I note the

influence of Peirce on later logicians.

1.7 Literature Review

Much has been written about Charles Peirce, the philosopher but little on the
algebraic methods used in his logic. Contemporary historians of logic have until
recently ignored or downplayed the value of the algebraic logic tradition of the
nineteenth century, partly because it was heavily eclipsed by the mathematical logic of
Russell, Zermelo and others. In the anthology From Frege to Gddel (van Heijenoort
1967), intended as a representative documentary history of the formative years of
mathematical logic, the algebraic tradition is virtually ignored, (deliberately so).
Historical surveys devote very little attention to the algebraic tradition. For example,
Bochenski’s (1970) history of logic devotes only some ten pages to the ‘Boolean
calculus’ and some twelve pages to the logic of relations, most of which focus on
Russell’s work rather than that of De Morgan, Peirce, and Schroder, while the
historical survey (Kneale and Kneale 1962) devotes all of thirty pages to Boolean

algebra and the logic of relations. Peirce’s logic has also suffered because until the
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Peirce Project Edition series of his published works - The Chronological Writings -
appeared the only published Peirce material available was that of the 1930s edition —
The Collected Papers. This edition is an inferior version with many omissions and

unnecessary interpolations from the editors. To some extent this omission is being

rectified by (Grattan-Guinness 2000?) which has sections on Peirce, Schroder and the

main proponents of algebraic logic.

The main texts used for a general survey of Peirce’s algebraic logic have been
(Murphey 1961) for the development of Peirce’s philosophy and logic, (Kneale &
Kneale 1962) and (Lewis 1918) for a historical review. However these latter works

are mainly a reformulation of Peirce’s logic in terms of set-theoretical notation with

no study of important results or any consideration of the problem-solving techniques
used. (Novy 1973), (Styazhkin 1969) and (Grattan-Guinness ed. 1980) were also used
as general studies of the mathematical and logical climate of the period. (Brent 1993)
was used to provide biographical details of Peirce’s tragic life.

Regarding Benjamin Peirce’s Linear Associative Algebra (1870), (Brunning
1980) shows how Charles Peirce’s relative multiplication, his central mode of
combination of concepts was derived from the multiplication schema for the linear
associative algebras developed by his father. (Pycior 1989) and (Novy 1974) support
the case that Benjamin built upon and extended the work of his British contemporaries

and adopted their symbolical approach to algebra and justified his work through his

strong religious conviction. These papers also suggest reasons for the poor reception

of LAA (1870). This latter point is also picked up by (Grattan-Guinness 1997) which
throws new light on its preparation and ‘publication’. The main critiques of LAA
(1870) are (Hawkes 1902) and (Taber 1904) which are attempts to reformulate LAA

and extend its results in terms of hypercomplex numbers using matnix theory,

(Hawkes 1902) and (Shaw 1907) also review the work of contemporary

mathematicians in the same field.

Charles Peirce’s early works are examined in (Michael 1974) which traces the
influence of Boole’s algebra on his developments in logic. Heath’s edition of De
Morgan’s series of articles on the Syllogism was extensively used (De Morgan 1966).
(Merrill 1990) concentrates on De Morgan’s theory of relations whilst (Merrill 1978)

concentrates on Peirce’s own development of the logic of relations, looking for the
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influences of De Morgan within this development. (Martin1979a, 1979b) and (Brink
1978) were also used in this context. As far as the history of quantification theory 1s
concerned we have to mention (Dipert 1994) which illuminates the contribution of
Oscar Mitchell’s pioneering work on the introduction of the quantifier. Recent works
on this topic include (Brady 1997) which summarises the transition from Peirce’s
algebraic logic to his quantificational logic and (Merrill 1997) which analyses the
quantificational logic in terms of its power and expressibility.

An invaluable aid to understanding the relationship between Peirce and
Schréder, their similarities and differences proved to be (Dipert 1981) and (Houser
1990) which details the Peirce-Schroder correspondence. Any analysis of Schréder’s
logic is largely missing, (again to be addressed by (Grattan-Guinness 2000?), but this
thesis does supply an examination of his problem-solving techniques that were
applied to his notation and logical terms thus making a small step towards clarifying
his logic. (Peckhaus 1991) and (Peckhaus 1994) were used to examine the trends and
influences in Schréder’s logic and to identify the fact that his algebra and logic of
relatives became the pasigraphic key for the creation of a scientific universal
language. (Dipert 1991) was used to supplement the bibliographical details of
Schréder’s life and work.

The graphical logic of Peirce is extensively covered by two texts namely
(Roberts 1973) and (Zeman 1974) both of which look at the logical diagrammatic
systems which consist of alpha, beta and garﬁma graphs. (Roberts 1973) in particular,
(which is in book form), is now raising the awareness of the logical and mathematical
communities to this ‘topological turn’. In terms of current research, the recently
published volume Studies in the Logic of Charles Sanders Peirce (1997) edited by
Houser, Roberts and Van Evra should be noted. This collection of essays is a result of
the Charles S. Peirce Sesquicentennial International Congress held at Harvard
University in 1989 which brought together over 450 scholars from 26 countries to
commemorate Peirce’s birth on 10 September 1839. (See the additional matenal
provided for my review of this important volume).

The continuing importance and usefulness of his ideas are brought out by this
volume. For example we have (Burch 1997) and (Roberts 1997) which are

applications of Peirce’s existential graphs. We also have (Sowa 1997) which uses the
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existential graphs as the foundation for a system of conceptual graphs that provide a
logic for representing the semantic structure of natural language. Finally other papers
in this volume which have been used as sources to clarify the relation between logic

and mathematics of the algebraic logicians and specifically Peirce’s own position on

this, are (Houser 1997), (Grattan-Guinness 1997a), (Kerr-Lawson 1997) and (Levy
1997).

1.8 Differences between Algebraic Logic and Mathematical Logic

Algebraic logic has been neglected by many historians of logic, largely
because of 1its eclipse by mathematical logic. The main difference in these two
traditions is that the algebraic logicians applied algebraic techniques to express and
develop logic, whereas the mathematical logicians in varying degrees, held that logic
was best expressed using set theoretical concepts and notation in the form of an
axiomatic system, as opposed to the part-whole theory of collections that supports
algebraic logic. Another belief held by many mathematical logicians was that such a
logical system would form the basis for a firm foundation for mathematics - this has
been given the term ‘logicism’. Unfortunately it has been the case that many
historians have equated mathematical logic with the logicist programme. This 1s a
false assumption. Schréder although working in the algebraic logic tradition held
logicist views. Peano too is a counterexample in the mathematical logic camp, as he
was not a logicist.

The algebraic and logical methods that developed in France after the
Revolution concerned semiotic ideas that emphasised the clarity of signs and the use
of algebraic techniques to other branches of mathematics and to logic.# These
algebraic methods influenced De Morgan in his work on functional equations (1836)

and then in his logic of relations (1847). Boole was also influenced firstly in his work

on differential operators (1844) and then in his algebraic logic (1847). Peirce and
Schroder (1870 onwards) then followed this algebraic tradition, and extended it to

Incorporate a theory of quantification.

4 See (Grattan-Guinness 1988, 73-74), for a review of the development of logic in France after the
Revolution.
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The paper ‘Peirce between Logic and Mathematics’ (Grattan-Guinness 1997a),
traces the strand of mathematical logic that began with a (partial) reaction against the
algebraic methods of Lagrange by A. L. Cauchy (1789-1857) who developed
mathematical analysis, using a method of limits to embed the calculus, the theory of
functions and the convergence of series. Grattan-Guinness writes on page 27: ‘The
main aim was to improve the level of rigour in these subjects, and one aspect is worth
noting here: Cauchy greatly improved the logic of specifying necessary and/or
sufficient conditions under which theorems were held to be true.” In Germany, K.
Weierstrass from the 1860s adopted and improved on these new methods. G. Cantor
(1845 - 1918) developed set theory as an extension of mathematical analysis. Peano
in the 1880s proved to be the link between mathematical analysis and mathematical
logic, formalising the symbolic notation used. From the 1900s Russell and Whitehead
saw a means of basing ‘all’ mathematics in the set theoretical terminology and axioms
that Peano had partly founded, and Frege had developed a theory of quantification
prior to that of Peirce in his Begriffsschrift (1879), and also followed the logicist
tradition in that he claimed that some parts of mathematics could be based in logic.

