
Development of Security Strategies using Kerberos in Wireless Networks

Yöney Kırsal Ever

School of Engineering and Information Sciences

Middlesex University

A thesis submitted to Middlesex University in fulfillment of the requirements for degree of

Doctor of Philosophy

January 2011

Dedicated to,

My parents, Hamide and Ayhan KIRSAL

My love, Dr. Enver EVER

i

Abstract

Authentication is the primary function used to reduce the risk of illegitimate access to IT

services of any organisation. Kerberos is a widely used authentication protocol for authen-

tication and access control mechanisms.

This thesis presents the development of security strategies using Kerberos authentication

protocol in wireless networks, Kerberos-Key Exchange protocol, Kerberos with timed-delay,

Kerberos with timed-delay and delayed decryption, Kerberos with timed-delay, delayed de-

cryption and password encryption properties. This thesis also includes a number of other

research works such as, frequently key renewal under pseudo-secure conditions and shut down

of the authentication server to external access temporarily to allow for secure key exchange.

A general approach for the analysis and verification of authentication properties as well as

Kerberos authentication protocol are presented. Existing authentication mechanisms cou-

pled with strong encryption techniques are considered, investigated and analysed in detail.

IEEE 802.1x standard, IEEE 802.11 wireless communication networks are also considered.

First, existing security and authentication approaches for Kerberos authentication protocol

are critically analysed with the discussions on merits and weaknesses. Then relevant termi-

nology is defined and explained.

Since Kerberos exhibits some vulnerabilities, the existing solutions have not treated the pos-

sibilities of more than one authentication server in a strict sense. A three way authentication

mechanism addresses possible solution to this problem. An authentication protocol has been

developed to improve the three way authentication mechanism for Kerberos. Dynamically re-

newing keys under pseudo-secure situations involves a temporary interruption to link/server

access. After describing and analysing a protocol to achieve improved security for authen-

tication, an analytical method is used to evaluate the cost in terms of the degradation of

system performability. Various results are presented.

An approach that involves a new authentication protocol is proposed. This new approach

combines delaying decryption with timed authentication by using passwords and session keys

for authentication purposes, and frequent key renewal under secure conditions. The analysis

and verification of authentication properties and results of the designed protocol are pre-

sented and discussed.

ii

Protocols often fail when they are analysed critically. Formal approaches have emerged to

analyse protocol failures. Abstract languages are designed especially for the description of

communication patterns. A notion of rank functions is introduced for analysing purposes

as well. An application of this formal approach to a newly designed authentication protocol

that combines delaying the decryption process with timed authentication is presented.

Formal methods for verifying cryptographic protocols are created to assist in ensuring that

authentication protocols meet their specifications. Model checking techniques such as Com-

municating Sequential Processes (CSP) and Failure Divergence Refinement (FDR) checker,

are widely acknowledged for effectively and efficiently revealing flaws in protocols faster than

most other contemporaries. Essentially, model checking involves a detailed search of all the

states reachable by the components of a protocol model. In the models that describe au-

thentication protocols, the components, regarded as processes, are the principals including

intruder (attacker) and parameters for authentication such as keys, nonces, tickets, and cer-

tificates. In this research, an automated generation tool, CASPER is used to produce CSP

descriptions. Proposed protocol models rely on trusted third parties in authentication trans-

actions while intruder capabilities are based on possible inductions and deductions. This

research attempts to combine the two methods in model checking in order to realise an ab-

stract description of intruder with enhanced capabilities. A target protocol of interest is that

of Kerberos authentication protocol.

The process of increasing the strength of security mechanisms usually impacts on perfor-

mance thresholds. In recognition of this fact, the research adopts an analytical method

known as spectral expansion to ascertain the level of impact, and which resulting protocol

amendments will have on performance. Spectral expansion is based on state exploration.

This implies that it is subject, as model checking, to the state explosion problem. The per-

formance characteristics of amended protocols are examined relative to the existing protocols.

Numerical solutions are presented for all models developed.

iii

Acknowledgements

I gratefully thank my director of studies Dr. Orhan Gemikonakli for introducing me to

this area of research and for his outstanding supervision, throughout this research. Dr.

Gemikonakli has contributed in every stage of my PhD studies. The technical discussions

and guidance have been highly motivating, productive, and have given me a great deal of

professional satisfaction. This work would not be possible without his precious contributions.

Special thanks due to my second supervisor Dr. Shahedur Rahman for his important super-

vision. The support he provided was very useful and helped me understand many concepts.

I am thankful to his support and guidance.

I am also grateful to study at Middlesex University and many thanks to my friends in the

Computer Communications Department, for their optimism and support.

Also, I would like to send the most sincere thanks to my mum, Hamide, my dad, Ayhan and

my brother, Yönal for their support.

Finally, words are not enough for him, his love and support. I am very lucky to meet Enver.

During difficult times he was always with me with his altruism.

iv

List of Publications

The work presented in this thesis has given rise to the following publications.

1. Kirsal Y., A. Eneh and O. Gemikonakli (2005), ”A Solution to the Problem of Trusted

Third Party for IEEE 802.11b Networks”. PGNET2005, Liverpool UK, pp.333-339.

2. Kirsal Y. and O. Gemikonakli (2006), “An Authentication Protocol to Address the

Problem of the Trusted 3rd Party Authentication Protocols”, In Proceedings of Inno-

vative Algorithms and Techniques in Automation, Industrial Electronics and Telecom-

munications (CISSE 2006), Springer Netherlands, pp. 523-526.

3. Kirsal Y. and O. Gemikonakli (2007), “Frequent Key Renewal under Pseudo-Secure

Conditions for Increased Security in Kerberos Authentication and Its Impact on System

Performability”, 3rd International Conference on Global E-Security, University of East

London (UeL), Docklands, UK.

4. Kirsal Y., (2007), Poster Presentation titled “Development of Security Strategies Us-

ing Kerberos in Wireless Networks”, Women in Computing Research London Hopper

2007, BCS London Offices, UK and in The Richard Tapia Celebration of Diversity in

Computing Conference 2007, Orlando, Florida, USA.

5. Kirsal Y. and O. Gemikonakli (2007), “Further Improvements to the Kerberos Timed

Authentication Protocol”, In Proceedings of Novel Algorithms and Techniques In Telecom-

munications, Automation and Industrial Electronics (CISSE 2007), Springer Nether-

lands, pp. 550-554.

6. Kirsal Y. and O. Gemikonakli (2008), “Improving Kerberos Security through the Com-

bined Use of the Timed Authentication Protocol and Frequent Key Renewal”, 6th IEEE

International Conference on Cybernetic Systems 2008(CIS’08), Middlesex University,

London, UK, pp. 153-158.

7. Kirsal Y. and O. Gemikonakli (2009), “Analysing the Kerberos Using CSP-Rank Func-

tions”, Kaspersky Lab Student Conference on Computer Security Issues, Moscow, Rus-

sia.

8. Kirsal Y. and O. Gemikonakli(2009), “Analysing the Kerberos Timed Authentica-

tion Protocol Using CSP-Rank Functions”, Global Security, Safety, and Sustainability

(ICGS3’09), Springer Berlin Heidelberg, vol.45, pp. 56-63

v

9. Ever E., Y. Kirsal and O. Gemikonakli(2009), “Performability Modelling of a Kerberos

Server with Frequent Key Renewal under Pseudo-Secure Conditions for Increased Secu-

rity”, IEEE International Conference on the Current Trends in Information Technology

(CTIT’09), Higher Colleges of Technology, Dubai, pp. 91 - 96.

10. Kirsal Y., O. Gemikonakli and S. Rahman (2010), “Analysing the Combined Kerberos

Timed Authentication Protocol and Frequent Key Renewal Using CSP and Rank Func-

tions”, International Journal of IET Information Security (submitted).

vi

Contents

Acronyms xiii

Glossary of Symbols xv

1 Introduction 1

1.1 Introduction . 1

1.2 Scope of Investigation . 2

1.3 Contributions of the Thesis . 4

1.4 Outline of the Thesis . 5

2 Literature Review 7

2.1 Introduction . 7

2.2 Evaluation of Existing Methods and Solution Techniques for Kerberos 8

2.2.1 Kerberos and Security Considerations 8

2.2.2 Basic Operation of Kerberos in Wireless Communication Networks . 9

2.3 Analysis and Verification of Authentication Protocols 14

2.3.1 Formal Verification Methods . 14

2.3.2 Model Checking Techniques . 21

2.3.3 Automated Code Generation . 22

2.4 Existing Studies on Performance Evaluation of Security Policies 23

2.4.1 Performance Evaluation Techniques 24

2.4.2 Performance Studies on Network Security 25

2.5 Conclusion . 27

3 A Framework for Solution to the Problem of Trusted Third Party for

Wireless Communication Networks 30

3.1 Introduction . 30

3.2 The Framework Proposed as a Kerberos Variant 30

3.3 Analysis and Verification of the Designed Framework 34

vii

3.4 Conclusion . 36

4 Development of an Authentication Protocol to Address the Delayed De-

cryption Property in Trusted Third Party Authentication Protocols 37

4.1 Introduction . 37

4.2 Proposed Authentication Protocol with Delay Decryption Property 37

4.3 Analysis and Verification of the Designed Authentication Protocol 40

4.3.1 Analysis through Code Generation, CASPER 40

4.3.2 Verification through Formal Methods, CSP 41

4.4 Conclusion . 46

5 Development of a New Solution for Frequent Key Renewal under Pseudo-

secure Conditions 47

5.1 Introduction . 47

5.2 New Solution for Frequent Key Renewal with Shut Down Access 47

5.2.1 Analysis through Code Generation and Model Checking, CASPER/FDR 51

5.3 Security Aspects of Combined Use of Timed Authentication Protocol and

Frequent Key Renewal . 52

5.4 Constructing the Rank Functions of Kerberos for the Combined use of the

Timed Authentication Protocol and Frequent Key Renewal 55

5.4.1 The CSP Model . 55

5.4.2 The Rank Functions . 61

5.5 Conclusion . 63

6 Performability Modelling of a Kerberos Server with Frequent Key Renewal

under Pseudo-Secure Conditions with Server Breakdowns and Repairs 65

6.1 Introduction . 65

6.2 Performability Modelling with Frequent Key Renewal 66

6.2.1 The Model . 66

6.2.2 Two Dimensional Markov Representation of the System 67

6.2.3 Analytical Model’s Numerical Results 69

6.2.4 Discussions . 70

6.3 Performability Modelling with Breakdowns and Repairs 71

6.3.1 The Model . 72

6.3.2 The Steady State Solution . 73

6.3.3 Numerical Results and Discussions 74

6.4 Conclusion . 77

viii

7 Modelling Attacker with Increased Powers and Deciding Security Proper-

ties of Proposed Protocols by Induction and Deduction 78

7.1 Introduction . 78

7.2 Modelling Attackers . 78

7.3 Attacker with Increased Powers on Proposed Protocols 81

7.3.1 Attacker for Proposed Framework . 81

7.3.2 Attacker for the Proposed Protocol with Delayed Decryption Property 86

7.3.3 Attacker for the Proposed Timed Authentication Protocol and Fre-

quent Key Renewal . 92

7.4 Conclusion . 97

8 Conclusion 98

8.1 Introduction . 98

8.2 Contributions of the Thesis . 98

8.3 Suggestions for Future Study . 102

ix

List of Figures

2.1 The EAP stack . 11

2.2 Kerberos in action in a wireless network . 13

3.1 The proposed framework . 32

3.2 Verification results of the framework . 36

4.1 Analysis of the new variant of the designed protocol 41

4.2 Analysis of specifications of the new variant of the designed protocol 42

5.1 The proposed framework with shut-downs 48

5.2 Analysis of frequent key renewal with shut-downs 51

5.3 Analysis of specifications of frequent key renewal with shut-downs 52

5.4 Analysis of further improvements to the timed authentication and frequent

key renewal . 55

5.5 Analysis of specifications of further improvements to the timed authentication

and frequent key renewal . 56

6.1 The model of Kerberos server . 67

6.2 The states of Kerberos server . 67

6.3 Two dimensional lattice strip . 68

6.4 MQL as a function of σ for various δ values 69

6.5 MQL as a function of σ for various ϕ values 70

6.6 MQL for constant ϕ, δ and K -servers . 71

6.7 The operative states of Kerberos server . 72

6.8 The MQL as a function of ϕ for various δ values 75

6.9 q1,1 as a function of ϕ for various δ values 75

6.10 Effects of ξ and σ for 1/ϕ values . 76

7.1 Achivement of intruder on the proposed framework 85

7.2 Power of intruder with deductions for the proposed framework 85

x

7.3 Power of intruder on Agreement(A,B,[na,nb]) specification 86

7.4 Power of intruder on NonInjectiveAgreement(A,B,[kab]) specification 87

7.5 Power of intruder on NonInjectiveAgreement(B,A,[kab]) specification 87

7.6 Power of intruder on Secret(A,passwd(A,B),[B]) specification 88

7.7 Power of intruder on Secret(A,kab,[B]) specification 89

7.8 Achievement of intruder with deductions and induction on delayed decryption

property . 91

7.9 Achievement of the intruder with deductions and induction on frequent key

renewal . 96

xi

List of Tables

2.1 Summary of verification methods . 15

5.1 Comparison of times taking to break an encryption 57

5.2 Rank functions for the protocol . 62

xii

Acronyms

CSP Communicating Sequential Processes. iii, 3–6, 15, 16, 18, 19, 21, 22, 27, 28, 30, 36,

40, 41, 43–46, 55, 58–60, 64, 81, 82, 86, 90, 91, 93, 97–102

EAP Extensible Authentication Protocol. 10–12, 30, 99

EAPOL EAP Over LANs. 32

FDR Failure Divergence Refinement. iii, 4, 6, 15, 21–23, 28, 30, 35, 36, 40, 41, 50, 51, 54,

63, 79, 81–84, 86, 90, 91, 95, 97, 99–102

IAKERB Initial Authentication and Pass Through Authentication using Kerberos V5 and

GSS-API. 12

KDC Key Distribution Centre. 8, 12, 13, 26–28, 31–33, 68, 71, 73, 74, 77, 99, 101, 102

MQL Mean Queue Length. 69, 70, 74, 77, 100

PEPA Performance Evaluation Process Algebra. 26

PKCROSS Public Key Cryptography for Cross-Realm Authentication in Kerberos. 12

PKINIT Public Key Cryptography for Initial Authentication in Kerberos. 12

PKTAPP Public Key Utilising Tickets for Application Servers. 12

RoSSI Random Selection of Sign-on Information. 10

RSN Robust Security Network. 10

TAM Tripartite Authentication Mechanism. 10, 31

TGi IEEE 802.11i Task Group on Security. 3, 10

xiii

TGS Ticket Granting Service. 8, 12, 18, 19, 31–33, 99

WEP Wired Equivalent Privacy. 9

WPA Wi-Fi Protected Access. 9, 26

xiv

Glossary of Symbols

Logic

Notation Meaning Example

� end of proof
¬ P not P(P is not true) ¬ 3≥5
P ∧ Q P and Q (both true) x ≤ x+1 ∧ x 6= x+1
P ⇒ Q if P then Q x < y ⇒ x ≤ y
P ` Q Q is derivable from P x ⇒ y ` ¬y ⇒ ¬x
P ⇔ Q P is true if Q is true, P is false if Q is false x+ 5 = y + 2 ⇔ x+ 3 = y

P , Q P is defined to be logically equivalent to Q

P
def
= Q P is defined to be logically equivalent to Q

Processes

Notation Meaning

a ⇒ P | b ⇒ Q a then P choice b then Q (where provided a6=b)
P ‖ Q the P in parallel with Q
P ‖
x

Q P and Q are synchronised on all events in X,

but they are allowed to perform events outside X freely
� S general choice
P ||| Q concurrent runs of process P in the set of Q (P interleave Q)
b!e on channel b, output value of e
b?x on channel b, input to x
l!e?x call of shared subroutine named l with value parameter e and results to x
P sat S process P satisfies specification S
tr an arbitrary trace of the specified process
P v Q process Q can do at least as much as process P,

if P and Q are comparable elements of some partially ordered set
P t Q deterministic P or Q (The least upper bound of two processes P and Q)

Functions

Notation Meaning

f : x ↪→ y a function of f which maps each member of A to a distinct member of B

xv

Traces

Notation Meaning Example

〈 〉 empty trace
〈a〉 the trace containing only a
〈a, b, c〉 the trace with three elements
s ⇓ c the communications on channel, 〈c.1,a.4,c.3,d.1〉 ⇓ c = 〈1,3〉

c recorded in s
s � A s restricted to A 〈b,c,d,a〉 � {a,c} = 〈c,a〉

xvi

Chapter 1

Introduction

1.1 Introduction

The popularity and the use of computers and network-based electronic devices have increased

rapidly. Since computers are employed in all phases of today’s world, many large collections

of materials, including classified confidential information that attract various illegitimate at-

tention, are available electronically. This makes engineers and scientists aware of the need to

protect data, resources and systems against network-based attacks and unauthorised access.

Providing privacy and data integrity have become more crucial. In addition to these require-

ments, availability, which can be defined as the requirement that components and resources

are continuously in operative mode, are the main goals of network security.

Apart from the use in everyday lives of people all over the world, computer and commu-

nication systems are very widely used in research, industry and business. As the users’

demands increase, the complexity of computer networks, network products, communication

systems and information systems also increases. As a result of this, it becomes more difficult

to understand and handle various components of systems which interact in these complex

environments, and to make sure that all the implications have been covered and considered

properly.

Despite developments in computer network security, incidences of computer crime, attacks

on computer systems resources such as break-ins, have continued to increase in complexity

and strategy. For this purpose, attack prevention, authentication, and access control issues

are explored widely. The difference between authentication and access control concepts is

that authentication deals with identity verification before access is granted and whose re-

sult is used as input to all other security provisions within networks, where access control

1

deals with the rights and privileges of users [Kahate, 2009], [Stallings, 2010]. Authentication

mechanisms are founded on protocols together with cryptographic algorithms.

When communication networks are implemented without authentication mechanisms, there

is a risk of consuming resources and information by committing them to attacks. Also it is

possible to end up with a system with inadequate confidentiality, integrity and availability

characteristics. In the modern world, with fast improving technology, highly competitive

research and industry environment, such a risk is not acceptable.

Cryptographic algorithms are simply mathematical functions that transform plaintexts to

ciphertexts, so that only entities that possess appropriate requirements, such as correct keys,

can reverse the operation to retrieve plaintexts. On the other hand, protocols are step by

step sequences of achieving authentication. The emphasis of this project is on authentica-

tion protocols. Authentication protocols govern the establishment of secured communication

between principals of a network, within the network. Computer systems and users are con-

sidered as principals.

Authentication servers and ticket-granting services are the trusted third parties in process

of authentication by issuing communicating principals with necessary authentication tokens

whereas the channels are the links between the principals and the servers. The tokens include

items such as keys, digital signatures, and digital certificates. Fundamentally, this project

investigates the development of protocols that are used for authentication purposes.

1.2 Scope of Investigation

This research aims to develop authentication frameworks for the design and implementa-

tion of effective and efficient mechanisms for Kerberos authentication protocol used in wire-

less communication networks. The design of authentication protocols spans well over three

decades with the foundation of authentication protocols by [Needham and Schroeder, 1978].

This work employed the encryption algorithms invented by [Diffie and Hellman, 1976]. Fol-

lowing these, many works have emerged being motivated by evolution of flaws discovered

against published protocols [Abadi and Needham, 1996], [Lowe, 1995], [Eneh et al., 2006]

and [Shaikh and Bush, 2006]. The target authentication mechanisms are those to be used in

wireless communications. Kerberos is widely-deployed system that provides authentication

and the establishment of secure channels in open networks [Neuman and Ts’o, 1994]. With

2

the continuous failure of authentication protocols, it becomes imperative that published pro-

tocols be verified regularly to be sure that the claimed features exist. This requirement

becomes higher for authentication protocols deployed in communication network scenarios

where trusted third parties can hardly be realised, and regarded as hostile environments.

While Kerberos approach has been proposed as a standard for enhanced security in IEEE

802.11i Task Group on Security (TGi) [Kâafar et al., 2004], currently there is no valid pro-

posals using a Kerberos-like mechanism to provide authentication in a wireless network,

preventing from cryptographic attacks and handling fast and secure handovers. In this re-

search, authentication protocols for the IEEE 802.11 networks, based on the IEEE 802.11i

works are proposed and Kerberos protocol is used to provide a framework for these purposes.

Generally, authentication protocols are verified by the use of exact models representing the

protocols. Usually, the representative models describe the principals including intruders or

attackers. While it may be easier to describe an attacker with simple attributes, it is more

difficult to describe attackers with complex attributes in situations where third parties can

easily be realised. The current methods of verification adopt formal approaches for code

generation and analysis of protocols [Meadows, 1995]. Within the scope of formal meth-

ods for verifying cryptographic protocols, techniques based on model checking have become

widely accepted [Meadows, 1995], [Schneider, 1998]. Model checking methods are classified

as state exploration methods, and have made reasonable progress in evolution and adapta-

tion for effective and efficient verification of protocols [Ryan et al., 2000], [Roscoe, 2005]. In

regular system design terms, protocol verification provides the assurance that protocol im-

plementation satisfies requirements specification. Besides model checking, other methods for

verifying cryptographic protocols include, among others, those of belief logics, inductive proof

systems, cryptographic or provable security [Meadows, 1995], [Ryan et al., 2000]. However,

model checking has gained the reputation of being more effective and efficient than other

methods. Model checking is a state exploration approach that provides for automatic verifi-

cation of concurrent systems by performing comprehensive searches of all reachable states of

systems [Cremers et al., 2009]. In concurrent systems, states execute together in parallel by

describing activities of principals in a communication network [Schneider, 1999], [Cremers

and Lafourcade, 2007]. Thus, principals of a communication network are concurrent systems.

A popular mathematical algebra namely CSP developed by [Hoare, 1985] has recorded the

most remarkable progress in the perspective of describing concurrent systems [Roscoe, 2005].

FDR is a model checking tool developed by Formal Systems, that establishes results about

3

concurrent and reactive systems described in CSP [Ryan et al., 2000]. FDR functions check

if implementation refines the specification of the system. In this research, systems consid-

ered are authentication protocols. Despite the unrivalled power of description inherent in

the CSP language, the process of producing CSP scripts by hand remains difficult, error-

prone, and time-consuming. CASPER, a compiler, which translates high level description

of protocols to CSP codes by [Lowe, 1997], is progressing and is achieving the required results.

The process of increasing the strength of security mechanisms usually impacts on perfor-

mance degradation. In recognition of this fact, the research adopts an analytical method

known as spectral expansion [Chakka and Mitrani, 1994], [Ever, 2007] to ascertain the level

of impact, which resulting protocol amendments will have on performance. In other words,

addition of extra security features, in the form of additional encryption and message content,

will amount to cost in terms of network performance. Performance and availability analysis

predict and detect possible drawbacks of the authentication protocols. In this research, per-

formance and availability, in a composite manner namely, performability is used to be able to

abstract the exact behaviour of the communication networks. Analytical models have been

developed to evaluate the performability of the proposed approaches.

1.3 Contributions of the Thesis

The contributions of the Thesis are:

1. A Framework for Solution to the Trusted Third Party for Wireless Communication

Networks

2. An Authentication Protocol to Address the Delay Decryption Property

3. A New Solution for Frequent Key Renewal under Pseudo-Secure Conditions

(a) Construction of Rank Functions for Frequent Key Renewal

4. Performability Modelling of a Kerberos Server with:

(a) Frequent Key Renewal under Pseudo-Secure Conditions

(b) Server Breakdowns and Repairs

5. Modelling Attacker with Increased Powers by Inductions and Deductions

4

1.4 Outline of the Thesis

Chapter Two introduces the domain of the research by providing a critical review of relevant

literature. Existing authentication protocols as well as Kerberos authentication protocol in

wireless communication networks are critically analysed and compared. Security considera-

tions for Kerberos are explained in detail. Existing model checking techniques and formal

verification methods for the systems under study are investigated and critically analysed.

Also, detailed explanation of automated code generation is given. Studies on performance

evaluation of security policies are investigated. Detailed explanation of perfomance evalua-

tion techniques is given in this chapter.

