
Expert Systems With Applications 95 (2018) 113–126

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Picking on the family: Disrupting android malware triage by forcing

misclassification

Alejandro Calleja

a , Alejandro Martín

b , Héctor D. Menéndez

c , ∗, Juan Tapiador a , David Clark

c

a Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain
b Departamento de Informática, Universidad Autónoma de Madrid, Madrid, Spain
c University College London (UCL), Gower Street, London WC1E 6BT, United Kingdom

a r t i c l e i n f o

Article history:

Received 31 March 2017

Revised 29 October 2017

Accepted 14 November 2017

Keywords:

Malware classification

Adversarial learning

Genetic algorithms

Iagodroid

a b s t r a c t

Machine learning classification algorithms are widely applied to different malware analysis problems be-

cause of their proven abilities to learn from examples and perform relatively well with little human input.

Use cases include the labelling of malicious samples according to families during triage of suspected mal-

ware. However, automated algorithms are vulnerable to attacks. An attacker could carefully manipulate

the sample to force the algorithm to produce a particular output. In this paper we discuss one such at-

tack on Android malware classifiers. We design and implement a prototype tool, called IagoDroid, that

takes as input a malware sample and a target family, and modifies the sample to cause it to be classi-

fied as belonging to this family while preserving its original semantics. Our technique relies on a search

process that generates variants of the original sample without modifying their semantics. We tested Iago-

Droid against RevealDroid, a recent, open source, Android malware classifier based on a variety of static

features. IagoDroid successfully forces misclassification for 28 of the 29 representative malware families

present in the DREBIN dataset. Remarkably, it does so by modifying just a single feature of the origi-

nal malware. On average, it finds the first evasive sample in the first search iteration, and converges to

a 100% evasive population within 4 iterations. Finally, we introduce RevealDroid ∗ , a more robust classi-

fier that implements several techniques proposed in other adversarial learning domains. Our experiments

suggest that RevealDroid ∗ can correctly detect up to 99% of the variants generated by IagoDroid.

© 2017 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

s

t

e

m

d

t

t

o

(

t

t

t

M

d

t

v

r

w

2

d

T

v

r

c

&

c

G

d

h

0

. Introduction

Detecting and classifying malware is a challenge that has

teadily increased over time. Not only has the rate of produc-

ion of distinct files been increasing but the methods used to

vade detection have become more sophisticated. For instance,

alicious apps have been observed colluding to achieve their

esired outcomes (Labs, 2016; Zhou & Jiang, 2012). The quan-

ity of malware targeting mobile devices doubled in the year

o July 2016 (Labs, 2016), with a clear trend towards the reuse

f source code instead of developing new variants from scratch

 Zhou & Jiang, 2012). Mobile malware variants are produced

hrough component reuse and also via obfuscation. Considering

he advances in machine learning techniques in the last decades,

here is widespread interest in applying these to the malware
∗ Corresponding author.

E-mail addresses: accortin@inf.uc3m.es (A. Calleja), alejandro.martin@uam.es (A.

artín), h.menendez@ucl.ac.uk (H.D. Menéndez), jestevez@inf.uc3m.es (J. Tapiador),

avid.clark@ucl.ac.uk (D. Clark).

m

fi

i

t

s

ttps://doi.org/10.1016/j.eswa.2017.11.032

957-4174/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article u
riage problem. Contemporary machine learning algorithms pro-

ide the potential to improve scalability and offer high flexibility

egarding the features employed during the classification of mal-

are into families (Dash et al., 2016; Gandotra, Bansal, & Sofat,

014). However, an informed adversary can deliberately alter the

ecision process of an automated classifier by different means.

he problem of employing machine learning algorithms in ad-

ersarial environments has previously been studied in security

elated contexts such as spam, intrusion detection, or malware

lassification (Biggio, Rieck et al., 2014; Dalvi, Domingos, Sanghai,

 Verma, 2004; Lowd & Meek, 2005). In the same way, different

ountermeasures have been proposed (Biggio, Corona, Fumera,

iacinto, & Roli, 2011; Chinavle, Kolari, Oates, & Finin, 2009).

This paper investigates the automated disruption of An-

roid malware triage, the process by which decisions are

ade in regard to the further analysis steps for a suspicious

le (Chakradeo, Reaves, Traynor, & Enck, 2013). A critical step dur-

ng this process, that may affect the choice of subsequent analysis

echniques, is the identification of the malware family of a highly

uspicious file. Our attack is that a malware writer, in deploying
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.eswa.2017.11.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.11.032&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:accortin@inf.uc3m.es
mailto:alejandro.martin@uam.es
mailto:h.menendez@ucl.ac.uk
mailto:jestevez@inf.uc3m.es
mailto:david.clark@ucl.ac.uk
https://doi.org/10.1016/j.eswa.2017.11.032
http://creativecommons.org/licenses/by/4.0/

114 A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126

w

c

c

n

o

S

t

l

2

m

p

s

s

a

D

m

f

o

v

a

v

n

i

i

a

t

i

s
variants from a relatively novel family, attempts to disguise them

as a different family, one that is less likely to attract intensive

scrutiny. This may hide novel indicators of compromise such as

DNS records, malicious URLs, or exploits (Lakhotia, Walenstein,

Miles, & Singh, 2013).

In this scenario, the power of the malware writer or adversary

is as follows: she has control over her malware sample and is

able to extract static features such as intents-actions, API calls,

and information flows. In addition, she knows the feature space

used by the targeted classifier and has access to the classifi-

cation/misclassification probability. This is a relatively strong

assumption, yet the attacker still has the limitation of not knowing

the underlying classification algorithm and she needs to preserve

the semantics of the executable. Besides, she wants to automate

the process. Our solution to this problem, a tool called IagoDroid,

uses evolutionary algorithms to perform a search that identifies

a minimal number of changes to the features in order to effect a

family misclassification. IagoDroid can randomly choose a family

or target a specific family.

Assuming further knowledge about the classifier is unrealistic

in practice. Since the mapping (from vectors to labels) imple-

mented by the classifier is unknown, there is no other option

but to treat it as a black box that can be repeatedly queried

during search. Even when this is not the case and the details

about the classifier are fully known, obtaining an actionable

analytical description of such a mapping might not be always

possible, particularly for non-linear classifiers that capture com-

plex interactions among features to produce the output label.

Population-based search mechanisms such as genetic algorithms

have proven to perform remarkably well in challenging domains

where more traditional search algorithms have not succeeded

(Sivanandam & Deepa, 2007).

Attacks against classifiers have been discussed before, both

from a theoretical point of view and in particular security domains

such as spam or intrusion detection. In this paper we study the

impact of an attack against multiclass Android malware classifiers.

Android apps are extremely easy to decompile, manipulate and

repackage again into a new app. This makes it easy to introduce

new artefacts (e.g., components, API calls, intents, information

flows) in the app that will affect its associated feature vector and,

therefore, the label given by a classifier. If carefully introduced

(for instance, in if-then blocks only accessible through an opaque

predicate that always evaluates to false), such modifications will

not affect the app’s execution semantics.

To demonstrate our approach, IagoDroid attacks family clas-

sification by RevealDroid (Garcia, Hammad, Pedrood, Bagheri-

Khaligh, & Malek, 2015), a recently proposed malware classifier

employing existing static analysis features. Our choice of Reveal-

Droid is for convenience (it is open source and ready to use) and

because it incorporates most of the static features discussed in

the literature (API calls, information flows, and so on). However,

IagoDroid is agnostic with respect to the classifier used and can

be applied to different classifiers. Moreover, we have subsequently

designed a countermeasure that can detect when a potential

evasion has been performed and can recover a set of potential

original families.

The main contributions of this paper are summarized as

follows:

• We propose a novel classification evasion attack against any

triage process where the family classification relies on static

analysis. We demonstrate, in particular, that IagoDroid can

evade an open source classifier named RevealDroid , a freely

available multi-class malware classifier which combines several

different features. To do so, we employ evolutionary algorithms,

a technique which has been previously employed in the context
of evading classifiers for security applications (Pastrana, Orfila,

& Ribagorda, 2011; Xu, Qi, & Evans, 2016) (see Section 2).
• We train RevealDroid using 1919 malware samples from the

DREBIN (Arp, Spreitzenbarth, Hubner, Gascon, & Rieck, 2014)

dataset divided into 29 different malware families. IagoDroid

successfully forces misclassification of 28 of the 29 families, in

the process modifying only a single feature of the original mal-

ware feature vector. On average, IagoDroid is able to find the

first evasive file within the first generation and converges on a

100% evasive population within 4 generations (see Section 4).

It was able to find approximately 14,0 0 0 evasive variants from

more than 290 initial malware samples within 2 min.
• The countermeasure, named by us as RevealDroid

∗, detects

potential evasions in between 90% and 99% of the output

of IagoDroid, depending on the number of modifications in-

troduced, and can identify potential original families for the

malware (see Section 5).

The rest of this paper is organized as follows: In Section 2 ,

e present our approach, introducing issues related to our

ontribution such as the adopted adversarial model, the target

lassifier, and the parameters of the genetic algorithm compo-

ent. Section 3 describes the experiments and our configuration

f them. In Section 4 we analyse and discuss the results while

ection 5 describes the countermeasure proposed. Section 6 in-

roduces the most relevant, related contributions found in the

iterature and finally Section 7 concludes the paper.

. IagoDroid

This section describes IagoDroid, a prototype tool that induces

islabelling of malware families during the triaging process for

otential malware samples. Given the importance of automated

ystems to detect and classify malware, to understand how these

ystems can fail (and how can they be strengthened) when attacks

re directed against their integrity is an important task. Iago-

roid’s main goal is to demonstrate that an attack on an Android

alware classification tool is feasible, by forcing it to produce a

amily misclassification as the result of some minor changes in the

riginal sample and without modifying its semantics.

Following the taxonomy of attacks on machine learning de-

eloped by Barreno, Nelson, Sears, Joseph, and Tygar (2006) , our

pproach can be positioned as follows:

• Exploratory Attacks: The attack described in this paper is ex-

ploratory since it does not aim at altering the training process

but the classification itself, offline.
• Targeted Attacks: Regarding specificity, the proposed attack

is focused on misleading the label given by the classifier to a

particular sample. Nevertheless, the use of evolutionary search

to find a proper mutation strategy can be used to fool the

detection of any sample in the dataset as demonstrated in the

following sections of the paper.
• Integrity Attacks: In contrast to attacks against the availability

of the classifier, we do not seek to induce random classification

errors. We aim to coerce an intended family misclassification

for specific input samples.

