
Nonfree Datatypes in Isabelle/HOL
Animating a Many-Sorted Metatheory

Andreas Schropp and Andrei Popescu

Technische Universität München, Germany

Abstract. Datatypes freely generated by their constructors are well supported
in mainstream proof assistants. Algebraic specification languages offer more ex-
pressive datatypes on axiomatic means: nonfree datatypes generated from con-
structors modulo equations. We have implemented an Isabelle/HOL package for
nonfree datatypes, without compromising foundations. The use of the package,
and its nonfree iterator in particular, is illustrated with examples: bags, polynomi-
als and λ-terms modulo α-equivalence. The many-sorted metatheory of nonfree
datatypes is formalized as an ordinary Isabelle theory and is animated by the
package into user-specified instances. HOL lacks a type of types, so we employ
an ad hoc construction of a universe embedding the relevant parameter types.

1 Introduction
Free datatypes are at the heart of logic and computer science and are well supported
in most proof assistants. Equational theories over them are often less convenient. Finite
multisets or “bags” are a popular construction and can be regarded as finite lists modulo
the permutation of elements. This results in the following nonfree datatype of bags over
the type α, with “empty bag” and “bag-insert” constructors:

datatype α bag = BEmp | BIns α (α bag)
where BIns a1 (BIns a2 B) = BIns a2 (BIns a1 B)

where the equation—left-commutativity—is (implicitly) universally quantified over a1, a2
and B. Bags are thus specified by list-like constructors and an identification of differ-
ently constructed terms based on (all consequences of) the indicated equation.

This style of definition is standard in the world of algebraic specifications [6, 7].
Nonfree datatypes and suitable recursors for them allow one to express many concepts
at the appropriate level of abstraction, as opposed to encoding them in more concrete
free types. For instance, bags are encodable as lists, but the price is a loss of abstraction,
hence more error-prone processing methods. This is equally true for programming [25]
and theorem proving. However, mainstream proof assistants based on type theory [1,5]
or higher-order logic (HOL) [10, 18] currently do not provide mechanisms for specify-
ing nonfree datatypes directly.

In HOL-based provers, such as our favorite one Isabelle/HOL [18], datatypes are not
integrated into the logic, but are provided as a definitional layer on top of the logical
primitives. Given a user specification, a definitional package produces the appropriate
types, terms and theorems, including induction and recursion schemes. In this paper, we
present a definitional package in Isabelle/HOL for nonfree datatypes. Its expressiveness
goes a little beyond standard algebraic specifications (typically, equational theories),
allowing Horn clauses over equations and predicates.

Our package also contributes a new methodology for addressing an old problem:
the incomplete, dynamic nature of typical package certification. Indeed, the mathemat-
ics behind a datatype package requires reasoning about arbitrary numbers of types and
operators on them. This is not possible generically inside HOL, because it lacks a type
of types. The constructions performed by HOL packages are usually certified dynami-
cally, for each particular instance that the user requests. Our package essentially limits
the amount of dynamic certification to a minimum of uniform facts concerning the
transfer across isomorphisms.1 The nontrivial part of the constructions is statically cer-
tified in a metatheory formalized in Isabelle. It is parameterized on a collection of sets
over a fixed “universe” type, instead of a collection of types. This “universe” type is
instantiated by ad hoc sums over the relevant types when animating the metatheory.

The paper is structured in two main parts. The first part, consisting of §2, illustrates
the package by examples—bags, polynomials and λ-terms modulo α-equivalence—
carefully chosen to illustrate different aspects and features of the package: nonfree
recursion, interaction with Isabelle’s type classes, and predicate-based Horn specifi-
cations. We also hope that these examples help popularize nonfree recursion, a stan-
dard technique that is not so standard in proof assistants. The second part describes the
package design and architecture: §3 illustrates on an example the actual steps that are
automated by the package, §4 presents the formalization of the metatheory up to the
construction of the initial model, and §5 shows how the metatheory is automatically
instantiated to user-specified datatypes. The appendix gives more examples and details.
The package is compatible with Isabelle2013 and is publicly available [23].
Preliminaries. In this paper, by HOL we mean classical higher-order logic with Hilbert
choice, schematic polymorphism and the typedef principle. The Isabelle/HOL proof as-
sistant [18] is an implementation of HOL enhanced with Haskell-style type classes [9]
and locales [15]. Types in HOL are either atomic types such as unit, nat and bool,
or type variables α, β, or built from these using type constructors. We use postfix no-
tation for type constructors, e.g., α list and α set denote the list and powerset types
over α. Polymorphic types are not syntactically distinguished—e.g., α list also denotes
the polymorphic type ∀α. α list. We write α→ β, α+β, and α×β for the function-space,
sum and product types, respectively. All types are nonempty.2 New types are introduced
with the typedef principle by carving out nonempty subsets of existing types. A term t
of type τ is indicated as t : τ. (We prefer the more mathematical notations α→ β and
t : τ to the Isabelle notations α⇒ β and t :: τ.)

Type classes are an overloading mechanism wired into Isabelle’s type system. A
type class C specifies for its member types, τ : C, constants of composite types con-
taining τ and axioms for these constants. Typical cases are the algebraic classes, e.g.,
τ : semigroup means that there exists an operation + : τ→ τ→ τ assumed associative.
Isabelle locales are essentially proof contexts, fixing type and term variables with as-
sumptions. A locale can be instantiated by providing concrete types and terms for its
type and term variables and then discharging its assumptions. This makes the instanti-
ated content of the locale available in the outer context.

1 Additionally we employ rewriting steps, forward chaining of facts, well-sortedness checking
rules, and finite datatypes and functions over them to construct the signature instantiation.

2 HOL is not following the propositions-as-types paradigm, so this is not troublesome.

2

2 The Package in Action
Here we present the package and its different features by examples. We start with the
datatype of bags, whose single-equation specification makes it easy to present in detail
the package’s contract: what is expected from the user and what is produced in response.

2.1 Bags
The declaration of the datatype of bags from §1 produces the type α bag and the fol-
lowing polymorphic constants:
– the constructors BEmp : α bag and BIns : α→ α bag→ α bag,
– the iterator iter_bag : β→ (α→ β→ β)→ α bag→ β.