The existing solutions commonly known in literature do not treat the possibilities of more

than one authentication server in a strict sense. A three way authentication mechanism is

a possible solution for this matter. The design of a new framework is the main focus of

Chapter Three. The framework using three-way authentication method (Kerberos) to ad-

dress possible vulnerabilities is introduced. The practical applicability of this framework is

also investigated. Verification of the designed framework is provided by CSP. Verification

results are presented, and alongside critical analyses, significant comparisons are made .

A similar approach that is used in Chapter Three, is used for the work presented in Chapter

Four. The design of this new protocol depends on delay decryption property of Kerberos

[Neuman and Ts’o, 1994] within the designed framework in Chapter Three. The design of

the protocol, its availability and its verification are the main concerns of this chapter. A new

authentication protocol, as well as its entities are defined and introduced. Also, the use of

this protocol and its entities are validated.

Chapter Five presents an approach of dynamically renewing keys under pseudo-secure situa-

tions, thus significantly reducing the chances of potential intruders. The proposed approach

involves secure key distributions at various intervals. Pseudo-secure situations are generated

from secure random situations, and that are very hard for an observer to distinguish from

true random secure conditions. During key distribution, link/server access is temporarily

interrupted. The access restriction happens for short intervals. An approach that involves

a new authentication protocol that combines frequent key renewal with timed authentica-

tion is also modelled. The analysis and verification of authentication properties and results

of this modelled protocol are presented and discussed. To find out unassailable attacks of

the designed protocol, critical analysis of the protocol and authentication specifications are

5

done through automated code generation. The time required to break the encrypted mes-

sages were considered in previous chapters (Chapter Three and Chapter Four). In Chapter

Five, these breaking times are compared with the breaking times of modelled and developed

protocol of this chapter. Results are presented and discussed. Also, a CSP model and con-

struction of rank functions for the modelled protocols are presented. The CSP model and

Rank functions are based on the extensive rules of [Schneider, 1998] and [Roscoe, 2005].

In Chapter Six, performance evaluation techniques are employed for security protocols. An-

alytical models are developed in order to analyse the effects of frequent key renewal under

pseudo-secure conditions of Chapter Five, and to evaluate the cost in terms of the degradation

of system performance with server failures. Numerical results are presented and discussed.

While key distribution times depend on network characteristics such as size, speed, con-

gestion etc., the intervals between key renewals can be determined by the mean values of

decryption times. Unlike the previous studies, the server failures [Brennen, 2004] are also

considered together with the interruptions for key distributions. The chapter shows the two

dimensional Markov model of a Kerberos server considered and proposes a steady state so-

lution approach. Then, numerical results for the performability measures are presented to

show the effects of key renewals as well as server failures.

Formal methods for verifying security properties of cryptographic systems, designed for the

purposes of assuring that systems satisfy their respective security requirements, tend towards

analysing attacker potentials [Lowe, 1996], [Paulson, 1998], [Roscoe et al., 2009]. The ap-

proaches of deductive, inductive or both, are based on making inferences about the attacker

with a view to provide security offerings that can resist the activities of attackers. In Chapter

Seven, a new attacker model is constructed with inductive and deductive approaches. At-

tacker definition is built into the CSP models of proposed protocols mentioned in Chapters

3, 4, 5, and subsequently tested using FDR. It is widely acknowledged that model checking

offers more detailed analysis and discovers attacks faster [Roscoe, 2005] and [Roscoe et al.,

2009]. The inductive approach used in [Paulson, 1998] is criticised for failing to include

reception events in its model [Ryan et al., 2000]. Therefore, following is the discussion of

the attacker under possible deductions, and then the extension of the approach to include

possible inductions.

Chapter Eight summarises the main contributions of the thesis and outlines some possible

avenues for future studies.

6

Chapter 2

Literature Review

2.1 Introduction

Owning to the growing popularity and use of computers and network-based devices, provid-

ing privacy and data integrity have become crucial, in order to protect data, resources and

systems from attacks and unauthorised access. For purposes of attack prevention, authenti-

cation and access control play a vital role [Abadi and Needham, 1996]. In recent years, to

meet the increasing demands in secure computer communications, various security protocols

have been developed. Most of these protocols agreed upon a cryptographic key or achieved

authentication specifications. Needham and Schroeder demonstrated the use of the cryp-

tographic algorithms in the design of a set of cryptographic protocols that revolutionised

the paradigm of authentication within the sphere of security mechanisms for networks and

distributed systems [Needham and Schroeder, 1978]. In order to meet increasing demands,

various security protocols have been developed. Kerberos is one of these commonly used

mechanisms [Kohl and Neuman, 1993]. In this chapter existing security and cryptography

techniques of Kerberos are critically analysed. Solution methods for this authentication

protocol are compared. In addition, wireless communication networks and their security as-

pects are also critically analysed. Detailed explanations of analyses techniques and tools are

given. Performance evaluation techniques for communication networks, performance studies

for network security are also analysed to look at performance degradation that caused by

new security measures.

7

2.2 Evaluation of Existing Methods and Solution Tech-

niques for Kerberos

In this section, the existing solution techniques for Kerberos authentication protocol are

analysed. Kerberos security considerations and basic operation of Kerberos in wireless com-

munication networks are explained in detail. Additionally, solution techniques of Kerberos

for wireless communication networks are elaborated. The merits and weaknesses of Kerberos

and its solution techniques are critically analysed.

2.2.1 Kerberos and Security Considerations

Since the publication of protocols by Needham and Schroeder for both the conventional

or shared key algorithms and the public key algorithms [Needham and Schroeder, 1978],

credible and popular spin-offs have emerged. In the same study, they considered three

functions, which include; establishment of authenticated interactive communication, authen-

ticated one-way communication (mailing systems), and signed communication (origin and

content integrity authenticated to a third party). The establishment of authenticated inter-

active communication is of special interest to this research.

Kerberos authentication protocol was designed as part of the project Athena, provides secret

key (symmetric key) cryptography for the authentication of client-server applications. As

an authentication server, it is based in part on Needham-Schroeder Authentication Protocol

[Needham and Schroeder, 1978], but with changes to support the needs of the environment

for which it was developed. It uses key distribution. Clients and servers use digital tickets

to identify themselves to the network and secret cryptographic keys for secure communica-

tions [Neuman and Ts’o, 1994]. Kerberos architecture is divided into two core elements, Key

Distribution Centre (KDC) and Ticket Granting Service (TGS) [Kohl and Neuman, 1993],

[Neuman and Ts’o, 1994]. The KDC stores authentication information while TGS holds

digital tickets for identifying clients and servers of networks. The KDC acts as a trusted

third party in performing these authentication services. Kerberos provides a mutual authen-

tication between a client and a server. Mutual authentication of Kerberos uses a technique

that requires a password. Many authentication techniques, (such as Wide Mouthed Frog

Protocol and Splice/AS Protocol [Schneier, 1996]) send passwords as clear text (i.e. they are

not secure), allowing them to be compromised by an unauthorized party. Kerberos solves

this problem via encryption. Rather than sending the password, an encrypted key derived

from the password is communicated and thus the password is never sent clearly. This tech-

8

nique can be used to authenticate a client and can also be used for mutual authentication of

a server. Once authentication takes place, all further traffic is also encrypted, allowing new

encryption keys to be communicated securely.

However, as it is the case for commonly known cryptographic protocols (such as Woo-Lam

Protocol [Woo and Lam, 1994] and KSL Protocol [Kehne et al., 1992]) in literature [Bellovin

and Merritt, 1991], Kerberos is prone to various types of attacks [Geier, 2005]. These vulner-

abilities include aided attacks such as the replay of old messages, password guessing, sniffing,

jamming, masquerading, injection, cracking and rogue access points, denial of service attacks

and session hijacking. The following limitations and issues of Kerberos are considered when

implementing an authentication service based on Kerberos [Kohl and Neuman, 1993]:

1. Denial of service attacks: This type of attack is beyond the capabilities of Kerberos,

and the detection and solution remain the responsibility of administrators or could be

delegated to other applications.

2. Secrecy: Participating principals are required to maintain the secrecy of secret keys.

Failure in this situation can allow an intruder to masquerade as a targeted principal.

3. Dictionary attacks: Kerberos provides a weak security for password guessing attacks.

Sometimes additional relevant password management procedures are preferred for use.

4. Clock synchronisation: Message times are used to ascertain freshness to avoid replay

attacks. There is a need for the principals, (i.e. clients), clocks within the network to

be loosely synchronised to enable the servers, in particular, to reliably detect replays.

5. Identifiers recycling: The identifiers of the principals, that leave the network should be

removed, in order to avoid the possibility of a new principal inheriting the privileges

of another principal that had left earlier. It is remarkable that principal identifiers are

not recycled on a short-term basis in Kerberos.

2.2.2 Basic Operation of Kerberos in Wireless Communication

Networks

Owing to the growing popularity and use of IEEE 802.11 wireless network communications,

there are several different approaches for authentication and encryption of these communica-

tion networks such as Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA).

These expanding approaches have fulfilled the security challenges of the technologies. Some

of these include, the per-packet authentication approach described by [Mishra and Arbaugh,

9

2002], affecting access point authentication [Needham and Schroeder, 1978], and the mutual

authentication based solution [Schneider, 1998], [Schneider, 1999].

Nonetheless, these approaches inadvertently rely on the notion of explicit trust on the au-

thentication server(s). The IEEE TGi made the initial attempt by developing the Robust

Security Network (RSN), which utilises the IEEE 802.1x port-based security standard to

provide security services. The IEEE 802.1x standard establishes the Extensible Authentica-

tion Protocol (EAP) framework [Mishra and Arbaugh, 2002] and [Vollbrecht et al., 2001].

This EAP framework allows the use of various authentication mechanisms or approaches

on top of the EAP layer [Vollbrecht et al., 2001]. It uses three entities as authentication

components namely, the supplicant (client), the authenticator (access point) and the au-

thentication server (RADIUS) [Aboba and Calhoun, 2003]. This authentication framework

implies that explicit ‘trust’ is placed on the authentication server, while the access point

and wireless clients are suspects [Eneh et al., 2004]. Figure 2.1 adapted from [Mishra and

Arbaugh, 2002], shows the layers of the EAP protocol stack. Nevertheless, this study reveals

that current RSN architecture only supports mutual authentication between wireless clients

and their corresponding access points. Where consideration is given to this scenario, the

issues are based on some assumptions of the integrity of the communication channel between

the access point and authentication server [Congdon et al., 2003]. Therefore, the consequence

is that wireless clients based on 802.11b standard and whose security provision rely on the

802.1x standard, are still liable to session hijacking and masquerading attacks on the link

between authenticator and authentication server.

Figure 2.1: The EAP stack

10

Additionally, a framework, namely Tripartite Authentication Mechanism (TAM) that relies

on 802.1x standard is offered [Eneh et al., 2004]. The proposed framework’s three enti-

ties (supplicant, authenticator, authentication server) mutually authenticate with each other

prior to data traffic. It was built on an assumption that none of the parties should be trusted

in a wireless LAN communication environment. TAM belongs to EAP authentication layer

protocol. It incorporates with a user authentication module that is named as Random Se-

lection of Sign-on Information (RoSSI) functions by making a number of challenges selected

at random to the user and include facilities for re-authentication for wireless client stations

whose sessions become idle for a period of time. This ensures that an attacker or a rogue

wireless workstation steals no valid wireless communication session.

In the study,[Marin-Lopez et al., 2009], propose an architecture aimed for reducing the la-

tency of network access authentication based on the EAP. Their architecture is based on

the design of a new EAP method that uses standalone authenticator, and does not require

any change to the EAP specification or the specifications of IEEE 802.11. In this study,

it is expressed that traditional EAP authentication solutions for seamless mobility require

modifications in the current standards and wireless technologies and a new framework is

introduced with current standards. It is verified that the architecture does not introduce

additional latency which compromises the fast re-authentication process [Marin-Lopez et al.,

2009].

In wireless networks, although Kerberos relies on the provisions of IEEE 802.1x standard,

owing to the fact that, its operation is system and application independent, security fea-

tures for authentication are independent as well. Kerberos protocol assumes that initial

transactions take place on an open network where clients and servers may not be physically

secure and packets travelling on the network can be monitored and even possibly be modified

[SECWP, 2007].

Zrelli and Shinoda designed the integration of Kerberos protocol as an authentication method

in existing EAP-based authentication frameworks. They defined the architectural elements

and their interactions, and the encapsulation of Kerberos messages in EAP packets are speci-

fied [Zrelli and Shinoda, 2007]. In the same study, it is expressed that, the use of Kerberos as

an EAP authentication mechanism would allow institutions to manage their individuals using

a Kerberos system to re-use the same credentials for network access authentication instead

of managing a different set of credentials such as Unix passwords or public key certificates.

The integration of Kerberos protocol as an authentication method in existing EAP-based

11

authentication frameworks is designed. The architectural elements, their interactions are

also defined and the encapsulation of Kerberos messages in EAP packets are specified [Zrelli

and Shinoda, 2007].

Due to the critical function of the KDC, multiple KDCs are normally utilised, where each

KDC stores a database of users, servers, and secret keys. However, since the KDC stores

secret keys for every user and server on the network; they must be kept completely secure. If

an attacker were to obtain administrative access to the KDC, the attacker would have access

to the complete resources of Kerberos realm.

Kerberos tickets are cached on the client systems. If an attacker gains administrative access

to a Kerberos client system, he can impersonate the authenticated users of that system. In

other words, the authentication service authenticates the client and replies to the client with

a ticket to the TGS. The TGS receives the ticket from the client and checks its validity and

replies to the client with a new ticket for the server the client wishes to use. In order to

prevent ticket hijacking, Kerberos KDC must be able to verify that the user who is presenting

the ticket is the same user to whom the ticket was issued [Neuman and Ts’o, 1994]. This is

shown in Figure 2.2.

Figure 2.2: Kerberos in action in a wireless network

In their study, Harbitter and Menascé have drawn attention to the performance evaluation

12

of Kerberos security protocol in two different achievements, public key assistance and the

addition of a proxy server [Harbitter and Menascé, 2002].

Firstly, they used public-key infrastructures Public Key Cryptography for Initial Authenti-

cation in Kerberos (PKINIT), Public Key Cryptography for Cross-Realm Authentication in

Kerberos (PKCROSS) and Public Key Utilising Tickets for Application Servers (PKTAPP).

In PKINIT, messages are added to change user secret key authentication to public key

authentication. It manages secret keys for large number of clients. Nevertheless, it does

not address key management of large number of realms. Additionally, as mentioned above,

Kerberos uses key distribution and all tickets in its realm are issued by KDC. Since all

authentications pass through the KDC, this causes performance bottleneck. At this point,

PKTAPP is used for trying to eliminate bottleneck and reduce communication traffic by

implementing authentication exchange directly between client and application server.

Secondly, in the same study they have proposed the use of proxy servers, Initial Authenti-

cation and Pass Through Authentication using Kerberos V5 and GSS-API (IAKERB) and

Charon for mobile communication systems. Former one is used as a proxy server, when a

client could not establish a direct connection with KDC. Latter one adapts standard Ker-

beros authentication to a mobile Personal Digital Assistant (PDA) platform. Charon uses

Kerberos to establish a trust relationship between a user and a proxy. However, as a result,

it is possible to say that, although some additional public-key infrastructures are added to

various stages of Kerberos, in terms of server and network capacity, they are fully suitable

for simpler networks and could not work with more than one application server. In addition

to these, a proxy is used to increase encryption process for both client and server; however,

it produces delays during the transactions of authentication messages between client and

server. Additionally, since wireless network speed increases, the proxy became insufficient

and affects the response time.

Kerberos assisted authentication in mobile ad-hoc networks has been created by utilising

traditional features of Kerberos [Pirzada and McDonald, 2004]. Their logic appears to lack

evidence that the notorious flaws of traditional Kerberos have been addressed in their solu-

tion. These flaws include replay attacks and distributed session keys. However, their solution

seems to address issues of password guessing attacks.

Considering these findings a new framework and authentication protocols will be modelled

and discussed in the following sections 3.2, 4.2, 5.2 and 5.3.

13

2.3 Analysis and Verification of Authentication Proto-

cols

In this section, for the verification processes of the authentication protocols and capturing

their participants, formal methods are analysed to demonstrate the feasibility of these par-

ticipants and their potentials. This provides a basis in order to extrapolate the possibilities

of what an intruder can achieve with a certain knowledge, and on which level of the protocol,

this is achieved.

2.3.1 Formal Verification Methods

In order to provide security for communication networks, usually cryptographic protocols are

used and designed. These are necessary for secure key distribution to provide suitable keys

for private or authenticated communications and communication principals. In this manner,

authenticated cryptographic protocols are required to assure identity of a party to another

one that is communicating within a session. Several works that are commonly found in the

literature show that when the protocols are analysed critically, they often fail to provide

authentication and secure communication [Lowe, 1996].

Currently, formal methods, mathematically-based techniques for the specification, develop-

ment and verification of software and hardware systems [Monin, 2001], are spreading through

into every phase of protocol development. These phases are classified as design, specification

and verification. Because of the rapid evolution of authentication protocols and cryptog-

raphy mechanisms, formal methods for protocol development are improving as well. The

major development in formal methods is verification of protocols. According to Meadows,

formal verification techniques are classified as follow [Meadows, 1995], [Roscoe, 2005]:

1. General purpose verification tools: This approach involves the modelling and verifying

protocols using specification languages and verification tools.

2. Expert systems: These are developed to investigate different states of a protocol. This

technique is based on the state machine model of protocols. In general, expert systems

are found as inefficient because of thorough going research and their results are often

inconclusive.

14

Table 2.1: Summary of verification methods

Tools Verification method Approach
CSP General purpose FDR Checker
[Hoare, 1985]
Dolev-Yao Expert systems State machine
[Dolev and Yao, 1981]
BAN-logic Modal logic Modal logic
[Burrows et al., 1989]
π-calculus Algebraic approach Term re-writing
[Milner, 1999]
Spi calculus Algebraic approach Equivalences between
[Abadi and Gordon, 1999] processes

(a)

Tools Weaknesses Strengths
CSP Can not be used to Find more attacks
[Hoare, 1985] capture encryption algorithms within parallel sessions
Dolev-Yao Does not allow Secrecy only
[Dolev and Yao, 1981] participants to remember

state information from one to next
BAN-logic Hosts excessively trusted Analysis of
[Burrows et al., 1989] knowledge
π-calculus Indeterminate Secrecy only
[Milner, 1999] state machines
Spi calculus Minimal intruder Proves
[Abadi and Gordon, 1999] capabilities more than secrecy

(b)

3. Modal logic: Modelling and verifying protocols using modal logics developed for anal-

ysis of knowledge and belief during the execution of distributed algorithm.

4. Algebraic approach: This approach is based on modelling of the properties of crypto-

graphic protocols as an algebraic term.

The emphasis on verifying the correctness, or otherwise, the strength of cryptographic pro-

tocols has shifted from the error-prone informal approaches to the more acceptable formal

approaches. The formal techniques have yielded several tools and procedures and will con-

tinue to do so in the immediate foreseeable future. Table 2.2a and 2.2b summarise the

developments in verification protocols.

As there is no explicit modelling of an intruder and intruder capabilities in algebraic ap-

proach, and principals of a wireless system exposes secrets of the system in modal logic, one

15

of the most preferred methods is the use of general purpose verification tools. CSP is one of

these tools. This is an abstract language designed specifically for the description of commu-

nication patterns of concurrent system components that interact through message passing

[Hoare, 1985]. The aim of CSP approach is to reduce questions about security protocols and

properties to questions concerning whether CSP processes satisfy particular CSP specifica-

tions [Schneider, 1998]. This approach forces the separation of properties and protocols, and

allows discussion of what is meant by particular kinds of security properties, independent of

the protocols that are intended to achieve them. In other words, CSP is particularly suitable

for describing protocols close to the level we think of them. The language of CSP is used to

present authentication protocol models. Schneider states that formalisation of the protocol

into CSP exhibits issues and forces design decisions that may not have been distinctly stated

in the original protocol description [Schneider, 1999]. In order to model protocols, the par-

ticipants in the protocols are modeled as well [Eneh et al., 2006], [Roscoe, 2005], [Schneider,

1998]. In a simple protocol, it is assumed that there are two communicating principals, A

and B and an adversary who is the attacker. This is given as follows:

1. With unknown number of clients:

NET = (|||j ∈USER USERj) | [trans, rec] | ATTACKER

2. With only two participants (client/agent):

NET = (USERA ||| USERB) | [trans, rec] | ATTACKER

The above descriptions are same, with different number of participants. The second one im-

plies that users A and B inadvertently communicate with the attacker through transmission

and reception channels represented as trans and rec respectively. The medium consists of

two channels, one for transmission and one for reception. Communications are modelled by

two types of events, A transmission event is of the form trans.i.j.m and is interpreted as

“user i sends a message m destined for user j ”. A reception event is of the form rec.i.j.m and

means “i receives a message m, from user j ” [Dutertre and Schneider, 1997]. The attacker is

modelled in a way to have the capacity of intercepting messages in all directions, modifying

messages, injecting new messages and transmitting messages [Schneider, 1998]:

ATTACKER sat (INIT ∪ (tr ⇓ trans)) ` tr ⇓ rec

The sets of all the messages that pass through the rec channel are a function of the initial

knowledge of the attacker and the sets of the messages input on the trans channel follow:

ATTACKER(S) = trans?i?j?m ⇒ ATTACKER (S ∪ m) � i, j ε USER, S`m rec.i!j!m ⇒
ATTACKER (S)

16

The above descriptions of NET and ATTACKER are related with possible deductions and induc-

tions theorems of [Roscoe, 1995], [Paulson, 1998] and [Bella, 2000]. The above descriptions’

initial propositions that concern initial knowledge are adapted from [Lowe, 1997b]. The

propositions are stated as:

1. ∀ m ∈ INIT.I(m)

2. (∀ m′ ∈ S.I(m
′
))∧ S ` m ⇒ I(m)

These two conditions imply that if the attacker ever knows the messages that satisfy the

predicate I, then the attacker is able to generate the messages that satisfy I. Considering

the inference rule [X|Y]π ⇒ M, [Cousot and Cousot, 1992], any principal (attacker) that is

able to perform deductive or inductive calculation under condition π obtains the set of fact

m ∈M. The rules governing X are according to the theorems for deductions, where the rules

for Y is the case for possible inductions.

In the study of [Eneh et al., 2006], a set of messages are defined that depend on the inference

rule [X|Y]π⇒M, [Cousot and Cousot, 1992]. In their study, it is discussed that the capability

of induction is such that an attacker can inductively define a member of the set of messages

passing through its interface and/or inductively define functions that have been used to

create members of message sets. The message sets are defined as:

1. U is the universal set comprising of the attackers initial knowledge and sets of the

messages passing through the interface where:

U ⊆ Y ∀ U ∈ X

The set of deductions X = (INIT ∪ (tr⇓trans)) ` tr ⇓ rec

2. ω is an operator that builds facts from predicates, the set of rules instances of P/m

where P ⊆ U and m ⊆ U. m ∈ M. The rule instance of P/m follows the conventional

representation of rules such that

P1, ..., Pn

m1, ...,mn

(C1, ..., Cn)

where each Pi (i=1, 2, ..., n) represents the premise(s) Ci (C corresponds to π of the

inference rule) the possible side conditions, and mi, the conclusion. ω implies that if

an intruder knows a set of rules for constructing a fact, then the intruder knows the

fact. This is expressed in terms of the inference rule of [X|Y]π ⇒ M as follows:

17

ω ⇒
[
P

m

]
π ⇒ m ∀ P ∈ U and m ∈ Y

and

ω(X) ⇒
[
P

m

]
π ⇒ m ∀ P ∈ U and m ∈ X

3. According to relational set mathematics and the foundation of models in formal ver-

ification detailed in [Hoare, 1985] and [Roscoe, 2005], every set has a greatest lower

bound ⊥, then every set has a least upper bound >, and vice versa by symmetry. ⊥
⊆ U is the least element in the set U. The significance of ⊥ lies in the consideration

of least fixed points, which is a measure of the greatest lower bound and the greatest

fixed point (least upper bound) of the search space of the set U.

⊥ ⊆ U ⊆ >

4. The symbol Θ is a function that constructs a fact from sets, including partially ordered

sets or joins. Consider the join:

ρ(ρ(U)) ↪→ ρ(U)

The induced ordering is as:

m v y
def
= m t y = y

where, y is a partial order and m is joined to y. In terms of the inference rule [X|Y]π

⇒ M, the function Θ is given by:

Y , Θ(X) = [ρ(ρ(X))] m ∈ X ⇒ m

In Section 7.2, an attacker is modelled by using above inductive-deductive theorems.

