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Abstract

This paper addresses the problem of generating multi-step-ahead bandwidth prediction. Variation of
bandwidth is modeled as a Nu-Support Vector Regression (Nu-SVR) procedure. A parallel procedure
is proposed to hybridize constant and binary Particle Swarm Optimization (PSO) together for optimizing
feature selection and hyper-parameter selection. Experimental results on benchmark data set show that the
Nu-SVR model optimized achieves better accuracy than BP neural network and SVR without optimiza-
tion. As a combination of feature selection and hyper-parameter selection, parallel hybrid PSO achieves
better convergence performance than individual ones, and it can improve the accuracy of prediction model
efficiently.

Keywords: bandwidth prediction; hyper-parameter selection; feature selection; nu-support vector regres-
sion; parallel hybrid particle swarm optimization

1. Introduction

In the context of networks, bandwidth quantifies the
data rate that a network link or path can transfer.
The bandwidth among computing nodes directly im-
pacts application performance and quality of ser-
vice. Growing complexity of distributed environ-
ment is calling for accurate bandwidth prediction as
direction for package routing 1, congestion control
2, bandwidth reservation 3, etc. The prediction step
also extends from one-step-ahead 4 to multi-step-
ahead 5.

This research focuses on modeling and optimiz-

ing methodologies for bandwidth prediction. We
consider variation of bandwidth as a time series re-
gression procedure that exploits the relationship be-
tween past observation and future prediction. Re-
gression is a feasible way proved by many re-
searches 3,5,6 and our previous investigation 7.

We would like to further discuss the model opti-
mization issues including hyper-parameter selection
and feature selection. Main contributions of this pa-
per are as follows:

• to validate nu-support vector regression as method
to model multi-step-ahead bandwidth prediction;
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• to propose a parallel hybrid particle swarm op-
timization algorithm to jointly perform hyper-
parameter selection and feature selection;

• to introduce an accuracy and efficiency based cri-
terion for model evaluation of bandwidth predic-
tion.

The rest of this literature is organized as fol-
lows: Section 2 provides a brief overview of related
works. Section 3 illustrates the modeling method
of bandwidth prediction in details. Section 4 gives
the parallel hybrid optimizing strategy considering
both hyper-parameter selection and feature selec-
tion. Section 5 proceeds prediction experiments on
benchmark data set and discusses comparative re-
sults. Section 6 closes with conclusions as well as
directions for future research.

2. Related Works

The importance of bandwidth prediction has at-
tracted efforts from a large number of researchers.
Many algorithms have been presented in modeling
bandwidth variation. Linear models can be imple-
mented easily and fitted efficiently, therefore they
are adopted as prediction methods in many projects.
Resource Prediction System (RPS) 6 is a famous
project in which bandwidth is modeled using lin-
ear time series models, including AR (purely au-
toregressive), MA (purely moving average), ARMA
(autoregressive moving average), ARIMA (autore-
gressive integrated moving average), and ARFIMA
(autoregressive fractionally integrated moving av-
erage). These models are also verified in the re-
search of Yao et al. 8. Another well known sys-
tem for network prediction is the Network Weather
Service (NWS) 4. Wolski et al. compared
the performance of forecasts generated using SNP
(Semi Nonparametric Time Series Analysis), with
the techniques implemented by the NWS, such as
RUN AVG (running average), LAST (last measure-
ment), MEDIAN (median filter), GRAD (stochastic
gradient) and so on. In the research of Nicholson 9,
Markov model is employed in BreadCrumbs project
for forecasting connectivity.

However, linear models are incapable of han-
dling nonlinear conditions which exist in most of

applications. As a nonlinear pioneer of intelligent
methods, Artificial Neural Networks (ANNs) were
introduced by many researchers in modeling band-
width prediction. Liu et al. 2 designed an ANN pre-
dictor which can predict the bursty available band-
width for ABR traffic. Eswaradass et al. 10 proposed
an ANN based approach for network performance
prediction, tested the ANN mechanism on classi-
cal trace files and compared its performance with
the NWS system. Experimental results showed the
ANN approach always provides an improved predic-
tion over that of NWS. Recurrent neural networks
are also employed in several network applications
11,12. However, the structures of neural networks
are given directly by experience in these ANN re-
searches, and there is not analytic mechanism to en-
sure these structures suitable for other applications.
Besides, there is an inherent limitation in ANNs for
the reason that ANN models are based on Empiri-
cal Risk Minimization (ERM) principle 13, which is
short of overcoming under-fitting or over-fitting.