The two traditions of algebraic logic and mathematical logic highlight the
relationship between logic and mathematics.5 In algebraic logic, the laws, duality
properties and symbols of mathematics were used to develop systems of logic and
inference. However, many of these algebraic logicians (with the exception of
Schrdder) considered the disciplines of mathematics and logic to be entirely separate
and distinct. They made new developments in logic by applying algebraic principles.‘

Peirce himself, believed that by developing logic in this way, new mathematical

methods could be discovered and understood.

> A full account of the similarities and differences between these traditions can be found in (Grattan-
Guinness 1997a, 28-32),
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Chapter 2: Benjamin Peirce’s Linear Associative Algebra

2.1 Benjamin Peirce - The Man

Benjamin Peirce (pronounced ‘Pers’), was born on 4th April 1809 in Salem,
Massachusetts. He came from Puritan stock. The American branch of the Peirce
family originated from the descendants of a weaver named John Pers of Norwich,
England who emigrated to the United States in 1637. Benjamin was the third child

and second son of his father, also called Benjamin. This Benjamin graduated from
Harvard College in 1802, served in the Massachusetts State Senate and was, before

his death, librarian of Harvard College.

An early contact was Nathaniel Bowditch, then the most important American
mathematician, whom Benjamin met through a schoolfriend Henry Bowditch,
Nathaniel’s son, at the Salem Private Grammar School. This was the decisive factor
that led Benjamin to dedicate himself to mathematics. After Benjamin corrected some
sﬁpposed errors in Bowditch’s work, the older mathematician then took an interest in
the young Benjamin Peirce (Murphey 1961, 9-14). The family connections with
Harvard continued with Peirce entering Harvard in 1825 and graduating in 1829. For
the next two years he taught at George Bancroft’s Round Hill School in Northampton
before he returned as a tutor in mathematics at Harvard College.

His early mathematical work under the influence of Bowditch dealt chiefly
with geometry and with analysis, particularly as apﬁlied to questions of #mechanics.
He comrected and revised Bowditch’s translation of Laplace’s Traité de Mécanique
Céleste, and years later Peirce dedicated his own work on analytic mechanics to the

‘cherished and revered memory of my master in science, Nathaniel Bowditch, .the
father of American Geometry’. Benjamin himself, came to be the most highly
regarded American mathematician of his generation (Eisele 1976, xiii-xiv). He held
the Perkins Chair in Mathematics and Astronomy at Harvard (1842-1880) after having

served as University Professor of Mathematics and Natural Philosophy for the

previous nine years.

He was a man of broad interests and did not confine himself to mathematics

alone. Emerson, Longfellow and Oliver Wendell Holmes were friends of the Peirce
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family, and their home seems to have been a frequent centre for discussions among
the leading scientific figures of Cambridge (Hookway 1985, 4). As an astronomer,
Benjamin took an active part in the foundation of the Harvard Observatory. In fact the
work which first extended his reputation was his remarkably accurate calculations of
the perturbations of Uranus and Neptune. Apart from astronomy, another great love
of his life was geodesy — establishing a general map of the coastline of the U.S.A.
entirely independent of detached local surveys. He was director of the longitude
determinations of the United States Coast and Geodetic Survey 1852-67 and
Superintendent of this Survey 1867- 1874, whilst continuing to serve as professor at
Harvard. The United States Coast Survey proved to be not only an additional source
of income, but also later provided gainful employment for his son Charles Sanders
Peirce. Benjamin himself remained associated with the Survey for the rest of his life,
retaining the title of Consulting Geometer.

In 1833 Benjamin married Sarah Hunt Mills, daughter of Elijah Hunt Mills, an
eminent lawyer, and had four sons and a daughter.. His eldest son James Mills Peirce
succeeded his Chair at Harvard and his second son the aforesaid Charles was a
scientist, semiotician, linguist, philosopher, mathematician and logician. A great
committee man, Benjamin Peirce was a member of the American Philosophical
Society, an associate of the Royal Astronomical Society, London, and a fellow of the
American Academy of Arts and Sciences. In 1847 he was one of a committee of five
appointed by this Academy to draw up a program for the organisation of the
Smithsonian Institution (Hookway 1985, 4). Peirce was only the second American -
Bowditch having been the first - to be elected to the Royal Society of London.

. Although only five feet and seven and three-quarter inches tall, his physical
and intellectual presence made a massive impression on students and colleagues alike.
‘The appearance of Professor Benjamin Peirce, whose long gray hair, straggling
grizzled beard and unusually bright eyes sparkling under a soft felt hat, as he walked
briskly but rather ungracefully across the college yard, fitted very well with the
opinion current among us that we were looking upon a real live genius, who had a
touch of the prophet in his make-up’ (Byerly 1925b, 5).

In an American Mathematical Society Semicentennial address in 1938, George

Birkhoff quoted Abbott Lawrence Lowell, former President of Harvard University as
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follows: ‘Looking back over the space of fifty years when I entered Harvard College,
Benjamin Peirce still impresses me as the most massive intellect with which I have
ever come into close contact, as being the most profoundly inspiring teacher that 1
have ever had. His personal appearance, his powerful frame and his majestic head
seemed in harmony with his brain.’

Known as ‘Benny’ to his young students, he encouraged and inspired them.
He was full of humour with an abounding love of nonsense and an interest in amateur
dramatics. As a teacher, Benjamin Peirce kept abreast of the latest mathematical work
_in Europe, particularly in England, and used this material as the basis of much of his
teaching. He also encouraged his students to undertake original research (Murphey
1961, 12). Not merely concemned with the operational aspects of the teaching of
mathematics, he understood his task as that of advancing the frontiers of mathematics
(Feibleman 1960, 8-10). He was largely responsible for introducing mathematics as a
research subject in the United States (W4 1986, xix-xx).° His students appreciated his
generalising power, ‘the quality of his mind which tended to regard ény mathematical
theorem as a particular case of some more comprehensive one . . .so that we were led
onward to constantly enlarging truths’ (Archibald 1925, 4-5).

He was a profoundly inspiring teacher. At Harvard he produced a series of
textbooks ‘which, while distinctly inferior to the best current in his time, were
certainly stimulating® (Archibald 1934, 393-398). Although inspiring, he was not
always easily understood. The following anecdote gives some flavour of his teaching
style. At a meeting of the National Academy of Sciences, Benjamin Peirce spent an

hour filling the blackboard with equations only to remark: ‘There is only one member
of the Academy who can understand my work and he is in South America’ (Eisele
1976, x11i-xiv).

Pycior also comments on Peirce as a teacher, ‘He was not revered for his
pedagogical skills: his lectures often degenerated into the furious scribblings of a

research mathematician in pursuit of the solution to a fascinating problem; he often

° As previously stated, the two editions of Charles Peirce’s published works, Hritings of Charles S.
Peirce: A Chronological Edition, ed. Max H. Fisch, Edward C. Moore, et al. Indiana University Press:
Bloomington 1982-, and Collected Papers of Charles Sanders Peirce, vols. 1-6 eds. Charles Hartshorne
and Paul Weiss; vols. 7-8 ed. Arthur W. Burks, Harvard University Press (1931-1958) will be referred
ttzl as ‘W4’ for the fourth volume of the later edition and ‘CP4’ for the fourth volume of the earlier
caifion,
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refused to answer what he considered ill-posed questions raised by his students. Yet
he displayed an enthusiasm for his subject which made a lasting impression on at least
the future mathematicians in his classes’ (Pycior 1979, 541).

The flavour of a Peirce lecture is captured perfectly by President Emeritus
Eliot: ‘He was no teacher in the ordinary sense of that word. His method was that of
the lecture or monologue, his students never being invited to become active
themselves in the lecture room. He would stand on a platform raised two steps above
the floor of the room, and chalk in hand cover the slates which filled the whole side of
the room with figures, as he slowly passed along the platform; but his scanty talk was
hardly addressed to the students who sat below trying to take notes of what he said
and wrote on the slates. No question ever went out to the class, the majority of whom
apprehended imperfectly what Professor Peirce was saying’ (Eliot 1925, 2).

In 1862, Thomas Hill then President of Harvard University inaugurated a
series of university lectures. These lectures were not to be technical, though
advanced. They were to be stimulating as well as informing, and women were
encouraged to attend them as well as men. The intellectual requirements of Benjamin
Peirce’s lectures proved to be too exacting for his audience but his aspect, manner and
his whole personality heldf and delighted them. An intelligent Cambridge matron who
had just come home from one of Professor Peirce’s lectures was asked by her
wondering family what she had got out of the lecture: ‘I could not understand much
that he said; but it was splendid. The only thing I now remember in the whole lecture
is this - Incline the mind to an angle of 45° and periodicity becomes non-periodicity
and the 1deal becomes real’ (Eliot 1925, 3).