Apart from these, with the use of the inference rule to analyse a typical Kerberos protocol

in the presence of the TGS reveals that the protocol is subject to a TGS masquerade attack.

As discussed in the study of [Eneh et al., 2006], authentication in Kerberos requires a client,

C, to send a request to the authentication server, AS, requesting credentials for a given

application server, V. The AS responds with the requested credentials consisting of a ticket

and a session key encrypted with the client’s key. Kerberos exchanges may also be in the

presence of a TGS. The [Eneh et al., 2006] CSP model of inference is as follows:

18

1. C → AS : Options ‖ IDc ‖ Realm ‖ IDtgs ‖Times ‖ Nonce1

2. AS→ C : Realm ‖ IDc ‖ Tickettgs ‖ Ekc[Kc,tgs ‖ Times ‖ Nonce1 ‖ Realmtgs ‖ IDtgs]

3. C → TGS : Options ‖ IDv ‖ Times ‖ Nonce2 ‖ Tickettgs ‖ Authenticatorb
c

4. TGS→ C : Realmc ‖ IDc ‖ Ticketv ‖ Ekc,tgs[Kc,v ‖ Times ‖ Nonce2 ‖ Realmv ‖ IDv]

5. C → V : Options ‖ Ticketv ‖ Authenticatorc
c

6. V → C : Ekc,v[TGS2 ‖ Subkey ‖ Seq]]

Nevertheless, the same study shows that, in distributed systems where an intruder has reason-

able communication and computational power belonging to the same administrative domain

[Eneh et al., 2006], Kerberos may be compromised. In other words, the chance of imper-

sonating a principal by an intruder is higher where AS and TGS are on the same broadcast

network.

CSP views principals as processes and was designed for describing systems of interacting

components, supported by underlying mathematical theory for reasoning about interacting

components [Schneider, 1999]. CSP considers components, in effect processes, as independent

self-contained entities with interfaces through which they communicate with their environ-

ment. A trace is the sequence of communications between the environment and the process

[Roscoe, 2005], [Ryan et al., 2000], [Schneider, 1999]. A trace might be finite because the

observation was terminated or because the process and environment reach a point where

they can not agree on any event. Also, it might be infinite when the observation goes on

forever and infinitely many events are transacted. Untimed CSP and Timed CSP are two

basic level to record traces. In former one, the events that occur in order are written down.

However, the exact times when they happen are written down for the latter one [Roscoe,

2005], [Ryan et al., 2000]. Trace Semantics are used by [Schneider, 1998] to specify security

properties for protocols as trace specifications. This is done with the following definitions:

P sat S ⇔ ∀ tr ∈ traces(P) • S(tr)

where P is a process and S is a predicate. P satisfies S, if S(tr) holds for every trace tr of P.

In terms of occurrence of events in its traces, the following definition is used for some sets

of events R and T:

P sat R precedes T ⇔ ∀ tr ∈ traces(P) • (tr � R 6= 〈〉 ⇒ tr � T 6= 〈〉)

19

where a process P satisfies the predicate R precedes T if any occurrences of an event from

T is preceded by an occurrence of an event from R in every trace tr of P.

In the same study of [Schneider, 1998] and [Shaikh and Bush, 2006], a set of rules is introduced

and defined as well to verify the specifications. According to this study, set of rules defined as

atom A, in this, another three sets are considered which are known as the set of participant

identities on the network to be U , the set of nonces used by the participants in protocol run

as N and the set of encryption keys used as K . Altogether, the atoms are defined as A =

U ∪ N ∪ K . A message space M contains all the messages and signals that appear during

the protocol’s run in a way that m ∈ A ⇒ m ∈ M . A rank function ρ is defined in order

to map events and messages to integers, ρ: M → Z . This space is divided into two parts

for characterising those messages that an intruder might get hold of [Ryan et al., 2000]:

MP - = m ∈ M | ρ ≤ 0

MP + = m ∈ M | ρ > 0

where MP - is defined as a non positive rank, for those messages that the enemy should never

get hold of, where MP + is assigned for positive rank for messages that intruder might get

hold of without compromising the protocol.

A general rank function theorem is presented in order to ensure that a protocol will be

verified to be correct with regard to its security properties, if all the steps of the theorem

are proven [Schneider, 1998]. The secrecy and authentication properties are concerned with

conditions under which particular facts become available to an intruder [Ryan et al., 2000].

For the sets R and T, a rank function, ρ: M → Z is such that:

1. ∀ m ∈ IK • ρ(m) > 0

2. ∀ S ⊆ M, m ∈ M • ((∀ m′ ∈ S • ρ(m′) > 0)
∧

S ` m) ⇒ ρ(m) > 0

3. ∀ t ∈ T • ρ(t) ≤ 0

4. ∀ i ∈ U • Useri

‖
R Stop maintains ρ

then NET sat R precedes T, where NET = (|||j ∈USER USERj) | [trans, rec] | ATTACKER.

Network, NET satisfies R precedes T, shows that each run either satisfies same specifica-

tions or else can never perform T. In other words, NET which prevents the occurence of R,

and then aims to establish that T can not occur [Ryan et al., 2000]. Rank function, ρ is

20

applied not only to messages and signals, but also to events, traces and sets [Schneider, 1999].

In Section 5.4 the importance of rank-functions and construction of these functions according

to the CSP rules are presented and discussed.

2.3.2 Model Checking Techniques

The underlying principle of model-checking is the performance of an exhaustive search over

behaviours described. FDR, a model-checker, is an automated tool support designed for

CSP. FDR is a commercial tool, a product of Formal Systems Ltd. Europe, designed to

establish results about concurrent and reactive systems. In addition to permitting safety

conditions to be expressible in traces, failures and divergence, allow for the specification of

some set of events a process will eventually be prepared to engage in after a given trace

[Ryan et al., 2000]: failures for a condition of nondeterministically arriving at a stable state,

and divergence, a condition of unwillingness to arrive at a stable state.

By examination, when used to check security properties, FDR functions by comparing two

essential descriptions of systems. These descriptions are the specifications and the imple-

mentations. The specification is an abstract and reasonably correct description of the system

that is relatively easy to establish, while the implementation is a more complex process with

desired efficiencies or structural properties [Ryan et al., 2000], such as parallel composition,

concurrency etc. Basically, CSP offers two semantic constructs of interest for FDR to check

namely, the denotational and operational constructs. FDR does not manipulate the deno-

tational values directly; rather it exploits the congruencies between the denotational and

operational semantics of CSP to calculate the properties based on an operational realisation

of the processes in question [Ryan et al., 2000].

The examination done by FDR is such that the implementation is checked to ascertain if

the implementation is an exact refinement of the corresponding specification. Refinement is

a model checking process that proves the correctness of specifications by using formal meth-

ods. Refinement is used to analyse the design in its current stage of the design process [Ryan

et al., 2000]. Where the check is successful, it implies that the implementation is a reasonable

candidate for substitution into the role of the specification. The prime implication of the

stated scenario is that no observation of any run, say of a protocol, can ever suppose that

the implementation does not refine the specification; this is accounted for by the exhaustive

21

search performed by model-checking. Nevertheless, where the implementation fails to be

a refinement of the specification, it corresponds to a possible attack against the protocol,

or system, being described. In cases where FDR finds that implementation does not refine

specification, FDR returns a trace of the system that does not satisfy the specification. The

returned trace corresponds to an attack upon the protocol. The traces are seen using the

debug tool that comes with the FDR distribution, and can be interpreted using interpret

that accompanies CASPER, another support tool to be discussed in a later section. Fur-

thermore, the class of systems that can be analysed using model-checking is broadened by

using techniques such as data-independence, induction, simplifying transformations etc.

2.3.3 Automated Code Generation

CSP has generated positive interest and astonishing results, especially in verification, by

being a reliable assistive technology for the description and analysis of patterns of behaviour

of concurrent and real time systems. Despite the unrivalled power of description inherent in

the CSP language, the process of producing CSP scripts by hand remained difficult, error-

prone, and time-consuming. As a result, a compiler namely, CASPER, has been introduced

by [Lowe, 1997], which helps to produce CSP descriptions.

CASPER is a program that automatically produces a CSP description from a more abstract

description, thus simplifying the modelling and analysis process. The operation of CASPER

is very simple. CASPER takes high level or abstract notation describing protocols to be

analysed as input and compiles the notation into the corresponding CSP code as output.

The output is then analysed using FDR. In addition, CASPER comes with an interpret

utility which is used to interpret the result of the FDR debugger for cases where the imple-

mentation failed to be a refinement of the required specification.

A CASPER script could be divided into two parts: a general part that specifies a model of a

system running the protocol, and a specific part that defines given functions, the parameters

of the protocol. The CASPER input file must define not only the operation of the protocol,

but also the system to be checked. Therefore the input file contains two distinct parts:

1. A definition of the way in which the protocol operates, describing the messages passed

between the agents, the tests performed by the agents, the types of the data items

used, the initial knowledge of the agents and a specification of what the protocol is

supposed to achieve.

2. A definition of the actual system to be checked, defining the agents taking part in

22

the actual system and the roles they play, the actual data-types to be used and the

intruder’s abilities. [Lowe, 1997]

The first part is a function that returns a model of a system running the protocol and the

second part is for defining a particular image of that function by instantiating the parameters

of the protocol. The two parts of CASPER are further split into four sections each:

script :: = free-vars-section processes-section

prot-desc-section spec-section

act-var-section [functions-section]

system-section intruder-section

Each section of the CASPER script has different tasks:

“#Free variables” declares the type of the free variables and functions used in the definition

of the protocol.

“#Processes” declares the agents taking part in the protocol and gives information about

their state.

“#Protocol description” section defines protocol itself, by giving the messages that run the

protocol.

“#Specification” shows the requirements of the protocol.

“#Actual variable” declares the data-types used in the system to be checked with FDR.

“#Functions” gives definitions for the functions used in the protocol.

“#System” defines the system, in terms of the number and types of agents.

“#Intruder” gives the identity and initial knowledge of the intruder.

CASPER is used to demonstrate the feasibility of modelling authentication protocol partic-

ipants in such a manner to capture their full potentials. This provides a basis in order to

extrapolate the possibilities of what an intruder can achieve with a certain knowledge, and

on which level of the protocol this is achieved.

2.4 Existing Studies on Performance Evaluation of Se-

curity Policies

While the systems are configured to ensure reliable, secure communications, privacy and data

integrity, the performance of the underlying networks should also be taken into account. In

other words, the systems considered should still be able to perform sufficiently and legiti-

mate access to resources should not be compromised while the security policies are applied

23

Hence, it is essential to look at possible performance degradation that may be caused by

new security measures. This section covers performance evaluation techniques for computer

network communications existing in literature as well as performance studies for network

security and authentication protocols.

2.4.1 Performance Evaluation Techniques

Performance and availability analysis using modelling, allows engineers, researchers, devel-

opers and users to predict and detect possible drawbacks of the systems. This provides early

correction and accurate planning. Performance analysis is also useful for optimisation of

various system characteristics [Jain, 1991], [Law and Kelton, 2000], [Ever, 2007], [Obaidat

and Boudriga, 2010].

There are three techniques used for performance evaluation of computer and communication

systems. These are benchmarking, simulation, and analytical modelling [Jain, 1991], [Banks

et al., 2005], [Obaidat and Boudriga, 2010].

The process of performance analysis by actual measurements is called benchmarking. Bench-

marking gives very accurate results. However, benchmarking is only possible if something

similar to the proposed system already exists. If the concept considered is new, analytical

modelling and simulation are the only techniques available. Benchmarking is also, usually

very costly in terms of equipment, personnel, and time [Jain, 1991].

Simulation is the operation of a real world process over time [Banks et al., 2005], [Obaidat

and Boudriga, 2010]. Simulation process involves building a simulation model of the system

considered. This approach is very flexible, and it gives fairly accurate and acceptable results,

but for sufficient accuracy, relatively high computation times are required [Law and Kelton,

2000].

Analytical modelling consists of formulae and/or numerical procedures that are computa-

tionally more efficient as compared to simulation [Law and Kelton, 2000], [Banks et al., 2005].

Analytical modelling of a system, or a specific part of it requires less computation. Analyt-

ical models generally provide the best information for the effects of various parameters and

their interactions [Jain, 1991]. However, analytical modelling requires relatively high level of

mathematical skills. Also it sometimes requires a degree of assumptions to simplify the sys-

tems considered [Jain, 1991], [Trivedi, 2002], [Banks et al., 2005]. This modelling approach is

24

very widely used in computer science for performance, availability, and reliability evaluation

of complex computer and communication systems. This approach is ideal for quick and, once

validated for relatively accurate results [Trivedi, 2002], [Banks et al., 2005].

Multi-server computer and communication systems are commonly preferred because of the

greater computation power they can provide, and improved reliability. Multi-server sys-

tems are more reliable than single server ones, since server failures do not cause complete

system failures, and the system can continue serving in a degraded mode. Multi-server sys-

tem models are extensively used in modelling transaction processing systems, and nodes in

communication networks [Chakka and Mitrani, 1994], [Haverkort and Ost, 1997], [Mitrani,

2005]. An analytical modelling approach, spectral expansion method is introduced in [Chakka

and Mitrani, 1994]. This technique is employed for solution of multi-server communication

models. As a result of the popularity of two dimensional processes, various numerical proce-

dures for their steady state analysis have emerged [Haverkort and Ost, 1997], [Mitrani, 2005].

2.4.2 Performance Studies on Network Security

As explained in Section 2.4.1, recent studies show that performance evaluation techniques

are employed for various network security protocols as well. As stated in [Zhao and Thomas,

2008], in network communications, authentication is not enough for a system in order to

be trustworthy and secure. It is also important being able to respond in a timely manner.

This response is not only an obvious usability requirement, but can also be a functional

requirement.

Existing studies such as [Harbitter and Menascé, 2002] and [Pirzada and McDonald, 2004]

addressed and evaluated the security performance of IEEE 802.11b wireless networks us-

ing single server-client architecture and simple traffic models. In [Baghaei and Hunt, 2004]

benchmarking experiments, which are based on Windows XP and W2000 Server, are per-

formed in order to investigate the effects of multiple security mechanisms on the performance

of multi-client congested and uncongested networks. In the research work of Harbitter and

Menascé, the interaction between different security layers and their effects on performance

(in terms of response time and throughput) are evaluated. However, their research was

limited to a single access point (AP), infrastructure mode and one type of authentication

mechanism. For performance evaluation, their results would not be applicable in ad-hoc

networks and with use of WPA [Harbitter and Menascé, 2002].

25

Two mutual authentication and key exchange protocols with anonymity to protect mobile

users’ privacy in a roaming network environment are proposed and pure performance eval-

uation measures are presented comparatively with previously presented protocols in [Jiang

et al., 2005]. For the first proposed protocol, identity anonymity is achieved by hiding the

real user ID based on the secret-splitting principle, while encrypting the real identity with

the shared key is used for the second one. The protocols protected a mobile user’s privacy

in the roaming network environment and reduced the risk that a mobile user uses a compro-

mised session key to communicate with visited networks. The two protocols can be applied

depending on the availability of the long-term shared secret key shared by the home network

and its users. The performance comparisons have shown significant security improvement

[Jiang et al., 2005]. However effects of potential server failures are not taken into account in

[Baghaei and Hunt, 2004], [Jiang et al., 2005].

Due to the critical function it provides, the availability of the KDC has a great effect on the

performance of the security policy used [Brennen, 2004]. In the study presented in [Zhao

and Thomas, 2008] a cost function of a secure KDC is evaluated. A queueing network model

has been established. In their study, Zhao and Thomas introduced a new approach to im-

plement a hybrid solution for more efficiency and more accuracy, because of the complex

calculation of original equations associated with large scale systems. They have shown how

a KDC is modelled by a closed queueing network and found out the service capacity that

a KDC satisfies a given number of clients, the optimal number of servers at the KDC and

the maximum rate at which keys can be refreshed. Similarly the trade-off between security

and performance in considering a model of a KDC is modelled and analysed in [Zhao and

Thomas, 2009]. In this study Zhao and Thomas tried to find solution to same problems as

stated in [Zhao and Thomas, 2008]. The model is specified using the Markovian Performance

Evaluation Process Algebra (PEPA). They implemented a simulation model, attempted to

approximate the system behaviour with a much simpler model and also, ordinary differential

equation analysis applied since their model suffered from state space explosion and prevented

analysis with significant number of clients [Zhao and Thomas, 2009]. In both studies [Zhao

and Thomas, 2008] and [Zhao and Thomas, 2009] the availability of the KDC has not been

considered. However, assuming that it is unlikely to encounter server failures would be quite

optimistic [Trivedi and Xiaomin, 2002].

In the event of KDC failures, administrative functions such as kadmind will be unavailable

until the primary server is restored or replaced. Specifically, principal management, key

26

creation, and key changes, cannot be done during a primary server failure [Brennen, 2004].

Server failures, affect the overall performance of the KDC, it is desirable to consider a Ker-

beros server for exact performability modelling.

Considering the above findings analytical models are considered and evaluated in Chapter 6

that check performance and availability.

2.5 Conclusion

In the literature review chapter various existing methods and solution techniques for Ker-

beros are described and analysed. Basic terms and techniques used in this research are

defined. Kerberos authentication protocol and its basic operation in wireless communication

networks are studied. The existing authentication methods developed for Kerberos in wire-

less communication networks are critically analysed and compared. As stated in Sections

2.2.1 and 2.2.2 due to critical nature of wireless communication networks, the existing meth-

ods are insufficient to address perspective and requirements in authentication design.

Information on analysis and verification of authentication protocols is given in Section 2.3.

Existing methods and techniques are critically analysed. The use of and main relation be-

tween these models are underlined. The advantages of using CSP and CASPER/FDR are

stated. Also, brief explanations for CSP and CASPER are given to demonstrate the feasi-

bility of modelling authentication protocol participants and to extrapolate the possibilities

of what an intruder can achieve with a certain knowledge.

The existing performance evaluation techniques and methods for communication networks

are studied and details are given and critically compared. The necessity of having a perfor-

mance model for network security is stated. Background information of performance models

under study for network security is given in detail. As a result, it has been seen that only

performance (in terms of response time) measures have been taken into account and avail-

ability of components such as KDC have not been considered.

The design of authentication protocols, generally, tends towards the adoption of public key

infrastructure methods. This trend is a result of the observed weaknesses and limitations of

the shared key schemes. In the context of shared key schemes, compromise of the shared key

within any host or principal inadvertently compromises the entire system.

27

Kerberos is one of the most preferred authentication mechanisms. Kerberos, based on Need-

ham and Schroeder protocols, raises some concerns which include lack of protection against

denial-of-service attacks, principals being required to maintain secrecy, and of course, in-

tegrity, of secret keys, and clock synchronization to avoid replay attacks. The studies about

Kerberos on wireless communication systems, when security provision rely on the 802.1x stan-

dard are considered, session hijacking and masquerading attacks are encountered. Recent

studies, reveal two categorical enhancements; those that depend on public key infrastruc-

ture and those that add a proxy server [Harbitter and Menascé, 2002]. In this study closed

networks are used to compare the performance of variants of Kerberos, using a public key

infrastructure or adding a proxy server, and concluded that though shared key systems used

within proxy servers outperform the public key options they also expose difficulties. Simi-

larly, in [Zhao and Thomas, 2008], it is shown how a KDC is modelled by a closed queueing

network and found out the service capacity that a KDC satisfies a given number of clients,

the optimal number of servers at the KDC and the maximum rate at which keys can be

refreshed. Similarly the trade-off between security and performance in considering a model

of a KDC is modelled and analysed in [Zhao and Thomas, 2009]. In this study Zhao and

Thomas tried to find a solution to same problems as stated in [Zhao and Thomas, 2008].

In both studies [Zhao and Thomas, 2008] and [Zhao and Thomas, 2009] the availability of

the KDC has not been considered. However, assuming that it is unlikely to encounter server

failures would be quite optimistic [Trivedi and Xiaomin, 2002].

The emphasis on verifying the correctness, or otherwise, the strength of cryptographic pro-

tocols has shifted from the error-prone informal approaches to the more acceptable formal

approaches. Formal methods and their related techniques have necessitated emergence of

tools and procedures to provide support. CSP, using FDR exposed flaws not discovered

by its preceding approaches [Ryan et al., 2000], [Schneider, 1998]. Significantly, the CSP

approach shows potentials for adaptation towards the analysis of complex and specialised

protocols.

To put it clearly, the aim of this research is to design and model different authentication

mechanisms for Kerberos in wireless communication systems. The validation of these mod-

els with formal methods and effects on performance degradation are also objectives of the

research.

As explicitly discussed, the contributions of the thesis are to provide authentication protocol

28

framework to be used in the design of security mechanisms and to validate the framework by

formal verification tools in order to make provision for the formalisation of these approaches

and also, combination of both inductive and deductive formal approaches in order to model

a stronger attacker model on these modelled authentication protocols.

Depending of this statement the achieved contribution of the thesis is stated as follow in

Section 1.3.

Referring to the List of Publications of the Thesis, publication 1 (Kirsal et. al. 2005) reveals

the work in Chapter Three.

Publication 2 (Kirsal and Gemikonakli(2006)) reveals the work in Chapter Four.

Publication 3 (Kirsal and Gemikonakli(2007a)) reveals the works in Sections 5.2 and 6.2.

Publication 5 (Kirsal and Gemikonakli(2007b)) reveals the work in Section 5.2.1.

Publication 6 (Kirsal and Gemikonakli(2008)) reveals the work in Section 5.3. This work

awarded as the best promising research in network security.

Publication 8 (Kirsal and Gemikonakli(2009a)) reveals the work in Section 5.4.

Publication 9 (Kirsal et. al. 2009b) reveals the work in Section 6.3.

29

Chapter 3

A Framework for Solution to the

Problem of Trusted Third Party for

Wireless Communication Networks

3.1 Introduction

In this chapter, a new framework is proposed in order to provide a background for the design

of security solutions for Kerberos security protocol for IEEE 802.11 wireless LANs based on

the EAP stack model.

The theoretical grounds of Kerberos, its implications and the capability of the attacker are

presented. This chapter is also concerned with the expression of particular security proper-

ties and protocols within CSP and FDR, as well as a compiler tool, CASPER that provides a

foundation for analysis and verification. Additionally, in terms of authentication and autho-

risation, security aspects of Kerberos are discussed. Also, this protocol’s usability is checked

with CASPER.

3.2 The Framework Proposed as a Kerberos Variant

The aim of the proposed framework depicted in Figure 3.1, is to provide a background for

security solutions to be employed in wireless LANs where the requirement for security is

paramount. The requirement for network security is consistent with permitting authorised

access to information and services, while preventing unauthorised access to and corrupting

30

the network.

The framework presented in this section, extends the provisions of [Eneh et al., 2004], crit-

ically analyses the existing variants, and provides the avenue by which TAM, presented in

Section 2.2.2, [Eneh et al., 2004], is implemented as a variant of Kerberos. This step is

necessitated by the need for the TAM framework to efficiently derive the functional benefits

of Kerberos. The ultimate goal is to propose a new and improved framework which relies on

provisions of the IEEE 802.1x standard. It also uses similar infrastructure components as

Kerberos but significantly provides for authentication of the servers.

Following the findings of literature review, since Kerberos is a trusted 3rd party authenti-

cation protocol and application independent, its paradigms and entities are finalised. As it

can be seen from Figure 3.1, the crytographic protocol, programs and data containing the

credentials of the legitimate entities of a particular wireless LAN environment are installed

on each of the entities as well as TGS and KDC. The credentials are the identities of the

devices (such as MAC addresses) and they are stored with cryptographic protection. The

crytographic protocol adopts the challenge-response paradigm [Klensin et al., 1997]. The

interactions between the entities are represented using numbers 1-19. These numbers repre-

sent the interactions between the legitimate entities of a wireless LAN environment.

Numbers 1, 2, 3, 16, 17 represent the interactions between the client and the access point

while numbers 4, 15, 18, 19 represent the interactions between the access point and the

authentication server. The numbers 5, 6, 7, 8 and 9, 10, 11, 12 represent the interactions

between authentication server and KDC, and authentication server and TGS respectively.