The basic idea behind the IagoDroid attack is that the feature

ector of a malicious application can be transformed by injecting

ew specific, incremental values, and this can eventually result

n the assignment of an incorrect family label. These changes

n the feature vector require modifications in the app’s code

nd resources, in order to build a new sample corresponding to

he desired feature vector. For instance, it may be necessary to

nclude a new API call. Moreover, these changes are made while

imultaneously keeping the semantics of the app invariant. The

A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126 115

Fig. 1. General scheme of IagoDroid.

k

i

p

v

fi

o

e

o

o

d

t

p

u

a

e

O

i

m

t

I

s

p

c

d

t

a

s

fi

f

2

t

m

t

t

t

l

c

a

t

d

a

k

w

a

k

n

w

w

f

w

d

u

s

t

c

f

a

c

t

t

2

c

c

t

i

t

c

c

b

y

t

D

o

d

R

t

A

b

a

l

e

v
ey to achieving semantic invariance is to only consider small,

ncremental changes in the app (i.e., adding new API calls or new

ermissions) each of which does not alter the original semantics.

Obtaining the list of transformations to apply to the feature

ector can be seen as a search problem in which a search heuristic

nds a solution (i.e., a new feature vector) based on the proximity

f the current feature vector to one associated with a label differ-

nt from the current one. This proximity can be calculated based

n the output of a malware classifier, by measuring the probability

f the feature vector being classified as the original label or as a

ifferent label.

Fig. 1 shows the general architecture of IagoDroid. There are

wo main pipelines, one depicted above the other. The upper

ipeline shows the process of building the classification algorithm

sed to drive the heuristic search. This algorithm takes as input

 set of samples placed in a feature space. These samples are

mployed to train the classifier and obtain a classification model.

n the other hand, the process of performing the attack is shown

n the bottom pipeline. In this case the process starts by picking a

alware sample whose family label we wish to alter. Additionally,

he attack pipeline can also take a target family (see Section 2.1).

agoDroid employs a genetic algorithm to perform the heuristic

earch, as these algorithms to adapt to problems of high com-

lexity. The search is guided by a fitness function which uses the

lassification model previously trained to find the solutions that in-

uce misclassification. Finally, the application is modified in order

o adapt it to its new feature vector and it is repackaged to obtain

 new app which is able to evade a correct family classification.

The following subsections present the context for IagoDroid,

tarting from a description of the adversarial model, a speci-

cation of the target classifier and finishing with the problem

ormalisation.

.1. Adversarial model

In our scenario, we consider an adversary who aims to evade

he correct classification of a sample belonging to family A by

isclassifying it as family B .

The goal of the adversary is to ensure that it is possible to miss

he identification of the correct family. We consider two cases. In

he first scenario, the selection of the target family is delegated

o the evolutionary algorithm which will merely try to change the

abel of the input feature vector with the minimum number of

hanges. In the second scenario, the target family is also an input

nd the search will attempt to find the feature changes that attain

his specific misclassification.

As introduced in Section 1 , the adversary seeks to thwart the

eployment of proper countermeasures. To appreciate how the
ttacker achieves this, it is useful to specify what the adversary

nows about the classifier. Given that IagoDroid is based on a

ell known classification algorithm whose source code is publicly

vailable, we allow the feature set employed by the classifier to be

nown to the attacker. We assume the attacker is able to create

ew feature vectors and submit them directly to the classifier

ithout any constraint. We assume that the classifier interacts

ith the submitted feature vectors as if they had been extracted

rom applications created or modified by the adversary. In other

ords, the search is conducted at the feature vector level, without

irectly modifying the malware sample until a solution is found.

Regarding the classifier output, the attacker receives two val-

es: the label assigned to the input vector and a classification

core, indicating the trust/reliability of the classification. Since

he adversary is able to deploy her own implementation of the

lassifier, we do not consider any limitation in the number of

eature vectors that can be submitted, hence the attacker has

n unbounded number of attempts to lead the classifier to a

ompromised verdict.

This scenario for the adversarial capabilities is realistic since

he target classifier can be well documented (i.e., no security

hrough obscurity) or else reversed.

.2. Target classifier

We decided to use an already proposed and documented

lassifier in our work. Our selection criteria for choosing a target

lassifier included good classifier precision and high diversity in

he features it uses. While there are several classifiers discussed

n the literature, few of them consider an important and represen-

ative set of features and are freely available to download. Table 1

ompares the use of different features by the most important

lassifiers described in the literature and notes whether they can

e downloaded to be used for our purposes. From the nine anal-

sed proposals, only the authors of three of them have released

he source code of their solutions, RevealDroid , Dendroid and

roidLegacy . Of these, RevealDroid is the most appropriate

ne since it uses the widest set of features. In addition, it was

esigned and tested for malware family classification.

evealDroid classifier building

RevealDroid consists of a series of components that enable

he extraction of three different kinds of data from Android apps:

PI calls, intent actions, and streams and flows. These features can

e used to build a dataset and then to train a machine learning

lgorithm to perform a classification task that predicts the family

abel of previously unseen samples. Each group of features is

xtracted separately and is sequentially added to the feature

ector for each application, with the objective of controlling and

116 A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126

Table 1

Android malware classification methods using machine learning approaches.

Classifier Code structures Permissions Api Calls Intent-actions Flow analysis Tested for families

classification

Freely available to

download

RevealDroid (Garcia et al., 2015) ✗ ✗
√ √ √ √ √

DroidSIFT (Zhang et al., 2014) ✗
√ √ √ √

✗ ✗

Dendroid (Suarez-Tangil et al., 2014)
√

✗ ✗ ✗ ✗
√ √

Drebin (Arp et al., 2014) ✗
√ √ √

✗
√

✗

DroidMiner (Yang et al., 2014) ✗ ✗
√ √

✗
√

✗

DroidAPIMiner (Aafer et al., 2013) ✗ ✗
√

✗ ✗ ✗ ✗

VILO (Lakhotia et al., 2013)
√

✗ ✗ ✗ ✗
√

✗

DroidLegacy (Deshotels et al., 2014) ✗ ✗
√

✗ ✗
√ √

MAST (Chakradeo et al., 2013)
√ √

✗
√

✗ ✗ ✗

C

a

v

o

(

m

v

w

I

W

2

r

2

s

d

d

g

e

f

t

g

m

t

g

i

2

a

p

t

s

o

t

g

2

(

b

f

supervising the whole process. We used the original code of

RevealDroid , downloaded from its public repository. 1

The first feature extracted from each application is a list of the

API calls found in the code, which allows one to obtain a high

level description of the expected behaviour of the application.

These API calls can be included in the feature vector of an app

in two ways: grouping the calls by using the 30 security-sensitive

API categories defined by Rasthofer, Arzt, and Bodden (2014) , or

grouping the calls by using the Android package in which they are

defined. Revealdroid follows this second approach.

The second step of the dataset building process consists of

including intent actions data. Intent actions are identifiers of

different events that happen within the lifecycle of an application

such as launching a new activity or a new service. This is also a

useful information source for detecting and classifying malicious

applications (Chin, Felt, Greenwood, & Wagner, 2011).

Thirdly, RevealDroid uses information flows to characterise

the samples. An information flow can be seen as the path followed

by a piece of sensitive data through the flow graph of a program.

In this case, an information flow is represented as a pair consisting

of a source (i.e. an API call providing data to the app) and a sink

(i.e. the app providing data as input for another API call).

The final step involves the training process of a machine

learning classification algorithm. The authors of RevealDroid use a

decision tree based algorithm, C4.5, and the 1-nearest neighbour

algorithm. Nevertheless, any other machine learning algorithm

might be used instead.

2.3. Problem formalisation

In this subsection we provide a formal description of the attack.

Our experimental dataset can be formalised as the set X ,

containing samples of different malware families. However, since

we are solely interested in the feature vectors describing different

properties of each sample, X can be represented as the set of n

feature vectors:

X = { x 1 , x 2 , . . . , x n } . (1)

Each feature vector x i is composed of k different features, extracted

directly from the original application:

x i = { x 1 i , x
2
i , . . . , x

k
i } . (2)

Initially, each sample in the dataset is labelled with the name

of the family it belongs to. We name the set of all the possible

labels in the dataset as Y . Thus, the classifier C can be defined as

a function mapping a feature vector x i ∈ X to the most likely label

y j ∈ Y , paired with its probability of being the correct label:

(x i) = (p(y j) , y j) , y j ∈ Y, (3)

where p (y j) is the probability of y j being the true label of x i as

estimated by the classifier.
1 https://bitbucket.org/joshuaga/revealdroid .

w

f

t

Finally, we formalise our search approach at a high level of

bstraction as a function accepting two arguments: a feature

ector which is to be misclassified, obtained from the app, and the

riginal label that we want to avoid. The output of this function

 x ′
i
) will be the original vector with a set of changes (e.g., incre-

ent the value of a feature) to be applied to the original feature

ector x i . Once this new vector has been created, the classifier C

ill assign a new label y ′
j

to this modified vector:

agoDroid (x i , y j) = x ′ i : y ′ j ∈ Y, y ′ j � = y j . (4)

e consider the changes as a � vector satisfying: x i + � = x ′
i
.

.4. Genetic approach

This section describes the design details of the genetic algo-

ithm that is at the core of IagoDroid.

.4.1. Encoding

Each individual I i present in the evolutionary process is de-

igned to represent a possible new feature vector x ′
i

containing k

ifferent f eatures or genes. Since the goal of IagoDroid is to intro-

uce modifications in the feature vector so that the associated app

ets misclassified while preserving its semantics, the individual’s

ncoding is designed to only allow incremental changes in each

eature. Thus, the individual starts with the same feature vector as

he sample received as input x i . Once the minimum value of each

ene I
j
i

of the individuals is established, it is also necessary to fix a

aximum threshold MT to limit the number of changes and facili-

ate their implementation. Then, [x i , x i + MT] is the range for each

ene in each individual I i . This restriction on the values of each

ndividual will be present through the entire evolutionary process.

.4.2. Genetic operators

Four operators are in charge of driving the evolutionary process

cross a number of generations. The selection operator is elitist,

icking the n best individuals in each generation to be part of

he next generation. Reproduction is performed by means of a

tandard tournament operator. For crossover we opt for a uniform

perator and, lastly, a random mutation operator is used to in-

roduce diversity in the population by changing the value of some

enes randomly (within the ranges specified above).