The fact that Benjamin Peirce had considerable influence and persuasive
powers amongst his contemporaries is shown in his successful championship of the
quaternions. A favourite topic was the ‘Quaternion Analysis’ of W. R. Hamilton. He
t said, ‘I wish I was young again, that I might get such power in using it as only a young
man can get’ (Newton 1881, 174). He encouraged his students to study this subject.
Instruction on the quaternions spread to over ten other American colleges and

universities, apparently as a result of Peirce’s influence (Crowe 1967).

Benjamin was a deeply religious man and a committed Unitarian. He often

referred to God as ‘the Divine Geometer’ and thought of science as the knowledge of
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God. He regularly interjected religious observations into his Harvard lectures. W. E.
Byerly, a student of his from 1867 through to 1871, and later professor of mathematics
at Cornell University, recalled: ‘I can see him now at the blackboard, chalk in one
hand and rubber 1n the other, writing rapidly and erasing recklessly, pausing every few
minutes to face the class and comment earnestly, perhaps on the results of an elaborate
calculation, perhaps on the greatness of the Creator’ (Byerly 1925b, 5).

More particularly, Byerly noted during one lecture on the quaternions that
Peirce claimed that Hamilton’s new mathematical system was applicable to the
physical world as well as pleasing to the human mind. ‘The mind of man and that of
Nature’s God must work in the same channels’ (Byerly 1925a, 6). Peirce’s religious
beliefs were, as we shall see, to have an impact on his philosophy of mathematics and
on his son Charles Peirce’s logic.

To sum up this portrait of the man, Charles described him as: ¢. . . the leading
mathematician of the country in his day, a mathematician of the school of Bowditch,
Lagrange, Laplace, Gauss and Jacobi, a man of enormous energy, mental and physical,
both for the instant gathering of all his powers and for long-sustained work; while at
the same time he was endowed with exceptional delicacy of sensation, both sensuous
and sentimental. But his pulse beat only sixty times in a [minute] and I never
perceived any symptom of its being accelerated in the feats of strength, agility and
skill of which he was fond, although I have repeatedly seen him save his life by a hair-
breadth; and his judgement was always sane and eminently cool’ (Hookway 1985, 4).

However, there is evidence that Charles was groomed by his father
academically at the expense of his personal and social development. Charles always
felt that he was in his father’s shadow: . . . he underrated the importance of the
powers of dealing with individual men to those of dealing with ideas and with objects

entirely governed by exactly comprehensible ideas, with the result that I am today so

destitute of tact and discretion that I cannot trust myself to transact the simplest matter

of business that is not tied down to rigid forms’ (Eisele 1976, v).

2.2 The Publication and Distribution of LAA (1870)

Benjamin Peirce also presented a number of papers to the National Academy of

Sciences (of which he was naturally a founder-member). These developed into his
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Linear Associative Algebra (1870) (which I shall refer to as LAA). One hundred
lithographed copies were prepared by Julius Erasmus Hilgard (1825-1891), Assistant
Superintendent at the Coast Survey at the time.” Surprisingly it was Charles who
having annotated LAA for publication in The American Journal of Mathematics, vol. 4
(1881), 97-229, claimed the credit for initiating and promoting the work: ‘I had first
put my father up to that investigation by persistent hammering upon the desirability of
it . . . His mind moved with great rapidity and it was with much difficulty that he
brought himself to write out even the briefest record of its excursions’ (Archibald
1927, 526).

According to Victor Lenzen (1973, 239) a manuscript of 1909 has Peirce

describing the circumstances:

About 1869 my studies of the composition of concepts had got
so far that I very clearly saw that all dyadic relations could be
combined in ways capable of being represented by addition (and of
course subtraction, by a sort of multiplication... and by two kinds of
involution. . . But I found my mathematical powers were not sufficient
to carry me further. .. I therefore set to work talking incessantly to my
father (who was greatly interested in quaternions) to try to stimulate
him to the investigation of all systems of algebra which instead of the
multiplication table of quaternions. . . had some other more or less
similar multiplication table. I had hard work at first. It evidently
bored him. But I hammered away, and suddenly he became interested
and soon worked out his great book on linear associative algebra.
The original title page of the memoir is reproduced overleaf. In the dedication
‘To my friends’ on page 1 of the memoir, the first sentence reads: ‘This work has been

the pleasantest mathematical effort of my life’. It seems to have been a copy

belonging to George Davidson and claims that only 50 copies were printed.

However a copy of a letter from Hilgard to William Adams Richardson made
on 15 March 1871 by Thomas Hill, President of Harvard University from 1862 to
1868 confirms that 100 copies were made (Grattan-Guinness 1997b, 605).

" See (Grattan-Guinness 1997b) for information about the preparation and publication of the 1870
lithographic version.
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The most laborious part was that of preparing the copy, which
was written in lithographic ink on ordinary well sized writing paper. A
transfer of these written pages, twelve at a time, was made on a
lithographic stone, and 100 copies were printed, after which the
transfer was rubbed off, and the next twelve pages laid down on the
stone. The copy was written by a lady who understood not one word
of the investigation, but who by great attention succeeded in making a
copy far more free from errors that any printers proof ever 1is, -

considering Prof. Peirce’s chirography it was a wonderful

performance.

The LAA is divided into numbered sections, the first of which deals with the
definition of mathematics starting with the famous definition ‘Mathematics is the
science which draws necessary conclusions’. The different varieties of mathematics
are then considered in Section 2, ending with a definition of algebra as ‘formal
mathematics’. Section 3 discusses the distinction between qualitative and quantitative
relations while Section 4 is concerned with a three-fold division of algebra into

1) the language of algebra - the symbols of an algebra

together with its laws of

combination,

11) the art of algebra - the methods of using the
symbols in the drawing of
inferences,

1)  the scientific application - the interpretation of the symbols.

Benjamin Peirce probably intended to make this the basis of three separate
books but only Book 1 on ‘The Language of Algebra’ was ever written. Sections 8-13
establish the alphabet of the language e.g. we have in Section 9: ‘The present
investigation not usually extending beyond the sextuple algebra, limits the demand of
the algebra for the most part to six letters, and the six letters, i,j,k,l,m and n will be

restricted to this use except in special cases.’

Sections 14-24 set up the notation of the algebra under the heading ‘The
Vocabulary’ including the symbols > and < for a part-whole theory of classes and

symbols for the operations +, - and x. Benjamin Peirce explicitly states on page 15 of
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the lithograph that Hamilton’s notation of facient, faciend and factum will be used
instead of the more common multiplier, multiplicand and product, probably as a
compliment to Hamilton. Section 25 introduces for the first time the key ideas of
nilpotency and idempotency defined respectively by the equations A" = 0 and A" = A.

Division is defined as the reverse of multiplication but no symbol for division
is introduced. Sections 28-37 are concerned with ‘The Grammar’ of the algebra - 1n
particular quantitative forms. In a note on page 19 of the lithograph, Benjamin Peirce
criticises Hamilton for excluding imaginary numbers from the interpretation of
quaternions, on the grounds that ‘like the restrictions of the ancient Geometry, they
are inconsistent with the generalizations and broad philosophy of modem science’.

In Section 29, the term coefficient is defined as a quantity a such that Aa =
aA. Sections 30-33 define the distributive and associative laws of multiplication and
the commutative principle. Section 34 gives the definition of a linear algebra as ‘an
algebra 1n which every expression is reducible to the form of an algebraic sum of
- terms, each of which consists of a single letter with a quantitative coefficient’.

Benjamin also cites De Morgan’s ‘Triple Algebra’ (De Morgan 1849) which
was clearly an'inspiration to him and notes that it adopts the distributive, associative
and commutative principles whereas this last principle was emphatically re) ected 1n
the LAA. Section 36 defines a symmetrical and cyclic algebra while Section 38
heralds the start of the descriptions of the linear associative algebras. The first
important axiom is given in Section 40: ‘In every linear associative algebra, there is at

least one 1dempotent or one nilpotent expression’. This axiom is discussed in more

detail later in this chapter.