In addition, several characteristic theorems are derived. They include facts also
available for standard free datatypes:
– Case distinction: (B = BEmp −→ ϕ) ∧ (∀a C. B = BIns a C −→ ϕ) −→ ϕ
– Induction: ϕ BEmp ∧ (∀a B. ϕ B→ ϕ (BIns a B)) −→ (∀B. ϕ B)

Note that the injectivity of the constructors, here,

BIns a1 B1 = BIns a2 B2 −→ a1 = a2 ∧ B1 = B2,

is not among these facts, since it does not hold for nonfree datatypes.
The interesting derived theorems are those specific to nonfree datatypes:

– The characteristic equation(s) specified by the user:
BIns a1 (BIns a2 B) = BIns a2 (BIns a1 B)

– Conditional equations for iteration:
bag_alg E I→ iter_bag E I BEmp = E
bag_alg E I→ (∀a B. iter_bag E I (BIns a B) = I a (iter_bag E I B))

where bag_alg E I is the predicate ∀ a1 a2 b. I a1 (I a2 b) = I a2 (I a1 b).
Thus, the package produces a type α bag that satisfies the specified equation. In ad-

dition, α bag is initial among the algebras (β, E : β, I : α→ β→ β) satisfying the equa-
tion (with E and I replacing BEmp and BIns) as expressed by the predicate bag_alg E I.
This means that from α bag to any such algebra there exists precisely one morphism,
i.e., function commuting with the algebra operations. The existence of a morphism is
expressed by the iteration equations: given such an algebra, the morphism is iter_bag E I.
Its uniqueness is given by the induction principle.

As with other definitional packages for recursion, the user does not needs to em-
ploy the iterator directly—the package allows the user to inline I and E in the desired
recursive equations. For example, the following specifies the map function for bags:

nonfreerec bag_map : (α→ β)→ α bag→ β bag where

bag_map f BEmp = BEmp

bag_map f (BIns a B) = BIns (f a) (bag_map f B)

In response to this command, the package does the following (for a fixed f : α→ β):
(1) identifies E and I as being BEmp : β bag and (λa. BIns (f a)) : α→ β bag→ β bag;
(2) defines bag_map f = iter_bag E I;
(3) prompts the user to discharge the goal bag_alg E I;
(4) infers the desired unconditional equations stated in the nonfreerec declaration
from the conditional equations for iter_bag and the fact proved at step (3).

3

Thus, the user obtains the desired simplification rules for the newly introduced
bag_map after discharging the bag_alg goal, here,

BIns (f a1) (BIns (f a2) B) = BIns (f a2) (BIns (f a1) B)

which is immediate from the characteristic equation for β bag.
This complication, of having to discharge goals that imply well-definedness of a

function definition, is inherent in the nature of quotiented types and is shared with the
quotient and nominal packages [11, 13, 14]. For this paper’s examples, the conditions
are easy to discharge by simplification (but this cannot be guaranteed in general). This
is also the case for the sum of a numeric function over the elements of a bag:

nonfreerec sum : (α→ nat)→ α bag→ nat where

sum f BEmp = 0
sum f (BIns a B) = sum f B + f a

which yields the goal (m+ f a1) + f a2 = (m+ f a2) + f a1. It is discharged using
associativity and commutativity of + on nat, which means that the definition gener-
alizes: we can replace nat with the type class member β : comm_monoid_add, cov-
ering all types equipped with a commutative monoid structure (β, 0,+). The multi-
plicity of an element in a bag, mult : α→ α bag → nat is obtained as mult a B =
sum (λa′. if a = a′ then 1 else 0) B.

2.2 Algebra
The package can be used to streamline algebraic constructions. The following example
builds the ring of polynomials over a commutative ring α with variables in β, where
Sc is the embedding of scalars yielding Sc 0 as the zero polynomial and Var gives the
polynomial variables. (§B.2 shows another standard construction, sum of algebras.)

datatype (α : comm_ring, β) poly = Sc α | Var β | Uminus ((α, β) poly) |
Plus ((α, β) poly) ((α, β) poly) | Times ((α, β) poly) ((α, β) poly)

where (−a) = b −→ Uminus (Sc a) = Sc b
and a1 +a2 = a −→ Plus (Sc a1) (Sc a2) = Sc a
and a1 ∗a2 = a −→ Times (Sc a1) (Sc a2) = Sc a
and Plus (Sc 0) P = P
and Plus (Plus P1 P2) P3 = Plus P1 (Plus P2 P3)

*** Etc.: All the commutative-ring axioms for Plus, Times, Sc 0 ***

This example illustrates the nontrivial use of type class annotations in the datatype
declaration: since α is a ring, it provides operations ∗,+, 0, which are used in the def-
inition of the new type. Type class constraints in polymorphic datatype specifications
are already present in Isabelle’s standard datatype package, but only serve as a syntactic
constraint there. The feature is essential here for performing universal extensions over
an unspecified algebraic structure: we need to form a type depending on its operations.

The first three clauses ensure that the restrictions of polynomial inverse, addition
and multiplication to scalars, collapse to the scalar operations −, + and ∗. They illus-
trate the use of parameters from type α. Strictly speaking each of the clauses forms an
infinite family of Horn clauses, indexed by either a : α or a1, a2 : α. One may employ
any condition on the parameters, not just equality as here.

4

This direct definition of polynomials can replace the tedious standard construction
based on lists. By its characteristic equations, (α, β) poly forms a commutative ring if α
does and we can register this with the type-class system. Universality is established by
an operator that extends morphisms f : (α : comm_ring)→ (γ : comm_ring) (assumed
to commute with +, ∗, 0) and variable interpretations g : β→ γ, to morphisms ext f g :
(α, β) poly→ γ. In the context of such f and g, we define ext by simply writing down
its desired interaction with the polynomial operators:

nonfreerec ext : (α, β) poly→ γ where
ext (Sc a) = f a ext (Var b) = g b ext (Uminus P) = − ext P
ext (Plus P Q) = ext P+ ext Q ext (Times P Q) = ext P∗ ext Q

where simplification with the ring axioms of γ and the morphism axioms of f immedi-
ately discharges the goals. Polynomial evaluation is obtained from ext taking f = id.

2.3 λ-terms modulo α-equivalence
Next we discuss a less standard example—λ-terms modulo α-equivalence—which em-
ploys the full expressive power of the package, combining parameter conditions with
Horn predicates. This type can be specified as the initial model of a Horn theory if
we factor in the freshness predicate and at least one of the substitution and swapping
operators [19, 21]. In particular, the following provides (a type isomorphic to) the λ-
calculus terms (modulo α-equivalence) over variables in α and constants in β, including
the syntactic constructors, freshness and substitution:

datatype (α, β) lterm = Var α | Ct β | App ((α, β) lterm) ((α, β) lterm) |
Lam α ((α, β) lterm) | Subst ((α, β) lterm) ((α, β) lterm) α

with fresh : α→ (α, β) lterm→ bool
where (Var x) [t/x] = t

and x 6= y −→ (Var y) [t/x] = Var y
and (Ct c) [t/x] = Ct c
and (App s1 s2) [t/x] = App (s1[t/x]) (s2[t/x])
and x 6= y ∧ fresh y t −→ (Lam y s) [t/x] = Lam y (s [t/x])
and x 6= y −→ fresh x (Var y)
and fresh x (Ct c)
and fresh x s1 ∧ fresh x s2 −→ fresh x (App s1 s2)
and fresh x (Lam x s)
and fresh x s −→ fresh x (Lam y s)
and x 6= y ∧ fresh x s −→ Lam y s = Lam x (s [Var x / y])

where we wrote s[t/x] instead of Subst s t x. Besides operations, this type also comes
with a predicate fresh, which plays a crucial role in the behavior of the capture-free
substitution operators, as regulated by the above Horn clauses. Specifically, substitu-
tion can “enter” λ-abstractions only under certain freshness conditions. Nevertheless,
substitution can always be reduced away from terms by using the last clause to perform
a renaming to a fresh variable.