.4.3. Fitness function

The fitness function uses the gradient of the classifier output

score) to guide the genetic search. Specifically it uses the proba-

ility of the class that the algorithm wants to avoid. This can be

ormally defined as:

f (x i , y j) =

{
1 − p(y j) if (p(y j) , y j) = C(x i)

1 otherwise
(5)

here x i is the feature vector of the application, y j indicates its

amily and p represents the probability assigned to the classifica-

ion.

https://bitbucket.org/joshuaga/revealdroid

A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126 117

2

s

t

e

b

i

w

s

fi

i

f

w

3

t

r

i

fi

b

S

p

t

r

w

d

3

2

i

p

n

t

r

i

f

t

a

(

n

t

t

s

a

g

p

f

t

h

m

t

t

1

p

c

n

3

a

a

a

r

p

c

t

p

d

r

o

3

r

0

e

t

p

t

3

a

c

a

p

e

t

o

a

t

i

m

t

O

m

t

a

r

p
.5. Targeting specific families

The approach described so far addresses a genetic search

eeking to reach different malware families, providing an effective

echnique to hide the real family of a malicious application. How-

ver, the search has no control over the final family label that will

e assigned to the modified sample. This represents an interesting

ssue, since an attacker might well wish to target specific families

ith different purposes (for instance, to force defenders to deploy

pecific incorrect countermeasures). To address this issue, the

tness function can be easily modified to guide the search to

ndividuals representing feature vectors classified as a given target

amily. The new fitness function is as follows:

f (x i , y k) =

{
p(y k) if C(x i) � = (p(y k) , y k)

1 otherwise
(6)

here y k represents the target family label.

. Experimentation

We next discuss the experiments that we have performed

o validate our proposal. The experiments address the following

esearch questions:

• RQ1: How much effort does it take to find the modifications

needed to misclassify a particular sample?
• RQ2: Which features are more often involved when modifying a

sample?
• RQ3: Given a malware family, is the cost of forcing misclassifica-

tion errors in its samples constant for all possible target families

or are some families easier to target than others?

Our main goal is to provide evidence that our approach can

nduce a misclassification error in a targeted malware classi-

er. Accordingly, the experiments discussed in this section have

een executed using only the first fitness function presented in

ection 2.4.3 and we did not direct the genetic search towards a

articular family classification. The rest of this section describes

he experimental setting, including the dataset, classifiers and pa-

ameters used. To facilitate the reproducibility of our experiments,

e have created open source versions of our implementation,

ataset and scripts used throughout this work 2 .

.1. Dataset

We tested our approach using the DREBIN dataset (Arp et al.,

014). This dataset contains 5560 malicious Android apps classified

nto 179 different families. Unfortunately, the number of samples

er family is not balanced, resulting in some families with a low

umber of samples (e.g., 47 families contain just 1 sample). We

herefore removed all classes containing less than 10 samples,

esulting in a final dataset composed of 5198 samples distributed

n 54 different families.

We then leveraged a number of existing tools to extract the

eatures from each sample in the dataset. API calls and intent ac-

ions were obtained using Androguard

3 , a fairly well known static

nalysis tool. To extract information flows we used FlowDroid

 Arzt et al., 2014), a taint analysis tool that finds source-sink con-

ections. FlowDroid can be tuned through different parameters

o maximise either performance or precision. We set parameters

o achieve as much precision as possible. This approach differs

lightly from the procedure followed by other works that have
2 The dataset is available at https://data.mendeley.com/datasets/4sksrpm5vj/1

nd the code at https://github.com/hdg7/IagoDroid .
3 https://github.com/androguard/androguard

t

g

s

p
enerally aimed at maximising performance by compromising

recision (e.g., Garcia et al., 2015). Using FlowDroid to extract in-

ormation flows introduces two important issues. First, the time it

akes to analyse a single app ranges from a few minutes to several

ours in the worst case. Furthermore, it unexpectedly crashes for

any apps. These two issues (scalability and stability) forced us

o dramatically reduce the number of samples actually used in

he experiments. Thus, from the original set of 5189 samples, only

919 samples belonging to 29 different families were successfully

rocessed by FlowDroid .

Finally, once the final dataset was built, we carried out a basic

ovariance analysis among the features to remove those that did

ot provide any additional information.

.2. Target classifier

To demonstrate our approach, we relied on RevealDroid ,

n Android malware classifier that uses various static features

nd allows the use of different machine learning classification

lgorithms. While the original authors used C4.5 and 1-NN, we

estricted ourselves to C4.5 since it showed better accuracy and

recision. Nevertheless, our approach is not limited to a particular

lassification algorithm and should work with any other classifica-

ion approach. The C4.5 algorithm was trained using the RWeka

ackage for R , keeping its default parameters. We use 2/3 of the

ata for training combined with 10 cross-fold validation and the

emaining 1/3 for testing. The testing accuracy is 88% averaged

ver 50 runs.

.3. Genetic search

The genetic algorithm was configured using the following pa-

ameters: a mutation probability of 0.1; a crossover probability of

.8; population size equal to 50; maximum number of generations

qual to 20; elitism parameter of 3; and a maximum number of

ransformations per allele of 1 (though we set an increment that

rovides a transformation probability per allele ranging from 0.6

o 1).

.4. Attack steps

This subsection discusses the sequence of steps followed by an

ttacker to force the missclassification of a particular sample. Re-

all (Section 2.1) that we assume an adversary with full knowledge

nd unlimited access to the classifier.

The first step is to extract the features from the malicious sam-

les that will be eventually mutated. Androguard and FlowDroid

xtract these features and generate the feature vector x i . This fea-

ure vector provides a basis for the genetic search. Since the aim

f the attacker is to change the final label of the sample without

ltering its functionality, the way in which the components of

his vector may be modified during the search is restricted. For

nstance, if a particular API call is used in the original sample, the

utated sample must keep this feature (i.e., if the component of

his API call is set to 1 in the original vector it cannot be set to 0).

therwise the semantics of the application will be altered and the

alicious behaviour will not be preserved. The genetic algorithm

akes this into account and only mutates these features by adding

dditional intent actions, API calls or information flows, without

emoving any of the original values . Under this premise, the search

rocess generates new individuals by evolving the previous genera-

ion. On each iteration, the fitness function evaluates for every sin-

le individual whether the correct classification has been evaded.

Once a solution is found, the attacker applies the mutation

trategy found by the genetic search to the original malware sam-

le. This will require adding a combination of new intent actions,

https://data.mendeley.com/datasets/4sksrpm5vj/1
https://github.com/hdg7/IagoDroid
https://github.com/androguard/androguard

118 A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126

t

p

4

b

s

d

t

i

e

t

c

s

I

a

a

g

i

c

t

p

(

w

s

G

c

o

w

t

1

s

g

K

w

t

i

m

c

t

r

t

B

r

s

s

t

m

a

i

h

a

i

w

c

d

t
API calls, and/or new information flows. To alter the original APK

file, the attacker first decompresses it to access the files packed

inside, such as the manifest or the DEX file(s). Adding a new

intent action, API call or information flow requires disassembling

the original DEX file, which contains the bytecode responsible

for the app’s functionality and is generated at compilation time

from the original Java source code. There are several tools to carry

out this process. Smali and Backsmali 4 are well known tools

for translating the Dalvik bytecode contained the DEX file into

human readable (smali) code. The result of disassembling a DEX

file using these tools is a set of files related to the original Java

sources. These files can easily be modified by the attacker to add

a new call to an Android API method or a new intent action. To

avoid introducing undesirable extra functionality into the app, the

attacker can put the newly added code blocks within conditional

sentences (i.e., if-then) driven by opaque predicates that always

evaluate to false. This would prevent optimizers from removing

them while achieving the two-fold goals of having those features

in the code but not executing them. Once the new elements

have been added to the code, the process can be reversed using

Backsmali to repackage the APK file.

Unlike API calls or intent actions, information flows are related

to the execution paths of the program. This means that a particular

information flow will only be detected if it happens as part of the

instructions that are actually executed when the app runs. This is

a consequence of the way in which taint analysis tools based on

symbolic execution, such as FlowDroid , explore the application to

find possible data flows, building the application flow graph and

following all the possible paths within the application. To insert

a new information flow the attacker needs to place it within a

method that will be eventually called. Android apps implement

several callbacks (such as those used for managing the life-cycle

of activities and services) to interact with different events taking

place in the operating system. Thus, finding pieces of code that

will certainly be executed is not difficult. To add a new informa-

tion flow, the attacker can follow the procedure described above

for intent actions and API calls.

We have manually tested the attacks with one of the samples

in our dataset. Specifically, we modified an app labelled as a

member of the Plankton family and, after altering it according

to the found mutation strategy, the classifier misclassified it as

a member of the BaseBridge family. Achieving misclassification

only required the addition of a single intent action (ACTION INPUT

METHOD CHANGED). After following the previously described

steps, we examined the app and extracted the new feature vector.

This new vector contains the feature ACTION INPUT METHOD

CHANGED along with the original features of the app, showing

that the modification step worked as expected while keeping the

original features unchanged. Finally, we ran the classifier over this

sample and obtained the wrong label (BaseBridge) as expected.

4. Results

We next discuss our experimental results. The experiments aim

to provide answers to the three research questions introduced

in the previous section. All the experiments were executed on a

cluster of 6 nodes, each node equipped with 24 cores and 128Gb

of RAM memory.

We took a random subset, selected uniformly across families,

of samples from our main dataset for the experiments. This subset

was composed of 290 samples, taking 10 samples per family from

29 different families. As we mentioned above, there are families
4 https://github.com/JesusFreke/smali

m

n

t
hat only have 10 samples, hence the need to pick at most 10 apps

er family to balance the final sample.

.1. Evasion effort

The first research question aims to measure the effort required

y the attacker to find a mutation strategy that induces a clas-

ification error. We attempt to answer this question from three

ifferent points of view: (i) the number of generations required by

he search to achieve evasion (i.e., to find a single individual evad-

ng the correct classification) and convergence (a whole generation

vading correct classification); (ii) the number of modifications in

he feature vector required; and (iii) the number of queries to the

lassifier (this is correlated with the first perspective but it is a

tandard metric in evasion environments (Biggio et al., 2013)).