Also, numbers 13, 14 represent the interactions between KDC and TGS. The involved steps

are explained below:

1. The supplicant (wireless client) sends an Extensible Authentication Protocol over LAN

(EAPOL) start message to the authenticator (access point) requesting authentication.

2. The access point (AP) responds with a challenge to the supplicant to supply the sup-

plicant’s device identity. The AP also bundles the MAC address of the AP itself along

with the challenge on actual network traffic under strong encryption to the supplicant.

3. The supplicant responds to the AP after processing the challenge. The supplicant

processes the challenge by decrypting the challenge text and ensuring that the AP’s

MAC address is found in the supplicant’s database of possible APs that the supplicant

31

Figure 3.1: The proposed framework

can use to connect to the server or other nodes in the wireless LAN. The supplicant’s

response is also under strong encryption.

4. The AP challenges the authentication server (AS). The challenge text is bundled with

the AP’s and the supplicant’s MAC address still under strong encryption.

5. The AS sends an EAP Over LANs (EAPOL) start message to the KDC requesting

authentication.

6. The KDC responds with a challenge to the AS to supply the AS’s device identity. The

KDC point also bundles the MAC address of the AS itself along with the challenge on

actual network traffic under strong encryption to the AS.

7. The AS challenges the KDC. The challenge text is bundled with the AS’s, AP’s and

the supplicant’s MAC addresses still under strong encryption.

8. The KDC responds to the application server’s challenge after processing the content

of the challenge text. The process involves the decryption of challenge text and a

confirmation or proof of knowledge of the existence of both AS and the address of the

server. The KDC sends this response under encryption to the AS.

9. The AS sends an EAPOL start message to the TGS requesting authentication.

10. The TGS responds with a challenge to the AS to supply the AS’s device identity. The

TGS points also bundles the MAC address of the AS itself along with the challenge on

actual network traffic under strong encryption to the AS.

32

11. The AS challenges the TGS. The challenge text is bundled with the AS’s, AP’s and

the supplicant’s MAC addresses still under strong encryption.

12. The TGS responds to the AS’s challenge after processing the content of the challenge

text. The process involves the decryption of challenge text and a confirmation or proof

of knowledge of the existence of both AS and the address of the server. The TGS sends

this response under encryption to the AS.

13. The KDC server challenges the TGS. The challenge text is bundled with the KDC’s,

AP’s and the supplicant’s MAC addresses still under strong encryption.

14. The TGS responds to the KDC’s challenge after processing the content of the challenge

text. The process involves the decryption of challenge text and a confirmation or proof

of knowledge of the existence of both KDC and the address of the KDC. The TGS

sends this response.

15. The AS responds to the AP’s challenge after processing the content of the challenge

text. The processing involves the decryption of the challenge text and a confirmation

or proof of knowledge of the existence of both the AP and the supplicant within the

secured database of the server. The response includes the MAC address of the server.

The AS sends this response under encryption to the AP.

16. The AP challenges the supplicant to run the program to authenticate the end user.

17. If the user responds correctly to the authentication request, the supplicant responds

accordingly to the AP.

18. The AP sends the users sign-on response from the supplicant to the AS for the necessary

processing.

19. The AS responds to the AP with either the ACCEPT packet or the REJECT packet,

depending on the outcome of the processing, to the AP. This makes the AP to transition

to the authorised state to allow traffic to and from the supplicant with the ACCEPT

message or unauthorised state with the REJECT message.

The proposed model presented above is addition of a new variant on highly confidential,

popular authentication protocol, Kerberos for wireless LANs. The full implementation of the

model is expected to improve security in terms of authentication and masquerading attacks.

Next Section, 3.3 provides the foundation of a design that is developed for analysing, testing

and verification of the framework.

33

3.3 Analysis and Verification of the Designed Frame-

work

This section is concerned with the framework’s availability in terms of authentication. Ker-

beros implications and the capability of the attacker under assumptions of possible deductions

with inductive capability in CASPER/FDR are also presented.

The aforementioned two authentication protocols, Kerberos [Kohl and Neuman, 1993], [Neu-

man and Ts’o, 1994] and Encrypted Key Exchange [Diffie and Hellman, 1976], are combined

for the verification. Depending on paradigms and entities (such as being a timed authentica-

tion protocol) of the framework and the aforementioned protocols, combined protocol script

is written in CASPER. The following script is the part of this protocol:

#Processes

INITIATOR(A,na) knows SKey(A), PK,SK(A), passwd(A,B)

RESPONDER(B,S,nb,ns) knows SKey(B), PK,SK(B), passwd(A,B)

SERVER(S,kab) knows SKey, PK, SK, passwd

#Protocol description

0. -> A : B

[B != A]

1. -> A : S

2. A -> S : B

3. S -> A : {{ts, B, kab}{SKey(A)}}{passwd(A,B)}

4. S -> A : {{ts, A, kab}{SKey(B)}}{passwd(A,B)} % enc

5. A -> B : enc % {{ts, A, kab}{SKey(B)}}{passwd(A,B)}

6. A -> B : {A, ta, na}{kab}

7. B -> A : {ta, na, nb}{kab}

8. A -> B : {nb, ta}{kab}

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, PK, SK(Mallory), \

SKey(Mallory),passwd(Mallory,Alice), passwd(Mallory,Bob), \

passwd(Alice,Mallory),passwd(Bob,Mallory),passwd(Mallory,Mallory)}

Guessable = Password

In the “#Processes” section, the first parameter of each process (here A, B and S) should

represent agent identities used in the “#Protocol description” section. Names are given to

the roles played by the different agents. In this protocol, INITIATOR, RESPONDER, and

34

SERVER are chosen. The parenthesized parameters and the variables following the key-

word “knows” define the knowledge that the agent is expected to have at the beginning of

the protocol run. In the above proposed protocol, the initiator A and S are expected to

know own identity A, S, the nonce na, nb and ns, the public key PK, own secret key

SK(A), server key SKey(A) and common password passwd(A,B). Since, actual work of

S is designed as SERVER, it is not necessary to define its keys in both INITIATOR and

RESPONDER.

In the “#Protocol description” section, the protocol itself is defined by listing the steps in

order. These steps will correspond to protocols messages. Message 0 is used to start the

protocol off and tells A, the identity of the agent with whom he should run the protocol.

Since the above protocol is timed protocol, timestamps ta, ts are used as variables in the

message. Furthermore, the entities of the messages are encrypted with the server key, SKey,

and the messages are encrypted with their common passwd(A,B), which is distributed by

the server. This increases the time it takes for the intruder to decrypt the message. Espe-

cially in Message 4, the sender, A creates and sends message, but the receiver, B stores this

message in variable enc, without trying to interpret it. It prefers to wait until it is sure of

the authenticity of the communicating agent. In other words, B decrypts this message and

performs the appropriate checks only after receiving Message 5. Message 4 was encrypted

with the inverse of the key receiving in Message 5, which B expects to be A’s password.

The “#Intruder Information” section, is the part of the script that, an intruder’s identity

and the set of data values that knows, are initially mentioned. The “Intruder knowledge”

section holds the identifiers and functions of the protocol that are known and can be applied

to any other value to those identifiers and functions.

The protocol run through CASPER and checked through FDR. Due to the authentication

specifications introduced, there were no attack found. The verification of the framework and

its authentication specifications are represented in Figure 3.2. The examination of verifica-

tions is done by FDR as well in order to check ascertains. The implementation is an exact

refinement. The check is successful, where the prime implication of the stated scenario is

that no possible attacks found against the protocol.

35

Figure 3.2: Verification results of the framework

3.4 Conclusion

In this chapter, a framework is proposed in order to provide a background for design of

security solutions for Kerberos security protocol for IEEE 802.11 wireless LANs that require

high level of security. The main objective of this proposed model is to identify and develop

a new, improved variant for Kerberos.

This chapter is concerned with the expression of particular security properties and protocols

within CSP and FDR, as well as a compiler tool, CASPER that provides a foundation

for analysis and verification. Additionally, in terms of authentication and authorisation,

security aspects of Kerberos are discussed. Also, this protocol’s availability is checked with

CASPER. The theoretical grounds of a commonly used protocol, Kerberos, its implications

and the capability of the attacker under assumptions of possible deductions are presented

with inductive capability in CASPER/FDR. Since, possible attacks are minimised, as initial

steps for the proposed model, this protocol is a success. New improvements will be introduced

on the specifications and description of the protocol in the following chapters.

36

Chapter 4

Development of an Authentication

Protocol to Address the Delayed

Decryption Property in Trusted Third

Party Authentication Protocols

4.1 Introduction

The work presented in this chapter is a new variant of the proposed authentication protocol

presented in Section 3.3. Additionally, the design of this new protocol depends on delay

decryption property of Kerberos [Neuman and Ts’o, 1994] within the designed framework in

Section 3.2. Changes on the protocol and its description are done accordingly.

The design of the protocol, its usability and its verification are the main concerns of this

chapter. New entities, as well as their functionalities are defined and introduced. Also, the

validation of the use of these entities is analysed.

4.2 Proposed Authentication Protocol with Delay De-

cryption Property

Despite the proven protocol description and specifications in Section 3.3 that no attack found,

threats of penetration and other forms of attacks continuously should be considered, since

new forms of intruders are developed and created. As discussed earlier in Section 3.3, the

37

proposed protocol is timed authentication protocol, where decryption can be delayed. By

using the opportunity, masquerading intruder is prevented to break the decryption.

In this section, the credentials of the devices that are stored with cryptographic protection

and the interactions between the entities represented in Section 3.2 are used. Also, same

paradigms and entities of the combined aforementioned protocols are kept. However, protocol

description has additional entity,delay decryption within its script. This entity is one of the

paradigms of timed authentication protocol that timestamps allow for a delay of per time

unit per message [Kohl and Neuman, 1993], [Lowe et al., 2009]. The following CASPER

script is the part of this new variant:

#Processes

INITIATOR(A,S,na) knows SK(A), SPK, SKey(A), PK(A), passwd(A,B)

RESPONDER(B,S,nb) knows SK(B), SPK, SKey(B), passwd(A,B)

SERVER(S,kab) knows PK, SSK(S), SKey, passwd

#Protocol description

0. -> A : B

[A != B]

1. A -> S : {B}{SKey(A)}

2. S -> A : {S, A, ts, {kab}{PK(A)}, PK(B) % pkb}{passwd(A,B)}

3. A -> B : {A, ts, na, {kab}{pkb % PK(B)}}{passwd(A,B)} % v

[A != B]

4. B -> S : {A}{SKey(B)}

5. S -> B : {S, B, PK(A) % pka}{passwd(A,B)}

[decryptable(v, pka) and nth(decrypt(v,pka), 1) == A \

and nth(decrypt(v,pka), 2) == now \

and decryptable(nth(decrypt(v,pka), 3), passwd(A,B)) \

and decryptable(nth(decrypt(v,pka), 4), SK(B))]

<na := nth (decrypt (nth(decrypt(v,pka), 3))) ; \

kab := nth (decrypt (nth(decrypt(v,pka), 4), SK(B)), 1)>

6. B -> A : {nb,na,tb}{kab}

7. A -> B : {nb,ta}{kab}

#Specification

Agreement(A, B, [na])

Secret(A, passwd(A,B), [B])

Secret(A, kab, [B])

Secret(B, kab, [A])

#Intruder Information

Intruder = Mallory

38

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, PK, SPK, \

SK(Mallory), SKey(Mallory),passwd(Mallory,Alice), passwd(Mallory,Bob), \

passwd(Alice,Mallory), passwd(Bob,Mallory), passwd(Mallory,Mallory)}

Crackable = SessionKey

Crackable = ServerKey

Crackable = Password

In the above protocol, the “# Processes” section shows similarities to Section 3.3’s “# Pro-

cesses”section. However, due to the design and the characteristics of the protocol description,

elements and entities are varied accordingly to fulfill assigned roles.

In addition to the “# Processes” section, “# Protocol description” and protocol’s entities

are extended in order to fulfill the delay decryption property of the suggested authentication

protocol. As it is emphasised in Section 3.3 the protocol’s messages are listed in execution

order. Message 0 to Message 3 are the first part of the protocol which is same as “# Pro-

tocol description” of the designed framework in Section 3.3. The second part starts with

Message 5. In testing Message 5, “decryptable”, “decrypt” and “nth(,n)” functions that are

provided by CASPER are used [Lowe, 1997]. The function “decryptable” takes a message

and a key, and tests whether the message is encrypted with the inverse of the key. However,

the function “decrypt” takes a message and a key and decrypts the message with the key.

“nth(,n)” returns the nth field from the message.

Due to the use of the delay decryption, B cannot automatically extract any fields from Mes-

sage 3, so more assignments are needed in the delay decryption model. The assignments are

added by using the functions encapsulated between < >. The first assignment assigns the

nonce, na as the third field of Message 3, but the message itself, is encrypted with the com-

mon passwd(A,B), which is distributed by the server, has to be decrypted using the inverse

of this key which is itself. The second assignment assigns the session key, kab as the fourth

component of Message 3 but the first field of the message is encrypted with B’s public key.

In addition to these, delay decryption is very sensitive to order of fields in the message. That

is to say; in the assignment < kab := nth (decrypt (nth(decrypt(v,pka), 4), SK(B)), 1)>, if

number 1 is changed to any other number the output will show a compilation error.

Furthermore, as nonces are also being used for authentication between the agents A and B,

the intruder can try to make the first attempt to attack Message 3 when A sends nonce, na

to B. Due to being a timed authentication protocol, an agent’s chance to attempt to connect

will be timed-out by the server because of unsuccessful connection attempts thus preventing

the attack.

39

As explained in Section 2.3.3, the“#Specification” section is used to specify the requirements

of the protocol, each line represents a particular environment.

• Secret(A, passwd(A,B), [B]) specifies that any completed run, A can expect the

value of the password, passwd(A,B) to be a secret; B represents the role with whom

the secret is shared. Even if the intruder cannot masquarade B, if it obtains the value

of passwd(A,B) assigned by A this specification would fail. Secret(A,kab, [B]) and

Secret(B,kab, [A]) are similar, where the value that is to be a secret is SessionKey,

kab.

• Agreement(A, B, [na]) specifies that A is correctly authenticated to B, and the

agents agree upon nonce, na. If B completes a run of the protocol with A, then

both agents agreed as which roles they took and the value of the na.

Referring to the information from Section 3.3, the “#Intruder Information” section, holds

the identifiers and functions of that are known to the protocol and also, other values that

can be applied to these identifiers and functions.

In the following section, the protocol is run through CASPER and checked through FDR.

The verification of the protocol, its delay decryption property and authentication specifica-

tions are also represented through CSP.

4.3 Analysis and Verification of the Designed Authen-

tication Protocol

In this section, the analysis and verification are done through the use of CASPER/FDR and

CSP respectively.

4.3.1 Analysis through Code Generation, CASPER

The designed protocol given in Section 4.2 is checked through CASPER for critical analysis

to find out errors associated with the design of the protocol for unassailable attacks. Figure

4.1 demonstrates the feasibility of the protocol and the achievements of an intruder with

knowledge.

40

Figure 4.1: Analysis of the new variant of the designed protocol

When the protocol is checked through FDR, due to the delay decryption introduced, there

were no attack found. The ascertains are identified by a tick. The ticks next to the ascertains

shown in Figure 4.2 indicated that the design is an exact refinement and successful, since

there are no attacks against the protocol and its specifications that are mentioned in Section

4.2.

4.3.2 Verification through Formal Methods, CSP

In this section the CSP representation of the proposed protocol and specified authentication

property is modelled. While modelling the different processes of a protocol, advantage of

the extensibility of CSP gives the opportunity to add additional elements to the processes.

The following scripts are representations of three participants, INITIATOR, RESPONDER,

SERVER of the proposed protocol that are defined in the“#Processes”section of the protocol

description in Section 4.2.

INITIATOR(A, S, na) =

[] B : Agent @ A != B & env_I.A.(Env0, B,<>) ->

output.A.S.(Msg1, Encrypt.(SKey(A),),<>) ->

41

Figure 4.2: Analysis of specifications of the new variant of the designed protocol

[] kab : SessionKey @ [] ts : TS @ [] pkb : addGarbage_(PublicKey) @

input.S.A.(Msg2, Encrypt.(passwd(A, B), <S, A, Timestamp.ts,

Encrypt.(PK(A), <kab>), pkb>),<>) ->

output.A.B.(Msg3, Encrypt.(passwd(A, B), <A, Timestamp.ts,

na, Encrypt.(pkb, <kab>)>),<>) ->[] nb : Nonce @ [] tb : TS @

input.B.A.(Msg6, Encrypt.(inverse(kab), <nb, na, Timestamp.tb>),<>) ->

[] ta : TS @

output.A.B.(Msg7, Encrypt.(kab, <nb, Timestamp.ta>),<na, kab>) ->

close.A.INITIATOR_role -> STOP

RESPONDER(B, S, nb) =

[] A : Agent @

[] v : addGarbage_({Encrypt.(passwd(A, B), <A, Timestamp.ts, na,

Encrypt.(pkb, <kab>)>) | A <- Agent, B <- Agent, kab <- SessionKey,

na <- Nonce, ts <- TS, pkb <- addGarbage_(PublicKey)}) @

A != B & input.A.B.(Msg3, v,<>) ->

output.B.S.(Msg4, Encrypt.(SKey(B), <A>),<>) ->

[] pka : addGarbage_(PublicKey) @ [] now : TS @

decryptable(v, pka) and nth(decrypt(v,pka), 1) == A and

nth(decrypt(v,pka), 2) == now and decryptable(nth(decrypt(v,pka), 3), passwd(A,B))

and decryptable(nth(decrypt(v,pka), 4), SK(B)) &

input.S.B.(Msg5, Encrypt.(passwd(A, B), <S, B, pka>),<Timestamp.now>) ->

42

RESPONDER’(B, S, nb, A, v, pka, nth(decrypt(nth(decrypt(v,pka),3))))

RESPONDER’(B, S, nb, A, v, pka, na) =

RESPONDER’’(B, S, nb, A, v, pka, na, nth(decrypt(nth(decrypt(v,pka),4),SK(B)),1))

RESPONDER’’(B, S, nb, A, v, pka, na, kab) =

[] tb : TS @

output.B.A.(Msg6, Encrypt.(kab, <nb, na, Timestamp.tb>),<>) ->

[] ta : TS @

input.A.B.(Msg7, Encrypt.(inverse(kab), <nb, Timestamp.ta>),<na, kab>) ->

close.B.RESPONDER_role -> STOP

SERVER(S, kab) =

[] A : Agent @ [] B : Agent @

input.A.S.(Msg1, Encrypt.(SKey(A),),<>) ->

[] ts : TS @

output.S.A.(Msg2, Encrypt.(passwd(A, B), <S, A, Timestamp.ts,

Encrypt.(PK(A), <kab>), PK(B)>),<>) ->

input.B.S.(Msg4, Encrypt.(SKey(B), <A>),<>) ->

output.S.B.(Msg5, Encrypt.(passwd(A, B), <S, B, PK(A)>),<>) ->

close.S.SERVER_role -> STOP

The keywords input and output are used to define receive and send application respectively,

where rec and trans keywords are the general definition for this purpose in Section 2.3.1,

[Schneider, 1998].

The delay decryption property and how it is designed within the protocol is explained under

the“#Protocol description” in Section 4.2. The INITIATOR, A creates and sends a message,

Message 3, but the RESPONDER, B stores this message in variable v, without trying to

interpret it. That is to say, RESPONDER, B decrypts this message and performs the

appropriate checks only after receiving message in the future steps, which is defined as

Message 5. This is verified with the following CSP script:

A != B & input.A.B.(Msg3, v,<>) ->

output.B.S.(Msg4, Encrypt.(SKey(B), <A>),<>) ->

[] pka : addGarbage_(PublicKey) @ [] now : TS

Referring the test of Message 5 “decryptable”, “decrypt” and “nth(,n)” functions provided by

CASPER are used in Section 4.2. However, more assignments are needed in the RESPON-

DER, B. These can be given as follows:

input.S.B.(Msg5, Encrypt.(passwd(A, B), <S, B, pka>),<Timestamp.now>) ->

RESPONDER’(B, S, nb, A, v, pka, nth(decrypt(nth(decrypt(v,pka),3))))

RESPONDER’(B, S, nb, A, v, pka, na) =

RESPONDER’’(B, S, nb, A, v, pka, na, nth(decrypt(nth(decrypt(v,pka),4),SK(B)),1))

RESPONDER’’(B, S, nb, A, v, pka, na, kab) =

[] tb : TS @

43

The first assignment, RESPONDER’(B, S, nb, A, v, pka, nth(decrypt(nth(decrypt(v,pka),3))))

assigns the nonce na as the third field of Message 3, but the message itself, is encrypted with

the password, passwd(A,B), has to be decrypted using the inverse of this key which is itself.

The second assignment, RESPONDER’(B,S,nb,A,v,pka,na) = RESPONDER’’(B, S, nb, A, v, pka,na,

nth(decrypt(nth(decrypt(v,pka),4),SK(B)),1)) assigns the SessionKey, kab as the fourth

component of Message 3 but the first field of the message is encrypted with B’s public key,

PK(B) and decryption has to be done by using the inverse of this key which is secret key,

SK(B) of B.

Since the designed, proposed protocol is time sensitive (i.e timed authentication protocol),

introduction of any delay will prevent intruder’s attempt to launch an attack. Because

of this, the delay decryption technique that is used in here is to delay intruders. In the

proposed protocol, RESPONDER, B should complete a protocol run with A. The following

CSP process implies that A was running the protocol with B and there is mutual agreement

between them. This mutual agreement depends on the value of nonce, na chosen:

AuthenticateINITIATORToRESPONDERAgreement_na_0(A) =

signal.Running1.INITIATOR_role.A?B?na ->

signal.Commit1.RESPONDER_role.B.A.na -> STOP

AlphaAuthenticateINITIATORToRESPONDERAgreement_na_0(A) =

{|signal.Running1.INITIATOR_role.A.B,

signal.Commit1.RESPONDER_role.B.A |

B <- inter(Agent, HONEST)|}

In addition to the nonces, timestamps are also being used for time agreement between the

processes A and B. The system is verified with the following CSP code:

SYSTEM

[[send.A.B.ALGEBRA_M::rmb((Msg7, Encrypt.(kab, <nb, Timestamp.ta>), <na, kab>))

<- signal.Claim_Secret.A.ALGEBRA_M::applyRenaming(passwd(A, B)).{B},

send.A.B.ALGEBRA_M::rmb((Msg7, Encrypt.(kab, <nb, Timestamp.ta>), <na, kab>))

<- signal.Claim_Secret.A.ALGEBRA_M::applyRenaming(kab).{B},

receive.A.B.ALGEBRA_M::rmb((Msg7, Encrypt.(kab, <nb, Timestamp.ta>), <na, kab>))

<- signal.Claim_Secret.B.ALGEBRA_M::applyRenaming(kab).{A} |

A <- Agent_renamed_, B <- Agent_renamed_, na <- Nonce_renamed_,

kab <- SessionKey_renamed_, nb <- Nonce_renamed_,

ta <- TS_renamed_

]] \ diff(Events,Alpha_SECRETS)

The following CSP code represents the “#Intruder Information” section, where Intruder-

Knowledge definition and its relevant initial knowledge are defined. Detailed explanations

are done in Sections 3.3 and 4.2:

44

IK0_init = union({Alice, Bob, Mallory, Sam, Nm, SK(Mallory), SKey(Mallory),

passwd(Mallory, Alice), passwd(Mallory, Bob),

passwd(Alice, Mallory), passwd(Bob, Mallory),

passwd(Mallory, Mallory), Garbage}, TimeStamp)

INTRUDER_1 =

(chase(INTRUDER_0)

[[hear.m_ <- send.A_.B_.(l_,m_,se_) |

(l_,m_,se_,re_) <- DIRECT_MSG,

A_ <- diff(SenderType(l_),{Mallory}), B_ <- ReceiverType(l_)]]

[|{| hear |}|] STOP)

[[say.m_ <- receive.A_.B_.(l_,m_,re_) |

(l_,m_,se_,re_) <- DIRECT_MSG,

A_ <- SenderType(l_), B_ <- ReceiverType(l_)]]

The keywords hear, say are used to represent hearing and saying a message during the

authentication and transfer of a message across network. (l_,m_,se_,re_) is types of

messages that are sent and received by processes (agents) as they are considered by those

agents.