This Horn-based definition of λ-terms is easily extendable to any syntax with static
bindings, but does require some tuning to become a useful framework for reasoning
about bindings. In particular it lacks a substitution-free induction schema. One type

5

of task where the Horn view of λ-terms excels are recursive definitions: besides go-
ing through modulo α-equivalence, they also yield compositionality with freshness
and substitution as a bonus. This is argued in [21] with many examples, ranging from
higher-order abstract syntax and semantic-domain interpretation to CPS transforma-
tions. These examples are instances of the nonfree recursion provided by our package.

For instance, occs t x yields the number of free occurrences of a variable x in a λ-
term t. It is defined stating the “naive” recursive equations (as if terms were not factored
to α) together with indicating the correct behavior w.r.t. freshness and substitution:

nonfreerec occs : (α, β) lterm→ (α→ nat) where
occs (Ct c) = (λx. 0) occs (Lam y s) = (λx. if x = y then 0 else occs s x)

occs (Var y) = (λx. if x = y then 1 else 0) occs (App s t) = (λx. occs s x+occs s y)
occs (s [t/y]) = (λx. occs s y∗occs t x+ (if x = y then 0 else occs s x))

fresh y s −→ occs s y = 0

Note that, while the operators require (recursive) equations, predicates such as fresh re-
quire implications. Indeed, the implication for fresh indicates that, on the target domain
α→ nat, freshness is interpreted as λy s. occs s y = 0. The goals emerging from this
definition amount to arithmetic properties known by the Isabelle simplifier.

3 Automated Constructions

Here we sketch the development required to obtain the functionality provided by the
package, using our λ-term example. (1) One starts with the free datatype of “pre-terms":

datatype (α, β) lterm′ = Var′ α | Ct′ β | App′ ((α, β) lterm′) ((α, β) lterm′) |
Lam′ α ((α, β) lterm′) | Subst′ ((α, β) lterm′) ((α, β) lterm′) α

(2) Next, one defines mutually inductively the desired “equality” ≡ and the “pre-fresh”
predicate. (In general, mutually recursive datatypes involve n equalities, one for each
type, and m predicates, one for each predicate specified by the user.)

inductive ≡ : α lterm′→ α lterm′→ bool and fresh′ : α lterm′→ bool
where
*** One clause for each user-specified Horn clause: ***

(Var x)[t/x]≡ t
and x 6= y −→ (Var y) [t/x]≡ Var′ y

*** etc. ***
*** The equivalence rules: ***
and s≡ s and s1 ≡ s2 −→ s2 ≡ s1 and s1 ≡ s2 ∧ s2 ≡ s3 −→ s1 ≡ s3

*** A congruence rule for each user-specified constructor: ***
and s1 ≡ t1 ∧ s2 ≡ t2 −→ App′ s1 s2 ≡ App′ t1 t2

*** etc. ***
*** A preservation rule for each constructor-predicate combination: ***
and s1 ≡ t1 ∧ s2 ≡ t2 ∧ fresh′ x (App′ s1 s2) −→ fresh′ x (App′ t1 t2)

*** etc. ***

(3) The type α lterm is defined by quotienting α lterm′ by the equivalence ≡, es-
tablishing a surjection π : α lterm′ → α lterm, with the choice function ε : α lterm→

6

α lterm′ as its right inverse. The operations Var, App and Lam and the predicate fresh
are defined on α lterm from the corresponding ones from α lterm′ using π and ε. (4) The
induction principle from α lterm′ is transported to α lterm. (5) α lterm is shown to sat-
isfy all the desired Horn clauses. To obtain the recursion principle, one fixes a type
β with operations and relations on it and assumes it satisfies the Horn clauses. (6) A
function f : α lterm′→ β is then defined by standard recursion. (7) By induction on the
derivation of ≡, we get that f is invariant under equivalent arguments. (8) This allows
one to define a function g : α lterm→ β such that g ◦π = f . (9) Using the surjectivity
of π, this function is shown to commute with the operations and preserve the relations.

All the involved constructions and proofs are fairly easy to perform by hand, but
quite tedious and time-consuming. Parts (3–5) and (8,9) of this process can be eased by
existing Isabelle quotient/lifting/transfer packages [12, 14].

Our package automates the whole construction. Moreover, it does not perform this
construction over and over, for each newly specified nonfree datatype. We have experi-
mented with a different methodology:
– Formalize the metatheory for an arbitrary many-sorted signature and Horn theory.
– Upon a user specification, instantiate the metathoery, then copy isomorphically the
relevant types, operations, and theorems about them.

The next two sections describe these steps.

4 Formalized Metatheory
We have formalized the theory of Horn clauses up to the construction of the initial
model. The development is parameterized by an arbitrary signature (giving sorts and
sorted operations and relation symbols) and an arbitrary Horn theory over the signature,
i.e., a set of Horn clauses. Both terms and clauses are deeply embedded. Sorts repre-
sent relevant Isabelle types. A specific feature of our formalization is the consideration
of parameters and parameter conditions in clauses, motivated by the desire to capture
parameterized instances such as polymorphic datatypes and clausal side conditions.

We will use the following constants. Inl : α→ α+β and Inr : β→ α+β are the left
and right injections into the sum type, and isInl, isInr : α+ β→ bool are their corre-
sponding selectors; namely, isInl c holds iff c has the form Inl a for some a, and isInr c
holds iff c has the form Inr b for some b. [] is the empty list, [a1, . . . , an] is the list
of the n indicated elements. map : (α→ β)→ α list→ β list is the standard list-map
operator, and map2 : (α→ β→ γ)→ α list→ β list→ γ list is its binary counterpart,
with map2 f [a1, . . . , an] [b1, . . . , bn] = [f a1 b1, . . . , f an bn]. Similarly, list_all : (α→
bool)→ α list→ bool is the universal quantifier over lists, with list_all ϕ [a1, . . . , an]
meaning that ϕ ai holds for all i, and list_all2 : (α→ β→ bool)→ α list→ β list→ bool
is its binary counterpart, with list_all2 ϕ al bl meaning that al has the form [a1, . . . , an],
bl has the from [b1, . . . , bn], and ϕ ai bi holds for all i. In particular list_all2 ϕ al bl re-
quires that al and bl have equal lengths. As a notational convention, we use the suffix
“l" to indicate lists. E.g., if ps ranges over the type psort, then psl ranges over psort list.