Table 3 summarizes the results for the experiments carried out.

t shows how many generations were enough to achieve evasion

nd at which point the genetic search converges (i.e., all individu-

ls being misclassified). Remarkably, a solution is found in the first

eneration for all families but BaseBridge. This means that a single

teration of the genetic algorithm is required to evade the correct

lassification of a single sample. This achievement suggests that

he search effort is low and the search might be replaced by a sim-

le analytical process consisting on adding changes to the features

i.e., adding API calls, or intents among others). As a sanity check,

e analysed this possibility considering transformations from a

ingle sample of a specific family to another (in this case, from

inMaster to DroidKungFu). The analytical process can only add

hanges. However, all possible transformations from the vectors

f GinMaster to vectors of DroidKungFu require subtractions. This

ould change the app semantics. Considering only those features

hat can be added, the analytical process requires between 500 and

6,0 0 0 changes from the original to the target vector. Using the

ame samples, the GA found solutions with only one change.

The average number of generations required to achieve conver-

ence is around 4 for all families. Notable deviations include Droid-

ungFu, whose samples require around 7 generations, and SMSreg

ith less than 2 generations. This demonstrates that the evasion

echnique is extremely efficient against the classifier for the fam-

lies tested. The only family whose samples cannot be successfully

utated so as to be classified as some other family is BaseBridge. A

areful analysis of the results and the classifier’s inner working for

his family shows that samples with this label have a strong cor-

elation with the ACTION_INPUT_METHOD_CHANGE feature. Every

ime this feature is present, the sample is classified as belonging to

aseBridge. Since the semantics preserving rules prevent us from

emoving any features, this poses a clear limitation on the attack.

The total amount of time taken for these experiments using the

ample subset of 290 individuals is around 2 min. Within this time

pan, the search found 14,0 0 0 mutation strategies able to evade

he classifier. This number can be broken down into 50 different

utation strategies for 280 individuals (omitting the ten individu-

ls that belong to the BaseBridge family). This gives us interesting

nformation about the performance of the attack and demonstrates

ow easy it is to evade a malware classifier such as RevealDroid .

To discover the minimum number of modifications needed to

chieve misclassification, we set the change probability to the min-

mum value (0.6). The results are shown in Table 3 . In this case,

e selected malware samples uniformly from the whole dataset,

onsidering a realistic scenario in which an attacker would employ

ifferent malware samples without any previous knowledge about

heir classifications. In this scenario, some samples were then

isclassified by RevealDroid , showing that no modification is

eeded to evade it.

In almost all cases the average number of modifications is close

o 1. This means that the evasion technique only needs to modify

https://github.com/JesusFreke/smali

A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126 119

a

f

e

t

l

s

i

t

h

n

4

p

f

s

w

c

t

s

T

f

w

c

t

Y

s

(

n

4

m

T

a

p

f

a

a

f

a

b

i

N

Fig. 2. Most frequent classification errors between families induced during the

search.

D

(

t

A

s

m

m

f

s

P

D

f

t

X

t

b

e

5

i

t

a

s

a

t

d

s

t

c

s

fi

 single feature in order to evade classification, revealing how

ragile malware classifiers such as RevealDroid are. In order to

xplore this case in more depth, Section 4.2 studies the impact of

he different features during the misclassification attack.

Finally, the number of queries to the classifier during the evo-

ution depends on the number of generations and the population

ize. In each generation a single query is executed for each sample

n the population. Since our approach only needs one generation

o succeed, 50 queries are needed per sample. This number is

igher if we require the convergence of the whole population, as

eeds up to 350 queries (7 × 50) in the worst case.

RQ1 . Our results show that misclassification can be achieved

in just one generation of the genetic search. This translates to

a number of queries to the classifier ranging from 50 to 350 per

sample. Furthermore, only one mutation is needed to induce

a misclassification error for most samples.

.2. Relevant features for the attack

In order to understand which features are more related to a

articular family, we performed an analysis of the most relevant

eatures affected during the mutation process. We followed the

ame approach as in the experiments discussed in Section 4.1 ,

here only one feature is needed to change the family classifi-

ation. Table 3 shows the feature that is changed most often and

he overall probability for this feature to be modified during the

earch.

The feature most frequently added is AC-

ION_INPUT_METHOD_CHANGED. As we mentioned above, this

eature is tightly coupled with the BaseBridge family, in such a

ay that whenever it is added to the feature vector, the sample is

lassified as belonging to BaseBridge.

ACTION_USER_PRESENT is another feature that is present in

he modifications, especially for families such as Kmin, Steek,

zhc and Fatakr. These families are closely related to remote

erver connections (Kmin and Yzhc) and sending SMS messages

Steek and Fatakr) containing private information, so they do not

ecessarily focus on user actions.

RQ2 . The feature ACTION_INPUT_METHOD_CHANGED is

used most often due to its close relationship with the Base-

Bridge family. ACTION_USER_PRESENT is used next often,

appearing in four families with a common behaviour (leaking

information from the device).

.3. Transition between families during evasion

The final experiment attempts to measure the difficulty of

utating samples from each family to each potential target family.

o do this, we measured the most commonly changing patterns

mong the different families during the search. Fig. 2 depicts a

robabilistic representation of the most frequent changes between

amilies. Unsurprisingly, BaseBridge is the family to which samples

re most commonly reclassified. This is related to our previous

nalysis in Section 4.2 , which showed that any sample with the

eature ACTION_INPUT_METHOD_CHANGED set to one is classified

s belonging to BaseBridge regardless of any other features.

Some interesting relationships can be found, such as the one

etween Plankton and Nyleaker, which share almost the same

ntent actions, Plankton having a couple of actions more than

yleaker. Kmin and GinMaster have a close relationship with
roidKungFu: a single modification of a flow based on MMS

Kmin) or the ACTION_USER_PRESENT feature (GinMaster) causes

he original sample to be classified as belonging to DroidKungFu.

 similar case happens with Fatakr and Nandrobox, in which a

ingle modification of the ACTION_USER_PRESENT feature causes a

isclassification.

Interestingly, the matrix shown in Fig. 2 is asymmetric. This

eans that samples from family A can be mutated into samples of

amily B but the inverse process was not found possible during the

earch. The only cases in which both mutations are possible are

lankton and DroidKungFu, DroidKungFu and Kmin, and Adrd and

roidKungFu. This suggests that DroidKungFu is a heterogeneous

amily. Finally, we note that there are 9 families that can never be

argets: GinMaster, Nyleaker, Geinimi, Imlog, ExploitLinuxLotoor,

sider, Yzhc, FakeRun and Hamob. This is a consequence of how

he classifier builds the classification model, keeping some families

ounded to specific feature ranges that are modified during the

volution process.

RQ3 . The effort required to mutate a sample from an original

classification to classification as a target family depends on

both families, with some mutations being impossible.

. A countermeasure

The results discussed in the previous section demonstrate that

t is generally possible (and in fact easy) to cause a misclassifica-

ion error in a typical Android malware classifier. This is ultimately

ccomplished by injecting additional artefacts into the sample,

uch as new API calls or intents, that will affect the feature vector

ssociated with the app.

We next discuss how such attacks can be countered through

he use of a more robust classifier. Our proposal first aims at

etecting potential attack cases (i.e., samples deliberately modified

o as to induce a classification error) and then at backtracking

he changes to identify potential source families. Both strategies

onstitute variations of ideas proposed before in the field of adver-

arial machine learning (Chinavle et al., 2009). However, this is the

rst countermeasure discussing the ability to backtrack the attack.

120 A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126

Fig. 3. Countermeasure schema including RevealDroid ∗ .

v

s

o

i

p

o

a

j

c

a

s

t

a

o

(

s

h

c

f

t

s

R

i

a

g

w

a

p

b

m

m

i

m

b

i

t

R

t

W

j

t

t

e

d

R

t

c
5.1. Detecting potential misclassifications

The result of an attack, such as the one shown in this paper, is

an app modified in a way that will deceive a classification system,

causing it to return an incorrect family label. The underlying

causes for such an error are related to the manner in which the

algorithm at the core of the classifier works. In the case of Re-

vealDroid , each alteration introduced in the application translates

into features that will change the path followed along the decision

tree, thus driving the output to a different leaf and, therefore, a

different label.

In order to detect potential attempts to evade the classifier, we

propose an extension of the target classifier: Revealdroid

∗. This

enhanced version of RevealDroid employs a pool of C4.5 trees

instead of relying on just one instance. Each classifier in the pool

makes decisions based on different subsets of features present in

the feature vector, making it more robust against deliberate mod-

ifications. Thus, each classifier chooses its own subset of features

randomly at runtime. Therefore, a potential attacker has no evident

way of modifying the vector in order to evade all the classifiers at

once. The final label assigned to a sample by this enhanced version

of RevealDroid results from majority voting. Our countermeasure

is inspired by those proposed by different authors in the literature.

The bagging (boosting and aggregating) approach has proven to

be effective in enhancing the robustness of classifiers in various

related problems (Biggio et al., 2011; Perdisci, Gu, & Lee, 2006).

Fig. 3 shows the architecture proposed for RevealDroid

∗ and

the whole schema for the countermeasure. The countermeasure

consists of measuring the level of agreement between Reveal-

Droid and RevealDroid

∗. When these two tools disagree, we con-

sider that an attacker achieved a potential evasion. RevealDroid

∗

must keep the same classifier, training data and parameters as

RevealDroid , in order to generate similar outputs and reduce the

false alarm (or false positive) rate. However, for the triage process,

the priority is to reduce false negatives in order to guarantee that

an important sample is not misclassified as irrelevant.

The feature extraction process of RevealDroid

∗ remains un-

changed, using the same feature vector for each app with a list of

API calls, intent actions and information flows. Once the feature

vector is generated for each app, features are randomly partitioned

into a number of groups. That is, each feature is randomly as-

signed to one (and just one) group, guaranteeing that all groups

have the same number of features. The number of groups can be

manually tuned and also equals the number of classifiers (C4.5

in our case) used in the ensemble. Each classifier is then trained

with all the instances using the subset of features allocated for it,

seeking to maximise the separation among labels in this reduced

feature space.

The classification process for a new malware sample with

RevealDroid

∗ is also outlined in Fig. 3 . Once again, the feature
ector is generated following the rules of RevealDroid . In a

econd step, the list of features is divided into groups depending

n the split previously performed when training the models. Each

nstance of the C4.5 algorithm delivers a label according to its

ortion of the feature space and a majority rule is applied to

btain the final label for the input sample.