The following sections set up the basis and units of an algebra and their laws

of combination, resulting in a multiplication table in Section 46 that classifies the
letters of an algebra into one of four distinct groups. Benjamin’s general notion of

multiplication as shown in these tables is very close to our concept of relative product
and 1s also the definition of multiplication later used by Charles Peirce in his

discussion of elementary relatives in his 1870 paper ‘Description of a Notation for the

Logic of Relatives’ (Brunning 1980).

In Section 50, Benjamin Peirce states as the necessary condition for a pure
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algebra that ' the four different groups® of an algebra should be united by a
multiplication relation that links the units of one group to each of the other groups.
The properties of units in these groups are then investigated. Several axioms
involving idempotency, nilpotency and the order of an algebra and group are then
established, some with short proofs. By Section 71, Benjamin Peirce states that
‘sufficient preparation is now made for the investigation of special algebras’. His
investigation consists of a methodical calculation of the products of the units of an
algebra and the values of their coefficients resulting in a multiplication table for each
algebra.

A discussion of the single, double, triple, quadruple, quintuple and sextuple
algebras starts from Section 72. The multiplication of the units of each algebra 1s
investigated with single units producing two multiplication tables (and therefore two
algebras), two units producing three possible algebras, triple units producing five
possible algebras with two sub-cases, quadruple units producing eighteen algebras

with three sub-cases, the quiniuple units producing sixty-five algebras. This makes a

total of 163 algebras and six sub-cases.

In conclusion, the three-fold aim of Benjamin Peirce was

a) to list all types of number systems in the form of their
multiplication tables for systems of up to six units,
b) to develop a calculus and symbolic method for these systems,

C) to draw inferences and deduce applications for these systems.

The LAA of Benjamin Peirce is almost totally confined to a).

LAA was first spread by personal contacts, as the friends and colleagues of
Benjamin Peirce at the Coast Survey and in the National Academy of Sciences were
presented with a lithographic version. Exactly how many of the lithographic copies
were produced? Why was this important memoir published in this format and in such
a limited edition? Max Fisch provided a possible solution — the financial
consideration: ‘Late in the spring, since the National Academy, only seven years old,
had as yet no funds for printing the papers or books its members presented, Julius E.

- Hilgard, a fellow member of the Academy, took Superintendent Peirce’s manuscript,

® This use is not what we would understand as a group as defined in modern day group theory but a
classification dependent on the unit’s multiplication properties.

25




had it copied in a more omate and legible hand, and then had fifty copies lithographed
from it (WP 1984, xxxiii). This however disagrees with a letter from Hilgard to
Robinson, which claims that one hundred copies were printed (Grattan-Guinness
19970, 605).

In November 1870, Benjamin Peirce, on his way to Sicily on an expedition to
study an eclipse of the sun for the U.S. Coast Survey, gave one copy of the lithograph
to the American Ambassador in Berlin who was a personal friend. One copy was also

presented to the Berlin Academy. Charles his son presented a copy to Augustus De

Morgan, when he visited England with the same expedition under his father’s
leadership. This copy also contains a charming letter of introduction from Benjamin
recommending his son and referring to De Morgan’s own work on linear algebra as
printed 1n the Memoirs of the Cambridge Philosophical Society (probably the ‘Triple

Algebras’), stating that LAA was not written without ‘a careful perusal of the ...

treatise’ (Grattan-Guinness 1997a, 38).

2.3 Background to LAA
The LAA arises very much from the tradition of the English algebraic school

of the early nineteenth century. Continental calculus and mechanics (in particular the
works of Laplace, Argobast and Lagrange) stimulated English mathematicians such as
Herschel, Babbage and Peacock (founding the Analytical Society in 1812 at
Cambridge University) to introduce Continental notation and Lagrangian algebraic
calculus. From 1813-1817, Herschel’s work on finite-difference equations and series,
and Babbage’s work on functional equations were based on algebraic abstraction of
procedures, and symmetry and used the methods of Lagrange and Laplace.” By 1830
George Peacock distinguished between ‘universal arithmetic’ or ‘arithmetical algebra’
and ‘symbolical algebra’ by means of the ‘principle of the permanence of equivalent
forms’: “Whatever form is Algebraically equivalent to another, when expressed in
general symbols, must be true, whatever these symbols denote’ (Peacock 1830, 104).
However De Morgan (and later Benjamin Peirce) was to establish his own

approach which partly agreed with and partly diverged from, that of Peacock (Panteki

? See (Panteki 1992, chapters 1 and 2) for the background in French mathematics 1770-1830 and
Herschel and Babbage on the calculi of operations and functions 1812-1822.
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1992, 35), and which relied upon truth and the interpretation of the symbols and of the
theories of which they were components. Both De Morgan and Boole continued this
tradition of working with symbolical methods (although on different lines). From
1830, Peacock, De Morgan and Gregory looked on algebraic research as the
construction of abstract axiomatised systems called symbolic because they were
capable of various interpretations. They were aware that it could be impossible to find
an interpretation of a given system in mathematics or outside it (Novy 1974, 213).
Benjamin Peirce did not share the difficulties of the English School because he

was sure that such an interpretation was always available in the physical world,
believing as he did that such algebras proceeded from God, ‘the divine Geometer’,
and so had an expression in Nature. His theological argument justified his researches
that led to novel ideas falling outside the normal rules of algebra, without too much
regard for use or meaning. As Pycior writes: ‘This argument — what man thought,
God thought, and so it was reality — was reiterated again and again in Peirce’s
writings’ (Pycior 1989, 144).

The algebraic logics of De Morgan and Boole also influenced Benjamin to
consider only the laws of combination of symbols and not their interpretation. Boole
went on to interpret logic as a system of processes which take place with the help of
symbols and whose laws are the same as the laws of a system of algebra with the
exception of x = x°, the index law of logic which is not generally true for symbols of

quantity. Searching for a parallel between the laws of logic and mental processes,

Boole first found it necessary to assemble various ‘elements of truth’ and find
fundamental laws, general terms and symbols of these terms to form a language
(Boole 1847, 53). As shown in Section 2.2, all of this forms an integral part of LAA.
Boole’s full title for his book of 1847 is “The Mathematical Analysis of Logic,
Being an Essay towards a Calculus of Deductive Reasoning’, and he firmly believed
that the sciences are deductive (Thomas 1955, 88-96). Benjamin’s first sentence in
LAA, his famous definition ‘Mathematics is the science which draws necessary
conclusions’ echoes this belief, showing that he also held that sciences have a
deductive aspect which involves mathematical processes. The definition 1s an attempt

to broaden the scope of mathematics away from the purely quantitative. Pycior draws

attention to Alfred North Whitehead’s definition in his ‘Treatise on Universal
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Algebra’ of 1898 which is strikingly similar to Benjamin’s: ‘Mathematics in its widest
signification is the development of all types of formal, necessary, deductive reasoning’
(Pycior 1979, 537).

1Grattan—Guinness has discovered two previous drafts of this definition namely:

‘Mathematics is the science that draws inferences’, and ‘Mathematics is the science
that draws consequences’ (Grattan-Guinness 1997b, 602) and also highlights two
points of interest that arise from the definition: a) the strong link with probability that
is also made by Boole and De Morgan. He writes, ‘to us the word ‘necessary’ links
with possibility; but at that time the closer association would be with probability,
which 1tself treated (among other things) belief and so melded with psychology’;
b) LAA was written with a notion of the clear distinction between the form and the
meaning of an algebraic theory. One consequence of this philosophy was that
necessary conclusions (or deductions) were made from form alone (Grattan-Guinness
1997a, 34-35).

Benjamin explained in his introduction to LAA that no law of science could
hold without mathematics which deduces from a law all its consequences, and
develops them into the suitable form for comparison with observation. From this 1t
can be seen that his definition of mathematics as stated in LAA is then linked with his
conception of the match between human thought and mathematical reasoning on the
one hand and physical reality on the other; (both being manifestations of Divine
Laws). Mathematics to him was not humanly devised but was in fact the divine
revealer of Truth. (So strong was his religious belief that he would interrupt lectures
to exclaim upon the existence of God).