4.1 Horn Clause Syntax
We define the types var, of variables, and pvar, of parameter variables (p-variables),
as copies of nat. Our constructions are parameterized by the following type variables:

7

sort, of sorts, giving the syntactic categories of terms (representing the mutually re-
cursive datatypes); opsym, of operation symbols (representing the datatype construc-
tors); rlsym, of relation symbols (representing relations); param, the parameter universe
; psort, of parameter sorts (p-sorts; representing the parameter types in the datatype).

The type of terms is defined as follows:
datatype (sort, opsym) trm = Var sort var |

Op opsym (pvar list) (((sort, opsym) trm) list)

Thus a term T is either a sorted variable Var s x or has the form Op σ pxl Tl, applying
an operation symbol σ to a list pxl of parameter variables and a list Tl of terms.

The type of atoms (or atomic statements) is defined as follows:
datatype (sort, opsym, rlsym, psort, param) atm =

Pcond (param list→ bool) (psort list) (pvar list) |
Eq ((sort, opsym) trm) ((sort, opsym) trm) |
Rl rlsym (pvar list) (((sort, opsym) trm) list)

We provide an intuition of the semantics of these atoms here. §4.3 provides the details.
The semantics of these atoms is relative to interpretations of sorts as subsets of a model,
of variables as elements in a model, of operation symbols as functions on a model, of
relation symbols as relations on a model and of p-variables as parameters:
(1) Parameter-condition atoms have the form Pcond R psl pxl. Semantically they will
be interpreted as the predicate R on the interpretation of the p-variables pxl (where this
interpretation is assumed to be consistent with the p-sorts psl).
(2) Equational atoms have the form Eq s T1 T2. They will be interpreted as a specialized
“equality" relation between T1 and T2, assumed to be of sort s.
(3) Relational atoms have the form Rl π pxl Tl. They will be interpreted as the model
relation corresponding to π on the interpretations of the p-variables pxl and the inter-
pretations of the terms Tl. The sorts of Tl are assumed to agree with the sorting of π.

Horn clauses are essentially lists of atoms: the premises are paired with one atom,
the conclusion. In §4.3 we will interpret a Horn clause as the implication between the
interpretations of the premises and the conclusion, schematically quantified over vari-
able interpretations:

datatype (sort, opsym, rlsym, psort, param) hcl =
Horn (((sort, opsym, rlsym, psort, param) atm) list)

((sort, opsym, rlsym, psort, param) atm)

In what follows, we fix the type parameters and omit them when writing the various
types that depend on them, e.g., writing trm instead of (sort, opsym) trm.

4.2 Signatures
We define signatures as a locale that fixes the data required to classify terms and param-
eters according to sorts:

locale Signature =
fixes stOf : opsym→ sort
and arOf : opsym→ sort list and arOfP : opsym→ psort list
and rarOf : rlsym→ sort list and rarOfP : rlsym→ psort list
and params : psort→ param→ bool
and prels : ((param list→ bool)×psort list) set

8

Recall from the definition of terms that operation symbols are applied not only to terms,
but also to parameters. Then arOf (read “arity of”), arOfP (read “parameter-arity of")
and stOf (read “sort of”), regulate the sorts of terms (or, in general, elements of models)
and parameters that an operation symbol takes and the sort of terms it returns. Similarly,
rarOf and rarOfP indicate the arities and parameter-arities of relation symbols. More-
over, params classifies parameters according to sorts. Finally, prels specifies the set of
relations over parameters that can be used as parameter conditions in Horn clauses,
together with their intended arities. Given (R, psl) ∈ prels, we only care about the be-
havior of R on lists pl of parameters having sorts psl according to params, i.e., such
that list_all2 params pl psl holds. We have to represent R as a relation on the larger type
param list because dependent types are not available. Similar phenomena are observable
in our definitions of models below.

4.3 Models
We work in the Signature context. The (well-formed) terms of a given sort are defined
as the predicate trms : sort→ trm→ bool, by requiring that operation symbols are
applied according to their arities.

A model is a tuple (α, intSt, intOp, intRl), where:
– α is the carrier type,
– intSt : sort→ α→ bool classifies the elements of α according to sorts;
– intOp : opsym→ param list→ α list→ α interprets the operation symbols as param-
eterized operations on α;
– intRl : rlsym→ param list→ α list→ bool interprets the relation symbols as parame-
terized relations on α.

In (well-formed) models the interpretation of operation symbols has to be compati-
ble with sorting, i.e., the following predicate compat intSt intOp holds:

∀σ pl al. list_all2 params (arOfP σ) pl ∧ list_all2 intSt (arOf σ) al→
intSt (stOf σ) (intOp σ pl al).

Given a model (α, intSt, intOp, intRl), the notions of term interpretation and atom
satisfaction are defined relative to interpretations of parameter variables intPvar : psort→
pvar→ param and variables intVar : sort→ var→ α. For equational atoms, we do not
require equality, but further parameterize on a relation intEq : α→ α→ bool.

intTrm intOp intPvar intVar (Var s x) = intVar s x
intTrm intOp intPvar intVar (Op σ pxl Tl) =

intOp σ (map2 intPvar (arOfP σ) pxl) (map (intTrm intOp intPvar intVar) Tl)

satAtm intOp intEq intRl intPvar intVar (Pcond R psl pxl) ←→ R (map2 intPvar psl pxl)
satAtm intOp intEq intRl intPvar intVar (Eq s T1 T2) ←→

intEq (intTrm intOp intPvar intVar T1) (intTrm intOp intPvar intVar T2)
satAtm intOp intEq intRl intPvar intVar (Rl π pxl Tl) ←→

intRl π (map2 intPvar (rarOfP π) pxl) (map (intTrm intOp intPvar intVar) Tl)
Thus, the term interpretation is defined recursively over terms, employing inter-

pretations of p-variables and variables. For atom satisfaction, we distinguish the three
kinds of atom, employing the parameter-conditions, the equality interpretation and the
relation-symbol interpretation, respectively. Note that the interpretations do not depend
on the model-carrier sorting intSt : α → sort. However, for well-formed models we

9

prove that well-sorted interpretations of (p-)variables yield term interpretations com-
patible with sorting, in that they send terms of sort s to model elements of sort s:
lemma: compat intSt intOp ∧ (∀ ps px. params ps (intPvar ps px)) ∧
(∀ s x. intSt s (intVar s x)) → (trms s T → intSt s (intTrm intOp intPvar intVar T)).