The strength of RevealDroid

∗ lies in reducing the fragility of

 single-classifier structure such as that of RevealDroid , in which

ust a simple change in the feature vector may lead to a classifi-

ation error. When using multiple classifiers, the effort required to

chieve a successful evasion becomes considerably more complex

ince the attacker needs to evade the majority of the classifiers in

he ensemble. As a sanity check on RevealDroid

∗’s classification

bility, we calculated its accuracy (see the plot at the bottom

f Fig. 6). The accuracy (88%) is similar to that of RevealDroid

75–91%).

To evaluate the ability of the countermeasure to detect when a

ample has been altered so as to evade a correct classification, we

ave used our attack to generate a representative set of apps suc-

essfully mutated, departing from, and trying to reach, all possible

amilies following the approach described in Section 2.5 . With

his procedure, a subset of more than 10,0 0 0 individuals were

uccessfully mutated. All these individuals were classified using

evealDroid

∗, yielding the results showed in Fig. 4 . Each series

n the figure is related to a specific configuration of the genetic

lgorithm, where an increment of 1 means that it is possible to

enerate individuals with up to 30 changes in the feature vector,

hereas an increment of 0.6 reduces the number of changes to

round 1. The reasons for this relationship between the increment

arameter and the number of possible changes lies in the proba-

ility used internally by the genetic algorithm. Since every change

ust be manually injected into the application by the attacker, we

ay assume that in most cases the attacker would be interested

n applying the minimum number of changes needed to achieve

isclassification as a different family. This situation is represented

y an increment equal to 0.6. In contrast, if the number of changes

s not an issue for the attacker, a higher value of this parame-

er can be considered. As Fig. 4 shows, the label delivered by

evealDroid

∗ differs considerably from the fake label pursued by

he attacker, thereby notifying of a potential classification attack.

ith a maximum increment of 0.6 (around 1, 2 or 3 changes in-

ected), using 14 different classifiers RevealDroid

∗ will fail to de-

ect the attack in 0.9% of the cases (false negatives), which means

hat the evasion will be detected in 99.1% of the evaluations.

The false positives of the countermeasure are computed by

valuating RevealDroid

∗ with RevealDroid ’s test data (this

ata has non-mutated fresh samples for RevealDroid and

evealDroid

∗). The level of disagreement is calculated using the

est output. Fig. 6 (top) shows that the false positive rate of our

ountermeasure ranges between 8% and 13.5%. Because the focus

A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126 121

Fig. 4. False negative rates for the countermeasure with respect to the number of classifiers used in RevealDroid ∗ .

Fig. 5. Transition matrix to target families.

o

r

5

s

s

h

d

t

m

t

o

t

f

i

a

s

S

i

i

f

Fig. 6. False positive rate for the countermeasure (top) and accuracy of

RevealDroid ∗ depending on the number of classifiers used in RevealDroid ∗ construc-

tion.

i

p

f

t

6

s

s

6

l

c

6

r
f the triage process is avoiding false negatives, we consider this

esult reasonable.

.2. Reversing the attack

Once a sample has been suspected as the result of a misclas-

ification attack, determining its original family is the next natural

tep. Reversing the transformation process that the attacker may

ave implemented is a complex task, particularly because of the

ifficulty of differentiating between the original app behaviour and

he actions deliberately injected to cause the classification error.

However, the search process used during the attack offers the

eans to evaluate a number of possible original family classifica-

ion candidates. The search was used between each possible pair

f families in order to evaluate the transition probabilities be-

ween them (as the number of individuals belonging to a specific

amily able to reach a target family divided by the total number of

ndividuals in the original family). The results of this experiment

re shown in Fig. 5 . The fitness function used here is the one de-

cribed in Section 2.5 , which allows one to target specific families.

ince this matrix represents all possible transitions between orig-

nal malware samples of different families and mutated samples,

t is also possible to use this artefact to reveal the possible source

amilies of an application detected as misclassified. Furthermore, it
s also possible to order these candidate families by the transition

robabilities.

For instance, Fig. 7 shows the probabilities of being the original

amily of a malware sample classified as Kmin family, according

o the corresponding row of Fig. 5 . In this example, there are

 potential source families in which all the individuals were

uccessfully mutated to be classified as Kmin, and these form a

et of 6 prospective original families.

. Related work

In this section we discuss the context for our work as it re-

ates to Android static analysis, adversarial machine learning and

ountermeasures.

.1. Android static analysis

Our work is focused on attacking a machine learning algo-

ithm which operates on a space generated by static analysis

122 A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126

Fig. 7. Probabilities of being the origin family of a malware sample mutated to

Kmin family.

l

a

(

a

(

p

6

R

m

2

s

r

o

t

a

a

l

A

a

m

i

(

i

t

o

fi

c

d

(

a

e

i

u

h

p

p

c

m

i

c

m

o

i

p

fi

2

a

a

T

c

i

b

s

f

m

f

a

t
features. We discuss the most relevant static analyses for our

work: permissions, API calls, intent actions and flows.

Permissions have been identified as potential signifiers of

malicious intentions. Tools like Kirim (Enck, Ongtang, & McDaniel,

2009) were used to detect anomalous settings containing mali-

cious behaviour and tools like DroidRanger (Zhou, Wang, Zhou, &

Jiang, 2012) leverage heuristics to perform the same task. API calls

can be used to detect malware and generate signatures, which is

the case for DroidLegacy (Deshotels, Notani, & Lakhotia, 2014)

and DroidAPIMiner (Aafer, Du, & Yin, 2013). Current trends use

both flow analysis, i.e. information leaks between data sources

and potentially malicious sinks, and intent actions, remote pro-

cedures where one application can use the privileges of another

one to perform malicious activities. Flows have been studied

using tools such as FlowDroid (Arzt et al., 2014) and DroidSafe

(Gordon et al., 2015), while intents have been studied in different

ways: from the detection of communication vulnerabilities using

ComDroid (Chin et al., 2011); to validation of the interaction

between components with Epicc (Octeau et al., 2013); to points

to communication between objects in different applications us-

ing Amandroid (Wei, Roy, & Ou, 2014); and to hybridization

these methods, as seen in DidFail (Klieber, Flynn, Bhosale, Jia, &

Bauer, 2014) which hybridizes Epicc and FlowDroid to improve

detection through aggregated information.

Other work, out of the scope of our analysis but also related to

static analysis for Android, uses a description language to identify

semantic-based signatures, such as Apposcopy (Feng, Anand,

Dillig, & Aiken, 2014), or aims to detect the context that triggers

the malicious behaviour, such as AppContext (Yang et al., 2015)

and TriggerScope (Fratantonio et al., 2016).

In our work, we target techniques that use static analysis

features and leverage machine learning algorithms to detect or

classify malware. These techniques, provided in Table 1 , use the

previously discussed tools to extract feature vectors that feed a

machine learning algorithm. Tools like DroidSIFT (Zhang, Duan,

Yin, & Zhao, 2014) and DroidAPIMiner (Aafer et al., 2013) have

only been used for the detection problem, in which malware

and goodware must be discriminated, while tools like Dendroid

(Suarez-Tangil, Tapiador, Peris-Lopez, & Blasco, 2014), DroidLegacy

(Deshotels et al., 2014), Drebin (Arp et al., 2014), DroidMiner

(Yang, Xu, Gu, Yegneswaran, & Porras, 2014) and RevealDroid

(Garcia et al., 2015) have also been used for family classification,

with RevealDroid covering the largest spectrum in the feature

space. This was the main reason for choosing RevealDroid as the

targeted classifier in our work. We also targeted the triage prob-
em, which is closely related to the family classification problem

s Lakhotia et al. state during the description of their tool VILO

 Lakhotia et al., 2013). This problem has also been examined from

 detection perspective using ranking based algorithms in MAST

 Chakradeo et al., 2013). Our goal here was to attack the triage

rocess using adversarial machine learning.

.2. Adversarial machine learning

Evasion and Adversarial Learning (Huang, Joseph, Nelson,

ubinstein, & Tygar, 2011) are widely studied topics in both the

achine learning and computer security areas (Barreno et al.,

006; Lowd & Meek, 2005; Ptacek & Newsham, 1998). Given the

uccess of machine learning techniques for addressing security

elated problems such as malware analysis, spam identification,

r intrusion detection, testing the resilience and robustness of

hese approaches against an informed adversary is a necessary

ctivity.

There is a wide spectrum of applications of machine learning

lgorithms in classification problems. Their reliability is closely

inked to the reliability of the systems that depend on them.

dversarial learning is then an important problem that must be

ddressed. According to Barreno et al., the main weaknesses of

achine learning algorithms lie precisely in their adaptation abil-

ty, which can be exploited by attackers to cause deliberate errors

 Barreno, Nelson, Joseph, & Tygar, 2010). This presents a complex

ssue, since machine learning theory takes as its basis that the

raining dataset used in a learning process remains representative

f the problem domain and assumes intentionally harmful modi-

cations of the data do not happen (Laskov & Lippmann, 2010).

The problem of learning in hostile environments was first

onsidered by Kearns and Li (1993) . In this work, the authors

eveloped an extension to Valiant’s Probably Approximately Correct

PAC) framework (Valiant, 1984; 1985). The extension allows the

lgorithm to learn even when a dataset has been polluted with

rroneous data, introduced by an active adversary. This adversar-

al behaviour is modelled following a worst-case approach (i.e.,

nbounded computational power and access to the classification

istory are assumed). The main contribution of this work was to

rovide methods to limit the maximum portion of the dataset

olluted by the adversary without having a negative effect on the

lassification result.

The proliferation of classification and detection tools relying on

achine learning techniques has promoted an increased interest

n attacking these tools, taking advantage of the weaknesses in

lassification algorithms. These attacks are very varied and depend

ainly on the adversarial model considered, since the capabilities

f the attacker and her knowledge about the classifier define the

mpact of the attack.

All these attacks against machine learning can be categorised by

oint of view. From a coarse perspective, the attacks can be classi-

ed in two categories: poisoning attacks (Biggio, Nelson, & Laskov,

012) and evasion attacks (Xu et al., 2016). In the former case, the

ttack is performed during the training stage. In this scenario the

dversary introduces fake or malformed data into the training set.

his will lead the classifier to learn an inaccurate model and then

lassify further instances incorrectly. In the latter case, the attack

s performed during the classification stage. The feature vector

elonging to a particular sample is modified so as to force the clas-

ifier to produce a wrong label. The proposed attack in this paper

alls in the evasion category as we try to fool an already trained

odel by distorting the feature vector of a particular sample.