As a promising solution to nonlinear regres-
sion problems, Support Vector Machines (SVMs)
14 have recently been winning popularity due to
their remarkable characteristics such as good gen-
eralization performance, the absence of local min-
ima and sparse representation of the solution. Unlike
the ERM principle commonly used in conventional
regression techniques, SVM was proposed based
on Structural Risk Minimization (SRM) principle,
which tries to control model complexity as well as
the upper bound of generalization risk, rather than
minimizing the training error only, thus is expected
to achieve better performance.

In the research of Mariyam et al. 15, SVM is em-
ployed to predict TCP throughput. Available band-
width, queuing delay, and packet loss are chosen
as input features and throughput as output label.
They also compared the accuracy of SVM predic-
tor to linear History-Based (HB) predictor 16 and
indicated superior performance. They emphasized
the importance of feature selection on preventing
over-fitting, but they only chose features according
to experience rather than selection strategy. They
used cross-validation 17 to select parameters for pre-
diction models, nevertheless, two parameters were
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selected separately rather than jointly, which will
lead to performance degradation. Huang et al. 3

performed SVM and Particle Swarm Optimization
(PSO) separately in building predictors so as to con-
trol utility of resource, it is in fact a simple applica-
tion of the two methods, which means no further im-
provement is discussed to enhance the model’s per-
formance.

Prem and Raghavan 5 have also explored the pos-
sibility of applying SVM on bandwidth prediction,
and indicated that the SVMs prediction are more ac-
curate and outperform the classical methods such as
Autoregressive based ones and Mean/Median based
ones. However, there are still shortages in their re-
search that deserve further discussion:

• the number of sample features reaches to 40, but
there is no feature selection method employed,
thus resulting in a huge storage space and a long
training time;

• no pretreatment strategy is announced. Sample
values with big metric will bring numerical diffi-
culties during calculation and lead to high regres-
sion error;

• they achieve q-step-ahead prediction based on
(q−1)-step-ahead prediction. It is usually impos-
sible to control prediction accuracy within such
iterative mechanism;

• the hyper-parameters of prediction model are
given directly without selection procedure, which
will lower the generalization performance of pre-
diction model.

In our previous work 7, we have proposed a
search strategy to select hyper-parameters, however,
feature selection is not taken into consideration. In
this paper, we attempt to introduce an evolutionary
algorithm in optimizing bandwidth prediction model
for the expectation of achieving high efficiency and
low error. The motivation of choosing and improv-
ing the PSO is owing to its superior performance
among evolutionary-based optimization algorithms
18 and wide adaptability in many practical applica-
tions.

3. Modeling Prediction with Nu-SVR

3.1. Prediction problem statement

Predicting bandwidth variation is a kind of regres-
sion procedure as far as its essence is concerned.
Bandwidth of a link bd can be expressed by bd(t)
because its state value varies dynamically, such val-
ues are monitored and recorded to form bandwidth
time series, denoted as Z = {zu}U

u=1, where zu ∈
R,U ∈ N. Let zt stand for value of current time,
then Z− = {zu}t

u=1, Z+ = {zu}U
u=t+1 can be used to

represent history set and future set separately, where
t ∈ (1,U). We define F : Z− → Z+ as prediction
function set, then any element f ∈ F is a prediction
function. In this research, we focus on q-step-ahead
prediction function, its definition is given in Eq. (1).

f : zt+q = f (zt ,zt−1,zt−2, ...,zt−m+1).q,m ∈ N (1)

The prediction framework is schematically
shown in Fig. 1. The bandwidth data set is di-
vided into three parts: training set, validation set
and test set. The training set is used to build pre-
diction model, which is optimized using validation
set and evaluated using test set. The model takes
historical data as input and generates prediction for
future variation.

Training set Validation set Test set

History Bandwidth Prediction Model Future

Train Optimize Test

Fig. 1. Prediction framework.

3.2. Data pretreatment

Spot set of time series Z = {zu}U
u=1 can’t

feed prediction model directly, therefore we
transform it into standard sample set (with
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full features) G, detailed as follows: G =
{zt ,zt−q,zt−q−1,zt−q−2, ...,zt−q−m+1}U

t=q+m, it can be
rewritten as G = {zi+q+m−1,zi+m−1,zi+m−2, ...,zi}l

i=1,
l =U−q−m+1, where zi+q+m−1 is the labeled out-
put value, (zi+m−1,zi+m−2, ...,zi) is the vector of m
input features and l is the number of samples in G.
It is in fact a segmentation based on overlapped time
windows with equal length, as is shown in Fig. 2.