The above approach is pervasive in our formalization: We do not index everything
by sorts, but use global (unsorted) functions and relations as much as possible, and
then show that they are compatible with sorting. This optimization is particularly help-
ful when we factor terms to the Horn-induced equivalence relation building a single
quotient instead of a sorted family of quotients (as customary in universal algebra).

Finally, satisfaction of a Horn clause by a model is defined as the implication be-
tween satisfaction of the premises and satisfaction of the conclusion for all well-sorted
interpretations intPvar of the p-variables and intVar of the variables:

satHcl intSt intOp intEq intRl (Horn atml atm) ←→
∀ intPvar intVar. (∀ ps px. params ps (intPvar ps px)) ∧ (∀s x. intSt s (intVar s x)) ∧

list_all (satAtm intOp intEq intRl intPvar intVar) atml→
satAtm intOp intEq intRl intPvar intVar atm

4.4 The Initial Model of a Horn Theory

Traditionally, ground terms are simply terms with no free variables. However, in our
parameterized setting, terms contain p-variables, while the ground terms will need to
contain actual parameters. We define a separate type of ground terms, gtrm, built recur-
sively from operation symbols applied to lists of parameters and list of ground terms:
datatype (opsym, param) gtrm=Gop opsym (param list) (((opsym, param) gtrm)list)

The initial model of a Horn theory will be constructed by factoring ground terms
to an equivalence relation. Hence its carrier will be the following type of “Horn terms”
defined to be sets of ground terms:

type_synonym (opsym, param) htrm = ((opsym, param) gtrm) set

In what follows, we fix a signature with assumptions guaranteeing non-emptiness
of sorts and p-sorts and a well-formed Horn theory HCL. Technically, we work in the
context of the following locale extending the Signature locale:
locale HornTheory = Signature + fixes HCL : hcl set
assumes ∀hcl ∈ HCL. wf hcl and ∀s. reach s and ∀ps. ∃p. params ps p

Above, wf hcl states that the Horn clause is well-formed in that all its atoms are
well-formed in the expected way, e.g., in equational atoms Eq s T1 T2, s is the sort of
T1 and T2. The inductively defined predicate reach s states that the sort s is reachable by
operation symbols. This ensures the existence of ground terms of sort s, where sorting
of ground terms gtrms : sort→ gtrm→ bool is defined as expected.

On gtrm we define mutually inductive relations Geq : gtrm→ gtrm→ bool and
Grel : rlsym→ param list→ gtrm list→ bool in a similar fashion to the example of
§3, but working symbolically with the clauses in HCL instead of concrete clauses. We
show that Geq is an equivalence and that both relations are compatible with sorting and
with the operations. This allows us to quotient gtrm by Geq, giving the type htrm. We
lift the sorting gtrms of ground terms and the interpretations Gop, Grel of the operation
and relation symbols on ground terms to equivalence classes. This yields the functions

10

htrms : sort→ htrm→ bool, Hop : opsym→ param list→ htrm list→ htrm and Hrel :
rlsym→ param list→ htrm list→ bool.

The ground-term model (gtrm, gtrms, Gop, Grel) satisfies all the clauses in HCL if
we interpret equality as Geq:
lemma: hcl ∈ HCL → satHcl gtrms Gop Geq Grel hcl

From this, we obtain that the Horn-term model (htrm, htrms, Hop, Hrel) satisfies
the clauses with the standard interpretation of equality:
theorem satisfaction: hcl ∈ HCL → satHcl htrms Hop (=) Hrel hcl

Structural induction is easily inherited by Horn terms from ground terms:
theorem induction: (∀σ pl Hl. list_all2 params (arOfP σ) pl ∧
list_all2 htrms (arOf σ) Hl ∧ list_all2 ϕ (arOf σ) Hl→ ϕ (stOf σ) (Hop σ pl Hl))
→ (htrms s H→ ϕ s H).

Moreover, the cases theorem is obtained as a degenerate induction. We are left to
show that (htrm, htrms, Hop, Hrel) is initial among the models of HCL. First we define
giter : (opsym→ param list→ α list→ α)→ gtrm→ α that interprets ground terms
with an operation symbol interpretation on a type α, as giter intOp (Gop σ pl Tl) =
intOpσ pl (map (giter intOp) Tl). Then we lift giter to htrm equivalence classes, giving
iter : (opsym→ param list→ α list→ α)→ htrm→ α. If (α, intSt, intOp, intRl) is a
model that satisfies HCL, then iter intOp is well-sorted and behaves like an iterator, i.e.,
commutes with the operations, and preserves the relations:
theorem it_sort: compat intSt intOp ∧ (∀ hcl ∈HCL. satHcl intSt intOp (=) intRl hcl)
→ htrms s H→ intSt s (iter intOp H)

theorem iteration: compat intSt intOp ∧ (∀ hcl∈HCL. satHcl intSt intOp (=) intRl hcl)
→ iter intOp (Hop σ pl Hl) = intOp σ pl (map (iter intOp) Hl)
theorem it_pres: compat intSt intOp ∧ (∀ hcl∈HCL. satHcl intSt intOp (=) intRl hcl)
→ Hrel π pl Hl→ intRl π pl (map (iter intOp) Hl).

After some lemmas concerning the interaction between the choice function and the
operations on Gop, the above theorems are proved by induction on the definition of
Geq and Grel. Note that our iterator only depends on the operation part of the model,
although its properties rely on the whole model and its satisfaction of HCL.

5 Animation of the Metatheory
From a purely mathematical viewpoint, having formalized the general case for arbitrary
signatures and Horn theories, we did capture all the instances. But we have to bridge
the gap between the abstract characterization of the instances in the metatheory and
the instance descriptions offered by users of the package. Moreover, the metatheory
introduces operations over a quotient term universe, while users want to use curried
datatype constructors between distinguished types for each of the mutually recursive
datatypes.

5.1 Instantiation of the Metatheory
We focus on an example instantiation of the metatheory here and refer to the appendix
for an overview of the instantiation in general.

11

To obtain the λ-terms modulo α from §2.3, we simply instantiate the HornTheory
locale. The types are instantiated as follows:
– sort becomes a type with 1 element, lt, for the unique syntactic category of λ-terms;
– opsym becomes a type with 5 elements, var, ct, app, lam, subst, corresponding to the
operations Var, Ct, App, Lam, Subst;
– rlsym becomes a type with 1 element, fr, corresponding to the predicate fresh;
– param becomes the sum type α+ β, embedding the type α of variables and β of
constants used in λ-terms and thus forming the parameter universe;
– psort becomes a type with 2 elements, a and b, matching the 2 kinds of parameters.