Barreno et al. (2006) provide an extended taxonomy of the dif-

erent attacks against machine learning applications. They model

ttack spaces using three key concepts: influence (whether it affects

he training stage or the classification itself), specificity (whether the

A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126 123

a

t

t

i

c

b

a

s

t

h

h

a

fi

f

a

N

T

e

l

i

e

s

u

f

A

t

t

s

P

m

r

r

d

d

t

n

n

c

b

m

a

h

f

p

m

u

t

t

d

l

e

a

c

o

&

u

(

t

E

g

r

c

P

d

t

h

s

H

w

a

B

(

L

(

a

a

a

S

o

a

w

l

a

a

b

(

a

a

h

s

t

i

w

a

T

h

8

t

i

r

s

6

t

d

d

e

i

d

p

o

c

d

r

m

e

I

f

d

t

l

fl

ttack tries to misdirect the classification of data belonging to a par-

icular class or, alternatively, causes no discrimination to happen) and

he security property violated by the attacker (whether the attack

s against the classifier’s availability or against the result’s integrity).

A practical example of how classification algorithms can be suc-

essfully evaded is the classifier-agnostic attack strategy described

y Biggio et al. for assessing the security of machine learning

pplications (Biggio et al., 2013). They propose an adversarial

trategy based on gradient descent attacks. They consider different

hreat models depending on how much information the attacker

as regarding the attacked classifier. The authors demonstrate

ow their strategy could be employed to evade classifiers such

s SVM and neural networks trained for detecting malicious PDF

les.

In an approach similar to our own work but applied to a dif-

erent problem, Vigna, Robertson, and Balzarotti (2004) developed

 framework for measuring the resilience of a signature-based

etwork intrusion detection system (NIDS) against an adversary.

he authors employed mutation strategies for modifying known

xploits. Mutations were applied at network, application and code

evel, and included modifying the shape of network packets, inject-

ng malformed data, and hiding malicious code using polymorphic

ngines. Ten real world exploits were mutated using different

trategies and used to measure the resilience of two NIDS prod-

cts. The experiment confirmed that evading the NIDS signatures is

easible, especially when combining different mutation techniques.

lthough this research has the injection of specific information

o provoke a malfunction in a detection system in common with

he attack that we describe in this paper, the problem varies

ignificantly, since we are focused on malware classification.

Other research focused on NIDS was presented by

astrana et al. (2011) . It also takes advantage of genetic program-

ing, in this case as a search heuristic for finding modification

outines capable of evading a particular NIDS. These modification

outines take a malicious network packet as input and apply

ifferent adjustments (e.g.: changing a particular value within the

ata payload, altering the TCP header, etc.). The authors tested

he framework against C4.5 and Naïve–Bayes. By using this ge-

etic search, the authors obtained individuals able of inducing

on-negligible error rates in both classifiers, attaining a 37%

lassification error rate in the Naïve–Bayes classifier. In our work,

y contrast, we are finding modifications to evade a correct family

alware classification, rather than evading its detection (thus

ssuming that the sample will still be detected as malware with

igh probability).

Genetic programming has also been successfully employed in

ooling the detection of malicious code. In particular Xu et al.

resented EvadeML, a framework for automatically evading PDF

alware classifiers (Xu et al., 2016). PDF files have been frequently

sed by attackers as hosts for embedded malware. The authors of

hat paper employed genetic search for finding the best modifica-

ion strategy leading to evasion of detection by two PDF malware

etection systems (PDFrate and Hidost) built on top of machine

earning solutions. Up to 500 malicious payloads were successfully

vaded using the discovered strategies. Again, an evolutionary

lgorithm is used to evade detection rather than to evade a correct

lassification between malware families.

Another example of adversarial learning to evade the detection

f malicious PDF files is the mimicry attack (Maiorca, Corona,

 Giacinto, 2013) that injects malicious code into a benign file

sing 3 different strategies: injecting an EXE (EXEembed), a PDF

PDFembed) or a Javascript (JSinject) payload. The evaluation of

hese tools shows high detection evasion effectiveness (100% for

XEembed and PDFembed and 80% for JSinject) on the 6 variants

enerated by the authors. Again, in contrast to our attack, this

esearch is not focused on re-shaping malware for evading a
orrect classification and the domain is different. The evasion of

DF detection has been extensively analysed in Laskov (2014) ,

emonstrating the vulnerabilities of a known online PDF analyser

o this kind of attacks. The interaction between malware families

as indeed been studied but from an unsupervised learning per-

pective, using clustering algorithms (Biggio, Rieck et al., 2014).

ere, the authors inject new samples into the training process

ith the aim of disrupting the result.

On the Android side, there are new evasion strategies which

im to attack machine learning (Grosse, Papernot, Manoharan,

ackes, & McDaniel, 2016; Meng et al., 2016) and antivirus systems

 Aydogan & Sen, 2015; Meng et al., 2016; Xue et al., 2017; Zheng,

ee, & Lui, 2012). The first technique in this area was ADAM

 Zheng et al., 2012), which manipulates malware via re-packing

nd obfuscation. ADAM was created to audit antivirus systems

nd it showed good effectiveness against VirusTotal, reaching

n evasion rate close to a 50%. In a similar line, Aydogan and

en (2015) include a genetic programming framework to the

bfuscation process, reporting an evasion effectiveness up to 33%

gainst 8 antivirus systems. The effectiveness of evasion strategies

as extended to new machine learning techniques, such as deep

earning, by Grosse et al. (2016) , who were able to reach up to

n 80% evasion rate by adding perturbations to the malware vari-

nts through junk code. This effective strategy was also followed

y Mystique (Meng et al., 2016), and its extension, Mystique-S

 Xue et al., 2017). The former uses a multi-objective genetic

lgorithm to reduce the classification rate of machine learning

lgorithms and anti-viruses, while it maximizes the attack be-

aviour; the later generates the code dynamically to reach the

ame goal. They are able to evade the detectors up to 80% of the

ime for Mystique and 94% of the time for Mystique-S. An interest-

ng case for evasion, out-of-the-box from the previous techniques,

as introduced by Vidas and Christin (2014) who generated an

ttack based on red pills, i.e., detecting environmental conditions.

his strategy combines the detection of behaviour, performance,

ardware and software components. They were able to reach an

6% evasion rate. Our tool, IagoDroid, is focused on attacking

he static analysis features of a machine learning classifier, and

t is able to reach a 97% evasion rate. Compared with the other

elated tools of the state of the art, it is a competitive result (for a

ummary comparing all the above mentioned tools, see Table 2 .

.3. Counteracting adversarial learning techniques

The security community has worked both on testing classifica-

ion systems built on top of machine learning techniques against

ifferent kinds of attacks and on designing countermeasures to

eal with this problem. For instance, Chinavle et al. studied the

ffect of em ploying learning ensembles for combatting adversaries

n a spam detection scenario (Chinavle et al., 2009). Their approach

emonstrated that through the use of different classifiers, it is

ossible to detect performance degradation (due to evasion attacks

n behalf of a motivated adversary) and automatically repair this

ondition. Their approach allows the system to maintain a high

egree of accuracy through time while reducing the number of

e-training stages.

Barreno et al. elaborated on the security and reliability of

achine learning (Barreno et al., 2006), proposing a framework to

valuate the security of a particular machine learning application.

n the same line, Biggio, Fumera, and Roli (2014) proposed a

ramework to introduce countermeasures against attackers while

esigning the classifier, instead of applying them later during

raining or test stages. The main contribution of this work is the

ack of bounds for a particular classifier, making the framework

exible.

124 A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126

Table 2

A comparison among different evasion methodologies related to IagoDroid, separated in general techniques and Android specific.

Method Target Type of attack Evasion rate

PDF and Network

Pastrana (Pastrana et al., 2011) C4.5 & Naïve Bayes Network injection 37%

Vigna (Vigna et al., 2004) Network intrusion detectors Mutation of exploits 90%

Biggio (Biggio et al., 2013) SVM & Nearest Neighbour Noise injection & Gradient Descent up to 100%

EvadeMl (Xu et al., 2016) PDFRate & Hidost Genetic Programming 90%

EXEembed (Maiorca et al., 2013) PDF malware detectors EXE payload embedding up to 100%

PDFembed (Maiorca et al., 2013) PDF malware detectors PDF embedding up to 100%

JSinject (Maiorca et al., 2013) PDF malware detectors Javascript embedding up to 80%

Laskov (Laskov, 2014) PDFRate Noise injection up to 72%

Biggio (Biggio, Rieck et al., 2014) Behavioural Clustering Data poisoning 76%

Android

Mystique (Meng et al., 2016) Anti-virus & Machine Learning Code injection & Genetic Algorithms up to 80%

Mystique-S (Xue et al., 2017) Anti-virus Dynamic code generation 94%

Vidas (Vidas & Christin, 2014) Dynamic Analysis tools Red Pills 86%

Grosse (Grosse et al., 2016) Deep Learning Perturbation up to 80%

ADAM (Zheng et al., 2012) Anti-virus Re-packing and obfuscation up to 50%

Aydogan (Aydogan & Sen, 2015) Anti-virus Genetic Programming and Obfuscation up to 33%

IagoDroid RevealDroid Code injection & Genetic Algorithms 97%

Table 3

Summary of experimental results. The table shows, for each malware family, the number of generations re-

quired to find a first solution, the average number of generations required to achieve convergence, the average

number of modifications, and the feature that is most frequently changed.