Furthermore, it is necessary to scale data be-
fore applying Nu-SVR method on them: feature val-
ues in greater numeric ranges will dominate those
in smaller ones; values with large attribute may
cause numerical difficulties during calculation and
lead to malfunction of Nu-SVR’s kernel functions
which are usually hypersensitive in a narrow inter-
val. Let G

′
= {yi,Xi}l

i=1 denote the scaled sample
set, where yi = z

′
i+q+m−1 is a labeled value, Xi =

(z
′
i+m−1,z

′
i+m−2, ...,z

′
i) is a vector containing m fea-

tures. Scaling and unscaling function are expressed
as Eq. (2) and (3).

z
′
= g(z) =

(ub− lb)(z− zmin)
zmax− zmin + lb (2)

z = g−1(z
′
) =

(zmax− zmin)(z
′− lb)

ub− lb
+ zmin (3)

Where z is original value, z
′

is scaled value in
destination interval [lb,up] with lb as lower bound
and ub as upper bound; zmax is the maximum value
of Z, and zmin is the minimum value of Z.

3.3. Modeling with Nu-SVR

With the pretreated sample set G
′
= {(yi,Xi)}l

i=1 ,
where Xi ∈ Rm is the i-th vector containing m input
features and yi ∈R is the corresponding desired out-
put label, then modeling is achieved by training a
regression function f :

f : Xi 7→ yi (4)

Nu-SVR 19 is a new regression version of SVM.
In the following, we will explain in detail how to ap-
ply its theory for prediction in the modeling stage.

To understand such method, we start from building
prediction model using linear regression function:

y = f (X) = wT X +b (5)

Where w is the weight vector corresponding to
X , and b is the bias. The generalization performance
of such linear function f (X) is fairly limited and un-
able to reflect the true regression procedure. In order
to overcome such weakness, a standard mathemati-
cal solution is the introduction of ϕ(X), which is a
nonlinear mapping function from the input space to
a higher dimensional feature space. For example,
let’s assume that X = ( j,k), then we can augment it
with ϕ(X) = ( j,k, j2,k2, jk). By using ϕ(X), we can
reach to infinite dimensions for a more expressive
f . However, it seems computationally impossible in
that case. In fact, we don’t have to compute ϕ(X)
at all, we just need to compute the inner product
ϕ(Xi)T ϕ(X j) instead, such artful mechanism will be
illustrated latter in this subsection. With the help of
ϕ(X), linear regression function Eq. (5) is extended
to nonlinear function Eq. (6):

y = f (X) = W T ϕ(X)+b (6)

Where W is the weight vector corresponding to
ϕ(X). Based on the SRM principle of SVM, our
goal is to estimate the coefficients (W and b) fol-
lowing two rules at the same time: first, in order to
achieve best performance, f (Xi) should be as close
as possible to the truth yi for all training samples;
second, in order to prevent over-fitting, f (X) should
be as flat as possible. Then we arrive at how to mea-
sure the “closeness” and “flatness”.

ε-insensitive loss function Lε is introduced to
measure such “closeness”, as in Eq. (7). It measures
the absolute error between prediction and true value,
but with a tolerance of ε . If f (X) is in the tolerance
range of y± ε , no loss is considered; if a sample
falls out of such range, the distance between sam-
ple and ε tube is denoted by slack variables ζi and
ζ ∗i , as is illustrated by Fig. 3. On the other hand,
the parameter norm of f (X) is ||W ||2 = W TW , it is
used to measure the “flatness”: smaller norm means
smoother function.
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Z zU zU−1 zU−2 ... zU−q zU−q−1 zU−q−2 ... zU−q−m+1 zU−q−m zU−q−m−1 ... z1
1st sample: ◦ • • • • •
2nd sample: ◦ • • • • •
3rd sample: ◦ • • • • •
..th sample:

Figure 2: Creation of sample set.

Lε =

{
0 |yi− f (Xi)|6 ε,

|yi− f (Xi)|− ε elsewhere.
(7)

x

x

x
x

x

x
xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

Fig. 3. Theory of slack variable.

Hence we need to minimize the empirical error
(overall loss on the training set) ∑l

i=1 Lε(yi, f (Xi))
and the parameter norm ||W ||2 at the same time,
which is equivalent to the following programming
problem, namely primal problem of SVR:

min
1
2

W TW +C
1
l

l

∑
i=1

(ζi +ζ ∗i )

s.t.





(W T ϕ(Xi)+b)− yi 6 ε +ζi,

yi− (W T ϕ(Xi)+b) 6 ε +ζ ∗i ,

ζi,ζ ∗i > 0, i = 1, ..., l.