Addition to the intruder definition, the initially known facts are added to the following CSP

script:

SAY_KNOWN_0 =

(inter(IK1, ALL_SECRETS_DI) != {} & dummy_leak -> SAY_KNOWN_0)

[] dummy_send -> SAY_KNOWN_0

[] dummy_receive -> SAY_KNOWN_0

SAY_KNOWN =

SAY_KNOWN_0

[[dummy_leak <- leak.f_ | f_ <- inter(IK1, ALL_SECRETS_DI)]]

[[dummy_send <- send.A_.B_.(l_,m_,se_) |

(l_,m_,se_,re_) <- DIRECT_MSG, components_(m_) <= IK1,

A_ <- diff(SenderType(l_),{Mallory}), B_ <- ReceiverType(l_)]]

[[dummy_receive <- receive.A_.B_.(l_,m_,re_) |

(l_,m_,se_,re_) <- DIRECT_MSG, components_(m_) <= IK1,

A_ <- SenderType(l_), B_ <- ReceiverType(l_)]]

STOP_SET = {| send.Mallory |}

INTRUDER =

(INTRUDER_1 [| STOP_SET |] STOP) ||| SAY_KNOWN

IntruderInterface = Union({{| send, receive |}, {|crack|}})

AlphaSystem = {|env, send, receive, close, tock|}

SystemManagerInterface = inter(AlphaSystem,CRACKING_M::AlphaManager)

SYSTEM = (SYSTEM_M::TSYSTEM_1 [|SystemManagerInterface|] CRACKING_M::Manager)

[|IntruderInterface|] INTRUDER_M::INTRUDER

The keyword leak is used to signal that a possible secret has been learnt. Elements such as

f_ , IK1 are components of the intruder for currently unkown fact and initial knowledge.

45

4.4 Conclusion

A new variant for the designed authentication protocol represented in Section 3.3 is presented

in this chapter. Kerberos and Key-Exchange authentication protocols are combined and the

design of this new protocol depends on delay decryption property of Kerberos. The main

objectives are to propose a protocol, to check its usability and to verify security concerns

in terms of authentication. New entities, as well as their functionalities are defined and

introduced. Changes on the protocol and its description are done accordingly and analysed

within CASPER/FDR. Also, the validation of the use of these entities is analysed within

CSP.

Despite the presence of a highly specified intruder and its attack attempts, it is proven that,

authentication specifications, design of the secrets in the protocol, parameterised specifica-

tions for all secrets, all keys and hash functions in the system and timing functions of the

system for secrecy checking are successful in terms of attack prevention.

46

Chapter 5

Development of a New Solution for

Frequent Key Renewal under

Pseudo-secure Conditions

5.1 Introduction

This chapter presents an approach of dynamically renewing keys under pseudo-secure situa-

tions, thus significantly reducing the chances of potential intruders. The proposed approach

involves secure key distributions at various intervals. During key distribution, temporary

interruption to link/server access is ensured. The access restriction happens for short inter-

vals. As discussed earlier in Section 1.4, pseudo-secure situations are generated from secure

random situations, and that are very hard for an observer to distinguish from true random

secure conditions.

An approach that involves a new authentication protocol that combines frequent key renewal

with timed authentication is also designed. The analysis and verification of authentication

properties and results of the designed protocol are presented and discussed.

5.2 New Solution for Frequent Key Renewal with Shut

Down Access

Owning to the growing popularity, the design and proposal of authentication approaches

for improving security of networks, threats of penetration and various forms of attacks have

47

continued to evolve. As mentioned earlier in Sections 3.2 and 4.2, preventing intruder access

to a network, increasing the decryption time of messages for an attacker is another way of

attack prevention. Especially, security protocols on distributed systems are time-sensitive.

In the analysis of delayed decryption systems, timestamps play an important role.

In this section a new approach is proposed. The proposed model is based on external link(s)

which are shut down for short intervals to ensure secure distribution of randomly generated

keys, and then the links are re-instated. This will considerably restrict time for intruders

to break encryptions. This aims at minimising risks from external sources assuming that

it is easier to control legitimate users behaving badly. The proposed system is shown in

Figure 5.1. Renewing keys at various intervals while potential intruders are blocked out

would inevitably work against intruders.

Figure 5.1: The proposed framework with shut-downs

The designed framework adopts the challenge-response paradigm that is defined in Section

3.2. The interactions between the entities and same paradigms of Section 3.2 are adopted

as well in this framework. Also, aforementioned protocol description with delay decryption

of Section 4.2 is improved for renewing keys at various intervals while system is temporarily

unavailable to external access for a period of time. The following CASPER script is the part

of the designed protocol:

#Processes

INITIATOR(A,S,na) knows SK(A), SKey(A), PK, passwd(A,B)

RESPONDER(B,S,nb) knows SK(B), SKey(B), passwd(A,B)

SERVER(S,kab) knows PK, SKey, passwd

#Protocol description

0. -> A : B

48

[A != B]

1. A -> S : {B}{SKey(A)}

2. S -> A : {S, A, ts, {kab}{PK(A)}, PK(B) % pkb}{passwd(A,B)}

3. A -> B : {A, ta, na, {kab}{pkb % PK(B)}}{passwd(A,B)} % v

[A != B]

4. B -> S : {A, tb}{SKey(B)}

5. S -> B : {S, B, ts, PK(A) % pka}{passwd(A,B)}

[decryptable(v, pka) and nth(decrypt(v,pka), 1) == A \

and nth(decrypt(v,pka), 2) == now \

and decryptable(nth(decrypt(v,pka), 3), passwd(A,B)) \

and decryptable(nth(decrypt(v,pka), 4), SK(B))]

<na := nth (decrypt (nth(decrypt(v,pka), 3))) ; \

kab := nth (decrypt (nth(decrypt(v,pka), 4), SK(B)), 1)>

6. B -> A : {nb,na,tb}{kab}

7. A -> B : {nb,ta}{kab}

#Specification

Secret(A, passwd(A,B), [B])

TimedAgreement(A,B,2,[kab])

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, PK, SK(Mallory), SKey(Mallory)}

Guessable = SessionKey

Guessable = Password

In the above protocol, the “# Processes” section is same as the Section 4.2’s “# Processes”

section.

“# Protocol description” and protocol’s entities are extended in order to fulfill the shut down

for short intervals to ensure secure distribution of randomly generated keys, of the suggested

authentication protocol. Message 0 to Message 3 are considered as the first part of the

protocol which is same as “# Protocol description” of the designed protocol in Section 4.2.

The second part starts with Message 5. In the test of Message 5 “decryptable”, “decrypt”

and “nth(,n)” functions that are provided by CASPER are used [Lowe, 1997], [Lowe et al.,

2009]. The function “decryptable” takes a message and a key, tests whether the message is

encrypted with the inverse of the key. However, the function “decrypt” takes a message and a

key and decrypts the message with the key. “nth(,n)” returns the nth field from the message.

Due to delay decryption and shut down used, B cannot automatically extract any fields from

Message 3, so more assignments are needed in the delay decryption model. The assignments

are added by using the functions encapsulated between < >. The first assignment assigns

49

the nonce, na as the third field of Message 3, but the message itself, is encrypted with

the common passwd(A,B), which is distributed by the server, has to be decrypted using the

inverse of this key which is itself. The second assignment assigns the session key, kab as

the fourth component of Message 3 but the first field of the message is encrypted with B’s

public key. In addition to these, delay decryption is very sensitive to order of fields in the

message. That is to say; if number 1 (written in bold) in the assignment < kab := nth

(decrypt (nth(decrypt(v,pka), 4), SK(B)), 1)> is changed to any other number the output

will show a compilation error.

Furthermore, as nonces and timestamps are also being used for authentication between the

agents A, B and S, the intruder can try to make the first attempt to attack in Message 3

when A sends nonce, na and timestamp, ta to B.

Due to being a timed authentication protocol, an agent’s chance to attempt to connect will be

timed-out by the server because of unsuccessful connection attempts thus preventing attacks.

Also, during the shut downs for short intervals for distribution of randomly generated keys,

agents are mutually agreed on unit of a time for the protocol run. These are mentioned in

the “#Specification” section that is used to specify these requirements.

• Secret(A, passwd(A,B), [B]) specifies that any completed run,A can expect the

value of the password, passwd(A,B) to be a secret; B represents the role with whom

the secret is shared. Even if the intruder cannot masquerade B, if it obtains the value

of passwd(A,B) assigned by A this specification would fail.

• TimedAgreement(A, B, 2, [kab]) is a timed version of Agreement(A,B,[]) that is

used in designed protocol in above Section 4.2, specifies that A is correctly authenti-

cated to B, and the agents agree upon SessionKey, kab, where A’s run is within the

2 time units of B.

The “#Intruder Information” section, is the part of the script that, an intruder’s identity

and the set of data values that knows, are initially mentioned. The “Intruder knowledge”

section holds the identifiers and functions of the protocol that are known and can be applied

to any other value to those identifiers and functions. The capability of the attacker under

assumptions of possible deductions are presented with inductive capability.

After describing the protocol to achieve improved security for authentication, in the following

section, the protocol is run through CASPER and checked through FDR.

50

5.2.1 Analysis through Code Generation and Model Checking,

CASPER/FDR

To find out unassailable attacks of the designed protocol in above Section 5.2, critical analysis

of the protocol and authentication specifications are done through CASPER/FDR. The

following Figure 5.2 demonstrates the feasibility of the protocol and the achievements of an

intruder with certain knowledge.

Figure 5.2: Analysis of frequent key renewal with shut-downs

When the protocol is checked through FDR, due to the shut down access and frequent key re-

newal introduced addition to the delay decryption property and TimedAgreement(A,B,2,[kab])

specification, there were no attack found. The ascertains are checked in Figure 5.3. The de-

sign is an exact refinement.The check is successful, where no possible attacks against the

protocol.

51

Figure 5.3: Analysis of specifications of frequent key renewal with shut-downs

5.3 Security Aspects of Combined Use of Timed Au-

thentication Protocol and Frequent Key Renewal

This section presents an approach that involves the authentication protocol in Section 5.2 and

combines passwords and session keys for authentication purposes. In terms of authentica-

tion, this section is concerned with increasing the time for an intruder to break an encryption

and hence improve the security. Times of breaking the encryption for the designed protocols

defined in Sections 3.3, 4.2 and 5.2 are compared with the new designed protocol presented

in this section.

As compared to the protocol in Section 5.2, changes are done in the “# Specification” and “#

Intruder Information” sections. The intruder’s possible powers of deduction with inductive

capability are presented in the following CASPER script:

#Processes

INITIATOR(A,S,na) knows SK(A), SKey(A), PK, passwd(A,B)

RESPONDER(B,S,nb) knows SK(B), SKey(B), passwd(A,B)

SERVER(S,kab) knows PK, SKey, passwd

52

#Protocol description

0. -> A : B

[A != B]

1. A -> S : {B}{SKey(A)}

2. S -> A : {S, A, ts, {kab}{PK(A)}, PK(B) % pkb}{passwd(A,B)}

3. A -> B : {A, ta, na, {kab}{pkb % PK(B)}}{passwd(A,B)} % v

[A != B]

4. B -> S : {A, tb}{SKey(B)}

5. S -> B : {S, B, ts, PK(A) % pka}{passwd(A,B)}

[decryptable(v, pka) and nth(decrypt(v,pka), 1) == A \

and nth(decrypt(v,pka), 2) == now \

and decryptable(nth(decrypt(v,pka), 3), passwd(A,B)) \

and decryptable(nth(decrypt(v,pka), 4), SK(B))]

<na := nth (decrypt (nth(decrypt(v,pka), 3))) ; \

kab := nth (decrypt (nth(decrypt(v,pka), 4), SK(B)), 1)>

6. B -> A : {nb,na,tb}{kab}

7. A -> B : {nb,ta}{kab}

#Specification

StrongSecret(A, passwd(A,B), [B])

TimedAliveness(A,B,100)

TimedAgreement(A,B,2,[kab])

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, PK, SK(Mallory), SKey(Mallory)}

Guessable = SessionKey

Crackable = SessionKey

Crackable = ServerKey

Crackable = Password

Owing to the fact that the authentication protocol in Section 5.2 is used in this section. The

“#Protocol description” and its “#Processes” sections are not modified with new entities.

Due to being a timed authentication protocol and during the shut downs for short inter-

vals for distribution of randomly generated keys, the protocol’s “#Specification” section is

changed to increase the time for the authentication purposes. These are mentioned in the

“#Specification” section that is used to specify these requirements.

• StrongSecret(A, passwd(A,B), [B]) is similar to Secret(A, passwd(A,B), [B])

that is used in above Section 5.2, except it also includes incomplete runs. It specifies

53

that any completed run, A can expect the value of the password, passwd(A,B) to be

a secret; B represents the role with whom the secret is shared. Even if the intruder

cannot masquerade as B, if it obtains the value of passwd(A,B) assigned by A this

specification would fail. This specification is used because the secret, passwd(A,B) is

significant outside of the protocol.

• TimedAgreement(A, B, 2, [kab]) is a timed version of Agreement(A,B,[]) specifies

that A is correctly authenticated to B, and the agents agree upon SessionKey, kab,

where A’s run is within the 2 time units of B.

• TimedAliveness(A, B, 100) mentions if B has successfully completed a run of the

protocol with A, then A has previously been running the protocol within the 100 time

units.

In the “#Intruder Information” section, an intruder’s identity and the set of data values that

knows, are mentioned. The “Intruder knowledge” section holds the identifiers and functions

of the protocol that are known and can be applied to any other value such as “Crackable,

Guessable” to those identifiers and functions. The capability of the attacker under assump-

tions are presented.

Figure 5.4 demonstrates the feasibility of the protocol and the achievements of the intruder

with certain knowledge that is defined as #Intruder Information above CASPER script.

When the protocol is checked through FDR, due to the StrongSecret(A, passwd(A,B), [B]),

TimedAliveness(A, B, 100) and TimedAgreement(A,B,2,[kab]) specifications, there were

no attack found. The ascertains are checked in Figure 5.5. The check is successful, where

no possible attacks against the protocol have taken place. It has been observed that time to

break the encryption (i.e. time to find flaw within the protocol) has significantly increased

compared to the designed protocols in Sections 3.3, 4.2, 5.2 taken as references. The results

are presented in Table 5.1.

The table shows that the protocol that is designed in this section, is better to previously

reported ones in terms of unit times to find flaw within the protocol.

54

Figure 5.4: Analysis of further improvements to the timed authentication and frequent key
renewal

5.4 Constructing the Rank Functions of Kerberos for

the Combined use of the Timed Authentication

Protocol and Frequent Key Renewal

This section presents a CSP model and construction of rank functions for the designed

protocols that are mentioned in Sections 5.2 and 5.3 which shut down external access to

Kerberos timed authentication protocol for a period of time, to enable the distribution of

randomly generated keys in a relatively secure way. The CSP model and Rank functions are

based on the extensive rules of [Schneider, 1998] and [Roscoe, 1995].

5.4.1 The CSP Model

In this section the CSP representation of the designed protocol of Section 5.3 is modelled

as a network and specified the authentication property. As mentioned earlier in Section

4.3.2, while modelling the different processes of a protocol, advantage of the extensibility of

CSP are used. The following scripts are representations of three participants, INITIATOR,

55

Figure 5.5: Analysis of specifications of further improvements to the timed authentication
and frequent key renewal

RESPONDER, SERVER of the proposed protocol that are defined in above “#Processes”

section in Section 5.2.

INITIATOR(A, S, na) =

[] B : Agent @ A != B & env_I.A.(Env0, B,) ->

output.A.S.(Msg1, Encrypt.(SKey(A),),<>) ->

[] kab : SessionKey @ [] ts : TS @ [] pkb : addGarbage_(PublicKey) @

input.S.A.(Msg2, Encrypt.(passwd(A, B), <S, A,

Timestamp.ts, Encrypt.(PK(A), <kab>), pkb>),<>) ->

[] ta : TS @

output.A.B.(Msg3, Encrypt.(passwd(A, B), <A,

Timestamp.ta, na, Encrypt.(pkb, <kab>)>),<>) ->

[] nb : Nonce @ [] tb : TS @

input.B.A.(Msg6, Encrypt.(inverse(kab), <nb, na, Timestamp.tb>),<>) ->

output.A.B.(Msg7, Encrypt.(kab, <nb, Timestamp.ta>),<kab>) ->

close.A.INITIATOR_role -> STOP

RESPONDER(B, S, nb) =

[] A : Agent @

[] v : addGarbage_({Encrypt.(passwd(A, B), <A, Timestamp.ta, na, Encrypt.(pkb, <kab>)>)

| A <- Agent, B <- Agent, kab <- SessionKey,

56

Table 5.1: Comparison of times taking to break an encryption

Protocol Time(secs.)
Framework without shut down and delay-decryption 68
(Protocol in Section 3.3)
Designed protocol with delay-decryption 110
(Protocol in Section 4.2)
Designed protocol with shut down and delay-decryption 140
(Protocol in Section 5.2)
Designed protocol with delay-decryption and
password encrypted 360
(Protocol in Section 5.3)

na <- Nonce, ta <- TS, pkb <- addGarbage_(PublicKey)}) @

A != B & input.A.B.(Msg3, v,<>) ->

[] tb : TS @

output.B.S.(Msg4, Encrypt.(SKey(B), <A, Timestamp.tb>),<>) ->

[] ts : TS @ [] pka : addGarbage_(PublicKey) @ [] now : TS @

decryptable(v, pka) and nth(decrypt(v,pka), 1) == A

and nth(decrypt(v,pka), 2) == now and

decryptable(nth(decrypt(v,pka), 3), passwd(A,B))

and decryptable(nth(decrypt(v,pka), 4), SK(B)) &

input.S.B.(Msg5, Encrypt.(passwd(A, B), <S, B, Timestamp.ts, pka>),<Timestamp.now>) ->

RESPONDER’(B, S, nb, A, v, tb, ts, pka, nth(decrypt(nth(decrypt(v,pka),3))))

RESPONDER’(B, S, nb, A, v, tb, ts, pka, na) =

RESPONDER’’(B, S, nb, A, v, tb, ts, pka, na, nth(decrypt(nth(decrypt(v,pka),4),SK(B)),1))

RESPONDER’’(B, S, nb, A, v, tb, ts, pka, na, kab) =

output.B.A.(Msg6, Encrypt.(kab, <nb, na, Timestamp.tb>),<>) ->

[] ta : TS @

input.A.B.(Msg7, Encrypt.(inverse(kab), <nb, Timestamp.ta>),<kab>) ->

close.B.RESPONDER_role -> STOP

SERVER(S, kab) =

[] A : Agent @ [] B : Agent @

input.A.S.(Msg1, Encrypt.(SKey(A),),<>) ->

[] ts : TS @

output.S.A.(Msg2, Encrypt.(passwd(A, B), <S, A, Timestamp.ts, Encrypt.(PK(A), <kab>), PK(B)>),<>) ->

[] tb : TS @

input.B.S.(Msg4, Encrypt.(SKey(B), <A, Timestamp.tb>),<>) ->

output.S.B.(Msg5, Encrypt.(passwd(A, B), <S, B, Timestamp.ts, PK(A)>),<>) ->

close.S.SERVER_role -> STOP

The keywords input and output are used in the same way that are used earlier in Section 4.3.2.

57

The temporary shut down link access and frequent key renew and how they are designed

within the protocol is explained under the “#Protocol description” in Sections 5.2 and 5.3.

This is verified with the following CSP script:

A != B & input.A.B.(Msg3, v,<>) ->

[] tb : TS @

output.B.S.(Msg4, Encrypt.(SKey(B), <A, Timestamp.tb>),<>) ->

[] ts : TS @ [] pka : addGarbage_(PublicKey) @ [] now : TS @

Referring the test of Message 5 “decryptable”, “decrypt” and “nth(,n)” functions that are

provided by CASPER are used in above Section 5.2, more assignments are needed in the

RESPONDER, B :

input.S.B.(Msg5, Encrypt.(passwd(A, B), <S, B, Timestamp.ts, pka>),<Timestamp.now>) ->

RESPONDER’(B, S, nb, A, v, tb, ts, pka, nth(decrypt(nth(decrypt(v,pka),3))))

RESPONDER’(B, S, nb, A, v, tb, ts, pka, na) =

RESPONDER’’(B, S, nb, A, v, tb, ts, pka, na, nth(decrypt(nth(decrypt(v,pka),4),SK(B)),1))

RESPONDER’’(B, S, nb, A, v, tb, ts, pka, na, kab) =

output.B.A.(Msg6, Encrypt.(kab, <nb, na, Timestamp.tb>),<>) ->

[] ta : TS @

The first assignment, RESPONDER’(B,S,nb,A,v,tb,ts,pka, nth(decrypt(nth(decrypt(v,pka),3))))

assigns the nonce na as the third field of Message 3, but the message itself, is encrypted

with the password, passwd(A,B), has to be decrypted using the inverse of this key which is

itself. The second assignment, RESPONDER’(B,S,nb,A,v,tb,ts,pka,na)=

RESPONDER’’(B,S,nb,A,v,tb,ts,pka,na,nth(decrypt(nth(decrypt(v,pka),4),SK(B)),1)) as-

signs the SessionKey, kab as the fourth component of Message 3 but the first field of the

message is encrypted with B’s public key, PK(B) and decryption has to be done by using

the inverse of this key which is secret key, SK(B) of B.

Since the designed, proposed protocol is time sensitive (i.e timed authentication protocol),

introduction of any delay will prevent the intruder’s attempt to launch an attack. The

following CSP process implies that A was running the protocol with B and there is mutual

agreement between them. This mutual agreement depends on the value of SessionKey, kab

within specified unit time for Aliveness chosen:

AuthenticateINITIATORToRESPONDERTimedAliveness100_0(A) =

addTime(

signal.Running1?A_role_!A?C_ ->

CHAOS({signal.Commit1.RESPONDER_role.B.A | B <- Agent}),

100)

AlphaAuthenticateINITIATORToRESPONDERTimedAliveness100_0(A) =

union(

58

{|signal.Running1.A_role_.A.B,

signal.Commit1.RESPONDER_role.B.A |

B <- inter(Agent, HONEST), A_role_ <- HONEST_ROLE|},

{tock})

AuthenticateINITIATORToRESPONDERTimedAliveness100 =

(AuthenticateINITIATORAliceToRESPONDERTimedAliveness100

[| inter(AlphaAuthenticateINITIATORToRESPONDERTimedAliveness100_0(Alice),

AlphaAuthenticateINITIATORToRESPONDERTimedAliveness100_0(Bob)) |]

AuthenticateINITIATORBobToRESPONDERTimedAliveness100)

AuthenticateINITIATORToRESPONDERTimedAgreement2_kab_0(A) =

addTime(

signal.Running2.INITIATOR_role.A?B?kab ->

signal.Commit2.RESPONDER_role.B.A.kab -> STOP,2)

AlphaAuthenticateINITIATORToRESPONDERTimedAgreement2_kab_0(A) =

union(

{|signal.Running2.INITIATOR_role.A.B,

signal.Commit2.RESPONDER_role.B.A |

B <- inter(Agent, HONEST)|},

{tock})

AuthenticateINITIATORToRESPONDERTimedAgreement2_kab =

(AuthenticateINITIATORAliceToRESPONDERTimedAgreement2_kab

[| inter(AlphaAuthenticateINITIATORToRESPONDERTimedAgreement2_kab_0(Alice),

AlphaAuthenticateINITIATORToRESPONDERTimedAgreement2_kab_0(Bob)) |]

AuthenticateINITIATORBobToRESPONDERTimedAgreement2_kab)

In addition to the nonces, timestamps are also being used for time agreement between the

processes A and B. Relating the above CSP codes of the TimedAliveness(A,B,100) and

TimedAgreement(A,B,2,[kab]), the system is verified :

SYSTEM_1 =

let Agent_renamed_ = ALGEBRA_M::applyRenamingToSet(Agent)

SessionKey_renamed_ = ALGEBRA_M::applyRenamingToSet(SessionKey)

Nonce_renamed_ = ALGEBRA_M::applyRenamingToSet(Nonce)

TS_renamed_ = ALGEBRA_M::applyRenamingToSet(TS)

within

SYSTEM

[[send.A.B.ALGEBRA_M::rmb((Msg7, Encrypt.(kab, <nb, Timestamp.ta>), <kab>)) <-

signal.Running1.INITIATOR_role.A.B,

receive.A.B.ALGEBRA_M::rmb((Msg7, Encrypt.(kab, <nb, Timestamp.ta>), <kab>)) <-

signal.Commit1.RESPONDER_role.B.A |

A <- Agent_renamed_, B <- Agent_renamed_,

kab <- SessionKey_renamed_, nb <- Nonce_renamed_,

ta <- TS_renamed_

]]

\ diff(Events, alphaAuthenticateINITIATORToRESPONDERTimedAliveness100)

SYSTEM_2 =

59

let Agent_renamed_ = ALGEBRA_M::applyRenamingToSet(Agent)

SessionKey_renamed_ = ALGEBRA_M::applyRenamingToSet(SessionKey)

Nonce_renamed_ = ALGEBRA_M::applyRenamingToSet(Nonce)

TS_renamed_ = ALGEBRA_M::applyRenamingToSet(TS)

within

SYSTEM

[[send.A.B.ALGEBRA_M::rmb((Msg7, Encrypt.(kab, <nb, Timestamp.ta>), <kab>)) <-

signal.Running2.INITIATOR_role.A.B.kab,

receive.A.B.ALGEBRA_M::rmb((Msg7, Encrypt.(kab, <nb, Timestamp.ta>), <kab>)) <-

signal.Commit2.RESPONDER_role.B.A.kab |

A <- Agent_renamed_, B <- Agent_renamed_,

kab <- SessionKey_renamed_, nb <- Nonce_renamed_,

ta <- TS_renamed_

]]

\ diff(Events, alphaAuthenticateINITIATORToRESPONDERTimedAgreement2_kab)

The following CSP code is defined to represent the “#Intruder Information” and Intruder-

Knowledge definitions with its relevance to the initial knowledge, where detailed explanations

are given in Sections 4.2 and 5.2:

IK0_init = union({Alice, Bob, Mallory, Sam, Nm, SK(Mallory), SKey(Mallory),

Garbage}, TimeStamp)

INTRUDER_1 =

(chase(INTRUDER_0)

[[hear.m_ <- send.A_.B_.(l_,m_,se_) |

(l_,m_,se_,re_) <- DIRECT_MSG,

A_ <- diff(SenderType(l_),{Mallory}), B_ <- ReceiverType(l_)]]

[|{| hear |}|] STOP)

[[say.m_ <- receive.A_.B_.(l_,m_,re_) |

(l_,m_,se_,re_) <- DIRECT_MSG,

A_ <- SenderType(l_), B_ <- ReceiverType(l_)]]

The keywords hear, say are used to represent hearing and saying a message during the

authentication and transfer of a message across network. (l_,m_,se_,re_) is types of

messages that are sent and received by processes (agents) as they are considered by those

agents.

