
A Logic of Isolation
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Abstract. In the vein of recent work that provides non-normal modal
interpretations of various topological operators, this paper proposes a
modal logic for a spatial isolation operator. Focussing initially on neigh-
borhood systems, we prove several characterization results, demonstrat-
ing the adequacy of the interpretation and highlighting certain semantic
insensitivities that result from the relative expressive weakness of the
isolation operator. We then transition to the topological setting, proving
a result for discrete spaces.
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1 Introduction

Topological interpretations provided some of the earliest semantics for modal
logics (e.g., [12], [7], [13]). These early interpretations focused on ♢ as topolog-
ical closure. Subsequent work demonstrated that ♢ can also be interpreted as
the derivative4 ([7], [3], [10], [1]). More recently, it has been shown that other
topological operators—including border and boundary operators—can provide
fruitful interpretations of various, usually non-normal, modal operators ([11]).

This paper attempts to continue this more recent line of inquiry by proposing
a modal logic for isolated points. When X = ⟨X, τ⟩ is a topological space and
S ⊆ X, x is an isolated point of S if there is an open neighborhood U of x such
that U ∩S = {x}. We demonstrate that the [i] operator introduced in [6] (where
it is intended to model a notion of factive ignorance) can be spatially interpreted
as an isolated points operator.

In §2, the basic syntax, axiomatic system and relational semantics are intro-
duced briefly. Due to the relative lack of algebraic structure of the isolated points
operator, instead of immediately focussing on topologies, we begin, in §3, by con-
sidering neighborhood systems.5 As neighborhood systems are a generalization

4 The derivative of a set S, d(S), is the set of limit points of S.
5 Some authors use the term neighborhood system to refer only to those families of
neighborhoods that give rise to a topological space. Our usage will be more liberal,
allowing any set equipped with a neighborhood function to qualify.



of topologies, we similarly generalize the concept of an isolated point, showing
that this notion can be logically captured by [i]. Finally, in §4, we transition to
considering topological spaces, discrete spaces in particular, before concluding
in §5.

2 Syntax, Proof System, and Relational Semantics

Take Prop to be a countably infinite set of propositional variables. The set Form
of well-formed formulas of the language Li is recursively defined:

α ::= p | ¬α | α ∧ α | [i]α

for p ∈ Prop.

2.1 Axiom System

The basic axiomatic proof system, Si, as defined in [4] (where it is referred to as
Li), is as follows:

Definition 1 (Proof System Si).
(Taut) All instances of propositional tautologies
(A1) [i]φ→ φ
(A2) ([i]φ ∧ [i]ψ) → [i](φ ∨ ψ)
(MP) From ⊢ φ and ⊢ φ→ ψ infer ⊢ ψ
(R1) From ⊢ φ→ ψ infer ⊢ φ→ ([i]ψ → [i]φ)

Our notions of derivation, theorem, and consistency are the usual ones.

Proposition 1. The following are all theorems of Si:

a. ([i]φ ∧ [i]ψ) → [i](φ ∧ ψ)
b. [i](φ ∨ ψ) → ([i]φ ∨ [i]ψ)
c. [i]φ→ [i][i]φ

In addition, the rule allowing ⊢ [i]φ↔ [i]ψ from ⊢ φ↔ ψ is derivable.

2.2 Relational Semantics

Using relational semantics, satisfaction for [i]-formulas is defined as follows:

M,w |= [i]φ iff (M,w |= φ and ∀w′ ̸= w(wRw′ implies M,w′ ̸|= φ))

Theorem 1 ([4]). Si is sound and strongly complete with respect to the class
of all relational frames.



3 Neighborhood semantics for Si

As mentioned above, the ultimate goal of this paper is to make strides toward a
topological interpretation of [i]. In particular, we suggest interpreting [i] as an
isolated points operator. Recall the definition of an isolated point in a topological
space:

Definition 2 (Isolated Point). Let X = ⟨X, τ⟩ be a topological space and
S ⊆ X. x is an isolated point of S if there is an open neighborhood U of x such
that U ∩ S = {x}.