(8)

Where C is the regularized constant determining
the trade-off between the empirical error and the pa-
rameter norm. We still face the problem of choosing
an adequate parameter ε in order to achieve good
performance. Schölkopf 19,20 modified Eq. (8) such
that ε also becomes a variable of the problem, and
introduced an extra term ν (nu) which attempts to
minimize ε . To be more precise, they proved that ν
is an upper bound on the fraction of margin errors

and a lower bound on the fraction of support vec-
tors. In addition, with probability 1, asymptotically,
ν equals to both fractions. Accordingly Eq. (8) is
adapted as follows, namely primal problem of Nu-
SVR:

min
1
2

W TW +C(νε +
1
l

l

∑
i=1

(ζi +ζ ∗i ))

s.t.





(W T ϕ(Xi)+b)− yi 6 ε +ζi,

yi− (W T ϕ(Xi)+b) 6 ε +ζ ∗i ,

ε,ζi,ζ ∗i > 0, i = 1, ..., l.

(9)

Here 06 ν 61. By introducing Lagrange multi-
pliers α,α∗,η ,η∗,β , a Lagrange function L is con-
structed as follows:

L(α,α∗,η ,η∗,β ) =

1
2

W TW +Cνε +C
1
l

l

∑
i=1

(ζi +ζ ∗i )−
l

∑
i=1

(ηiζi +η∗i ζ ∗i )−
l

∑
i=1

αi(ε +ζi + yi−W T ϕ(Xi)−b)−
l

∑
i=1

α∗
i (ε +ζ ∗i − yi +W T ϕ(Xi)+b)−βε

(10)

It is understood that the Lagrange multipliers
in Eq. (10) have to satisfy positive constraints, i.e.
α(∗)

i ,η(∗)
i ,β > 0. Here (∗) means condition with or

without ∗. It follows from the saddle point condi-
tion that the partial derivatives of L with respect to
the primal variables (W,ε,b,ζ (∗)

i ) have to vanish for
optimality:
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∂W L = 0→W =
l

∑
i=1

(αi−α∗
i )ϕ(Xi)

∂bL = 0→
l

∑
i=1

(αi−α∗
i ) = 0

∂εL = 0→Cν−
l

∑
i=1

(αi +α∗
i )−β = 0

∂ζ (∗)
i

L = 0→ C
l
−α(∗)

i −η(∗)
i = 0

(11)

Substituting function Eq. (11) into function
Eq. (9) yields the following programming problem,
namely dual problem of Nu-SVR:

min
1
2

l

∑
i, j=1

(α∗
i −αi)Qi j(α∗

j −α j)−

l

∑
i=1

yi(α∗
i −αi)

s.t.





l

∑
i, j=1

(α∗
i −αi) = 0,

0 6
l

∑
i, j=1

(α∗
i +αi) 6 Cν ,

0 6 α∗
i ,αi 6 C

l
, i = 1, ..., l.

(12)

Where Q denotes the matrix of kernel functions,
with Qi j = K(Xi,X j) = ϕ(Xi)T ϕ(X j) as kernel func-
tion. It can be seen from Eq. (12) that the Lagrange
multipliers ηi,η∗i ,β have been eliminated already.
In order to solve such dual problem, we just need to
compute the inner product ϕ(Xi)T ϕ(X j) instead of
ϕ(X) itself. Substituting W = ∑l

i=1(αi−α∗
i )ϕ(Xi)

and Qi j = K(Xi,X j) = ϕ(Xi)T ϕ(X j) into Eq. (6)
yields the prediction function:

y = f (x) =
l

∑
i=1

(αi−α∗
i )K(Xi,X)+b (13)

This is the so-called support vector expansion.
Based on the Karush-Kuhn-Tucker (KKT) 21,22 con-
ditions of Quadratic Programming (QP) problem,

only a number of coefficients (αi−α∗
i ) will be as-

sumed nonzero. Accordingly, the data samples asso-
ciated with them are referred to as Support Vectors
(SVs), which have the approximation errors equal to
or larger than ε . According to Eq. (13), it is evident
that support vectors are the only samples in training
set that are used in determining the prediction func-
tion f (X). The prediction function structure of SVM
is given in Fig. 4.

f(X)

(X1) (X2) (X) (Xn-1) (Xn)

X1 X2 X Xn-1 Xn

K(X2, X)K(X1, X) K(Xn-1, X) K(Xn, X)

Fig. 4. Prediction function structure of SVM.