The signature variables are instantiated as follows:
– stOf _ = lt; arOf var = []; arOfP var = [a]; arOf ct = []; arOfP ct = [b];

arOf app = [lt, lt]; arOfP app = []; arOf lam = [lt]; arOfP lam = [a];
arOf subst = [lt, lt]; arOfP subst = [a]; rarOf fr = [lt]; rarOfP fr = [a];

– params ps p←→ (ps = a ∧ isInl p)∨ (ps = b ∧ isInr p);
– prels = {(dif2, [a, a])}, where dif2 is the function sending any list of two parameters
of the form [Inl a1, Inl a2] to (the truth-value of) a1 6= a2 (and with immaterial definition
elsewhere).

Finally, HCL is instantiated to the set containing the reflections of the λ-term clauses.
For example, x 6= y ∧ fresh x s −→ Lam y s = Lam x (s [Var x / y]) becomes
Horn [atm1, atm2] atm3, where:
– we take x and y to be distinct elements of pvar and s to be some element of var;
– atm1 = Pcond dif2 [a, a] [x, y],
– atm2 = Rl fr [x] [Var lt s] and atm3 = Eq lt T1 T2, with T1 = Op lam [y] [Var lt s] and
T2 = Op lam [x] [Op subst [y] [Var lt s, Op var [x] []]].

Then, after checking the HornTheory assumptions for this particular instances, we
indeed obtain valid formulations of the satisfaction, induction and iteration theorems for
λ-terms as instances of the general theorems. However, these formulations are inconve-
nient to use in a theorem prover. One would certainly prefer to write App s1 s2 instead
of Hop app [] [s1, s2] for λ-term application, and ∀x y s. x 6= y ∧ fresh x s −→ Lam y s=
Lam x (s [Var x / y]) instead of satHcl intSt intOp (=) intRl (Horn [atm1, atm2] atm3).

Superficially, fixing this seems to be a matter of syntactic sugar. But the situation is
a little more complex, since we also want to use a more appropriate type for λ-terms.
Indeed, htrm may contain junk—the general theorems only speak about sorted terms.
Therefore, the type we care about needs to be carved out from htrm by restricting to
those T such that htrms lt T (where lt is here the only sort). Then App needs to be
defined as a copy of Hop app on the new type, also using two arguments instead of lists
with two elements. These transformations are realized with the isomorphic transfer of
types and terms, which we describe in the next section.

5.2 Isomorphic Transfer

Isomorphic transfer is based on establishing appropriate bijections between primitive
types, lifting these bijections to composite types and mapping term constructions under
the corresponding bijections away from the input types.

We shall employ relators, which are operators on predicates matching the type con-
structors. E.g., given ϕ : A→ bool and ψ : B→ bool, ϕ⊗ψ : A× B→ bool is defined

12

by (ϕ⊗ψ) (a, b)←→ (ϕ a ∧ ψ b) and ϕ⇒ ψ : (A→ B)→ bool is defined by (ϕ⇒ ψ) f
←→ (∀a. ϕ a → ψ (f a)).

htrms lt : htrm→ bool lterm

isInl : param→ bool α

isInr : param→ bool β

(list_all2 params (arOfP app))⊗ (list_all2 htrms (arOf app)) :
param list×htrm list→ bool

lterm× lterm

(list_all2 params (arOfP lam))⊗ (list_all2 htrms (arOf lam)) :
param list×htrm list→ bool

α× lterm

Fig. 1. Instance types and predicates (left) versus target types (right)

Figure 1 shows two categories of types side by side:
– on the left, the instance types, i.e., those obtained from the locale instantiation, where
necessary together with predicates describing the relevant subset based on the sorting;
– on the right, the corresponding target types exported to the user.

We assume α and β have been fixed and omit spelling them out, e.g., we write lterm
instead of (α, β)lterm. Also, param, htrm, etc. refer to the concrete types obtained by
the locale instantiation from §5.1.

The first 3 rows show the primitive types. For the Horn terms, we have defined lterm
by carving out from trmHCL the terms of sort lt (were there multiple sorts, we would
have multiple target types of terms). For parameters, the instance type was defined from
the target types, as their sum. In either case, we have bijections between sets of elements
in the instance types satisfying corresponding predicates and the target types.

These bijections are extended to bijections between the domains of the instance
operations and the intended domains of the target operations3—rows 4 and 5 show the
extensions for two operation symbols, app and lam. To see how the extension operates,
note that the instance predicates regulate the length of the lists and the sorts of their
contents. E.g., since arOf app = [lt, lt], we see that list_all (arOf app) Hl requires that
Hl have the form [H1, H2] such that htrms lt H1 and htrms lt H2 hold—thus, the lists boil
down to pairs of Horn terms of sort lt, hence correspond bijectively to lterm× lterm.

With the bijection construction in place, we proceed to copy the operations on the
instance types into operations on the target types, by defining constants equal to their
image under the corresponding bijection. E.g., App : lterm× lterm→ lterm is defined
as the image of Hop app : param list× htrm list → trmHCL restricted according to
the suitable predicates. Thus, App corresponds to Hop app under the lifted bijection to
lterm× lterm→ lterm from the set of elements of param list×htrm list→ trmHCL for
which the predicate (list_all2 params (arOfP app))⊗ (list_all2 htrms (arOf app))⇒
htrms (stOf app) holds. This set contains Hop app because of the sorting of app.

Finally, the theorems about instance types, that is, the satisfaction, induction, cases
and recursion theorems, are transported from the instance types to the target types.
Technically this works because we choose the bijection on propositions to be the iden-
tity. For instance, let us consider the induction theorem, where we write l2 instead of

3 To ease the presentation, we ignore currying and pretend that the domains are products.

13

list_all2:
∀ϕ s H. (∀σ pl Hl. l2 params (arOfP σ) pl ∧ l2 htrms (arOf σ) Hl ∧ l2 ϕ (arOf σ) Hl →
ϕ (stOf σ) (Hop σ pl Hl))→ htrms s H→ ϕ s H
To ease the presentation let us pretend that the signature only has app and lam as oper-
ation symbols. The theorem is processed as follows, into equivalent theorems. First, the
quantification over σ is replaced by conjunction over all operation symbols:
∀ϕ s H. (∀ϕ pl Hl. l2 params (arOfP app) pl ∧ l2 htrms (arOf app)Hl ∧ l2 ϕ (arOf app)Hl→ϕ (stOf app) (Hop app pl Hl))