Instead of beginning immediately with a purely topological semantics, we
start by providing a more general semantic account in terms of neighborhood
systems (we follow [9] and [2], for instance, in the treatment of neighborhood
semantics).

Definition 3 (Neighborhood Frame). A neighborhood frame is a pair ⟨X,N⟩
such that X ̸= ∅ and N : X → ℘(℘(X)). A neighborhood model is a pair ⟨F, V ⟩,
where F is a neighborhood frame and V : Prop→ ℘(X) is a valuation function.

Generalizing the above definition of an isolated point to the context of neigh-
borhood systems, where less mathematical structure is insisted upon, one can
say that x is an isolated point of S if there is a neighborhood U of x, i.e.,
U ∈ N(x), such that U ∩ S = {x}. We can formalize this intuition in the def-
inition of satisfaction for formulas in Li with respect to neighborhood models.
Given a model M and a formula α, the truth set of α in M , denoted JαKM is
defined via recursion:

JpKM := V (p)
J¬φKM := X \ JφKM = (JφKM )c

Jφ ∧ ψKM := JφKM ∩ JψKM
J[i]φKM := {x : ∃U ∈ N(x) s.t. U ∩ JφKM = {x}}

When no ambiguity can arise, the M superscript will be omitted. A formula
is valid in a class of frames when it is true at all points in all models based on
frames in the class. A set of formulas is satisfiable in a class of frames when there
is a state in a model based on a frame in the class at which all the elements are
true.

3.1 Semantic Insensitivities

In the context of relational frames and the semantics given in §2, Li is reflexive-
insensitive. That is, the satisfaction of Li-formulas in a model M = ⟨W,R, V ⟩ is
not affected when arbitrary elements from idW are either added to, or removed
from, R. In the neighborhood context, there are similar insensitivities.

In particular, because the definition of J·K utilizes only sets of each N(x)
that contain x, the addition or removal of sets that do not contain x will be
immaterial.



For a given neighborhood frame ⟨X,N⟩, consider the set

Sx := {Y ∈ ℘(X) : x /∈ Y }

for each x ∈ X. (Here, we are following the notation of [5], which was concerned
with neighborhood semantics for a different logic that was also insensitive to
reflexivity in the relational setting.)

Then, given a neighborhood frame F = ⟨X,N⟩, construct the frames F =
⟨X,N+⟩ and F = ⟨X,N−⟩, where N+ and N− are defined as follows for all
x ∈ X:

N+(x) := N(x) ∪ Sx

N−(x) := N(x) \ Sx

When M is a neighborhood model, M+ (M−) is that model identical to M ,
but with N+ (N−) replacing N .

Proposition 2. Let M be a neighborhood model. Then M , M+, and M− (as
well as the intermediate models) are all pointwise equivalent. That is,

JαKM
−
= JαKM = JαKM

+

for all α ∈ Form.

However, in the current setting there are additional sensitivities that one can
utilize.

Definition 4 (Supplemented Neighborhood System). A neighborhood frame
is supplemented when its neighborhood function is closed under supersets: for
every x, if Y ⊆ N(x) and Y ⊆ Z, then Z ⊆ N(x).

Given a neighborhood frame, F = ⟨X,N⟩, let F s = ⟨X,Ns⟩ be the supple-
mentation of F when, for all x ∈ X:

Ns(x) = {Y ⊆ ℘(X) : ∃U ⊆ Y s.t. U ∈ N(x)}

For a model M = ⟨F, V ⟩, let Ms = ⟨F s, V ⟩.

Remark 1. Let M be a model and Ms its supplementation. Then it is not nec-
essarily the case that

JαKM = JαKM
s

The countermodels demonstrating this observation make use of supplement-
ing some N(x) containing at least one set from Sx and thereby adding sets to
N(x) not in Sx. (For instance, consider some state x such that N(x) = {∅}.
Then for no φ will it be the case that x ∈ JφKM . However, since {x} ∈ Ns(x),
x ∈ JφKM

s

for every φ such that x ∈ JφKM
s

. This is discussed further in §4,
below.)