3.4. Kernel functions

In the prediction model achieved above, kernel func-
tion Qi j = K(Xi,X j) = ϕ(Xi)T ϕ(X j) is introduced
to compute inner product of augmented samples.
It decides the complexity of prediction function,
therefore affects the performance of Nu-SVR model.
There are four kernel functions frequently used:

(a) Polynomial Function (PF):
K(Xi,X j) = (γ(XT

i X j)+a)b,
γ > 0,a ∈ R,b ∈ N;

(b) Radial Basis Function (RBF):
K(Xi,X j) = exp(−γ||Xi−X j||2),γ > 0;

(c) Sigmoid Function (SF):
K(Xi,X j) = tanh(γ(XT

i X j)− c),
γ > 0,c ∈ R;

(d) Linear Function (LF):
K(Xi,X j) = XT

i X j.

In general, RBF kernel is a reasonable first
choice in training SVM. According to research of
Keerthi and Lin 23, RBF kernel with certain parame-
ters can get same performance as LF and SF kernel.
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Unlike LF kernel, it nonlinearly maps samples into
a higher dimensional space, so it can handle the case
when the relation between class labels and attributes
is nonlinear. Values of PF kernel may go to infin-
ity or zero when the degree is large, in contrast to
RBF kernel of which key point is from zero to one.
Therefore, RBF has less numerical difficulties. In
addition, it has less hyper-parameters (only γ) which
influence the complexity of model selection than PF
kernel. Therefore, RBF kernel is our choice in train-
ing SVMs. It is clear that once hyper-parameters of
model and features of samples are selected, Eq. (13)
is achievable by evaluating (αi−α∗

i ) and b. Libsvm
toolkit 24 is employed to solve such QP problem.

4. Optimizing Prediction with PH-PSO

Generalization performance of prediction model re-
lies directly on the choice of hyper-parameters. In
addition, irrelevant features in samples will also
spoil the accuracy and efficiency of model. Be-
sides, hyper-parameter selection and feature selec-
tion also correlate with each other. Accordingly, the
optimization problem concerning the two is coded
with a hybrid vector PR, which consists of real num-
bers and binary numbers. As Nu-SVR is able to se-
lect ε by itself, only C and γ are considered hyper-
parameters. The value 1 or 0 for b fs, respectively,
stands for whether the corresponding feature in sam-
ples is selected. With [C−,C+], [γ−,γ+] as the value
intervals and Fit(•) as the target function, the com-
binational optimization concerning hyper-parameter
selection and feature selection jointly can be ex-
pressed as:

max Fit(PR)

s.t.





PR = {C,γ,b f1,b f2, ...,b fm},
C ∈ [C−,C+],γ ∈ [γ−,γ+],

b fs ∈ {0,1},s = 1,2, ...,m.

(14)

Because PSO is powerful, easy to implement,
and computationally efficient, it is employed and
adapted to optimize our prediction model. PSO was
proposed by Dr. Kennedy and Dr. Eberhart in
1995 25, inspired by social behavior of nature sys-
tem, such as bird flocking or fish schooling. There

are mainly two types of PSO distinguished by dif-
ferent updating rules for calculation of particles’ po-
sition and velocity: continuous version 25,26 and dis-
crete version 27. Concerning characteristics of our
problem, this study proposes a combinational op-
timization algorithm which hybridizes continuous
PSO and discrete PSO together, in hope of improv-
ing performance of prediction model, as is explained
in details:

The system is initialized with a population of
random particles and searches a multi-dimensional
solution space for optima by updating particle gen-
erations. Each particle moves based on the direction
of local best solution discovered by itself and global
best solution discovered by the swarm. Each parti-
cle calculates its own velocity and updates its posi-
tion in each iteration until the termination condition
is met. Supposing P particles in a D-dimensional
search space:

(a) AP×D denotes the position matrix of all parti-
cles, p = 1,2, ...,P,d = 1,2, ...,D, row vector
ap in A denotes the position of the p-th parti-
cle, recorded as ap = {ap1,ap2, ...,apD};

(b) VP×D denotes the velocity matrix of all par-
ticles, row vector vp in V denotes the ve-
locity of the p-th particle, recorded as vp =
{vp1,vp2, ...,vpD};

(c) LBP×D denotes the local best position of all
particles, row vector lbp in LB denotes the lo-
cal best position of the p-th particle, recorded
as lbp = {lbp1, lbp2, ..., lbpD};

(d) Row vector gb = {gb1,gb2, ...,gbD} denotes
the global best position shared by all particles.