Addition to the intruder definition, the initially known facts are added under the following

CSP script:

SAY_KNOWN_0 =

(inter(IK1, ALL_SECRETS_DI) != {} & dummy_leak -> SAY_KNOWN_0)

[] dummy_send -> SAY_KNOWN_0

[] dummy_receive -> SAY_KNOWN_0

SAY_KNOWN =

SAY_KNOWN_0

[[dummy_leak <- leak.f_ | f_ <- inter(IK1, ALL_SECRETS_DI)]]

60

[[dummy_send <- send.A_.B_.(l_,m_,se_) |

(l_,m_,se_,re_) <- DIRECT_MSG, components_(m_) <= IK1,

A_ <- diff(SenderType(l_),{Mallory}), B_ <- ReceiverType(l_)]]

[[dummy_receive <- receive.A_.B_.(l_,m_,re_) |

(l_,m_,se_,re_) <- DIRECT_MSG, components_(m_) <= IK1,

A_ <- SenderType(l_), B_ <- ReceiverType(l_)]]

STOP_SET = {| send.Mallory |}

INTRUDER =

INTRUDER_1 [| STOP_SET |] STOP

IntruderInterface = Union({{| send, receive |}, {|crack|}})

AlphaSystem = {|env, send, receive, close, tock|}

SystemManagerInterface = inter(AlphaSystem,CRACKING_M::AlphaManager)

SYSTEM = (SYSTEM_M::TSYSTEM_1 [|SystemManagerInterface|] CRACKING_M::Manager)

[|IntruderInterface|] INTRUDER_M::INTRUDER

The keyword leak is used to signal that a possible secret has been learnt. Elements such as

f_ , IK1 are components of the intruder for currently unkown fact and initial knowledge.

Despite the highly specified intruder and its connection attempts, the designed protocol is

successful.

5.4.2 The Rank Functions

In this section the rank functions which are listed in Section 2.3.1, of the NET on the

message space are constructed. The following steps and Table 5.2 show the rules that are

constructed while creating rank functions.

1. All user IDs in the set U are assigned to a positive rank : It is assumed that IDs are

known to intruder and can be impersonated.

2. All the nonces in N are assigned to a positive rank : It is also assumed that Nonces

are known to intruder Knowledge.

3. In the protocol there are three different keys: SessionKey which is defined as kab,

ServerKey as SKey and Password as passwd. kab, passwd are assigned to a non-

positive rank, because they are supposed to be private to agents in the protocol. How-

ever, SKey is assigned to a positive rank, with the same rule that is mentioned in

previous two steps.

4. The running messages between input and output channels are assigned to a non-positive

rank.

61

5. This step is connected with the previous step which is related with signal events Com-

mit, and Running where represented as input and output channels respectively.

Table 5.2: Rank functions for the protocol

Step Rank Function
1 ρ(U) = 1
2 ρ(N) = 1
3 ρ(K) = { 0 if: kab or passwd

else: 1 (SKey)
4 ρ(mK) = { 0 if: m(kab) or m(passwd)

else:1 (m(SKey))
5 ρ(A,B,nb,na) = 1 and

ρ(B,A,kab, na) = 0

The rank function theorem is defined in terms of general sets R and T . In this research, R

and T are assigned to step 5 of above Table 5.2 and it is extended as:

Initiator − output = R = ρ(Running ,A,B,nb, na) = 1

Initiator − input = T = ρ(Commit ,B,A,kab, na) = 0

The constructed rank functions (as provided above Table 5.2) are employed with the condi-

tions of the rank function theorem, [Schneider, 1998] (discussed in Section 2.3.1), in order to

make sure that the functions provided satisfy the conditions of the theorem.

1. ∀ m ∈ IK • ρ(m) > 0

In protocol description IK is Intruder Knowledge and at the beginning it contains all

users in the NET and nonce of itself, where all the contents are positive rank. There-

fore, the set is positive rank. The condition is deemed satisfied.

2. ∀ S ⊆ M, m ∈ M • ((∀ m′ ∈ S • ρ(m′) > 0)
∧

S ` m) ⇒ ρ(m) > 0

This condition checks whether a message of a non-positive rank can be generated from

a given set of messages of positive rank. Messages are non-positive rank (step 4 of

Table 5.2). Intruder generates any messages that are non-positive rank. These mes-

sages are messages of steps 3, 5 and 6 at protocol description, which are generated by

passwd,kab. Both are non-positive rank. This prevents intruder from generating these

keys. Therefore there is no way of getting the messages. This condition is satisfied.

62

3. ∀ t ∈ T • ρ(t) ≤ 0

In this condition, all events in T are non-positive rank. Since Initiator − input =

ρ(B,A,kab, na) = ρ(Commit ,B,A,kab, na) is non-positive rank. This condition is sat-

isfied.

4. ∀ i ∈ U • Useri

‖
R Stop maintains ρ

Every process in NET needs to maintain positive ρ. However, events are restricted

in set R. Initiator − output = ρ(A,B,nb,na) = 1 = R. A and B are restricted on

Initiator − output. Therefore it will be checked if they maintain positive ρ.

UserA ‖ Stop = �b output.A.B.(Msg3, Encrypt.(passwd(A,B), <
Initiator − output(A,B, nb, na) A, T imestamp.ts, na, Encrypt.(pkb,< kab >) >,)

<>)− > []nb : Nonce@[]tb : TS@input.B.A.(Msg6,
Encrypt.(inverse(kab), < nb, na, T imestamp.tb >),
<>)− > []ta : TS@output.A.B.(Msg7, Encrypt.(kab,
< nb, T imestamp.ta >), < kab >)− > STOP

�b is choice operation and b indicates the other participants (B and S). b = B where

communicates with UserA. In terms of protocol run, UserA

‖
Initiator−output(A,B,nb,na) Stop

does not fail to maintain positive ρ, on call of output.A.B with na and nb in Message

3 and Message 7 respectively.

The protocol is checked and proven to be successful in improving security against attacks

despite strong intruder connection attempts. This was demostrated in steps given in this

section.

5.5 Conclusion

This chapter is concerned with improving the security of Kerberos authentication protocol.

A new approach and a protocol are derived from the designed and verified protocols in Sec-

tions 3.3, and 4.2, to increase time for an intruder to break an encryption and hence improve

the security. Security is further improved by restricting externals’ access to the system and

during this time, distribution of the frequently renewed keys and encryption/decryption of

messages are controlled with timed authentication. The availability of the protocols are

checked with CASPER. The capability of the attacker under assumptions are presented with

inductive capability of FDR and results are compared.

63

This chapter presented the CSP codes and the construction of rank functions of the designed

protocol in Section 5.3. CSP processes and rank functions that are constructed, give oppor-

tunities of better understanding of security protocols and focuses on relevant design aspects

of these protocols. The new protocol is an enhanced version of previously reported protocols

in Sections 4.2 and 5.2.

Schneider’s CSP processes and rank function theorem [Schneider, 1998] are applied to expose

any flaws in the design and possible attacks have been successfully identified. Analyses show

that the protocol developed has achieved the goal of increasing the time needed to break the

encryption, and hence improve security.

Since the proposed approach involves temporary interruption to link/server access, it has

implications in terms of performance degradation. Analytical methods will be used in the

following chapter to evaluate the cost in terms of the degradation of system performance.

The models being developed will consider the system for exact performability evaluation.

64

Chapter 6

Performability Modelling of a

Kerberos Server with Frequent Key

Renewal under Pseudo-Secure

Conditions with Server Breakdowns

and Repairs

6.1 Introduction

Despite the design and proposal of authentication approaches for improving security, threats

of penetration and various other forms of attacks have continued to evolve. As discussed

in Section 2.4, the protection of data, system and resources presents even more challenging

tasks for scientists and network engineers; while systems are configured to ensure reliable,

secure communications, privacy, and data integrity, the performance of the underlying net-

works should also be taken into account. In other words, the systems considered should still

be able to perform sufficiently and legitimate access to resources should not be compromised

while the security policies are applied.

In this chapter, performance evaluation techniques are employed for security protocols that

are proposed and modelled previously. Analytical models are developed in order to analyse

the effects of frequent key renewal under pseudo-secure conditions of Section 5.2, and to eval-

uate the cost in terms of the degradation of system performance with random failures of the

authentication server in Sections 6.2 and 6.3 respectively. Numerical results are presented

65

and discussed.

6.2 Performability Modelling with Frequent Key Re-

newal

Since the proposed model is based on secure key distributions at various intervals, during

key distribution, external access to the network incorporating authentication servers is not

allowed. The access restriction applies for short intervals, however, any link shut down costs

the network in terms of performance degradation. Therefore, it is essential to evaluate the

impact of the proposed approach on system performance.

For this purpose, an analytical model has been developed to evaluate the performability of

the proposed approach. While key distribution times depend on network characteristics such

as size, speed, congestion etc., the frequency of key renewals can be determined by the mean

values of decryption times.

6.2.1 The Model

This analytical model considered is a simple K -server system with an unbounded queue,

Poisson arrivals and exponentially distributed service times. Jobs arrive at the system in a

Poisson stream at a rate σ, and join the queue. Jobs are homogeneous and the service times

of jobs serviced by server are distributed exponentially with mean 1/µ. The distribution

of time intervals between shut downs are exponential and given by mean 1/δ. Once the

system is shut, the server does not provide service to incoming requests for an exponentially

distributed duration (key distribution time) which is given by 1/ϕ. Figure 6.1 shows the

model of the system where, Figure 6.2 is the Markov chain that represents the states of the

system.

When Figure 6.2 is considered, (0) represents the state where the server is shut to the ex-

ternal access since the key distribution takes place. In state (1) the server is operative since

the system is not shut.

66

Figure 6.1: The model of Kerberos server

Figure 6.2: The states of Kerberos server

6.2.2 Two Dimensional Markov Representation of the System

The state of the system at time t can be described by a pair of integer valued random

variables, I(t) and J(t), specifying the operative state of the system and the number of jobs

present, respectively. I(t), t ≥ 0, is an irreducible Markov process. J(t) is the total number

of jobs in the system at time t, including the one(s) in service. Then, Z = [I(t),J(t)]; t ≥ 0

is an irreducible Markov process on a lattice strip (a QBD process), that models the system

is shown in Figure 6.3. Similar studies are considered in [Chakka and Mitrani, 1994] and

[Mitrani, 2005] for some general multi-server systems with single repairman (R=1), for some

repair strategies, however, protocols which cause transitions to make the system inoperative

(such as key renewal), are not considered.

Here, A is the matrix of instantaneous transition rates from state (i, j) to state (k, j) (where

i 6=k) with zeros on the main diagonal. These are the purely lateral transitions of the model

Z. Matrices B and C are transition matrices for one-step upward and one-step downward

transitions respectively. The transition rate matrices do not depend on j for j ≥ M, where

M is a threshold having an integer value. In this study the M value is taken as one. The

process Z evolves with the following instantaneous transitions:

• Aj(i, k): Purely lateral transition rate, from state (i,j) to state (k, j), (i=0, 1, ..., N;

k=0, 1, ..., N; i6=k; j=0, 1, ...,), caused by a change in the state (i.e., a break down,

or shut down for key distribution).

67

Figure 6.3: Two dimensional lattice strip

• Bj(i, k): One-step upward transition rate, from state (i,j) to state (k, j+1), (i=0, 1,

..., N; k=0, 1, ..., N; and j=0, 1, ...), caused by a job arrival into the queue.

• Cj(i, k): One-step downward transition rate, from state (i,j) to state (k, j-1), (i=0, 1,

..., N; k=0, 1, ..., N; and j=0, 1, ...), caused by the departure of a serviced job.

The total number of states for the Kerberos server with KDC subjected to failures is given

by 2. Numbering these operative states can be arbitrary. We assign numbers (0, 1) to the

states (0), (1) respectively. For a Kerberos server, with Frequent Key Renewal protocol A,

B and C can be given as follows:

A = Aj =

(
0 ϕ
δ 0

)
B = Bj =

(
σ 0
0 σ

)
C = Cj =

(
0 0
0 µ

)

68

6.2.3 Analytical Model’s Numerical Results

Mean Queue Length (MQL) are computed as a function of the mean arrival rate, σ and

various δ and ϕ values for a K -server system. In Figure 6.4, the MQL is shown for systems

with various δ values. The other parameters are µ=200 per second and 1/ϕ=10 seconds.

The Figure shows the MQL performance of the systems with various intervals between shut

downs.

Figure 6.4: MQL as a function of σ for various δ values

To show the effects of various shut down durations, computations are performed for various

ϕ values where 1/δ is 140 seconds, and µ=200. The results are shown in Figure 6.5. As it

can be seen from the Figure, as ϕ increases (the shut down duration decreases) the MQL

increases significantly. Also in this Figure the MQL values of a system without shut downs

is shown for comparison. As expected the system without shut downs performs better.

Then, performance degradation increases gradually from negligible to significant. However,

the Figure shows that especially for light traffic (lower arrival rates) it can be affordable to

introduce shut downs in order to increase the degree of security.

Finally, in Figure 6.6, MQL is computed for systems with K -servers. Please note that the

servers considered work in parallel and once the shut down is introduced they become non-

69

Figure 6.5: MQL as a function of σ for various ϕ values

operative for the same duration given by 1/ϕ=10 seconds. Other parameters are given as

1/δ =140 seconds and µ=200 jobs/second.

Figure 6.6 shows the contribution of an increase in K to the performance of the system with

shut downs. However, since all of the servers needed to be shut down at the same time

intervals for the same duration, the system’s performance does not become better than the

system without shut downs. However, the results show that it is possible to increase the

degree of security while the systems performance is reasonable. Again, after a certain K

value, increasing the number of servers further will not improve the MQL performance.

6.2.4 Discussions

Tests carried out for the proposed protocol(Section 5.2) and the network with shut downs

revealed the following: The proposed protocol increases the time taken to break an encryption

for about 25-75% compared to various other protocols, given in Table 5.1 and Section 2.4.2.

However, it is possible to stop intruders’ access during key distribution further increasing

network security. For lightly loaded networks, performance degradation is small. For loaded

networks, the performance degradation can be minimised by increasing the number of servers

working in parallel which again comes at a cost. It must be noted that, after a certain

70

Figure 6.6: MQL for constant ϕ, δ and K -servers

K value, an increase in the number of servers will not have a significant effect on system

performance. Optimum values for δ, and K can be chosen for maximising system performance

for a pre-specified level of security. Metrics can be developed to determine the degree of

security.

6.3 Performability Modelling with Breakdowns and Re-

pairs

This section presents a model for a single Kerberos server suffering from potential KDC

failures and used together with the Frequent Key Renewal protocol, designed in Section 5.3.

Unlike the previous studies, the server failures [Brennen, 2004] are also considered together

with the interruptions for key distributions. The section shows the two dimensional Markov

model of a Kerberos server considered and the steady state solution approach. Then, numer-

ical results for the performability measures are presented to show the effects of key renewals

as well as server failures.

71

6.3.1 The Model

Allocation of jobs is usually done considering the availability of a Kerberos server. The values

and the probabilistic distributions of the parameters used to develop the analytical models

are mainly taken from [Mitrani, 2005] and from Section 6.2. The values of mean arrival and

service rates are application dependent.

Kerberos server considered is a single server system with a queue which is unbounded since all

of the incoming service requests are accepted. Jobs arrive at the system in a Poisson stream

at a mean rate of σ. The service times of jobs are distributed exponentially with mean 1/µ.

However, the Kerberos server considered can execute jobs only during its operative periods

(during an operative period the processor is capable of its intended operation, whether

working or idle). The Kerberos server is operative if it is not broken, or if the system is not

shut. The periods where the Kerberos server is not broken is distributed exponentially with

mean 1/ξ. At the end of this period, the server breaks down and requires an exponentially

distributed repair time with mean 1/η. The distribution of time intervals between shut

downs are exponential and given with mean 1/δ. When the system is shut, the server

does not provide service to incoming request for an exponentially distributed duration (key

distribution time) which is given by 1/ϕ. Figure 6.7 is the Markov chain that represents the

operative states of the system.

Figure 6.7: The operative states of Kerberos server

72

When Figure 6.7 is considered, (0,0) represents the state where the server is broken and the

system is shut. In state (1,0) the system is not shut but the server is broken. In the state

(0,1) the server is not broken but the system is shut since the key distribution takes place.

Finally the state labelled as (1,1) is the state where the server is operative since the system is

not shut and the server is not broken. Figure 6.7 clearly shows that there are no transitions

between states (1,0) and (0,0), since system shut downs are not required when the server is

broken.

Referring to the Section 6.2.2, the total number of states for the Kerberos server with KDC

subjected to failures is given by 4. Numbering these operative states can be arbitrary. We

assign numbers (0, 1, 2, 3) to the states (0,0), (0,1), (1,1), (1,0) respectively. For a Kerberos

server, with Frequent Key Renewal protocol matrices A, B and C can be given as follows:

A = Aj =


0 η 0 0
ξ 0 ϕ 0
0 δ 0 ξ
0 0 η 0

 B = Bj =


σ 0 0 0
0 σ 0 0
0 0 σ 0
0 0 0 σ


C = Cj =


0 0 0 0
0 0 0 0
0 0 µ 0
0 0 0 0



6.3.2 The Steady State Solution

The solution is given for an unbounded queue. The model developed has been solved using

the spectral expansion solution [Mitrani, 2005]. The steady state probabilities are defined in

rows as vj = (p0,j, p1,j, ..., pN,j,), j=0, 1, 2, Defining diagonal matrices as:

• DA
j (i,i) =

N∑
k=0

Aj(i, k)

• DB
j (i,i) =

N∑
k=0

Bj(i, k)

• DC
j (i,i) =

N∑
k=0

Cj(i, k)

The steady state balance equations can then be written as follows:

• v0[DA
0 + DB

0] = v0A0 + v1C1

73

• vj[D
A
j + DB

j + DC
j] = vj−1Bj−1 + vjAj + vj+1Cj+1; 1 ≤ j ≤ M-1

• vj[D
A + DB + DC] = vj−1B + vjA + vj+1C; j ≥ M-1

It is possible to solve the balance equations using the spectral expansion method similar to

studies in [Chakka and Mitrani, 1994], [Haverkort and Ost, 1997] and [Mitrani, 2005]. Once

the state probabilities are obtained, the MQL, can be computed as:

MQL =
L∑

j=0

j

N∑
i=0

P (i, j)

6.3.3 Numerical Results and Discussions

The analytical model considered assumes an unbounded queue since incoming requests are

not blocked. To show the effectiveness of the method presented, and to evaluate the per-

formance of a Kerberos server with frequent key renewal under pseudo-secure conditions,

numerical results are provided in this section. Effects of key renewal periods are analysed as

well as the effects of KDC failures.

Figure 6.8 shows the MQL as a function of ϕ for various δ values. The other parameters are

1/η=2 hours, 1/ξ= 1000 hours, σ=80 jobs/sec, and µ=200 jobs/sec. It is clear that as key

distribution time increases, the mean queue length also increases. Also, effect of increasing

the key renewal period 1/ϕ decrease for greater 1/δ values. This is mainly because other

factors such as failures and repairs affect the system more significantly.

Figure 6.9 shows the probability of being in state (1,1) (q(1,1)) as a function of ϕ for various

δ. In state (1,1) the Kerberos server is not interrupted for key renewal and also it does not

suffer from failures. (1,1) is the only state where the Kerberos server is operative. The other

parameters are 1/η=2 hours, 1/ξ= 1000 hours, σ=80 jobs/sec, and µ=200 jobs/sec. Figure

6.9 shows that the probability of being in this operative state decreases significantly as the

renewal time and time between renewals increases.

Effects of various failure rates are shown together with relatively high key renewal times

in Figure 6.10a. The parameters are σ jobs/sec, µ=200 jobs/sec 1/η=2 hours, 1/ϕ= 70

seconds, and 1/δ=140 seconds. The figure clearly shows that failures affect the performance

significantly. The same parameters are used for Figure 6.10b for 1/ϕ= 10 seconds. The

results given for the system with shorter key renewal times shows that the system performs

significantly better than the one considered in Figure 6.10a.

74

Figure 6.8: The MQL as a function of ϕ for various δ values

Figure 6.9: q1,1 as a function of ϕ for various δ values

75

(a) Effects of ξ and σ for 1/ϕ=70 seconds

(b) Effects of ξ and σ for 1/ϕ=10 seconds

Figure 6.10: Effects of ξ and σ for 1/ϕ values

76

6.4 Conclusion

This chapter is concerned with modelling networks for performability evaluation to evaluate

the effects of protocols proposed in Sections 5.2 and 5.3.

Security is further improved by frequently renewing the key distributed by the authentication

server (Section 5.3) and during this time, restricting access to the system. The proposed

approach has implications in the performance of the underlying network. Although it is ex-

pected that increased security will result in degradation in system performance, it is essential

to ensure that any degradation in system performance is at acceptable levels. For this pur-

pose, a mathematical model has been developed in Section 6.2 to evaluate the performance

of the system considered and the mean queue lengths are calculated using various values for

important system parameters. Performance degradation of the proposed system has been

evaluated for various key distribution times while user access to the servers are shut down at

certain intervals. Results enable designers to carefully choose parameters for the best MQL

results for acceptable levels of security.

Section 6.3 is concerned with a modelling approach for performability evaluation of Kerberos

servers which dynamically renew keys under pseudo-secure conditions. In order to evaluate

the cost in terms of the degradation of system performance, an analytical method is used.

Numerical results have been obtained and presented for various performability measures for

different key renewal and interruption period values. Unlike the previous studies, the server

failures are considered as well. Therefore the approach presented in this study provides

more realistic performability measures. Results show that the server failures, as well as key

renewal times and time between interruptions can significantly affect the performance of a

Kerberos server especially if high arrival rates are expected. The model developed is highly

flexible and it can be used for systems with various failure, repair, and renewal times and

times between interruptions. The method can be extended for multiple Kerberos servers and

for systems with backup servers especially for the KDC.