This link between the laws of mathematics and physical reality is again shown

when he was lecturing on his favourite subject, Hamilton’s new calculus of
quaternions, which he believed was going to be developed into a most powerful
instrument of research. He must have been working on his Linear Associative
Algebra for he said that of possible quadruple algebras the one that had seemed to him
‘by far the most beautiful and remarkable was practically identical with quaternions,
and that he thought it most interesting that a calculus which so strongly appealed to

the human mind by its intrinsic beauty and symmetry should prove to be especially
adapted to the study of natural phenomena’ (Archibald 1925, 6).
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He did not therefore have to worry about the applicability of his new algebras
because his symbolic algebras were to him reflections of the divine Mind and so must
have some physical reality. It was clear to him that both Nature and Mathematics
originated from God. In short, his acceptance and extension of the symbolical

approach to algebra, according to which interpretation was but a secondary

consideration, was facilitated by his strong theological belief.

Let us now turn our attention to the most important early influences on the
conception of LAA (1870). Sir William Rowan Hamilton’s work on complex

numbers and his discovery in 1843 of quaternions and the values of the sixty-four
constants of multiplication in the system, greatly influenced Benjamin Peirce.
However he rejected any philosophical notions that Hamilton attached to the
quaternions seeming the system as purely formal. Lubo3 Novy claimed: ‘Peirce’s
interest, which led to his Linear Algebra was aroused from the context from which

Hamilton’s discovery of the quaternions was generated’ (Novy 1974, 2183).

Another important influence was Augustus De Morgan who in 1849 discussed
the general commutative and associative systems generated by three units (De Morgan
1849, 241-254). He also placed coniplex numbers on a purely symbolic basis. As
already mention, Benjamin often drew attention to the papers of Hamilton and De
Morgan in LAA and this work continues the tradition of the English School:
constructing algebraic systems in a limited number of units and listing the various
cases; a classic example of which is De Morgan’s ‘Triple Algebras’. This work we
have seen mentioned in LAA on page 22 (lithographic version). However some
commentators have thought that this influence did not extend far enough to
encompass the often brief and unsatisfactory definitions. Howard Hawkes who
published an estimate of LAA in 1902 and a paper on hypercomplex number systems
in the Transactions of the American Mathematical Society in 1904 stated: ‘It 1s

remarkable that Peirce did not avail himself of the clear and compact definitions of

equality and the fundamental operations given by De Morgan and Hamilton’ (Hawkes
1902, 95).

It can therefore be seen that Benjamin Peirce followed the English School 1n

that his axioms and rules of combinations of his algebras are stimulated by the

analogy with ‘ordinary’ arithmetical algebra. He was concerned with qualitative
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algebras such as Boole’s logical algebra where symbols could be separated from their
interpretation, building up a ‘language of algebra’. It is clear from LAA that Peirce
adopted the symbolical approach of Peacock and the English algebraists. He also
emphasised the laws and forms of algebra rather than the meaning of the symbols.

The low priority assigned to interpretations and meaning is illustrated by the following

anecdote:

Once after proving a relation in the theory of functions, he
dropped his chalk and rubber, put his hands in his pockets, and after

contemplating the formula a few minutes turned to his class and said

very slowly and impressively, ‘Gentlemen, that is surely true, it 1s

absolutely paradoxical, we can’t understand it, and we don’t know

what it means, but we have proved it, and therefore we know it must

be the truth’ (Byerly 19250, 6).

Also, inspired by Hamilton’s quaternions, Benjamin Peirce felt free to reject
the commutative law in his system of algebras. The algebras developed in LAA are
associative and distributive but not necessarily commutative. But on one point
Benjamin differed from his hero and went so far as to criticise Hamilton’s exclusion
of imaginary numbers from his work. By including the possibility of complex
coefficients in LAA, Benjamin went still further and sacrificed a determinate division
operation. As (Fenster 1999, 76f) states ‘Since Peirce insisted that his scalars come
from the complex numbers rather than the reals, zero divisors and the
indeterminateness of division were potential characteristics of his algebras’. This
contrasts with modern day mathematics where a division operation is defined on all
non-zero elements.

Charles objected strongly to this weakening of the algebraic analogy: “There

was one feature of this work, however, which I never could approve of, and in vain

endeavoured to get him to change. It was his making his coefficients, or scalars, to be
susceptible of taking imaginary values’ (Archibald 1927, 526). Charles proved to be
justified 1n this position because later developments of linear associative algebras as
hypercomplex number systems favoured unique division among its elements and
allowed 1ts coefficients to come from the real or complex numbers (Fenster 1999, 77).

Benjamin defended his position in a footnote on page 19 of the lithograph:
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‘Hamilton’s total exclusion of the imaginary of ordinary algebra from the calculus as
well as from the interpretation of quaternions will not probably be accepted in the
future development of this algebra. It evinces the resources of his genius that he was
able to accomplish his investigations under these trammels’. Charles however, was
not impressed and called this footnote ‘pure bosh’ (Archibald 1927, 526). This shows
how far Benjamin was prepared to go to achieve his vision of a general and broad

based approach to algebra that moved ever further from quantitative or arithmetical

algebra.

If we are to believe Charles Peirce, it may be that the overriding influence that
inspired LAA was Charles’s desire to seek some application of his algebraic logic.
Since his father’s linear algebras could be represented as relative terms, this gave a
clear justification to his own logic. So it may be that although Benjamin did not pay
much regard to the interpretation and use of his algebras, his son Charles did.
Although the majority of the lithographic copies of LAA went to American friends
and this necessarily prevented wider access to the work, it was then published after
Benjamin’s death 1n a new edition with addenda and notes by Charles in the American
Journal of Mathematics, vol. 4 in 1881, reprinted in 1882 in book form by Van
Nostrand. It 1s now recognised as Benjamin Peirce’s finest work, and considered to
be the first major original contribution to mathematical progress in the United States.
Raymond Clare Archibald claims: ‘There seems to be no question that his Linear
Associative Algebra was the most original and able mathematical contribution which
Peirce made . . . In his Synopsis of Linear Associative Algebra (published by the
Carmnegie Institution in 1907), J. B. Shaw characterised the work as ‘really epoch-
making’ (Shaw 1907, 6).

Secondly, and more controversially he claimed that Benjamin Peirce wished,
like Boole and De Morgan, to lay the foundations for mathematics with some kind of
symbolic logic (Novy 1974, 226). This claim is puzzling because it was in fact his
son Charles Peirce who developed an algebraic logic although not for the purpose of
providing the foundations of mathematics, and Benjamin always counselled his son
away from logic as he claimed it was neither profitable nor useful.

Although Novy placed LAA very much as a successor to the work of the
English algebraists, it does differ in one respect. Helena Pycior in (Pycior 1979) has
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commented on the fact that LAA breaks away from one of the fundamental principles
of the earlier English algebraists - that of Gregory’s principle of the permanence of
equivalent forms in which it is stated that it is the laws of arithmetic which dictate the
laws of symbolic algebra. This freedom from the conventional arithmetic laws led the
way to the development of a number of different algebraic systems. First Hamilton
with his non-commutative quaternions violated this principle, and then in 1844 in a
paper read before the Cambridge Philosophical Society on triple algebras, De Morgan

developed a few non-associative triple algebras (De Morgan 1849). Pycior correctly

states that LAA was a pioneer work in this tradition, both in American mathematics

and in modern abstract algebra. Pycior also states, ‘Because of Linear Associative

Algebra, . . . Benjamin Peirce deserves recognition, not only as a founding father of

American mathematics, but also as a founding father of modemn abstract algebra’
(Pycior 1979, 551).

2.4 Analysis of the Algebras

2.4.1 Definitions and Axioms of the Algebras

Let us turn our attention to the definitions and axioms of LAA. In this section
after setting out a number of axioms introducing the terms and units of the algebras
and a string of definitions including those of idempotency and nilpotency, we then
consider the most important operation in LAA, that of multiplication. The relevant
axioms and definitions are outlined below. The numbered brackets correspond to the
relevant formula in LAA. We shall concentrate in particular on a selection of those
axioms that are necessary for the deduction of many cases of particular algebras. Note
that in the following definitions Benjamin Peirce is treating multiplication as an
operation 1.€. as T operating on A or A operating on T. All algebras treated in LAA
are linear associative algebras where a linear algebra is defined as ‘an algebra 1n
which every expression is reducible to the form of an algebraic sum of terms, each of
which consists of a single letter with a quantitative coefficient’ (LAA, 22). A linear
associative algebra is a linear algebra in which the associative principle of

multiplication 1s adopted - ‘extends to all the letters of its alphabet’ (LAA, 25). Itis
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interesting to note that nowhere in LAA did Benjamin Peirce define equivalent
algebras. However he does discard some algebras that are ‘virtual repetitions’ of
others. These are the cases where the second algebra produces a multiplication matrix

that is a transpose matrix of the first algebra with rows being transposed to columns.