∧ (∀ϕ pl Hl. l2 params (arOfP lam) pl ∧ l2 htrms (arOf lam)Hl ∧ l2 ϕ (arOf lam)Hl→ ϕ (stOf lam) (Hop lam pl Hl))

→ htrms s H→ ϕ s H

Computing the values of the sort and arity functions, this becomes:
∀ϕ s H. (∀ϕ pl Hl. l2 params [] pl ∧ l2 htrms [lt, lt] Hl ∧ l2 ϕ [lt, lt] Hl→ ϕ lt (Hop app pl Hl))
∧ (∀ϕ pl Hl. l2 params [a] pl ∧ l2 htrms [lt] Hl ∧ l2 ϕ [lt] Hl→ ϕ lt (Hop lam pl Hl))

→ htrms s H→ ϕ s H
By isomorphic transfer over the aforementioned extended bijections, we obtain:
(∀H1 H2. ϕ H1 ∧ ϕ H2→ ϕ (App H1 H2)) ∧ (∀x H. ϕ H → ϕ (Lam x H)) → ϕ H.

In this step the l2 params, l2 htrms constraints have disappeared, since the extended
bijections map the constrained variables pl, Hl to empty tuples, pairs or single elements.

5.3 General Animation Infrastructure
All these constructions, namely, defining the types and terms necessary for the instan-
tiation, establishing bijections between primitive types, extending them to the relevant
composite types, and transferring the term constructions and theorems to the target
types, are automated by employing a general infrastructure for algorithmic rule systems
and forward propagation of facts.

Algorithmic rule systems are collections of proven rules about moded judgments,
which are defined predicates in Isabelle/HOL. The definition of such a judgment con-
stitutes its propositional meaning, while the rules are theorems that constitute the sound
algorithm we use to synthesize the outputs and establish the judgment. The appendix
attempts to give a taste of this and for details we refer to the first author’s M.Sc. the-
sis [22]. We just note here that the animation of algorithmic rule systems can be re-
garded as a deterministic variant of Lambda-Prolog [16].

We employ the new concept of “forward rules” to drive the instantiation of the
metatheory and invoke the term transformations. A forward rule is an implicational
theorem that, algorithmically speaking, waits for input facts matching its conjunctive
head premise, processes them with algorithmic rule systems indicated by judgmental
premises, issues term and type definitions indicated by further premises and makes
output facts available.

Isomorphic transfer is implemented in the form of an algorithmic rule system. The
appendix contains a simplified version and [22] the details. We want to note that curry-
ing of functions over finite products is an ad hoc higher-order transformation overriding
the uniform transfer of applications. In our case the products are realized as lists over
a universe. Currying an operator application f (Cons t ts) proceeds by recursion on the
list argument, regarding the uncurry-image of the partially-curried operator ψ1 f applied
to the transformed first component ψ2 t, as the new operator ψ−1

3 ((ψ1 f) (ψ2 t)) in the
recursive transfer of ψ−1

3 ((ψ1 f) (ψ2 t)) ts. The general approach using algorithmic rule
systems is beneficial for term transformations with nonuniform behaviour.

14

6 Conclusions and Related Work
We implemented the first package for nonfree datatypes in a HOL-based prover, pio-
neering a metatheory approach. We provide parameter conditions, relations, induction,
case distinction, satisfaction of the specification and iterative recursion (i.e. initiality).
The presented ideas are relevant to all HOL-based provers, but type class constraints
are Isabelle-specific and essential for some nonfree datatypes (see §2.2).

The metatheories of packages in HOL usually are of an informal nature and rely on
the dynamic checking of inferences for soundness. Formalizing their metatheories will
make theorem provers more reliable by offering completeness guarantees. Metatheo-
rems of a common shape can be processed uniformly, which leads to better extensibility
of packages. Metatheory-based constructions are a relatively recent idea even in depen-
dent type theories that can engage in generic programming over type universes [3].
Application of these metatheories is usually not facilitated with automated isomorphic
transfer and is thus left to idealistic users.

The Isabelle package for (co)datatypes [26] based on bounded natural functors
(BNFs) lacks support for equational theories. But nonfree datatypes defined with our
package can be registered as a BNF and nested in later (co)datatype definitions.

Nonfree datatypes are natively supported by algebraic-specification provers such as
the Maude ITP [2]. One simply declares signatures and arbitrary sets of equations in
Maude, on top of which a basic mechanism for inductive reasoning is available. New
function symbols can be declared together with equations defining them, but there is no
compatibility check w.r.t. the other equations. This means a check of well-definedness
as for our nonfree recursor is lacking.

Moca [4] translates nonfree datatype specifications with an equational theory spec-
ified in a extension of OCaml, down to implementation datatypes with private datatype
constructors. These can only be used for pattern matching and inhabitants are instead
constructed with construction functions that normalize w.r.t. the equational theory. Effi-
cient construction functions are a core concern of Moca. A translation to Coq is planned.

The quotient/lifting/transfer packages of Isabelle [12, 14] overlap in functionality
with our tool for isomorphic transfer. The novelty here is its realization inside a general
infrastructure and the possibility of ad hoc higher-order transformations such as curry-
ing of functions on finite products. We support the transfer under setoid isomorphisms,
so quotient lifting is available with the canonical surjection into the quotient type as the
setoid isomorphism. Packages for quotient lifting/transfer can ease some parts of the
manual construction of nonfree datatypes, see section 3.

In the homotopy interpretation of type theory there is a recent trend [24] to inves-
tigate “higher inductive datatypes” that feature constructors introducing equalities. The
main motivation here is to represent constructions of homotopy theory by describing
their path space, but quotients similar to our package can also be introduced. The uni-
valence axiom implies [8] that isomorphic mathematical structures are identified, so
isomorphic transfer is available by substitution.

Acknowledgements. We thank Tobias Nipkow for making this collaboration possible,
Jasmin Blanchette and Armin Heller for commenting on a draft, Ondrej Kuncar for
answering questions about Isabelle’s new lifting/transfer package and the people on the
Coq-Club mailing list for pointing us to related work.

15

References
1. The Coq Proof Assistant, 2013. http://coq.inria.fr.
2. Maude ITP, 2013. http://maude.cs.uiuc.edu/tools/itp.
3. T. Altenkirch, C. McBride, and P. Morris. Generic programming with dependent types. In

SSDGP, pp. 209–257, 2006.
4. F. Blanqui, T. Hardin, and P. Weis. On the implementation of construction functions for

non-free concrete data types. In ESOP, pp. 95–109, 2007.
5. A. Bove and P. Dybjer. Dependent types at work. In LerNet ALFA Summer School,

pp. 57–99, 2008.
6. M. Clavel, F. J. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada.