The particle is represented by the hybrid vector
PR. During each iteration the real and binary parts of
PR are updated jointly using different rules, namely
Eq. (15) and Eq. (16) for real part and Eq. (17) for
binary part.

vpd(t +1) = w× vpd(t)+

c1× rdm1(0,1)× (lbpd(t)−apd(t))+

c2× rdm2(0,1)× (gbd(t)−apd(t)).

apd(t +1) = apd(t)+ vpd(t +1).

(15)
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apd =





Amin apd < Amin;
apd Amin < apd < Amax;
Amax apd > Amax.

vpd =





−V max vpd <−V max;
vpd −V max < vpd < V max;
V max vpd > V max.

(16)

vpd(t +1) = w× vpd(t)+

c1× rdm1(0,1)× (lbpd(t)−apd(t))+

c2× rdm2(0,1)× (gbd(t)−apd(t)).

i f (rdm(0,1) < Sg(vpd(t +1)))

then apd(t +1) = 1,

else apd(t +1) = 0;

Sg(v) =
1

1+ e−v .

(17)

The problem-dependent constants Amin, Amax and
V max are defined in order to clamp the excessive
roaming of particles, as in Eq. (16). V max is an im-
portant parameter. It determines the resolution, or
fineness, with which regions between the present
position and the target (best so far) position are
searched. If V max is too high, particles may fly past
good solutions. On the other hand, if V max is too
small, particles may be short at exploring ability and
trapped in local optima. The relationship between
velocity and position is illustrated by Fig. 5.

apd(t+1)

apd(t)

gbd(t)

lbpd(t)
c1 rdm1(0,1) (lbpd(t)-apd(t))

c2 rdm2(0,1) (gbd(t)-apd(t))

w vpd(t) vpd(t+1)

Fig. 5. Relationship between velocity and position.

rdm(0,1), rdm1(0,1) and rdm2(0,1) are random
numbers evenly distributed, respectively, in [0,1]. t

denotes the step of iteration. Inertia weight w plays
the role of balancing global search and local search,
it can be a positive constant or even a positive lin-
ear/nonlinear function of time. Acceleration con-
stant c1 and c2 represent personal and social learning
factors, respectively; if c1 = 0, then the particle only
has social experience, it may converge fast but fall
into local minima easily; if c2 = 0, then the parti-
cle only has personal experience, all particles in the
swarm become moving by themselves without inter-
action, thus the probability of finding best solution
is very little; if c1 = c2 = 0, then the particle does
not have any experience, all particles in the swarm
become disorderly and unsystematic. Sg(•) is a sig-
moid function limiting transformation.

Fitness definition. The definition of fitness
function is crucial in that it determines what a PSO
should optimize. Besides, the particle with high fit-
ness value has high probability to effect other’s posi-
tions during iterations. Accuracy and efficiency are
both concerned in evaluating the fitness of prediction
model, in other words, a model is better (with larger
fitness) only if it has lower prediction error as well
as less training time, thus comes to a relationship
of symmetrical inverse proportion. Moreover, when
the training time is acceptable, accuracy is consid-
ered prior, so we design the fitness function using
Eq. (18). Where MSEt is the training mean squared
error, h is a constant controlling the bound of fitness
and Tt denotes the model’s training time.

Fitness =
h

MSEt × lnTt

MSEt =
1
l

l

∑
i=1

(yi− f (Xi))2
(18)

Cross-Validation. There are three common
ways of calculating MSEt : cross-validation 17, full-
validation 7 and leave-one-out (LOO) 28. In r-fold
cross-validation, the validation set is divided into
r subsets of equal size. Sequentially one subset
is tested using the model trained on the remain-
ing (r − 1) subsets. Thus, each instance of the
whole validation set is predicted once so the cross-
validation accuracy is the mean squared error in to-
tal.

Full-validation is an extreme of the r-fold cross-
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validation when r is 1. In full-validation, the entire
validation set is used as training set, and also used
as test set. Whereas, LOO is another extreme of the
r-fold cross-validation when r equals l, l is the total
sample number of validation set.

In full-validation, model training is performed
once only so that computational time is short. How-
ever, prediction error is estimated using seen sam-
ples, which makes it impossible to reflect model’s
generalization performance on unseen samples. On
the contrary, LOO makes full use of seen samples to
predict unseen ones, yet computational time is too
long in that model training has to be performed l
times. Traditional 5-fold cross-validation is a trade-
off between the two, so that it is chosen as error
estimation method in fitness calculation.

Finish

Termination condition ?