Definitions:

(22) facient x faciend = factum

or multiplier x multiplicand = product

(23) A nilfactor gives zero product and we have for any

expressions A and T:
TA=0 or AT =0
T 1s nilfacient T is nilfaciend

(24) An idemfactor always gives itself as the result of any

multiplication:
TA=T or AT =T
T 1s idemfacient T is idemfaciend

(25) A nilpotent term results in a product of zero for powers greater

than or equal to 2:A" =0

An idempotent term results in itself as the product for powers

greater than or equal to 2:A" = A
(n 1s usually taken to be 2 unless otherwise stated).
It should be noted in the following examples that only those algebras in which

every expression can be expressed as a linear combination and which obey the

associative law of multiplication, are considered. Two important proofs in LAA are

outlined overleaf.

(40) In every linear associative algebra there is at least one idempotent or one
nilpotent expression.
Let A denote any combination of letters. Its square is generally independent of A and

its cube may be. Then the number of powers of A which are independent of A and of

each other cannot exceed the number of letters of the alphabet, so there must be some

least power of A which is dependent upon the inferior powers.
ZmamA" =0.
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By this Benjamin Peirce means
aA = Al + AT+ A+ A AN,
and this can be expressed as an equation in the form of a linear combination of powers
of A equal to 0, alA1 +a,A% + a3A3 +...+a, A"=0 (1).
Benjamin Peirce continues ajA+BA =0,
where BA 1s an algebraic sum of the square and higher powers of A.
This means that B is itself an algebraic sum of powers of A i.e.
B=aA' + ;A% + a, A’ +. .. +a, A™,
SO (B+2a;))A=0
and so successively (multiplying by powers of A),
(B +a;))A™ = 0.
Hence (B+a;)B=0.
Benj‘amin Peirce is justified in this step because from (1) A™ can be expressed as a
linear combination of ‘inferior’ powers from A' to A™! i.e. as B.
Two brief equations follow:
B°+2aB=0 ' (2)
(-B/a;)* =- Blaj.
Let us try to follow the argument by supplying the missing stages. Assume that a; is
non-zero. Dividing successively by a; we get:
B%a;+B=0 and (B/a;)* + B/a; =0
So (B/a;)* = - Bla, and (-B/a;)*=- Bla,.
So (-B/a;) is an idempotent expression.
If a vanishes (i.e. a; is zero, and from (2)) then B*=0 so B is a nilpotent expression.
Following on from (40) let us assume there is an idempotent expression.
(41) When there is an idempotent expression in a linear associative algebra, it
can be assumed to be one of the independent units' and be represented by one of

the letters and called the basis."! The remaining units can be separated into four

distinct groups (in a classificatory approach), with respect to this basis, as can be

seen from the following table overleaf

M

'* Consider these as letters 1) or k etc. making up the algebra.
"' Here i = 1.
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IA=Aand Ai=A 1A = Al Ai=A iA=0and A1=0
IDEMFACIEND IDEMFACIENT
IDEMFACTORS A1=0 1A=0 NILFACTORS
NILFACIENT NILFACIEND

I R

Here A is expressed in two parts. The first letter gives its name as a faciend, the

second giving its name as a facient. The two letters are d and n, of which d stands for
idem and n for ml.
Proof: All remaining units are either idemfaciend or nilfaciend. We have i* =1, The
product by the basis of another expression such as A may be represented by B, so that
1A = B,
Thus iB=i’A=iA =B,
so B 1s idemfaciend,
and 1(A-B)=1A-1B=B-B=0
| so A-B is nilfaciend.
‘Therefore A is made up of two parts, one of which is idemfaciend, the other
nilfaciend but either of these parts may be wanting and we have A wholly idemfaciend
or wholly nilfaciend’ (LAA 1870, 28).
In this ingenious explanation it is not clear that Benjamin Peirce intends A to
represent the class of possible expressions generated by units of the algebra, where B
is a subclass of A, produced by multiplication by i. So we can get two groups of

idemfaciends and nilfaciends. It can be similarly shown that all the remaining units

are elther wholly idemfacient or nilfacient.

IDEMFACIEND NILFACIEND
IDEMFACIENT NILFACIENT IDEMFACIENT NILFACIENT

Next Benjamin Peirce builds a table showing the products of expressions 1n

these four groups. To do this he defines a factorially homogeneous expression as an
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algebraic sum of letters of a group that belongs to the same group, and continues:
(43) The product of two factorially homogeneous expressions, which does not
vanish, is itself factorially homogeneous, and its faciend name [or nature] is the
same as that of its facient [part], while its facient name is the same as that of its
faciend [part].
Thus, 1f A and B are each factorially homogeneous, they satisfy the equations:
1(AB) = (1A)B, or the nature of AB as faciend is the same as that of A as faciend,
(AB)1 = A(B1), or the nature of AB as facient is that of B as facient.

Let us write out Benjamin Peirce’s products explicitly. =~ We have,
(remembering that the two-letter notation gives the nature of the expression first as

faciend then as facient):

ddxdd=dd nd x dd =nd
dd x dn=dn nd x dn =nn
dn);nd=dd nn x nd =nd
dnXx nn=dn nn X nn = nn}.

(45) Every product vanishes, of which the facient is idemfacient while the faciend
IS nilfaciepd or of which the facient is nilfacient while the faciend is idemfaciend.
For in either case this product involves the equation

AB = (A1)B = A(iB) = 0.

Benjamin Peirce intends here a product AB of the form:

1) A X B or using the two-letter form
IDEMFACIENT NILFACIEND *dxn*=0
or 11) A X B
NILFACIENT IDEMFACIEND *nxd*=0

where * stands for n or d.

Considering the zero products we have:

ddxnd=0 ndxnd=0
ddxnn=0 ndxnn=0
dnxdd=0 nnxdd=0
dnxdn=0 nn x dn=0,

(46) The combination of the propositions of (43) and (45) is expressed in the
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following form of a multiplication table:

FACIEND

S 0 B O R

Or showing multiplication between groups 1,2,3 and 4 we have:

FACIEND

FactENT [0 [0 | T | 2

The following assumptions are given by Benjamin Peirce without much
comment other than a few lines of explanation. Many of the results follow from the

tables above.

(47) Every expression which belongs to groups 2 and 3 is nilpotent
and
(50) Since the products of the units of_ a group remain in the group, they cannot
serve as the bond for uniting different groups, which are the necessary
conditions of a pure algebra. Neither can the first and fourth groups be connected
by direct multiplication, because the products vanish. The first and fourth groups,
therefore, require for their indissoluble union into a pure algebra that there
should be units in each of the other two groups.

Let us now consider some examples of the theorems of LAA that will be
needed to establish some of the algebras to be considered later in this section.
(51) In an algebra which has more than two indépendent units, all the units
except the base cannot belong to the second or to the third group.
For 1n this case, each unit [if it belonged to the second and third groups] taken ;vith

the base would constitute a double algebra, [and there would be no other unit to form
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the necessary connections for algebras with greater than two units].
(57) In a group or an algebra which has no idempotent expression, all the

expressions are nilpotent.

A nilpotent group or algebra may be said to be of the same order with the number of

the powers of its basis that do not vanish, if the basis is selected which has the greatest

number of powers which do not vanish.

(59) In a group or an algebra which contains no idempotent expression, any
expression may be selected as the basis; but one is preferable which has the

greatest number of powers which do not vanish. All the powers of the basis which

do not vanish may be adopted as independent units and represented by the letters of

the alphabet.

(60) It is obvious that in a nilpotent group whose order equals the number of

letters which it contains, all the letters except the basis may be taken as the

successive powers of the basis.
(63) In every nilpotent group, the facient order of any letter which is
independent of the basis can be assumed to be as low as the number of letters
which are independent of the basis.
It also holds that there is always a value of A; which will give i"A; = 0. The
following theorems are then developed accompanied by short proofs:
(64) In a nilpotent group, the order of which is less by unity than the number of
letters, the letter which is independent of the basis and its powers may be so
selected that its product into the basis shall be equal to the highest power of the
basis which does not vanish, and that its square shall either vanish or shall also
be equal to the highest power of the basis which does not vanish.