However, if no such sets are present in any N(x) (for instance, as in neigh-
borhood filters in topological spaces), then supplementation will not affect sat-
isfaction.

Definition 5 (Anchored Neighborhood System). A neighborhood function
(and, hence, the resulting system) is anchored when, for every point x ∈ X,

∀U ∈ N(x)(x ∈ U)

(Note that we do not force N(x) ̸= ∅ in order to be anchored.)

Proposition 3. Let M be an anchored neighborhood model. Then

JαKM = JαKM
s

Proof. Induction on α. We omit all but the modal case.
If x ∈ J[i]φKM , then there is some U ∈ N(x) s.t. U ∩ JφKM = {x}. Since

U ∈ Ns(x) and JφKM = JφKM
s

, by the induction hypothesis, x ∈ J[i]φKM
s

.
In the other direction, if x ∈ J[i]φKM

s

, there is a U ∈ Ns(x) s.t. U ∩ JφKM
s

=
{x}. Thus, there must have been some U1 ∈ N(x) s.t. U1 ⊆ U . But, since N
is anchored, x ∈ U1, and so U1 ∩ JφKM

s

= {x}. By the induction hypothesis,
JφKM

s

= JφKM , so U1 ∩ JφKM = {x}. Hence, x ∈ J[i]φKM .

In particular, Proposition 3 guarantees that

JαKM
−s

= JαKM

So every model will be pointwise equivalent to some supplemented model.

3.2 Soundness and Completeness

Using standard methods, characterization results for Si, with respect to the
given neighborhood semantics, are readily obtained. A logic is said to be sound
with respect to a class of frames when all theorems of the logic are valid in the
class. A logic is complete with respect to a class of frames when every consistent
formula is satisfiable in the class. A logic is strongly complete with respect to a
class when every consistent set of formulas is satisfiable in the class.

A neighborhood frame ⟨X,N⟩ is said to be closed under intersections when,
for every x ∈ X, if U ∈ N(x) and V ∈ N(x), then U ∩ V ∈ N(x).

Theorem 2 (Soundness). Si is sound with respect to the class of neighborhood
frames that are closed under intersections.

Proof. The proof is standard, and proceeds by showing that all axioms are valid
and rules preserve validity. We include only the cases unique to Si.

[i]φ→ φ: Assume x ∈ J[i]φK. Then ∃U ∈ N(x) s.t. U ∩ JφK = {x}, so x ∈ JφK.



([i]φ ∧ [i]ψ) → [i](φ ∨ ψ): Assume x ∈ J[i]φK and x ∈ J[i]ψK. Then ∃U1 ∈
N(x) s.t. U1 ∩ JφK = {x} and ∃U2 ∈ N(x) s.t. U2 ∩ JψK = {x}. Since N is
closed under intersections, U1 ∩ U2 ∈ N(x). But (U1 ∩ U2) ∩ Jφ ∨ ψK = {x}, so
x ∈ J[i](φ ∨ ψ)K.
From ⊢ φ → ψ infer ⊢ φ → ([i]ψ → [i]φ): Assume the validity of φ → ψ.
Then JφK ⊆ JψK in all models. Assume, further, x ∈ JφK. If x ∈ J[i]ψK, then
U∩JψK = {x}, for some U ∈ N(x). Since JφK ⊆ JψK, U \{x} ⊆ X \JψK ⊆ X \JφK.
Hence, U ∩ JφK = {x}, so x ∈ J[i]φK.

Theorem 3 (Completeness). Si is strongly complete with respect to the class
of neighborhood frames that are anchored and closed under intersections.