77

Chapter 7

Modelling Attacker with Increased

Powers and Deciding Security

Properties of Proposed Protocols by

Induction and Deduction

7.1 Introduction

The work presented in this chapter is on constructing attacker with increased powers by in-

ductions and deductions depending on proposed protocol specifications presented in Sections

3.2, 4.2 and 5.2.

The behaviour of agents while executing protocol steps in the presence of the attacker that

constructed with inductive and deductive approaches, is the main concern of this chapter.

7.2 Modelling Attackers

Attackers and their potential in communication networks have been pictured in Section 2.3.1.

The attack analysis is discussed prior to presenting a new model of an attacker. The new

model developed is subsequently used to test proposed authentication protocols in the later

sections of the chapter.

Formal methods for verifying security properties of cryptographic systems, designed for the

purposes of assuring that systems satisfy their respective security requirements, tend towards

78

analysing attacker potentials [Lowe, 1996], [Paulson, 1998], [Roscoe et al., 2009]. In these

publications, authors support the idea of knowing the attacker. The approaches of deductive,

inductive or both, are based on making inferences about the attacker with a view to provide

security offerings that can resist the activities of attackers. In the field of attack analysis, a

pioneering model of an attacker is known as the Dolev Yao model [Dolev and Yao, 1981]. In

this model an attacker is designed to be able to compose, intercept, and replay messages in

all directions.

Induction is usually described as moving from the specific to the general, while deduction

begins with the general and ends with the specific. Arguments based on laws rules and ac-

cepted principles are generally used for deductive arguments. Observations tend to be used

for inductive arguments. In other words, in a deductive argument, the premises are intended

to provide support for the conclusion that is so strong that, if the premises are true, it would

be impossible for the conclusion to be false. An argument is a connected series of statements

or propositions, some of which are intended to provide support, justification, or evidence for

the truth of another statement or proposition. Arguments consist of one or more premises

and a conclusion. Whereas, an inductive argument is an argument in which it is thought

that the premises provide reasons supporting the probable truth of the conclusion. In an

inductive argument, the premises are intended only to be so strong that, if they are true,

then it is unlikely that the conclusion is false. Induction rule is defined such that every

derivable judgment is the consequence of some rule, whose premises are derivable [Paulson,

1998] and [Ryan et al., 2000].

In general verification tools [Hoare, 1985] that use the FDR model checker, with state space

verification systems [Dolev and Yao, 1981], [Milner, 1999], attacker potentials are considered

with respect to possible deductions. It is widely acknowledged that model checking offers

more detailed analysis and discovers attacks faster [Roscoe, 2005] and [Roscoe et al., 2009].

Following these discussions, a paradigm of verifying protocols by formal methods of induction

was presented in [Paulson, 1998] using the proof tool Isabelle/HOL. This method includes

theories of message analysis and of describing standard protocol features. Operations on

sets of messages are inductively defined as the least set closed under specific extensions of a

message set, H : where H contains an agent’s initial knowledge and the history of all mes-

sages sent in a trace. Protocols are defined inductively as a set of traces. A trace is a

list of communication events such as interleaved protocol runs, that is discussed in Section

2.3.1. The protocol description incorporates those of attacks and accidental losses. The

79

attacker is modelled to know some private keys and can forge messages using components

decrypted from previous traffic. The inductive operators used are parts, analz, and synth,

which are defined on possibly infinite sets of messages. Thus, inductive verification copes

with space explosion problem. Parts merely returns all the components of a set of messages,

analz models the decryption of past traffic using available keys, and synth models the forging

of messages. Several simplifying assumptions were used for protocols’ description such as

uncrackable cryptosystems, unambiguous data types, and rules bounding the enemy’s capa-

bilities. The model of the fraudulent messages that a spy, enemy, could derive from the set of

messages H is presented by synth(analz H); where synth and analz are operators. The first,

synth, models messages a spy could build up from H, and analz models messages obtained

by repeatedly adding compound messages and decrypting messages whose keys are in analz

H.

With respect to the above descriptions, and discussions for the attacker model and intruder’s

inference rule on Section 2.3.1, the attacker modelled using possible deductions and induc-

tions are presented as follow:

Attacker(X) = learn?m:M −→ Attacker(infer(X) ∪ m)

�say?m : X ∩ M −→ Attacker(X)

m ∈ M is a facts of set of messages. The function infer(X) generates the facts that are

deducible from X under cryptographical possibilities. The above definition shows that the

attacker has a choice of either to learn or to say messages. When the attacker learns a mes-

sage of known type M, then it behaves as an attacker under deductive rules. Alternatively,

the attacker can say a message through a fake channel, and continues to be present as an

attacker at all times.

The paradigm of an inductive definition and operator induced by an inductive definition are

based on [Cousot and Cousot, 1992] mathematical framework. The Attacker(Y) is described

as:

Attacker(Y) = learn?m:M −→ Attacker(induce(Y) ∪ m)

� say?m : Y ∩ M −→ Attacker(Y)

The function induce(Y) generates all facts that an intruder can induce from the message sets

when they appear as partial orders or joins, which would require several steps of deductions

to be calculated when using the function infer. Recall that infer(X) is defined in terms of

80

possible deductions.

The above attacker definitions are built into the CSP models of proposed protocols given

in Sections 3.2, 4.2, 5.2 and 5.3, and subsequently tested using the FDR. The FDR model

checker tests proposed protocols by comparing protocol description and specification, where

protocol description fails to be a refinement of the specification corresponds to attack against

the protocol investigated. The next section looks at intruder in relation to specifications of

proposed protocols.

7.3 Attacker with Increased Powers on Proposed Pro-

tocols

This section presents attackers that involve the authentication protocols in Sections 3.2, 4.2,

5.2 and 5.3. In terms of authentication, this section is concerned with increasing power of

an intruder to break an encryption with the use of inductive as well as deductive techniques.

Results of times taking to break the encryption for the designed protocols and intruder’s

power are presented and discussed.

7.3.1 Attacker for Proposed Framework

In this section, the analysis and verification are done through the use of FDR and CSP re-

spectively. The “#Protocol description” section of the proposed protocol given in Section 3.3

is not modified, however, the “#Intruder Information” section is modified with knowledge.

The following script of the protocol shows these changes.

#Protocol description

0. -> A : B

[B != A]

1. -> A : S

2. A -> S : B

3. S -> A : {{ts, B, kab}{SKey(A)}}{passwd(A,B)}

4. S -> A : {{ts, A, kab}{SKey(B)}}{passwd(A,B)} % enc

5. A -> B : enc % {{ts, A, kab}{SKey(B)}}{passwd(A,B)}

6. A -> B : {A, ta, na}{kab}

7. B -> A : {ta, na, nb}{kab}

8. A -> B : {nb, ta}{kab}

81

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, Km, PK, SK(Mallory), \

SKey(Mallory),passwd(Mallory,Alice), passwd(Mallory,Bob), \

passwd(Alice,Mallory),passwd(Bob,Mallory),passwd(Mallory,Mallory)}

Guessable = Password

Guessable = SessionKey

IntruderKnowledge = {..., Km,.., \ } Guessable = SessionKey are the entities added

to intruder’s knowledge.

The CSP models of the legitimate principals and the communication channels with message

transformations were generated using CASPER. The intruder model with deductions, the

feasibility of the protocol and the achievements of the intruder with deductive knowledge

are demonstrated.

Intruder is verified with the following CSP code and through the analysis with the FDR

checker, which is shown in the Figure 7.1 proves that intruder is not strong enough to de-

crypt the designed protocol’s specifications.

IK0_init = union({Alice, Bob, Mallory, Sam, Nm, Km, SK(Mallory), SKey(Mallory),

passwd(Mallory, Alice), passwd(Mallory, Bob),

passwd(Alice, Mallory), passwd(Bob, Mallory),

passwd(Mallory, Mallory), Garbage}, TimeStamp)

Guessable0 = Password

Guessable = diff(Guessable0, IK1)

Intruder has an initial knowledge of Guessable values and entities. Referring to the following

script, the intruder closes up its initial knowledge under deductions and calculates the facts

that can not be learnt.

components_(Sq.ms_) =

if member(Sq.ms_, Fact_1) then {Sq.ms_} else set(ms_)

components_(m_) = {m_}

Seeable_ =

Union({unknown_(components_(m_)) | (_,m_,_,_) <- SYSTEM_M::INT_MSG_INFO})

Close_(IK_, ded_, fact_) =

let IK1_ =

union(IK_, {f_ | (f_,l_,fs_) <- ded_, fs_ <= IK_})

ded1_ =

{(f_,l_,fs_) | (f_,l_,fs_) <- ded_, fs_ <= fact_}

fact1_ = Union({IK_, {f_ | (f_,l_,fs_) <- ded_},

Seeable_, Guessable0})

82

Components of the intruder are grouped as currently unknown fact f−: and known fact

f−:.

IGNORANT(f_,ms_,fss_,ds_) =

hear?m_:ms_ -> KNOWS(f_,ms_,fss_,ds_)

[]

([] (l_, fs_) : fss_, not(member(f_,fs_)) @

infer.(f_,l_,fs_) -> KNOWS(f_,ms_,fss_,ds_))

[]

(member(f_,Guessable) & guess.f_ -> KNOWS’’(f_,ms_,fss_,ds_))

[]

guess?g_:diff(Guessable,{f_}) -> IGNORANT’(f_,ms_,fss_,ds_)

f_ms_fss_ds_s =

let rid_ = relational_image({(f_,(l_,fs_)) | (f_,l_,fs_) <- Deductions})

msf_ = relational_image({(f_, m_) | m_ <- MSG_BODY, f_ <- unSq_(m_)})

xsf_ = relational_image({(f_, x_) | x_@@(_,l_,fs_) <- Deductions,

f_ <- fs_})

within {(f_, msf_(f_), rid_(f_), xsf_(f_)) | f_ <- KnowableFact}

leak is used to signal that a possible secret has been learnt, where hear and say are used

to represent hearing or saying a message respectively. infer(f,fs) represent deducing fact f

from the set of facts fs. ms− is the set of messages that contain f− at the top level, where

fss− is the set of sets of facts from which f− can be deduced. ds− is the set of deductions

that use f−.

KNOWS(f_,ms_,fss_,ds_) =

hear?m_:ms_ -> KNOWS(f_,ms_,fss_,ds_)

[]

say?m_:ms_ -> KNOWS(f_,ms_,fss_,ds_)

[]

([] ded@@(f1_,l_,fs_) : ds_, f1_!=f_ @ infer.ded -> KNOWS(f_,ms_,fss_,ds_))

[]

member(f_,ALL_SECRETS_DI) & leak.f_ -> KNOWS(f_,ms_,fss_,ds_)

[]

([] (l_,fs_) : fss_ @ infer.(f_,l_,fs_) -> KNOWS(f_,ms_,fss_,ds_))

[]

guess?g_ -> KNOWS’(f_,ms_,fss_,ds_)

Observing the previous FDR results, the authentication specifications and the entities of

the Intruder’s Initial Knowledge have been changed with the deductive inference rule. The

“#Protocol description” section is not modified.

#Specification

NonInjectiveAgreement(A, B, [kab])

83

NonInjectiveAgreement(B, A, [kab])

Agreement(A, B, [na,nb])

Secret(A, passwd(A,B), [B])

Secret(A, kab, [B])

Agreement(B, A, [na])

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, Kab, PK, SK(Mallory), \

SKey(Mallory),passwd(Mallory,Alice), passwd(Mallory,Bob), \

passwd(Alice,Mallory),passwd(Bob,Mallory),passwd(Mallory,Mallory)}

Guessable = Password

Guessable = SessionKey

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, Kab, PK, SK(Mallory),\ holds

the new entity. Instead of known varible SessionKey, Km, another SessionKey, Kab is defined,

with the knowledge of Guessable = SessionKey.

Intruder’s capabilities are analysed with the FDR checker, and the results are shown in Fig-

ure 7.2 where the verification for intruder with deductive knowledge is provided for each

authentication specification. The outline of the FDR results that follows the intruder named

Mallory, while the legitimate agents INITIATOR and RESPONDER are Alice and Bob re-

spectively.

During the analysis where assertions failed two levels of counter examples were checked from

the process tree of the FDR debugger; thus, the first is namely SY STEM−1 and the second

one is SYSTEM. As it is expressed in Sections 4.3 and 5.3, the failed assertions correspond

to instances of attacks. The analysis performed is presented under deductions followed by

deductions allocated with inductions.

When intruder ability is based on only deduction, the authentication specifications

Agreement(A,B,[na,nb]), NonInjectiveAgreement(A,B,[kab]), and

NonInjectiveAgreement(B,A,[kab]) failed when deduction process was allocated with the

induction process. The observed results from the FDR debugger are as follow in Figures

7.3, 7.4, and 7.5.

In a similar way, intruder definition based on deduction with possible induction, the secrecy

specifications Secret(A, passwd(A,B), [B]) and Secret(A, kab, [B]) showed failures

in Figures 7.6 and 7.7.

84

Figure 7.1: Achivement of intruder on the proposed framework

Figure 7.2: Power of intruder with deductions for the proposed framework

85

Figure 7.3: Power of intruder on Agreement(A,B,[na,nb]) specification

Thus, addition of induction reveals a fresh attack against the INITIATOR and RESPON-

DER, which was not possible with intruder ability defined under possible deductions only.

The attack is discussed in Section 3.3. Secondly, it is observed that the addition of induction

has significantly reduced the number of steps registered for the respective steps.

7.3.2 Attacker for the Proposed Protocol with Delayed Decryp-

tion Property

In this section, the analysis and verification are done through the use of FDR and CSP

respectively. The “#Protocol description” section of the proposed protocol given in Section

4.2 is not modified, however the“#Intruder Information” section is modified with knowledge.

Following script of the protocol shows the changes on the intruder.

86

Figure 7.4: Power of intruder on NonInjectiveAgreement(A,B,[kab]) specification

Figure 7.5: Power of intruder on NonInjectiveAgreement(B,A,[kab]) specification

87

Figure 7.6: Power of intruder on Secret(A,passwd(A,B),[B]) specification

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, Km,Kab PK, SPK, \

SK(Mallory), SKey(Mallory),passwd(Mallory,Alice), passwd(Mallory,Bob), \

passwd(Alice,Mallory), passwd(Bob,Mallory), passwd(Mallory,Mallory)}

Crackable = SessionKey

Crackable = ServerKey

Crackable = Password

IntruderKnowledge = {..., Km,Kab.., \ } Crackable = SessionKey are the entities

added to the intruder’s knowledge.

The CSP models of the legitimate principals and the communication channels with message

transformations were generated using CASPER. The intruder model with deductions, the

feasibility of the protocol and the achievements of intruder with deductive knowledge are

demonstrated.

88

(a)

(b)

Figure 7.7: Power of intruder on Secret(A,kab,[B]) specification

89

#Specification

Secret(A, passwd(A,B), [B])

Agreement(A, B, [na])

Secret(A, kab, [B])

Secret(B, kab, [A])

Refering to the above protocol specification section, the specifications for the protocol are

done for the legitimate principals, INITIATOR and RESPONDER. Two different types of

specifications are defined for secrecy and authentication. The following CSP code is specifi-

cation for single secret.

SECRET_SPEC_0(s_) =

signal.Claim_Secret?A_!s_?Bs_ ->

(if member(Mallory, Bs_) then SECRET_SPEC_0(s_)

else SECRET_SPEC_1(s_))

[]

leak.s_ -> SECRET_SPEC_0(s_)

[]

crack?k_ -> SECRET_SPEC_0(s_)

SECRET_SPEC_1(s_) =

signal.Claim_Secret?A_!s_?Bs_ -> SECRET_SPEC_1(s_)

[]

crack?k_ -> SECRET_SPEC_0(s_)

Addition to this specification, sequential version: secs− is secrets that intruder must not

learn is defined with the following entities:

SEQ_SECRET_SPEC_0(secs_) =

scs?s_!IntIn -> SEQ_SECRET_SPEC_0(secs_)

[]

card(secs_)<2 & scs?s_!IntNotIn ->

SEQ_SECRET_SPEC_0(union(secs_,{s_}))

[]

card(secs_)==2 & scs?s_:secs_!IntNotIn ->

SEQ_SECRET_SPEC_0(secs_)

[]

leak?s_ : diff(ALL_SECRETS,secs_) -> SEQ_SECRET_SPEC_0(secs_)

[]

crack?k_ -> SEQ_SECRET_SPEC_0(diff(secs_,{k_}))

isIntIn(S_) = if member(Mallory,S_) then IntIn else IntNotIn

Addition to the secrecy specifications, authentication specifications for all agents that are

being authenticated is modelled as in CSP as follows:

90

AuthenticateINITIATORToRESPONDERAgreement_na =

(AuthenticateINITIATORAliceToRESPONDERAgreement_na

[| inter(AlphaAuthenticateINITIATORToRESPONDERAgreement_na_0(Alice),

AlphaAuthenticateINITIATORToRESPONDERAgreement_na_0(Bob)) |]

AuthenticateINITIATORBobToRESPONDERAgreement_na)

The intruder model is analysed with the FDR checker, which is shown in the Figure 7.8.

The authentication agreement, Agreement(A,B,[na]), and the secret agreements,

Secret(A, passwd(A,B), [B]), Secret(A, kab, [B]), and Secret(B, kab, [A]) are not

decrypted with the intruder definition being under the possible deduction; the implementa-

tion at this point was justified as a refinement of the specification. Since no attack was found,

the FDR debugger produced no traces. This proves that intruder is not strong enough to

decrypt the proposed protocol’s specifications.

Figure 7.8: Achievement of intruder with deductions and induction on delayed decryption
property

91

7.3.3 Attacker for the Proposed Timed Authentication Protocol

and Frequent Key Renewal

Similar to the previous sections, the analysis and verification are done through the use of

FDR and CSP respectively. The “#Protocol description” section of the designed protocol

given in Section 5.3 is not modified, however the “#Intruder Information” section is modified

with knowledge. Following script of the protocol shows the changes.

#Specification

StrongSecret(A, passwd(A,B), [B])

TimedAliveness(A, B,100)

TimedAgreement(A, B, 2, [kab])

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Nm, Kab, PK, SPK, SK(Mallory), SKey(Mallory),\

passwd(Mallory,Alice), passwd(Mallory,Bob), \

passwd(Alice,Mallory), passwd(Bob,Mallory), passwd(Mallory,Mallory)}

Guessable = SessionKey

Crackable = SessionKey

Crackable = ServerKey

Crackable = Password

IntruderKnowledge = {..., Kab,.., \ }

Guessable = SessionKey and Crackable = SessionKey

are the entities added to the intruder’s knowledge.

The CSP models of the legitimate principals and the communication channels with message

transformations were generated using CASPER. The intruder model with deductions and

inductions, the feasibility of the protocol and the achievements of intruder with deductive

knowledge are demonstrated.

Entities that are initially known to intruder with Guessable and Crackable values are repre-

sented as follows:

IK0_init = union({Alice, Bob, Mallory, Sam, Nm, Km, SK(Mallory), SKey(Mallory),

passwd(Mallory, Alice), passwd(Mallory, Bob),

passwd(Alice, Mallory), passwd(Bob, Mallory),

passwd(Mallory, Mallory), Garbage}, TimeStamp)

92

Guessable0 = Password

Guessable = diff(Guessable0, IK1)

Crackable0 = SessionKey

Crackable = diff(Crackable0, IK1)

Referring to the following script, the intruder closes up its initial knowledge under deductions

and calculates the facts that can not be learnt.

components_(Sq.ms_) =

if member(Sq.ms_, Fact_1) then {Sq.ms_} else set(ms_)

components_(m_) = {m_}

Seeable_ =

Union({unknown_(components_(m_)) | (_,m_,_,_) <- SYSTEM_M::INT_MSG_INFO})

Close_(IK_, ded_, fact_) =

let IK1_ =

union(IK_, {f_ | (f_,l_,fs_) <- ded_, fs_ <= IK_})

ded1_ =

{(f_,l_,fs_) | (f_,l_,fs_) <- ded_, fs_ <= fact_}

fact1_ = Union({IK_, {f_ | (f_,l_,fs_) <- ded_},

Seeable_, Guessable0})

within

if card(IK_)==card(IK1_) and card(ded_)==card(ded1_)

and card(fact_)==card(fact1_)

then (IK_, {(f_,l_,fs_) | (f_,l_,fs_) <- ded_, not(fs_ <= IK_)}, fact_)

else Close_(IK1_, ded1_, fact1_)

Components of the intruder are grouped as currently unknown fact f−: , currently unknown

fact f−, after a guess:, known fact f−: and known fact f− after guess:.

To put it clearly, currently unknown fact f−: is verified with a function called IGNORANT

since the intruder tries to guess any facts with possible deductions.

IGNORANT(f_,ms_,fss_,ds_) =

hear?m_:ms_ -> KNOWS(f_,ms_,fss_,ds_)

[]

([] (l_, fs_) : fss_, not(member(f_,fs_)) @

infer.(f_,l_,fs_) -> KNOWS(f_,ms_,fss_,ds_))

[]

(member(f_,Guessable) & guess.f_ -> KNOWS’’(f_,ms_,fss_,ds_))

[]

guess?g_:diff(Guessable,{f_}) -> IGNORANT’(f_,ms_,fss_,ds_)

[]

member(f_, ALL_CRACKABLES) & crack.f_ -> KNOWS(f_,ms_,fss_,ds_)

As the execution of the protocol steps continue, the intruder continues with the other com-

ponents. The following script represents the intruder currently unknown fact f−, after a

93

guess:. The function IGNORANT’ represents currently unknown fact f−, where then([]g_ : Guess-

able @ verify.(f_,g_) -> vsync.g_ -> KNOWS(f_,ms_,fss_,ds_)) represents the cur-

rently unknown fact f−, after a guess:

IGNORANT’(f_,ms_,fss_,ds_) =

([] (l_,fs_) : fss_, not(member(f_,fs_)) @

infer.(f_,l_,fs_) ->

if member(f_,ASYMMETRIC_KEYS) and member(inverse(f_), KnowableFact)

then ([] g_ : Guessable @

verify.(f_,g_) -> vsync.g_ -> KNOWS(f_,ms_,fss_,ds_))

[]

notVerify.f_ -> KNOWS’(f_,ms_,fss_,ds_)

else KNOWS’(f_,ms_,fss_,ds_)

)

[]

vsync?g_:diff(Guessable,{f_}) -> IGNORANT(f_,ms_,fss_,ds_)

The function KNOWS represents known fact f−: to the intruder under possible deductions

since leak.f_ -> KNOWS(f_,ms_,fss_,ds_) represents possible currently known entities

that intruder guessed.

KNOWS(f_,ms_,fss_,ds_) =

hear?m_:ms_ -> KNOWS(f_,ms_,fss_,ds_)

[]

say?m_:ms_ -> KNOWS(f_,ms_,fss_,ds_)

[]

([] ded@@(f1_,l_,fs_) : ds_, f1_!=f_ @ infer.ded -> KNOWS(f_,ms_,fss_,ds_))

[]

member(f_,ALL_SECRETS_DI) & leak.f_ -> KNOWS(f_,ms_,fss_,ds_)

[]

([] (l_,fs_) : fss_ @ infer.(f_,l_,fs_) -> KNOWS(f_,ms_,fss_,ds_))

[]

guess?g_ -> KNOWS’(f_,ms_,fss_,ds_)

[]

member(f_, ALL_CRACKABLES) & crack.f_ -> KNOWS(f_,ms_,fss_,ds_)

Last but not the least component of the intruder is known fact f− after guess:. It is clearly

rendered that the function KNOWS’ represents known fact f− and the

vsync?g_:diff(Guessable,{f_})-> KNOWS(f_,ms_,fss_,ds_)

which comes after the infer.(f_,l_,fs_) -> [] g_ : Guessable @ verify.(f_,g_)->

shows the intruder knowledge with a possible guess for a known fact f− .