It follows from (60) that the algebra consists of successive powers of the basis
i and the independent unit j. The order is n and so i"*! and higher powers of i =0. For
example suppose let us take the order of i to be three so that i* = 0: we have four

letters i,i,i* and j with i as the basis and j as the independent letter:i° = 0 then we

require ji = i’, and j* = 0 or j* =1’. From (63) since there is only one independent

letter j, the facient order of i will be 1 and so we have ij = 0 which gives
iji=ij=0 ().

I will now reproduce the proof exactly as it appears on page 41 with a,b,a” and
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b” representing the coefficients of the lithographic version. Benjamin Peirce has:

ji=ai" + bj (1)
iP=ai+b] (2)
0=ji"1 =bji"=b"i="b (3)
ji=ai" | (4)
fi=aji"=0=bj*=b" (5)
jP=aT (6)

After these brief equations, he then makes the relevant substitutions to show that j1 =
i" = j* as required.

Let us consider these five equations in more detail. (1) and (2) express the
product of the elements of the algebra as a linear combination of the units of the
algebra and we are assuming that ji and j* are non-zero, otherwise one condition of the
theorem 1is then proved. In the case of ji and j2 being non-zero, since (*) i(ji) = 0 and
ij2 = 0, we cannot have ji and j? expressed as powers of i less than n otherwise the two
equations in (*) would not hold, so that Benjamin Peirce is justified in expressing ji
and j° as ai" +bjand ai" + b'; respectively.

Multiplying (1) by i" from the right:
™ =ji(") = (ai" + bj)i" (substituting from (1)) =bji",
since powers of 1 greater than n vanish as the group is nilpotent.

Let us consider this equation ji™' =1bji". This holds for all values of n and so

substituting in n=1 we get: ji* =bji.

Then i = (i)i2 = (ai” + bj)i2 = bji?
= b(bji) = bji.

Similarly, | jit = ()i’ = (ai" + bj) i’ = bji°

= b(b’%ji) = b’ji.
In this way, Benjamin Peirce is justified to claim bji" = b"ji in (3). Since j1 1s non-zero
we have b= 0.
Substituting b=10in (1) gives us ji = ai" or (4).
Therefore multiplying by j from the left:

j*i = aji".
However, multiplying (2) by i from the right we obtain the equation overleaf.
j'i= @1 +bj)i = bji (since higher powers of 1 vanish).
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Since ji is non-zero we have b” = 0. Notice that I disagree with Peirce here who has
b’ instead of b’ji in (5).

Substituting in b’ = 0 in (2) j* = a'i" + b’j, we obtain (6). Of the remaining theorems
the following two are used in producing the algebras:

(67) In the first group of an algebré, having an idempotent basis, all the
expressions except the basis may be assumed to be nilpotent.

(69) If the idempotent basis were taken away from the first group of which it is

the basis, the remaining letters of the first group would constitute by themselves

a nilpotent algebra.

It is at this stage that Benjamin Peirce is able to begin an investigation of
special algebras starting with single algebras through sextuple algebras using the

letters 1,5,k,1,m and n and the numbers and coefficients assigned to them according to

the following table:
SN AL [ AL AL N
I AR AR RN R
I L B BN B

So, for example, jl = azi + by4j + cask = dyyl + e34m + f4n since j and 1 have assigned

numbers 2 and 4 respectively. For squares, only one number is needed:
k% = a3l + bsj + ¢sk + dsl + esm + fin.

Benjamin Peirce’s investigation consists in finding the values of the
coefficients a,b,c,d,e and f corresponding to every variety of linear algebra and
arranging the resulting products in a multiplication table. The basis is denoted by 1.
In each algebra the procedure followed is to take i) i idempotent i) 1 mlpotent.

Each of these are then split into subcases to develop all the possible algebras,
discarding those in which each letter is not linked by multiplication to each of the

other letters, as in those cases no pure algebra results.

2.4.2 The Triple Algebras

We will now confine ourselves to the triple and quadruple algebras as the
single and double algebras are fairly straightforward and the quintuple and sextuple
algebras are developed in the same way. Benjamin Peirce’s method i.e. looking at all

the possible products of the units of the algebra and producing multiplication tables
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for the ‘pure’ algebras can be seen to be used in each case and the reasoning behind

his results is expanded upon.

Here is one example of a double algebra as a “taster’:

This algebra with two units is defined by the equation i* =j. All the other products

glve Zero.
In the case of the triple algebras there are two instances we need to consider:
'[1] when there is an idempotent basis

[2] when the base is nilpotent.
2

[1] The defining equation of this case 1s 1° =1.

If j and k are the other letters then there are three cases:

[1%] i, j and k are all in the first group.

It should be remembered that j and k cannot be in group 4 because by (50) all products
of groups 1 and 4 vanish and so do not produce a pure algebra.

[12] When j is in the first group, and K is in the second group.

It should be noted that the case when j is in the first group and k is in the third group
is a virtual repetition of [12].

[13] When j is in the second group, and Kk is in the third group.
This is because we cannot have both j and k in the second and third groups by (51).

Let us consider these three cases in turn:
[1°] Here j lies in group 1 so we have ij =ji =j =kj =jk.
Benjamin Peirce now uses theorem (67) which states that apart from the basis, all

expressions in the first group are nilpotent, j* = 0 and k® = 0, and we have:
(a3) i ] k

I I

| o

k k 0 0

Benjamin Peirce points out that this algebra is derived from a double algebra (c2),

(where the two letters used are 1 and j, i is nilpotent with ¥ = 0).
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J'
0

Compare this with (¢2) given above.

(c2)

[12] Here j is in the first group and k is in the second.

Benjamin Peirce’s ‘proof’ is as follows:

‘The defining equations of this case are ji = ij =j, ik =k, ki = 0 whence by sections 46
and 67: j> =k> =kj =0, jk = ca3k, j°k = 0 = c3jk = c3°k = c23 = jk, and there is no
pure algebra 1n this case.’

Let us consider this proof in more detail. The defining equations of this case
are ji =1j =j (j is in group 1), ik =k, ki =0 (k is in group 2). So k’ =0 (from 47) and
by (67), j* =0, and from (46) as easily seen in the tables we have kj = 0. This follows
from dn x dd = 0. Also we have jk = aj3i + basj + ca3k, but the product of j and k 1S In
aroup 1 (from table (46)), so jk = a3k, 50 j°k = 0 = ca3jk = ca3’k. If cz3°k =0 then cz3
=0 so jk = ¢23 k = 0 and there is no pure algebra in this case."

[13] Here the defining equations are j is in the second group and K is in the third
group.

Benjamin Peirce’s proof is again a model of brevity: ‘The defining equations of this
case are ij = j, ki=k, ji = ik = 0 when by section 46, j* =k* =kj = 0, jk = axi, jkj=0=
a;1j = az3 = jk, and there is no pure algebra in this case.’

Let us look more closely at the reasoning behind these concise equations. ]
lies in group 2: so ij =j and ji = 0, k lies in group 3: so ki = k and ik = 0, so we have
by (46) j* = kK* =kj =0, jk = ani. This is because from the tables in (46) it can be
seen that product of any two expressions in group 2 equal 0. Similarly with
expressions in group 3. Also, kj gives a product in group 4 but since there 1s no
expression in group 4, kj = 0. It is the case that jk gives a product in group 2, so we
have jk = a,3i. But jkj = 0 =jk = a,3j so a =0, and there is no pure algebra in this case -
because there 1s no indissoluble link between j and k.

[2] The defining equation of this case is i" = 0.

2 Charles Peirce noted in 1881 that ‘i and j by themselves form the algebra a%, and i and k by

themselves constitute the algebra b%, while the products of j and k vanish. Thus, the three letters are not
indissolubly bound together in one algebra’ (B. Peirce 1870, 1881 repr., 123).
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There are three cases:
[21] when n =4,
[22] when n =3,
[23] when n = 2,

[21] We have i*=0and by (60) i’ =j, i’ =k.

This gives a triple algebra:

(b3) 1 ) k
I L R
k 0 0 0
[22] We have i° = 0 so by (59) i’ =j, and by (64) k is the remaining letter so ik =0,

and we have ki =byj and k* = byj.

There is no pure algebra when b3, vanishes. There are two cases:
[221] when b; does not vanish,
[2°] when b; vanishes.

[2°1] The defining equation of this case can, without loss of generality, be

reduced to k* = j.