Proof. We give a canonical model construction. (The argument for completeness
given the canonical model is standard.) Given the set of maximal Si-consistent
sets, ΣSi , define

|α| = {x ∈ ΣSi : α ∈ x}

Construct the canonical model MSi

= ⟨XSi

, NSi

, V Si⟩ as follows:

– XSi

:= ΣSi

– for each x ∈ XSi

, N(x) := {|¬φ| ∪ {x} : [i]φ ∈ x}
– for each p ∈ Prop, V Si

(p) = |p|

(The derivable rule mentioned in Proposition 1 ensures that N is well-
defined.) A straightforward induction then demonstrates that, for all α ∈ Form,

JαKS
i

= |α|
The only non-trivial case is that of the modality. (In what follows, we omit

all Si superscipts.)
If x ∈ |[i]φ|, then, by definition, |¬φ| ∪ {x} = (X \ |φ|)∪ {x} ∈ N(x). By the

induction hypothesis, |φ| = JφK, so (X \ JφK)∪{x} ∈ N(x). Since x ∈ |[i]φ→ φ|,
x ∈ |φ| = JφK. Finally, ((X \ JφK) ∪ {x}) ∩ JφK = {x}, so x ∈ J[i]φK.

If x ∈ J[i]φK, then there is some U ∈ N(x) such that U ∩ JφK = {x} (hence,
x ∈ JφK = |φ|, by the induction hypothesis). By construction, U = |¬ψ| ∪ {x}
for some ψ such that x ∈ |[i]ψ| (and x ∈ |ψ|). But then |¬ψ| ⊆ |¬φ|, and so
|φ| ⊆ |ψ|, meaning that ⊢ φ→ ψ. Therefore, ⊢ φ→ ([i]ψ → [i]φ). Since x ∈ |φ|,
x ∈ |[i]ψ → [i]φ|. And, because x ∈ |[i]ψ|, x ∈ |[i]φ|.

Lastly, the model is both closed under intersections and anchored. Anchoring
is by construction.

For closure under intersections, assume that U1, U2 ∈ N(x). Then, U1 =
|¬φ1| ∪ {x} and U2 = |¬φ2| ∪ {x} with x ∈ |[i]φ1| and x ∈ |[i]φ2|. Since x is
a maximal Si-consistent set, x ∈ |[i]φ1 ∧ [i]φ2|, and so x ∈ |[i](φ1 ∨ φ2)|. By
construction, |¬(φ1 ∨ φ2)| ∪ {x} ∈ N(x). But |¬(φ1 ∨ φ2)| = |¬φ1| ∩ |¬φ2|, and
U1 ∩ U2 = (|¬φ1| ∩ |¬φ2|) ∪ {x}, so U1 ∩ U2 ∈ N(x).



Corollary 1. Si is strongly complete with respect to the class of neighborhood
frames that are anchored, closed under intersections, and supplemented.

Proof. Since MSi

is anchored, it is pointwise equivalent to its supplementation,
from Proposition 3.

In addition, making use of the standard conversion between relational frames
and augmented neighborhood structures, a completeness theorem can also be
obtained with respect to the class of all augmented neighborhood frames.

Definition 6 (Augmented Neighborhood System). A neighborhood func-
tion (and, hence, the resulting system) is augmented when, for every point
x ∈ X, N(x) is supplemented and

⋂
N(x) ∈ N(x).

Lemma 1. For every relational model, there is a pointwise equivalent neighbor-
hood model that is augmented.

Proof. Let M = ⟨W,R, V ⟩ be an arbitrary relational model. Define the function
NR :W → ℘(℘(W )) as

NR(w) := {X : R(w) ⊆ X}

where R(w) = {y ∈ W : wRy}. Let MN = ⟨W,NR, V ⟩. Note that NR is aug-
mented.

For all wffs α,

M,w |= α iff w ∈ JαKM
N

This is, again, an induction on α and only the modal case will be discussed.
Assume M,w |= [i]φ. Then M,w |= φ and ∀z ̸= w, wRz implies M, z ̸|= φ.

Hence, w ∈ JφK (from the induction hypothesis) and R(w) \ {w} ⊆ W \ JφK.
Since NR is augmented, R(w) ∪ {w} ∈ NR, and (R(w) ∪ {w}) ∩ JφK = {w}, so
w ∈ J[i]φK.