Yes

No

Initialize system

Update local best/global best 

Update

velocity

and

position

Preprocessing

Fitness evaluation

Preprocessing

Fitness evaluation

Preprocessing

Fitness evaluation

Preprocessing

Fitness evaluation

Preprocessing

Fitness evaluation

Fig. 6. Flowchart of optimization.

Termination condition. Many conditions can
be used to judge termination of algorithm, as is given

below, we simply choose the first one for the reason
that it is suitable for comparing results among dif-
ferent models.

(a) upper number limit for the whole iteration;

(b) upper time limit for the whole iteration;

(c) upper fitness limit for the whole iteration;

(d) upper number limit for successive iterative
steps during which fitness must obviously
rise.

Parallel procedure. The parallel optimization
for prediction model is shown in Fig.6, with major
steps explained as follows:

(a) Initialize system: set parameters for PSO sys-
tem, including population P, iteration number
IT , and hyper-parameter intervals [C−,C+]
and [γ−,γ+]; set parameters for particles such
as inertia weight w, personal learning factor c1
and social learning factor c2; randomly gener-
ate position ap and velocity vp for each parti-
cle;

(b) Preprocessing in parallel: prepare sample
set with corresponding features as well as
candidate model with corresponding hyper-
parameters according to particle representa-
tion;

(c) Fitness evaluation in parallel: use validation
set to evaluate candidate model, then calculate
fitness for particle according to Eq. (18);

(d) Update local best/global best: if a particle’s
fitness is better than its local best, update cor-
responding local best; if a particle’s fitness is
better than global best, update global best;

(e) Termination judgement: turn to step (g) if ter-
mination condition is met, otherwise turn to
step (f);

(f) Update velocity and position of each particle
according to Eq. (15) and Eq. (17), then turn
to step (b) for next iteration;
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(g) Finish: output global best, prepare sample set
with selected features and prediction model
with selected hyper-parameters according to
representation of global best.

5. Experiments and Discussions

After the presentation of modeling and optimizing
mechanisms, the following questions have further
motivated us for experiments.
◦ Is the model feasible for one-step-ahead pre-

diction or multi-step-ahead prediction ?
• We compare different models for q-step-ahead

bandwidth prediction, q = 1,2,3,4,5 are concerned.
◦ Are the efficiency and accuracy acceptable ?
•We log parallel/serial CPU time for optimizing

models, and employ Mean Absolute Error (MAE) to
measure prediction accuracy, as in Eq. (19), where z
and z∗ denote true value and predicted value in orig-
inal interval. We also implement Back Propagation
Neural Network (BPNN) for comparison.

MAE =
1
l

l

∑
i=1
|z− z∗| (19)

◦ Are there remarkable differences among opti-
mizing strategies ?
• We implement four different strategies includ-

ing feature selection with hyper-parameter selection
(FH), feature selection without hyper-parameter se-
lection (F0), hyper-parameter selection without fea-
ture selection (0H), and parameters given directly
without any optimization mechanism, same way as
in 5 (00).
◦ Does the optimizing procedure converge dur-

ing proper iterations ?
• We record the iteration number and corre-

sponding global best fitness to evaluate convergence
of optimizing procedure.

5.1. Preparations for experiments

Experiment nodes are running under Fedora Core
Linux 9.0 system and connected by 100MB switch-
hub. Each node is equipped with single Intel Pen-
tium IV 3.0GHz CPU and 1GB-DDR400Hz MEM-
ORY. One node is used to control the overall opti-

mizing procedure, and the rest nodes are used for
fitness evaluation in parallel. The number of nodes
used for fitness evaluation is equal to the number of
particles in PH-PSO algorithm. The control program
and optimizing programs are coded in java, and de-
ployed on different nodes in the form of web service.
All the tests are implemented through dynamic col-
laboration of such services.

Table 1. Statistics of data sets.

General statistic value
Set size 1511
Minimum 3.05
Maximum 334.0
Mean 85.14908008
Variance 1932.83648856

For the purpose of giving comparable and repro-
ducible results, we prefer using public data rather
than historical data recorded by ourselves. We chose
“iepm-bw.bnl.gov.iperf” 29 as benchmark data set.
It is published by the Stanford Linear Accelerator
Center, University of Stanford. After pretreatment
to original data, the latest 200 samples are sequen-
tially chosen to form experiment data set, which is
then divided into training set, validation set and test
set, with a proportion of 100:50:50. Summary statis-
tics for data set are listed in Table. 1.