This gives a triple algebra where a = bs;.
(c3) i ) k
i B I
O I N
k a) 0 ]
An interesting special example of this case in which the multiplication entries

are elther j or 0 occurs when a = -2, where we have

i(k+i)=j © (k+i)i=-j " (k +1)* = 0.
Let us consider Benjamin Peirce’s equations more closely. It is the case that
ik+i)=ik+i?=0+j=j, (k+i)i=ki+i=-2j+j=-, (k+i)? =K +ki+i’
=j-2j+0+j=0.

If k +1is substituted for k the multiplication table of this algebra is given by (c3°).

'* Here -j is written for j in both the 1870 lithograph and the 1881 AJM edition.
'* Here j is written for -j.
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(c3)) 1 ) k

I

A e
] 0

k

In an addendum to the 1881 edition, Charles Peirce added that when a = 2, the algebra

equally takes the form on substituting k —i for k. On the other hand, provided a=2 or
-2 the algebra may be put into this form:

(c37) 1 ) K

o

o[ o o
b"; 0

k 0

To effect the transformation write a=-b-1/band i=1i+bk,j=(b-1/b)j and
k=1+(1/b) k.
Then i2 = (i + bk)?
=i’ + ibk + bki + b’K?
=i{? + bik + bki + b
=j+0+b(-b - 1/b)j + b
=j-b%-j+b%=0.
Similarly, 1) = 0, ik = -bj, ji = 0 etc.
[2°] when bs vanishes. Here k* = 0. Without loss of generality we have ki =j taking
by =1.
This gives a triple algebra.

(ds) 1 ) k
L
| oo jo
X ; 0 0

In this case (i~ k)k =0, and k(i—k) =j ¥, and (i —k)? = 0.
It should be noted that (i — k)* = i* —ik —ki + k* and from (d;) =j—0—j + 0 =0.

® { is written for j in both the 1870 lithograph and the 1881 AJM edition.
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So 1 -k may be substituted for 1 and in this form the multiplication 1s

(ds) 1 ] k

i I L

A L L

Kk ] 0 0

[23] When n = 2.

Here i* = 0 and from (57) in a group or algebra with no idempotent expression, all the
exl;ressions are nilpotent. So we have j* = 0 and k* = 0. From (65) in a nilpotent
group of the first order, the sign of a product is reversed by changing the order of its
factors 1 = -1, -1k = ki, and jk = -kj. From (63) we can choose j and k such that 1j =1k
=(. So we have 1) = -ji = -ik = ki = 0, and for a pure algebra we need jk =1, (so that

all letters are connected). We thus-get a triple algebra:
(€3) 1 J K
o L N
I I

k 0 -1 0

Benjamin Peirce now elaborates the quadruple algebras where the letters taken
are 1,,k, and . Here i is always assumed to be the basis and to be either idempotent or
nilpotent. The relations between the letters are investigated, taking the products of the
letters 1n turn and finding values for the coefficients of the letters. In this way
multiplication tables are produced as definitions of the pure algebras. I will give
Benjamin Peirce’s brief equations which provide the justification for the
multiplication grids and therefore the linear associative algebras so produced and

follow this by suggesting the reasoning that lies behind calculations.

2.4.3 The Quadruple Algebras with an Idempotent Basis

There are two cases:

[1] when there is an idempotent basis
[2] when the base is nilpotent

[1] The defining equation of this case is i’ = .

There are six cases to consider.

[1°]  when ),k and 1 are all in the first group
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[12] whenj and k are in the first and 1 1s in the second group

[13] whenjisin the first and k and 1 are in the second group

[14] whenj isin the first, k is in the second and 1 1s in the third group

[15] whenj and k are in the second and 1 is in the third group

[16] when) isin the second, k is in the third and 1 is in the fourth

The other cases are excluded by (50) or are obviously virtual repetitions.

[1°] The defining equations of this case are: j=ji=j,ik=ki=k,il=li=],

and from (69) removing the base gives a nilpotent algebra, j,k and 1 being successive
powers of 1. So we have i*=0,1’ =0 and i* = 0, which generate algebras (b3), (c3) and

(d3) which therefore give the following quadruple algebras. (The respective algebras

have been outlined for easier identiﬁcation).

(34) 1 | ] (b4) 1| )

--- | ﬂ--
HEARIEE SHEEE
1 {1lololo @) 1 [1]ak] o] x (o)

)

(04) 1 | ] (d4) 1 | ) | k
-.- - |
T B

kjkfojofo . II“I ’

| 1 1k

0| 0 (dy | 1 J O] -] O (e

The special case (c3") gives a corresponding special case of (by):

(bs’) |
1 1
) k
k 0
1 0 (c3)

The second form of (ds) gives a corresponding second form of (c,).
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(C4) 1 j k
B
| ijoete

k (e[ ofo |
l | k 0 (ds

[12] When j and k are in the first group, 1 in the second we have, ij = ji = j, ik =Ki
=k, il=li=landli=0.

Of O ©

From (69) since j and k are in the first group they form a nilpotent algebra (cz), (see
previous section 2.4), which gives j* =k, jk =kj =k* =0, and from the tables of (46),
j=lk=1°"=0. |

It should be noted that the product of an expression in group 2 (as facient) and an

expression 1n group 1 (as faciend) is zero, and expressions in the second group are

nilpotent.

Now jl = daal.

We have jl = a4l + bagj + c4k + dy4l but the tables in (46) tell us that the product of an
expression in group 1 (as facient), and an expression in group 2 (as faciend) 1s an
expression in group 2. Similarly k1 = d34l. Therefore j1 = kI = d,4j1 = da4],

and since jk=0,  jkl=dy’jl=d’1=0=dp=jl=KI.

So we have jk =kj =0, Ik =kl =0 and ]j = jl = 0 and so there is no relation between
these letters and so no pure algebra in this case.

[13] When j is in the first and k and I are in the second group. So ij =ji =] and ik
=k,ki=0andil=1,1i=0. By (47) all expressions in group 2 are nilpotent, so K =1
= 0, and from (67) we can assume j is nilpotent so j* = 0. From the tables in (46), we
have kj =1j = 0 and kl = Ik = 0, and it may be assumed that jk =1, (i.e. d23 = 1) so that
jl=j’k =0 (as j* = 0). This gives a quadruple algebra (ey).

(e4) 1 ] k 1
RN
I N N

i A I B

| 0 0 0 0

[14] When j is in the first group, k is in the second and 1 is in the third. We have
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jj=ji=j,ik=k ki=0,1li=1 i =0. By (47) every expression in groups 2 and 3 1s
nilpotent so j* = 0, k> =0, 1 =0. From the tables in (46), jl = 0 and kj =
But also lk=0.'¢
From the tables in (46), we have jk =cp3k  (this product is in group 2), 1j = dsl
(this product is in group 3) and ki = a3si + ba4j (since this product is in group 1).
Also 0= j2k = Cy3)k = 3’k = C23 = jk (since j2 = (),

0=l =dalj =d’l=du=1,  0=jkl=ayj=au.
(This follows since jk = 0 and jkl = asji + bagj* = a34]).
And bi4 cannot be permitted to vanish. Charles Peirce inserts a footnote in the 1881
edition to the effect that the algebra would split up into three double algebras. I

suggest that these would be the following algebras: If b34 = () we would have

1

0
0
0
0

Since bj4 does not vanish it does not lessen the generality to assume that bzs = 1 and ki

=].

This gives
k §
RN
T3 [0 oo
1: IIII J

[15] When j and K are in the second group and 1is in the third group. The

'* 1k should be in group 4, but there is no expression in group 4.
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defining equations in this case are:
jand k in group 2 gives: 1j=j,ji=0and ik=k, ki=0
1in group 3 gives: i =1, 1l =0.
By (47) every expression in groups 2 or 3 is nilpotent so j* = k? =1* =0, and from the
tables in (46), lk = 1j = 0, since there are no expressions in group 4.

So0=j’=jk=kj. 7 Also jl = ayi (as this product is in group 1), and k1 = a3l
(again this product is in group 1). jlj = 0 = a,4ij = az4j = a24 =], since 1j = 0 and klk =
0 = aysik = a34=KI, since lk = 0, and there is no pure algebra in this case.

To see this more clearly let us look at the resulting table. We have:

! ) k 1
R L
oo o
il L 3
Or the three double algebras '

[16] When ] is in the second group, k is in the third and 1 is in the fourth group.
The defining equations in this case are: ij =j, ji=0 and ki=k, ik=0and il =11 = 0.
By (47) j* = 0 and k* = 0, by the tables in (46) we have, kl=0,1j =0.
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