Assume now that M,w ̸|= [i]φ. Then either M,w ̸|= φ or, for some z ̸= w s.t.
wRz, M, z |= φ.

If M,w ̸|= φ then, by the induction hypothesis, w ̸∈ JφK, and so w ̸∈ J[i]φK.
Otherwise, assume that M,w |= φ and M, z |= φ for some z ̸= w s.t. wRz.

Then {z} ⊆ R(w) and {w, z} ⊆ JφK. Therefore, {z} ⊆ U∩JφK for all U ∈ NR(w),
so w ̸∈ J[i]φK.

Clearly, if the original model was reflexive, then the resulting augmented
model is anchored.

Lemma 2. For every augmented neighborhood model, there exists a pointwise
equivalent relational model.



Proof. Let M = ⟨X,N, V ⟩ be an arbitrary augmented neighborhood model.
Define the relational model MR = ⟨X,RN , V ⟩ such that xRNy iff y ∈

⋂
N(x).

Then, for all wffs α,

x ∈ JαKM iff MR, x |= α

Induction on α.
Assume x ∈ J[i]φK. Then there is a U ∈ N(x) such that U ∩ JφK = {x}.

Hence, from the induction hypothesis, MR, x |= φ. Moreover,
⋂
N(x) ⊆ U ,

so
⋂
N(x) \ {x} ⊆ X \ JφK. Therefore, for any y ̸= x such that y ∈

⋂
N(x),

y ∈ X \ JφK, so MR, y ̸|= φ, by the induction hypothesis. Hence, MR, x |= [i]φ.
In the other direction, if MR, x |= [i]φ, then MR, x |= φ and ∀y ̸= x, xRNy

implies M,y ̸|= φ. By the induction hypothesis, x ∈ JφK and ∀y ̸= x, if xRNy,
then y ̸∈ JφK. But xRNy iff y ∈

⋂
N(x). Hence,

⋂
N(x) \ {x} ⊆ X \ JφK. Let

U =
⋂
N(x) ∪ {x}. Then U ∈ N(x), since N(x) is supplemented. Moreover,

U ∩ JφK = {x}, so x ∈ J[i]φK.

If the original neighborhood system was anchored, then the resulting relational
model is reflexive.

Corollary 2. Si is sound and (strongly) complete with respect to the class of
all augmented neighborhood frames and all anchored, augmented neighborhood
frames.

Proof. For the anchored, augmented neighborhood frames, strong completeness
follows from taking the reflexive closure of the canonical model used in the proof
of Theorem 1 (as defined in [4]) along with Lemma 1.

4 Discrete Neighborhood Systems

Definition 7. A neighborhood system is discrete when {x} ∈ N(x), for every
x ∈ X.

Consider the following axiom schema:

φ↔ [i]φ (Disc)

Call SDisc the system obtained by adding (Disc) to Si.
In the presence of (Disc), no other modal axioms are necessary and neither

is the rule (R1).

Proposition 4. SDisc can be axiomatized by the following:
(Taut) All instances of propositional tautologies
(Disc) φ↔ [i]φ
(MP) From ⊢ φ and ⊢ φ→ ψ infer ⊢ ψ

Proposition 5. SDisc is valid on a relational frame F if and only if, for each
w, if wRz, then w = z.



Corollary 3. SDisc is sound with respect to the class of relational frames in
which, for each w, if wRz, then w = z.

Theorem 4. SDisc is strongly complete with respect to the class of relational
frames in which, for each w, if wRz, then w = z.

Proof. This is easily seen by inspecting the canonical model for Si—as given in
[4]—and observing that [i]⊤ is an element of each maximal consistent set and
will, therefore, have an empty accessibility relation.

In terms of neighborhood systems, a characterization result for SDisc is also
straightforward.