KNOWS’(f_,ms_,fss_,ds_) =

infer?(f1_,l_,fs_) : ds_ -> KNOWS’(f_,ms_,fss_,ds_)

[]

([] (l_,fs_) : fss_ @

94

infer.(f_,l_,fs_) -> [] g_ : Guessable @ verify.(f_,g_) ->

vsync.g_ -> KNOWS(f_,ms_,fss_,ds_))

[]

vsync?g_:diff(Guessable,{f_}) -> KNOWS(f_,ms_,fss_,ds_)

[]

member(f_,ASYMMETRIC_KEYS) and member(inverse(f_), KnowableFact) &

([] g_ : Guessable @

verify.(inverse(f_),g_) -> vsync.g_ -> KNOWS(f_,ms_,fss_,ds_))

Referring to Figure 7.9, power of the intruder with deductive knowledge on each specifica-

tion of the protocol is analysed. Note that in the outline of the FDR results that follow

the intruder named Mallory, while the legitimate agents INITIATOR and RESPONDER

are Alice and Bob respectively. During the analysis where assertions failed, the process tree,

SY STEM−1 of the FDR debugger were checked. As it is expressed in Sections 4.3 and 5.3,

the failed assertions correspond to instances of attacks. The analysis performed is presented

under deductions followed by deductions allocated with inductions.

95

(a) Intruder with deductions and inductions

(b) Power of intruder on SYSTEM for authentication specification

Figure 7.9: Achievement of the intruder with deductions and induction on frequent key
renewal 96

7.4 Conclusion

Constructing attacker model with inductive and deductive approaches for the designed pro-

tocols presented in Sections 3.2, 4.2 and 5.2 is the main concern of this chapter. In Section

7.2, attacker analysis, formal methods for verifying security properties of cryptographic sys-

tems, that analyses attacker potentials [Lowe, 1996], [Paulson, 1998], [Roscoe et al., 2009]

are discussed. New attackers are modelled.

The capability of the attacker under assumptions of deductive and inductive approach are

presented with failure refinement capability of FDR in Section 7.3. The CSP models of the

legitimate principals and the communication channels with message transformations were

generated using CASPER. The intruder model with deductions, the feasibility of the proto-

col and the achievements of the intruder with deductive knowledge are demonstrated. Thus,

addition of induction confirms a fresh attack against the agents (of the protocols presented

in Sections 3.2, 4.2 and 5.2), which was not possible with intruder ability defined under pos-

sible deductions only. Secondly, it is observed that the addition of induction has significantly

reduced the number of steps registered for the respective steps.

97

Chapter 8

Conclusion

8.1 Introduction

This thesis describes original research on development of security strategies using Kerberos

in wireless communication networks. Due to the critical nature of wireless communication

networks, the existing methods are insufficient to address perspective and requirements in

authentication design. Since Kerberos authentication protocol is considered as a solution,

various existing methods and solution techniques for Kerberos, its basic operation in wireless

communication networks are described, studied and analysed. New authentication protocols

are proposed. As an effective tool in protocol analysis, CASPER is extensively used. In

order to verify the accuracy of the developed protocols, formal verification methods are em-

ployed. Results are presented in order to show the effectiveness of the protocols proposed.

As an effective verification tool, CSP is extensively used for this purpose. These methods are

helpful for understanding the complex interaction between authentication protocols’ entities

and the network concerned. It is expected that, increased security resulted in degradation

in system performance. It is essential to ensure that any degradation in system performance

is at acceptable levels. For this purpose, analytical models have been developed to evaluate

the performance of the systems considered.

8.2 Contributions of the Thesis

The major contributions of the thesis can be summarised as follows:

1. In Chapter Three, a framework is presented to provide a variant for Kerberos security

protocol for IEEE 802.11 wireless LANs that require a high level of security.

98

The framework is extended as the provisions of [Eneh et al., 2004]. Framework’s

paradigms and entities are finalised according to trusted third party authentication

protocol features. The legitimate entities of a particular wireless LAN environment,

KDC and TGS of Kerberos adopt the challenge-response paradigm and the program

and data containing the credentials such as the identities of the devices (such as MAC

addresses) are installed on each of the entities as well as TGS and KDC.

In the second part of Chapter Three, the framework and its expression of particular

security properties are designed within CSP that provides a foundation for verifica-

tion. Additionally, in terms of authentication and authorisation, security aspects of

the protocol’s availability is checked with CASPER. The theoretical grounds of a com-

monly used protocol, Kerberos, its implications and the capability of the attacker

under assumptions of possible deductions are presented with inductive capability in

CASPER/FDR. This protocol is successful as initial steps for the proposed model. It

has been verified that the framework minimises the attacks known to the literature.

2. Depending on the proposed framework presented in Chapter Three new improvements

are introduced on the specifications and description of the proposed protocol in Chapter

Four for increasing the decryption time to reduce the likelyhood of success of intrud-

ers’ attacks. Kerberos and Key-Exchange authentication protocols are combined and

the design of this new protocol depends on the delay decryption property of Kerberos

[Neuman and Ts’o, 1994]. Protocol description is designed and featured by considering

the changes in the EAP structure [Marin-Lopez et al., 2009], [Zrelli and Shinoda, 2007]

and Kerberos assisted authentication in wireless communication networks [Pirzada and

McDonald, 2004].

Critical analysis to find out errors associated with this protocol for unassailable attacks

and demonstration of the feasibility of the protocol and the achievements of intruder

with certain knowledge are considered in the second part of this chapter. The pro-

posed protocol is checked through CASPER and FDR. Due to the delay decryption

introduced, there were “no attack found”. The ascertains are checked to confirm the

design is an exact refinement. The check is successful, when there is no possible attacks

against the protocol. In the CSP representation, the protocol is modelled as a network

and specified the authentication property. Advantage of the extensibility of CSP gives

99

the opportunity to add additional elements to the protocol’s entities. Since the pro-

posed protocol is time sensitive (i.e. timed authentication protocol), introduction of

any delay prevented any intruder’s attempt to launch an attack. Because of this, the

delay decryption technique used in this chapter has proven to delay intruders trying to

break encryption.

3. In Chapter Five the designed and verified protocols of Chapter Three and Four, are

extended to increase the breaking time of encryption for an intruder. A new approach

is derived by restricting access to the authentication system and during this time, dis-

tribution of the frequently renewed keys take place, still the encryption/decryption

of messages are controlled with timed authentication. The authentication protocol

adopted the challenge-response paradigm defined in Section 3.2 and the aforementioned

protocol description with delay decryption of Section 4.2. When the protocol is checked

through FDR, due to the restricted access during frequent key renewal there were “no

attack found”. In order to find the capability of the attacker under assumptions, im-

provements are made on the entities’ encryption elements. Results are compared with

inductive capability of FDR.

In the rest of the Chapter Five, the CSP codes and the construction of rank functions

of the proposed protocol are presented. CSP processes and rank functions that are

constructed, give opportunities of better understanding of security protocols and fo-

cuses on relevant design aspects of these protocols. CSP processes and rank function

theorem [Schneider, 1998], [Roscoe, 1995] are applied to expose any flaws in the design

and possible attacks have been successfully identified. Analysis shows that the protocol

developed has achieved the goal of increasing the time needed to break the encryption,

and hence improve security. Since the proposed approach involves temporary interrup-

tion to link/server access, it has implications in terms of performance degradation.

4. In Chapter Six, performability evaluation approaches are presented for the protocols

proposed in Chapter Five. The proposed approach has implications in the perfor-

mance of the underlying network. Although security is increased, it is expected that

any degradation in system performance should be at acceptable levels. For this pur-

pose, a mathematical model is developed in Section 6.2 to evaluate the performance of

the system considered and the MQLs are calculated using various values for important

system parameters. Performance degradation of the system has been evaluated for

100

various key distribution times while access to the authentication server is restricted at

certain intervals. Results enable designers to carefully choose parameters for the best

performance results for acceptable levels of security. Section 6.3 is concerned with a

modelling approach for performability evaluation of Kerberos servers which dynami-

cally renew keys under pseudo-secure conditions. Numerical results are obtained and

presented for various performability measures for different key renewal and service in-

terruption period values. Unlike the previous studies, the server failures are considered

as well. The approach presented in this chapter provides more realistic performability

measures. Results showed that the server failures, as well as key renewal times and

time between interruptions can significantly affect the performance of a Kerberos server

especially if high arrival rates are expected. The model developed is highly flexible and

it can be used for systems with various failure, repair, and renewal times and times

between interruptions. The method can be extended for multiple Kerberos servers and

for systems with backup servers especially for the KDC.

5. In Chapter Seven, constructing an attacker model with inductive and deductive ap-

proaches for the proposed protocols presented in Sections 3.2, 4.2 and 5.2 is discussed.

In Section 7.2, attacker analysis, formal methods for verifying security properties of

cryptographic systems that analyses attacker potentials are discussed and new attack-

ers are modelled.

In Section 7.2 attacker definition is built into the CSP models of proposed protocols

given in Sections 3.2, 4.2, 5.2 and 5.3, and subsequently tested using FDR. Section 7.3,

tests proposed protocols by comparing protocol description and specification. When the

protocol investigated against to attack, protocol description fails to be a refinement of

the specification. In terms of authentication, this section is concerned with increasing

power of an intruder to break an encryption with inductions and deductions. Results

of times of breaking the encryption for the proposed protocols and intruder’s power are

presented and discussed. Referring to Section 7.3 power of an intruder with deductive

knowledge on each specification of the protocol is analysed. During the analysis, the

failed assertions correspond to instances of attacks. The analysis performed is pre-

sented under deductions followed by deductions combined with inductions.

To render a conclusion, the contributions of this thesis are various authentication models

designed for Kerberos in wireless communication systems, the validation of these models by

101

formal verification tools in order to make provision for the formalisation of these models

and also, extend the intruder abilities by adding those of possible induction to existing de-

duction in CSP. Essentially, this research attempts to combine the inductive and deductive

approaches in model checking in order to realise an abstract description of intruder with

enhanced capabilities. Results of verification of protocols using the CSP/FDR approach,

with intruder capability defined as an interleaved process of induction and deduction, show

that protocols are subject to attacks not previously recorded. Additionally, this research

aims to derive effects of these models on performance degradation as well as availability of

Kerberos. This is provided by designing analytical models and empirical results are derived

and discussed.

8.3 Suggestions for Future Study

The work done paths the way for the further development work. Some suggestions for future

study are given below

1. Although security is increased with different authentication properties for Kerberos,

such as delay decryption, it is expected that any degradation in system performance

should be at acceptable levels. For this purpose, mathematical models are developed

in Sections 6.2 and 6.3 to evaluate the performance of the system considered. Unlike

the previous studies, the server failures are considered as well for the model developed

in Section 6.3. The model developed is highly flexible and it could be used for systems

with various failure, repair, and renewal times and times between interruptions. The

method can be extended for multiple Kerberos servers and for systems with backup

servers especially for the KDC for improved reliablility.

2. In Chapter Seven, attacker potentials are discussed and new attackers are modelled.

In case of using attacker models based on combined deductive and inductive methods,

protocol analysis carried out using the FDR, shows increased ability in attackers to

succeed.

It is possible to develop a CSP description of an operator induced by an inductive

definition and uses this for the development of the capability of an attacker. During

the analysis, this would show to what , the attacker can deduce and induce facts from

sets of messages that it sees.

102

3. The architectures provided in Chapters Four and Five can be further extended for

highly available, highly reliable wireless communication systems. It is possible to use

more than one Kerberos servers with appropriate modifications to provided better per-

formance, reliability and performability. Hot, and cold standby backup strategies, as

well as various multi server architectures are available in the literature for similar ap-

plications.

103

Bibliography

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Information and Computation, 148:36–47, 1999.

M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. IEEE

Trans. Softw. Eng., 22(1):6–15, 1996.

B. Aboba and P. Calhoun. RADIUS (remote authentication dial in user service) support

for extensible authentication protocol (EAP). RFC, The Internet Society, United States,

2003.

N. Baghaei and R. Hunt. Security performance of loaded IEEE 802.11b wireless networks.

Computer Communications, 27(17):1746–1756, 2004.

J. Banks, J. S. Carson, B. L. Nelson, and D.M. Nicol. Discrete-Event System Simulation.

Prentice-Hall: Upper Saddle River, NJ., 4th. edition, 2005.

G. Bella. Inductive Verification of Cryptographic Protocols. PhD thesis, Clare College,

University of Cambridge, March 2000.

S. M. Bellovin and M. Merritt. Limitations of the kerberos protocol. In Winter 1991 USENIX

Conference Proceedings, USENIX Association, 253–267, 1991.

V. A. Brennen. Kerberos infrastructure HOWTO. Technical report, CryptNET, Guerrilla

Technology Development, 2004.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. SIGOPS Oper. Syst.

Rev., 23(5):1–13, 1989. ISSN 0163-5980.

R. Chakka and I. Mitrani. Heterogeneous multiprocessor systems with breakdowns: Perfor-

mance and optimal repair strategies. Theor. Comput. Sci., 125(1):91–109, 1994.

104

P. Congdon, B. Aboba, A. Smith, G. Zorn, and J. Roese. IEEE 802.1x remote authentication

dial in user service (RADIUS) usage guidelines. RFC, The Internet Society, United States,

2003.

P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In

POPL, 83–94, 1992.

C. Cremers and P. Lafourcade. Comparing state spaces in automatic protocol verification. In

Proc. of the Seventh International Workshop on Automated Verification of Critical Systems

(AVoCS’07), Electronic Notes in Theoretical Computer Science. Elsevier ScienceDirect,

September 2007.

C. J. F. Cremers, P. Lafourcade, and P. Nadeau. Comparing state spaces in automatic

protocol analysis. In Formal to Practical Security, vol. 5458/2009 of Lecture Notes in

Computer Science, 70–94. Springer Berlin / Heidelberg, 2009.

W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22(6):644–654, Nov 1976.

D. Dolev and A. C. Yao. On the security of public key protocols. In SFCS ’81: Proceedings of

the 22nd Annual Symposium on Foundations of Computer Science, 350–357, Washington,

DC, USA, 1981. IEEE Computer Society.

B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication

protocols. In Proceedings of the 10th International Conference on Theorem Proving in

Higher Order Logics, TPHOLs ’97, 121 –136, London, UK, 1997. Springer-Verlag. ISBN

3-540-63379-0.

A. Eneh, H. Singh, and O. Gemikonakli. Three way authentication framework for IEEE

802.11b networks. In Proc. of the 4th Int. Net. Conf. INC ’04, 2004.

A. Eneh, O. Gemikonakli, and R. Comley. Security of electronic commerce authentication

protocols in economically deprived communities. In The 5th Security Conference, ISBN:

0–9772107–2–3, Las Vegas, Nevada, April 2006.

E. Ever. Performability Modelling of Homogeneous and Heterogeneous Multi-server Sys-

tems with Breakdowns and Repairs. PhD thesis, School of Computing Science, Middlesex

University, November 2007.

J. Geier. Minimising wireless local area network security threats, 2005. URL http://www.

wi-fiplanet.com/tutorials/articles.php/1457211[Accessed:August2010].

105

http://www.wi-fiplanet.com/tutorials/articles.php/1457211 [Accessed: August 2010]
http://www.wi-fiplanet.com/tutorials/articles.php/1457211 [Accessed: August 2010]

A. Harbitter and D. A. Menascé. A methodology for analyzing the performance of authen-

tication protocols. ACM Trans. Inf. Syst. Secur., 5(4):458–491, 2002.

B. R. Haverkort and A. Ost. Steady-state analysis of infinite stochastic petri nets: Compar-

ing the spectral expansion and the matrix-geometric method. In Proceedings of the 6th

International Workshop on Petri Nets and Performance Models, page 36, Washington,

DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-7931-X.

C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21:

666–677, 1985.

R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons, Inc.,

1991.

Y. Jiang, C. Lin, X. Shen, and M. Shi. Mutual authentication and key exchange protocols

with anonymity property for roaming services. In NETWORKING, 114–125, 2005.

M. A. Kâafar, L. B. Azzouz, F. Kamoun, and D. Males. A kerberos-based authentication

architecture for wireless lans. In NETWORKING, 1344–1353, 2004.

A. Kahate. Cryptography and Network Security. Tata McGraw-Hill: New Delhi, 2nd edition,

2009.

A. Kehne, J. Schönwälder, and H. Langendörfer. A nonce-based protocol for multiple au-

thentications. SIGOPS Oper. Syst. Rev., 26(4):84–89, 1992.

J. Klensin, R. Catoe, and P. Krumviede. IMAP/POP authorize extension for simple chal-

lenge/response. RFC, The Internet Society, United States, 1997.

J. Kohl and C. Neuman. The kerberos network authentication service (v5). RFC, MIT/ The

Internet Society, United States, 1993.

A. Law and W.D. Kelton. Simulation Modelling and Analysis. McGraw-Hill: NY, USA., 3rd

edition, 2000.

G. Lowe. An attack on the needham-schroeder public-key authentication protocol. Informa-

tion Processing Letters, 56(3)(3):131–133, 1995.

G. Lowe. Some new attacks upon security protocols. In 9th IEEE Computer Security Work-

shops, 162–169. Society Press, 1996.

106

G. Lowe. Casper: A compiler for the analysis of security protocols. In 10th Computer

Security Foundations Workshop (CSFW ’97), 18–30. IEEE Computer Society, June 10-12

1997.

G. Lowe. A hierarchy of authentication specification. In 10th Computer Security Foundations

Workshop (CSFW ’97), June 10-12, 1997, Rockport, Massachusetts, USA, pages 31–44.

IEEE Computer Society, 1997b.

G. Lowe, P. Broadfoot, C. Dilloway, and M. L. Hui. Casper: A Compiler for the Analysis of

Security Protocols, 1.12 edition, September 2009.

R. Marin-Lopez, F. Pereniguez, Y. Ohba, F. Bernal, and A. F. G. Skarmeta. A transport-

based architecture for fast re-authentication in wireless networks. In SARNOFF’09: Pro-

ceedings of the 32nd international conference on Sarnoff symposium, 40–44, Piscataway,

NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-3381-0.

C. A. Meadows. Formal verification of cryptographic protocols: A survey. In Advances in

Cryptology (ASIACRYPT’94), vol. 917 of Lecture Notes in Computer Science, 133–150.

Springer Berlin / Heidelberg, 1995.

R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University

Press, 1999.

A. Mishra and W. A. Arbaugh. An initial security analysis of the IEEE 802.1x standard.

Technical report, UMIACS-TR-2002-10, 2002.

I. Mitrani. Approximate solutions for heavily loaded markov-modulated queues. Perform.

Eval., 62(1-4):117–131, 2005.

J. F. Monin. Understanding Formal Methods. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2001. ISBN 1852332476.

R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks

of computers. Commun. ACM, 21(12):993–999, 1978.

C. Neuman and T. Ts’o. Kerberos: An authentication service for computer networks. IEEE

Communications Magazine, 32(9):33–38, September 1994.

M. S. Obaidat and N. A. Boudriga. Fundamentals of Performance Evaluation of Computer

and Telecommunications Systems. Wiley-Interscience, New York, NY, USA, 2010. ISBN

0471269832.

107

L. C. Paulson. The inductive approach to verifying cryptographic protocols. J. Comput.

Secur., 6:85–128, January 1998.

A. A. Pirzada and C. McDonald. Kerberos assisted authentication in mobile ad-hoc networks.

In Proceedings of the 27th Australasian conference on Computer science (ACSC’04), 26,

41–46, 2004.

A. W. Roscoe. CSP and determinism in security modelling. In In Proc. IEEE Symposium

on Security and Privacy, 114–127. Society Press, 1995.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall (Pearson), 2005.

A. W. Roscoe, P. J. Armstrong, and Pragyesh. Local search in model checking. In Proceed-

ings of the 7th International Symposium on Automated Technology for Verification and

Analysis, ATVA ’09, 22–38, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-

04760-2.

P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The modelling and analysis

of security protocols: the csp approach. Addison-Wesley Professional, 2000.

S. Schneider. Verifying authentication protocols in csp. IEEE Trans. Softw. Eng., 24(9):

741–758, 1998.

S. A. Schneider. Concurrent and real time systems: the CSP Approach. Addison-Wesley,

1999.

B. Schneier. Applied Cryptography. John Wiley and Sons, second edition, 1996.

SECWP. Security white paper evolution, requirements, and options. Technical report,

Symbol Technologies Inc., 2007.

S. A. Shaikh and V. J. Bush. Analysing the WOO-LAM protocol using CSP and rank

functions. Journal of Research and Practice in Information Technology, 38(1):19–29, 2006.

W. Stallings. Cryptography and Network Security Principles and Practices. New Jer-

sey:Prentice Hall, 5th ed., 2010.

K. Trivedi and M. Xiaomin. Probabilistic analysis of wireless cellular networks. In Proceedings

of International Symposium on Performance Evaluation of Computer and Telecommuni-

cation Systems, vol. 79, 27–44, 2002.

K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science

Applications. Wiley, NY, USA., 2002.

108

J. Vollbrecht, D. Rago, and R. Moskowitz. Wireless lan access control and authentication:

802.11b wireless networking and why it needs authentication. Technical report, Interlinks

Networks Inc., 2001.

T. Y. C. Woo and S. S. Lam. A lesson on authentication protocol design. SIGOPS Oper.

Syst. Rev., 28(3):24–37, 1994.

Y. Zhao and N. Thomas. A cost model analysis of a secure key distribution centre. In

The 9th International Conference for Young Computer Scientists(ICYCS’08), 1969–1974,

Washington, DC, USA, 2008. IEEE Computer Society.

Y. Zhao and N. Thomas. Efficient solutions of a pepa model of a key distribution centre. In

Elaine Weyuker and Murray Woodside, editors, Performance Evaluation, vol. 67, 583–756.

Elsevier Science Publishers B. V., 2009.

S. Zrelli and Y. Shinoda. Specifying kerberos over eap: Towards an integrated network access

and kerberos single sign-on process. In International Conference on Advanced Information

Networking and Applications, 490–497, Los Alamitos, CA, USA, 2007. IEEE Computer

Society.

109

	Acronyms
	Glossary of Symbols
	Introduction
	Introduction
	Scope of Investigation
	Contributions of the Thesis
	Outline of the Thesis

	Literature Review
	Introduction
	Evaluation of Existing Methods and Solution Techniques for Kerberos
	Kerberos and Security Considerations
	Basic Operation of Kerberos in Wireless Communication Networks

	Analysis and Verification of Authentication Protocols
	Formal Verification Methods
	Model Checking Techniques
	Automated Code Generation

	Existing Studies on Performance Evaluation of Security Policies
	Performance Evaluation Techniques
	Performance Studies on Network Security

	Conclusion

	A Framework for Solution to the Problem of Trusted Third Party for Wireless Communication Networks
	Introduction
	The Framework Proposed as a Kerberos Variant
	Analysis and Verification of the Designed Framework
	Conclusion

	Development of an Authentication Protocol to Address the Delayed Decryption Property in Trusted Third Party Authentication Protocols
	Introduction
	Proposed Authentication Protocol with Delay Decryption Property
	Analysis and Verification of the Designed Authentication Protocol
	Analysis through Code Generation, CASPER
	Verification through Formal Methods, CSP

	Conclusion

	Development of a New Solution for Frequent Key Renewal under Pseudo-secure Conditions
	Introduction
	New Solution for Frequent Key Renewal with Shut Down Access
	Analysis through Code Generation and Model Checking, CASPER/FDR

	Security Aspects of Combined Use of Timed Authentication Protocol and Frequent Key Renewal
	Constructing the Rank Functions of Kerberos for the Combined use of the Timed Authentication Protocol and Frequent Key Renewal
	The CSP Model
	The Rank Functions

	Conclusion

	Performability Modelling of a Kerberos Server with Frequent Key Renewal under Pseudo-Secure Conditions with Server Breakdowns and Repairs
	Introduction
	Performability Modelling with Frequent Key Renewal
	The Model
	Two Dimensional Markov Representation of the System
	Analytical Model's Numerical Results
	Discussions

	Performability Modelling with Breakdowns and Repairs
	The Model
	The Steady State Solution
	Numerical Results and Discussions

	Conclusion

	Modelling Attacker with Increased Powers and Deciding Security Properties of Proposed Protocols by Induction and Deduction
	Introduction
	Modelling Attackers
	Attacker with Increased Powers on Proposed Protocols
	Attacker for Proposed Framework
	Attacker for the Proposed Protocol with Delayed Decryption Property
	Attacker for the Proposed Timed Authentication Protocol and Frequent Key Renewal

	Conclusion

	Conclusion
	Introduction
	Contributions of the Thesis
	Suggestions for Future Study