Family First sol. Avg. conv. Avg. mod. Feature

Plankton 1 3.3 1.0 ACTION_INPUT_METHOD_CHANGED (0.7)

GinMaster 1 3.7 1.0 SMS_MMS (0.6)

Kmin 1 4.3 1.0 ACTION_USER_PRESENT (0.6)

Glodream 1 4.7 0.8 ACTION_INPUT_METHOD_CHANGED (0.4)

BaseBridge Inf Inf – –

Nyleaker 1 3.6 1.0 NETWORK__LOG (0.4)

Gappusin 1 3.4 0.9 ACTION_INPUT_METHOD_CHANGED (0.3)

Geinimi 1 3.9 1.0 NETWORK_INFORMATION (0.5)

Imlog 1 4.7 1.2 ACTION_INPUT_METHOD_CHANGED (0.7)

DroidKungFu 1 7.2 0.7 IPC__NETWORK (0.2)

Iconosys 1 3.5 1.1 NETWORK__LOG (0.3)

Adrd 1 3.6 0.8 ACTION_INPUT_METHOD_CHANGED (0.5)

DroidDream 1 4.1 0.8 ACTION_INPUT_METHOD_CHANGED (0.4)

Dougalek 1 3.5 1.0 ACTION_INPUT_METHOD_CHANGED (0.4)

MobileTx 1 3.2 1.0 FILE (0.5)

FakeInstaller 1 3.5 1.0 ACTION_INPUT_METHOD_CHANGED (0.5)

ExploitLinuxLotoor 1 2.1 0.8 ACTION_INPUT_METHOD_CHANGED (0.4)

Steek 1 3.9 1.0 ACTION_USER_PRESENT (0.4)

Opfake 1 4.8 0.9 ACTION_INPUT_METHOD_CHANGED (0.5)

Nandrobox 1 3.2 1.0 ACTION_INPUT_METHOD_CHANGED (0.4)

Xsider 1 3.1 1.0 ACTION_INPUT_METHOD_CHANGED (0.6)

Yzhc 1 4.5 0.8 ACTION_USER_PRESENT (0.4)

Fatakr 1 3.2 1.0 ACTION_USER_PRESENT (0.7)

FakeRun 1 4.4 1.0 ACTION_INPUT_METHOD_CHANGED (0.4)

Mobilespy 1 3.1 0.9 ACTION_MAIN (0.4)

Hamob 1 3.4 1.0 ACTION_INPUT_METHOD_CHANGED (0.3)

Jifake 1 2.6 0.8 android.net (0.3)

Fakengry 1 2.6 0.6 UNIQUE_IDENTIFIER_DB_INFORMATION (0.2)

SMSreg 1 1.6 0.9 ACTION_INPUT_METHOD_CHANGED (0.3)

a

d

n

s

c

a

d

c

7

s

s

t
Dalvi et al. (2004) studied the development of robust classifiers.

They addressed the problem as a game between the attacker and

the target classifier. In their approach, the attacker’s strategy is

used as input for generating a classifier resilient to particular

adversarial behaviour. Addressing the problem from a game the-

oretical perspective, the authors improved the working of vanilla

Naïve–Bayes classifier in a spam detection case, dramatically

reducing the number of errors.

From a more general point of view, the effectiveness of dif-

ferent strategies that deal with evasion attacks has been studied

elsewhere. For instance, Support Vector Machines have been

evaluated (Russu, Demontis, Biggio, Fumera, & Roli, 2016), con-

cluding that the selection of the kernel function is crucial. Feature

selection based countermeasures have been studied (Budhraja &

Oates, 2015), showing that this can be counterproductive since it

reduces the accuracy of the classifier in some cases. There is also
 framework focused on evaluating the potential attack scenarios

ue to the use of feature selection methods (Xiao et al., 2015).

Although the above countermeasures are able to successfully

arrow the effects produced by attacks on machine learning clas-

ifiers, they are mainly focused on detection problems: a binary

lassification between benign and malicious software. However,

 classification task into different malware families constitutes a

ifferent scenario in which there can be an important number of

lasses closely located in the search space.

. Conclusions

IagoDroid demonstrates that any Android malware classification

cheme that relies exclusively on static analysis during triage is a

ensitive process that can easily be destabilised. IagoDroid is able

o fool the RevealDroid classifier into misclassifying the family for

A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126 125

2

o

1

e

d

d

l

l

t

a

m

o

w

t

r

e

e

c

d

b

g

h

i

s

s

o

s

p

s

c

s

d

w

a

t

a

t

A

E

S

m

E

S

g

–

p

n

R

A

A

A

A

B

B

B

B

B

B

B

B

C

C

C

D

D

D

E

F

F

G

G

G

G

H

K

K

L

L

L

L

L

M

8 out of 29 families in the dataset by modifying a single feature

f the original malware. In the process, this attack generates up to

4,0 0 0 new variants for 290 malware samples in just 2 min.

As a countermeasure, we split the feature space into differ-

nt overlapping sets where different classifiers work together to

etect potential evasions. This method, named RevealDroid

∗, is

emonstrably effective for a small number of modifications but

ess useful when the number of modifications is high. In the

atter case, it is able to reduce the number of evasive variants

hat IagoDroid generates, but cannot prevent it from generating

t least some. In consequence, RevealDroid

∗ forces producers of

alware variants to find techniques to modify a higher number

f features during the variants generation process. In the case

here an evasive file is detected, our countermeasure is also able

o track the original malware family, providing an opportunity to

econsider the malware priority during the triage process.

This countermeasure shows some of the limitations of the

vasion method. The first limitation is related to the adversarial

nvironment. IagoDroid has full knowledge of the underlying

lassifier. This limits the possibility of having strong results in

ifferent scenarios, even when the technique may still be applica-

le. Another significant limitation of the technique is in the final

eneration of the variants, which in the current version requires

uman intervention to transform the suggested vector of changes

nto the actual variant.

These limitations inspire several, possible lines of future work,

tarting from measuring the ability of IagoDroid to cause misclas-

ification in commercial tools, such as antivirus engines. This line

f research would require an extension to the tool’s capabilities

uch as providing automatic injection of changes within opaque

redicates. From a research perspective, IagoDroid is useful for

tudying the limitations on the robustness of machine learning

lassifiers and, indeed, our future work will focus on defining

ound measures based on evasion abilities. This will help to un-

erstand which classifications algorithms are stronger than others

hen faced with adversaries for algorithms based on both static

nd dynamic analysis. Finally, the backtracking ability of our coun-

ermeasure can be understood as a Markov model among families

nd transitions. This knowledge can be used to study more deeply

he different relationships among Android malware families.

cknowledgements

This work has been supported by the following grants:

phemeCH (MINECO TIN2014-56494-C4-4-P) and CIBERDINE (CM

2013/ICE-3095), both under the European Regional Develop-

ent Fund FEDER; SeMaMatch EP/K032623/1 and InfoTestSS

P/P006116/1 from EPSRC ; SPINY (MINECO TIN2013-46469-R) and

MOG-DEV (MINECO TIN2016-79095-C2-2-R) and Justice Pro-

ramme of the European Union (2014-2020) 723180 – RiskTrack

JUST-2015-JCOO-AG/JUST-2015-JCOO-AG-1. The contents of this

ublication are the sole responsibility of their authors and can in

o way be taken to reflect the views of the European Commission.

eferences

afer, Y. , Du, W. , & Yin, H. (2013). Droidapiminer: Mining api-level features for ro-

bust malware detection in android. In International conference on security and
privacy in communication systems (pp. 86–103). Springer .

rp, D. , Spreitzenbarth, M. , Hubner, M. , Gascon, H. , & Rieck, K. (2014). Drebin: Ef-

fective and explainable detection of android malware in your pocket.. Ndss .
rzt, S. , Rasthofer, S. , Fritz, C. , Bodden, E. , Bartel, A. , Klein, J. , et al. (2014). Flowdroid:

Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. ACM SIGPLAN Notices, 49 (6), 259–269 .

ydogan, E. , & Sen, S. (2015). Automatic generation of mobile malwares using ge-
netic programming. In European conference on the applications of evolutionary

computation (pp. 745–756). Springer .
arreno, M., Nelson, B., Joseph, A. D., & Tygar, J. D. (2010). The security of machine
learning. Machine Learning, 81 (2), 121–148. doi: 10.1007/s10994-010-5188-5 .

arreno, M. , Nelson, B. , Sears, R. , Joseph, A. D. , & Tygar, J. D. (2006). Can machine
learning be secure? In Proceedings of the 2006 ACM symposium on information,

computer and communications security (pp. 16–25). ACM .
iggio, B. , Corona, I. , Fumera, G. , Giacinto, G. , & Roli, F. (2011). Bagging classifiers

for fighting poisoning attacks in adversarial classification tasks. In International
workshop on multiple classifier systems (pp. 350–359). Springer .

iggio, B. , Corona, I. , Maiorca, D. , Nelson, B. , Šrndi ́c, N. , Laskov, P. , et al. (2013).

Evasion attacks against machine learning at test time. In Joint European con-
ference on machine learning and knowledge discovery in databases (pp. 387–402).

Springer .
iggio, B. , Fumera, G. , & Roli, F. (2014). Security evaluation of pattern classifiers un-

der attack. IEEE Transactions on Knowledge and Data Engineering, 26 (4), 984–996 .
iggio, B. , Nelson, B. , & Laskov, P. (2012). Poisoning attacks against support vector

machines. In Proceedings of the 29th international conference on machine learning,

ICML 2012, Edinburgh, Scotland, Uk, June 26 - July 1, 2012 .
iggio, B. , Rieck, K. , Ariu, D. , Wressnegger, C. , Corona, I. , Giacinto, G. , et al. (2014).

Poisoning behavioral malware clustering. In Proceedings of the 2014 workshop on
artificial intelligent and security workshop (pp. 27–36). ACM .

udhraja, K. K. , & Oates, T. (2015). Adversarial feature selection. In 2015 IEEE inter-
national conference on data mining workshop (ICDMW) (pp. 288–294). IEEE .

hakradeo, S. , Reaves, B. , Traynor, P. , & Enck, W. (2013). Mast: triage for market-scale

mobile malware analysis. In Proceedings of the sixth ACM conference on security
and privacy in wireless and mobile networks (pp. 13–24). ACM .

hin, E. , Felt, A. P. , Greenwood, K. , & Wagner, D. (2011). Analyzing inter-application
communication in android. In Proceedings of the 9th international conference on

mobile systems, applications, and services (pp. 239–252). ACM .
hinavle, D. , Kolari, P. , Oates, T. , & Finin, T. (2009). Ensembles in adversarial classi-

fication for spam. In Proceedings of the 18th ACM conference on information and

knowledge management (pp. 2015–2018). ACM .
alvi, N. , Domingos, P. , Sanghai, S. , & Verma, D. (2004). Adversarial classification.