Theorem 5. SDisc is sound and strongly complete with respect to the class
of discrete neighborhood systems. (Hence, due to the semantic insensitivities
noted above, also with respect to anchored, discrete, supplemented neighborhood
systems.)

Proof. Soundness is immediate.
For completeness, one need only look at the canonical model construction in

the proof of Theorem 3 and observe that, in the presence of (Disc), [i]⊤ ∈ x, for
every x ∈ XSDisc. Hence, |⊥| ∪ {x} = {x} ∈ N(x).

4.1 Discrete Topologies

We can conclude the main section of the paper by (finally) transitioning to
topologies proper.

Recall that a topo-model is a pair M = ⟨X , V ⟩ where X = ⟨X, τ⟩ is a
topological space and V : Prop → ℘(X) is a valuation function. A formula φ
is true in M when it is true at every x ∈ X . φ is valid in X when it is true in
every M based on X . φ is valid in a class of topological spaces when φ is valid
in every member of the class.

Satisfaction at points in a topo-model is defined as usual, with the clause for
[i] resembling closely the one given for neighborhood systems, but with reference
to the topology τ rather than the neighborhood function N :

J[i]φK := {x : ∃U ∈ τ s.t. U ∩ JφK = {x}}

With the semantics so defined, Si is sound with respect to the class of all topo-
models (the proof is fundamentally the same as that of Theorem 2). Moreover,
SDisc is sound with respect to the class of all discrete topological spaces, since
all singletons are open.

The results above, concerning discrete neighborhood spaces, can be trans-
ferred over to the topological setting to render a completeness result for SDisc
as well.



Definition 8 (Neighborhood Topology). A neighborhood function N is a
neighborhood topology when the following conditions are met:

a. If S ∈ N(x), then x ∈ S;
b. each N(x) is closed under supersets;
c. each N(x) is closed under intersections;
d. for each S ∈ N(x), there is a T ⊆ S such that T ∈ N(x) and, for each

y ∈ T , S ∈ N(y).

Moreover, given a neighborhood topology over a set X, the pair ⟨X, τ⟩ is a
topological space when6

U ∈ τ iff ∀x ∈ U,U ∈ N(x)

Theorem 6. SDisc is complete with respect to the class of all discrete topolog-
ical spaces.

Proof. Consider MSDisc, the canonical neighborhood model for SDisc (referred
to in Theorem 5). The model is anchored and discrete. Let MS be the sup-
plementation of MSDisc. The frame of MS is then a neighborhood topology.
Consider the resulting topological space ⟨X, τ⟩. Since, for each x, {x} ∈ N(x),
the topology is discrete. Let MX be the topo-model obtained by adding V , the
valuation function from MS , to X . A straighforward induction proves that MS

and MX are pointwise equivalent.

5 Conclusion and Future Work

Thus far we have tried to argue that there is a plausible interpretation of [i]
as an isolated points operator in a variety of neighborhood systems, including
those that correspond to discrete topologies. Immediately, there is the question
of whether or not there exist intermediate logics (between Si and SDisc) that
characterize interesting classes of either neighborhood systems or topologies. It
is not immediately obvious what such logics look like, or if any even exist.

It might be slightly more promising to examine extensions of Si with only
neighborhood systems in mind. For example, one can consider adding to Si the
axiom ¬[i]⊤. Relationally, this has the effect of forcing all worlds to be non-
reflexively serial (that is, for each x, there is a y ̸= x such that xRy). It is easy
to see that, in neighborhood systems, this axiom forces a lack of discreteness
(hence, the resulting logic is not an intermediate logic, but inconsistent with
SDisc), and that it is sound and strongly complete with respect to the class of
all neighborhood systems in which {x} ̸∈ N(x).7

We leave these questions for future work.

6 See, for instance, [8].
7 In the canonical model, the only way {x} could be added to N(x) is if there is a
formula φ such that J¬φK∪{x} = {x}. This can only occur if either J¬φK = ∅, which
is ruled out by the new axiom, or if J¬φK = {x}, but this is impossible because no
formulas uniquely identify a maximal consistent set.
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