Table 2. Parameters initialization.

parameter value description
[lb,up] [0,1] destination interval
m 10 number of full features
ν 0.54 extra term for minimizing ε
[γ−,γ+] [2−10,210] parameter for RBF kernel
[C−,C+] [2−10,210] regularized term for SVR
w 1.4→ 0.5 inertia weight for PSO
c1,c2 2,2 acceleration constants for PSO
IT 100 iteration times for PSO
P 10 number of particles for PSO
h 0.01 fitness constant for PSO
bpIn 10 input number for BPNN
bpHid 5 hidden number for BPNN
bpOut 1 output number for BPNN
steps 500 train steps for BPNN
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Figure 7: prediction models.

Parameters are also initialized with values that
are commonly used: fix ν based on the research of
30, set acceleration constants c1 and c2 according to
25, decrease inertia weight w linearly with time as
proposed in 26, and change C,γ exponentially dur-
ing optimization 31, detailed in Table.2.

5.2. Results and discussions

The MAE results of different models are shown
in Fig. 7(a) and Fig. 7(b). For all q-cases, the
SVMs achieve better accuracy than BPNN. MAE
of SVMs stays below 17.9 Mbps, there is no re-
markable difference between one-step-ahead predic-
tion and multi-step-ahead prediction. As prediction
step q increases, there is not an obvious ascending
trend in MAE on experiment data set, which means
that our modeling method is suitable for both one-
step-ahead and multi-step-ahead bandwidth predic-
tion. Furthermore, comparing four strategies, the
introduction of optimizing mechanism helps to en-
hance the accuracy of prediction model, especially
the combinational optimization FH which achieves
lower error in most of the q-cases.

A remarkable characteristic of SVR/Nu-SVR is
the sparse representation of the solution, namely
model with less support vectors is better in achiev-
ing same accuracy. It can be seen from Fig. 7(b)
and 7(c) that Nu-SVR models being optimized have
higher accuracy than SVR model without optimiz-
ing strategy, whereas support vector numbers of Nu-
SVR models are over 50 compared to SVR whose

number is less than 10. We can see there is a tradeoff
between model accuracy and solution sparseness:
model with more support vectors are more compli-
cated as well as more capable in characterization.

Four strategies are different in efficiency, the par-
allel/serial CPU time of each is compared in Fig. 8.
From each sub-figure, we can see that the CPU
time does not show a remarkable tendency as step
q increases. 0H costs more time than FH and F0,
which means the model’s training time can be obvi-
ously reduced by feature selection rather than hyper-
parameter selection. From comparison between par-
allel and serial time, it is clear that the introduction
of parallelization can remarkably speed up the opti-
mizing procedure, especially the combinational op-
timization FH within 3 seconds for experiment data
set.

The global best fitness during each iteration is
logged for convergence comparison, as is shown in
Fig. 9. FH wins the best fitness in all the q-cases
with 0H as the last, which implies that combina-
tional optimization FH as a whole outperforms in-
dividual optimization F0 or 0H. Landscape compar-
ison among different q-cases are shown in Fig. 9(f),
no obvious trend on fitness is found when predic-
tion step q increases. From Sub-figures in Fig. 9 we
can count times that prematurity happens: 3 times
in F0, 5 times in 0H, and 2 times in FH. It is im-
plied that the combinational optimization converges
during proper iterations in most of the q cases.
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Figure 8: Optimizing time.
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Figure 9: Convergence results.
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6. Conclusions and Future works

In this paper, Nu-Support Vector Regression (Nu-
SVR) is employed to model one-step-ahead and
multi-step-ahead bandwidth prediction. Model opti-
mization issues including hyper-parameter selection
and feature selection are also discussed. A Paral-
lel Hybrid Particle Swarm Optimization (PH-PSO)
algorithm is proposed to improve the accuracy and
efficiency of prediction model.

Prediction results shows that the SVMs achieve
better accuracy than BPNN. Mean Absolute Error
(MAE) does not show remarkable ascending ten-
dency while prediction step is growing, therefore
Nu-SVR is feasible for modeling bandwidth pre-
diction in not only one-step-ahead but also multi-
step-ahead settings. Comparative results also indi-
cate that optimizing time can be obviously reduced
by feature selection rather than hyper-parameter se-
lection. As a combination of feature selection and
hyper-parameter selection, PH-PSO achieves better
convergence performance than individual ones. It
can improve the accuracy of prediction model in
rather short time, namely less than 3 seconds.

Our future work will extend in two ways. First,
there are still unsatisfied results that are calling for
further improvements; for example, to prevent pre-
maturity in optimizing procedure. Second, consid-
ering the diversity of networks, more elements and
application instances should be verified to support
the feasibility of our methods.
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