In Proceedings of the tenth ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 99–108). ACM .

ash, S. K. , Suarez-Tangil, G. , Khan, S. , Tam, K. , Ahmadi, M. , Kinder, J. , et al. (2016).
Droidscribe: Classifying android malware based on runtime behavior. In Mobile

security technologies (MoST 2016) (pp. 1–12) . 7kearns1993learning148

eshotels, L. , Notani, V. , & Lakhotia, A. (2014). Droidlegacy: Automated familial clas-
sification of android malware. In Proceedings of ACM SIGPLAN on program protec-

tion and reverse engineering workshop 2014 (p. 3). ACM .
nck, W. , Ongtang, M. , & McDaniel, P. (2009). On lightweight mobile phone appli-

cation certification. In Proceedings of the 16th ACM conference on computer and
communications security (pp. 235–245). ACM .

eng, Y. , Anand, S. , Dillig, I. , & Aiken, A. (2014). Apposcopy: Semantics-based de-

tection of android malware through static analysis. In Proceedings of the 22nd
ACM SIGSOFT international symposium on foundations of software engineering

(pp. 576–587). ACM .
ratantonio, Y., Bianchi, A., Robertson, W., Kirda, E., Kruegel, C., & Vigna, G. (2016).

Triggerscope: Towards detecting logic bombs in android applications. In 2016
IEEE symposium on security and privacy (SP) (pp. 377–396). doi: 10.1109/SP.2016.

30 .
andotra, E. , Bansal, D. , & Sofat, S. (2014). Malware analysis and classification: A

survey. Journal of Information Security, 5 (02), 56 .

arcia, J. , Hammad, M. , Pedrood, B. , Bagheri-Khaligh, A. , & Malek, S. (2015). Obfus-
cation-resilient, efficient, and accurate detection and family identification of an-

droid malware. Technical Report . Department of Computer Science, George Ma-
son University .

ordon, M. I. , Kim, D. , Perkins, J. H. , Gilham, L. , Nguyen, N. , & Rinard, M. C. (2015).
Information flow analysis of android applications in droidsafe.. NDSS . Citeseer .

rosse, K., Papernot, N., Manoharan, P., Backes, M., & McDaniel, P. (2016). Adver-

sarial perturbations against deep neural networks for malware classification.
arXiv preprint arXiv:1606.04435

uang, L. , Joseph, A. D. , Nelson, B. , Rubinstein, B. I. , & Tygar, J. (2011). Adversarial
machine learning. In Proceedings of the 4th ACM workshop on security and artifi-

cial intelligence (pp. 43–58). ACM .
earns, M. , & Li, M. (1993). Learning in the presence of malicious errors. SIAM Jour-

nal on Computing, 22 (4), 807–837 .

lieber, W. , Flynn, L. , Bhosale, A. , Jia, L. , & Bauer, L. (2014). Android taint flow anal-
ysis for app sets. In Proceedings of the 3rd ACM SIGPLAN international workshop

on the state of the art in java program analysis (pp. 1–6). ACM .
abs, M. (2016). McAfee labs threats report. http://www.mcafee.com/us/resources/

reports/rp-quarterly- threats- may- 2016.pdf . [Online; Accessed 19.07.2016].
akhotia, A . , Walenstein, A . , Miles, C. , & Singh, A. (2013). Vilo: A rapid learning

nearest-neighbor classifier for malware triage. Journal of Computer Virology and

Hacking Techniques, 9 (3), 109–123 .
askov, P., & Lippmann, R. (2010). Machine learning in adversarial environments.

Machine Learning, 81 (2), 115–119. doi: 10.1007/s10994- 010- 5207- 6 .
askov, P. (2014). Practical evasion of a learning-based classifier: A case study. In

2014 IEEE symposium on security and privacy (pp. 197–211). IEEE .
owd, D. , & Meek, C. (2005). Adversarial learning. In Proceedings of the eleventh

ACM SIGKDD international conference on knowledge discovery in data mining

(pp. 641–647). ACM .
aiorca, D. , Corona, I. , & Giacinto, G. (2013). Looking at the bag is not enough to

find the bomb: An evasion of structural methods for malicious pdf files detec-
tion. In Proceedings of the 8th ACM SIGSAC symposium on information, computer

and communications security (pp. 119–130). ACM .

https://doi.org/10.13039/501100008530
https://doi.org/10.13039/501100000266
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0004
https://doi.org/10.1007/s10994-010-5188-5
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0020
https://doi.org/10.1109/SP.2016.30
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0024
http://arxiv.org/abs/1606.04435
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0027
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-may-2016.pdf
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0028
https://doi.org/10.1007/s10994-010-5207-6
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0032

126 A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126

W

X

X

X

Y

Y

Z

Z

Z

Meng, G. , Xue, Y. , Mahinthan, C. , Narayanan, A. , Liu, Y. , Zhang, J. , et al. (2016). Mys-
tique: Evolving android malware for auditing anti-malware tools. In Proceed-

ings of the 11th ACM on Asia conference on computer and communications security
(pp. 365–376). ACM .

Octeau, D. , McDaniel, P. , Jha, S. , Bartel, A. , Bodden, E. , Klein, J. , et al. (2013). Effective
inter-component communication mapping in android: An essential step towards

holistic security analysis. In Presented as part of the 22nd USENIX security sym-
posium (USENIX security 13) (pp. 543–558) .

Pastrana, S. , Orfila, A. , & Ribagorda, A. (2011). A functional framework to evade net-

work ids. In System sciences (HICSS), 2011 44th Hawaii international conference
on (pp. 1–10). IEEE .

Perdisci, R. , Gu, G. , & Lee, W. (2006). Using an ensemble of one-class SVM classi-
fiers to harden payload-based anomaly detection systems. In Sixth international

conference on data mining (ICDM’06) (pp. 4 88–4 98). IEEE .
Ptacek, T. H. , & Newsham, T. N. (1998). Insertion, evasion, and denial of service:

Eluding network intrusion detection. Technical Report . DTIC Document .

Rasthofer, S. , Arzt, S. , & Bodden, E. (2014). A machine-learning approach for classi-
fying and categorizing android sources and sinks.. NDSS .

Russu, P. , Demontis, A. , Biggio, B. , Fumera, G. , & Roli, F. (2016). Secure kernel ma-
chines against evasion attacks. In Proceedings of the 2016 ACM workshop on arti-

ficial intelligence and security (pp. 59–69). ACM .
Sivanandam, S. , & Deepa, S. (2007). Introduction to genetic algorithms . Springer Sci-

ence & Business Media .

Suarez-Tangil, G. , Tapiador, J. E. , Peris-Lopez, P. , & Blasco, J. (2014). Dendroid: A text
mining approach to analyzing and classifying code structures in android mal-

ware families. Expert Systems with Applications, 41 (4), 1104–1117 .
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27 (11),

1134–1142 .
Valiant, L. G. (1985). Learning disjunction of conjunctions.. In IJCAI (pp. 560–566) .

Vidas, T. , & Christin, N. (2014). Evading android runtime analysis via sandbox de-

tection. In Proceedings of the 9th ACM symposium on information, computer and
communications security (pp. 447–458). ACM .

Vigna, G. , Robertson, W. , & Balzarotti, D. (2004). Testing network-based intrusion
detection signatures using mutant exploits. In Proceedings of the 11th ACM con-

ference on computer and communications security (pp. 21–30). ACM .
ei, F. , Roy, S. , & Ou, X. (2014). Amandroid: A precise and general inter-component
data flow analysis framework for security vetting of android apps. In Proceed-

ings of the 2014 ACM SIGSAC conference on computer and communications security
(pp. 1329–1341). ACM .

iao, H. , Biggio, B. , Brown, G. , Fumera, G. , Eckert, C. , & Roli, F. (2015). Is feature se-
lection secure against training data poisoning?. In F. Bach, & D. Blei (Eds.), JMLR

W&CP-proceedings of the 32nd international conference on international conference
on machine learning (ICML): Vol. 37 (pp. 1689–1698) .

u, W. , Qi, Y. , & Evans, D. (2016). Automatically evading classifiers. In Proceedings of

the 2016 network and distributed systems symposium .
ue, Y. , Meng, G. , Liu, Y. , Tan, T. H. , Chen, H. , Sun, J. , & Zhang, J. (2017). Auditing an-

ti-malware tools by evolving android malware and dynamic loading technique.
IEEE Transactions on Information Forensics and Security, 12 (7), 1529–1544 .

ang, C. , Xu, Z. , Gu, G. , Yegneswaran, V. , & Porras, P. (2014). Droidminer: Au-
tomated mining and characterization of fine-grained malicious behaviors in

android applications. In European symposium on research in computer security

(pp. 163–182). Springer .
ang, W. , Xiao, X. , Andow, B. , Li, S. , Xie, T. , & Enck, W. (2015). Appcontext:

Differentiating malicious and benign mobile app behaviors using context. In
2015 IEEE/ACM 37th IEEE international conference on software engineering: Vol. 1

(pp. 303–313). IEEE .
hang, M. , Duan, Y. , Yin, H. , & Zhao, Z. (2014). Semantics-aware android malware

classification using weighted contextual api dependency graphs. In Proceedings

of the 2014 ACM SIGSAC conference on computer and communications security
(pp. 1105–1116). ACM .

Zheng, M. , Lee, P. P. , & Lui, J. C. (2012). Adam: an automatic and extensible platform
to stress test android anti-virus systems. In International conference on detection

of intrusions and malware, and vulnerability assessment (pp. 82–101). Springer .
hou, Y. , & Jiang, X. (2012). Dissecting android malware: Characterization and evo-

lution. In 2012 IEEE symposium on security and privacy (pp. 95–109). IEEE .

hou, Y. , Wang, Z. , Zhou, W. , & Jiang, X. (2012). Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets. In NDSS:

Vol. 25 (pp. 50–52) .

http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0042
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0043
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0049
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0050
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0051
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0052
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0053
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0054
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0055
http://refhub.elsevier.com/S0957-4174(17)30788-1/sbref0055

	Picking on the family: Disrupting android malware triage by forcing misclassification
	1 Introduction
	2 IagoDroid
	2.1 Adversarial model
	2.2 Target classifier
	 RevealDroid classifier building

	2.3 Problem formalisation
	2.4 Genetic approach
	2.4.1 Encoding
	2.4.2 Genetic operators
	2.4.3 Fitness function

	2.5 Targeting specific families

	3 Experimentation
	3.1 Dataset
	3.2 Target classifier
	3.3 Genetic search
	3.4 Attack steps

	4 Results
	4.1 Evasion effort
	4.2 Relevant features for the attack
	4.3 Transition between families during evasion

	5 A countermeasure
	5.1 Detecting potential misclassifications
	5.2 Reversing the attack

	6 Related work
	6.1 Android static analysis
	6.2 Adversarial machine learning
	6.3 Counteracting adversarial learning techniques

	7 Conclusions
	 Acknowledgements
	 References