The Maude system. In RTA, pp. 240–243, 1999.
7. CoFI task group on semantics, CASL — The Common Algebraic Specification Language,

Semantics. www.brics.dk/Projects/CoFI/Documents/CASL, 1999.
8. T. Coquand and N. A. Danielsson. Isomorphism is equality. Draft, 2013.
9. F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In TYPES, pp. 160–174,

2006.
10. J. Harrison. HOL Light: A tutorial introduction. In FMCAD, pp. 265–269, 1996.
11. P. V. Homeier. A design structure for higher order quotients. In TPHOLs, pp. 130–146,

2005.
12. B. Huffman and O. Kuncar. Lifting and transfer: A modular design for quotients in

Isabelle/HOL. In Isabelle Users Workshop, 2012.
13. B. Huffman and C. Urban. Proof pearl: A new foundation for Nominal Isabelle. In ITP ’10,

pp. 35–50, 2010.
14. C. Kaliszyk and C. Urban. Quotients revisited for Isabelle/HOL. In SAC, pp. 1639–1644,

2011.
15. F. Kammüller, M. Wenzel, and L. C. Paulson. Locales—a sectioning concept for Isabelle.

In TPHOLs, pp. 149–166, 1999.
16. G. Nadathur and D. Miller. An overview of Lambda-Prolog. In ICLP/SLP, pp. 810–827,

1988.
17. T. Nipkow and L. C. Paulson. Proof pearl: Defining functions over finite sets. In TPHOLs,

pp. 385–396, 2005.
18. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. Springer, 2002.
19. M. Norrish. Recursive function definition for types with binders. In TPHOLs, pp. 241–256,

2004.
20. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical framework for

deductive systems. In CADE, pp. 202–206, 1999.
21. A. Popescu and E. L. Gunter. Recursion principles for syntax with bindings and

substitution. In ICFP, pp. 346–358, 2011.
22. A. Schropp. Instantiating deeply embedded many-sorted theories into HOL types in

Isabelle. Master’s thesis, Technische Universität München, 2012.
http://home.in.tum.de/~schropp/master-thesis.pdf.

23. A. Schropp and A. Popescu. Nonfree datatypes: metatheory, implementation and examples.
http://sourceforge.net/projects/nonfree-data/files/bundle.zip/download.

24. M. Shulman, D. Licata, P. L. Lumsdaine, et al. Higher inductive types on the homotopy type
theory blog. http://homotopytypetheory.org/category/higher-inductive-types/.

25. V. Tannen and R. Subrahmanyam. Logical and computational aspects of programming with
sets/bags/lists. In ICALP, pp. 60–75, 1991.

26. D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, compositional (co)datatypes for
higher-order logic—Category theory applied to theorem proving. In LICS 2012,
pp. 596–605. 2012.

16

Appendix
This appendix gives more details, including more examples of nonfree datatypes de-

fined with our package and more details on our tool for isomorphic transfer. In case the
paper is accepted, all references to the appendix from the main paper will be replaced
with references to a technical report made available online.

A Rough edges of the package

The package currently has a couple of rough edges, which we plan to remove soon.
We only support iteration on nonfree datatypes, not “generalized recursion”, i.e. using
both the recursive result and the recursive argument. Generalized recursion is reducible
to iteration, but its direct support would be more convenient. Moreover, the parame-
ter conditions in Horn clauses are currently expected to be constants. This is a mere
convenience issue, since by defining auxiliary constants we can cover arbitrary terms.

B More Examples

B.1 Finite Sets

Finite sets are perhaps the most famous nonfree datatype. We revisit this well-studied
type to show how our package can be used to quickly prototype new iterators corre-
sponding to different algebraic views. Existing iterators are also easily definable by
nonfree recursion. In fact, we found nonfree recursion appropriate for defining pretty
much every basic operator we could think on and between finite sets and bags.

Finite sets can be specified as initial algebra in a variety of ways. Thus, the following
defines finite sets by further constraining bags to left-idempotence: 4

datatype α fset = Emp | Ins α (α fset)
where Ins1: Ins a (Ins b A) = Ins b (Ins a A)
and Ins2: Ins a (Ins a A) = Ins a A

This representation facilitates the definition of back and forth operators between finite
sets and bags. Thus, since finite sets are more constrained than bags, the following
flattening operator goes through immediately:

nonfreerec flat : α bag→ α fset where

flat BEmp = Emp

flat (BIns b B) = Ins b (flat B)

Backwards, the following embeds sets into bags by considering multiplicity 1 for each
element:

nonfreerec emb : α fset→ α bag where

flat Emp = BEmp

flat (Ins a A) = if mult a (emb A) = 0 then BIns a (emb A) else emb A

4 Ins1 and Ins2 are names optionally given to the constraints.

17

If we further consider membership in, and cardinality of, a finite set, mem : α→
α fset→ bool and card : α fset→ nat (also definable by nonfree recursion), then, by
bag- and set- induction and simplification, we can prove several basic facts on the op-
erations on bags and sets and their connections, such as:

– mem a A←→ Ins a A = A
– mem a ([A)←→mult a A 6= 0
– mult a (emb A) 6= 0←→mem a A

With a little care, performing recursive definitions and proofs on nonfree structure
can become similar to working with totally free structures: nonfree recursion merely
requires an extra invocation of the Isabelle simplifier.

Next we look at alternative description of finite sets. The alternative insert- and
union- views we discuss below similarly apply to lists and bags [25]. The following
defines α-finite-sets as the semilattice freely generated by α:

datatype α fset′ = Emp′ | Singl α | Un (α fset′) (α fset′)
where Asc: Un (Un A1 A2) A3 = Un A1 (Un A2 A3)

and Cmt: Un A1 A2 = Un A2 A1
and Idm: Un A A = A
and Idt: Un Emp A = A

If we are after nonempty finite sets only, we can remove one constructor and one equa-
tion from above, obtaining a purely ACI characterization:

datatype α nfset = Singl α | Unn (α nfset) (α nfset)
where Asc: Unn (Unn A1 A2) A3 = Unn A1 (Unn A2 A3)

and Cmt: Unn A1 A2 = Unn A2 A1
and Idm: Unn A A = A

The above views yield iterators corresponding to a purely algebraic approach. On
the other hand, fold functionals in proof assistants try to minimize the conditions to
be verified, e.g., by removing the idempotence and unit properties. Isabelle’s library
iterator [17] should ideally be defined as follows, in the context of fixed type β and
associative-commutative function f : β→ β→ β:

nonfreerec ifold : (α→ β)→ β→ α fset→ β where

ifold f g z Emp = z

ifold f g z (Ins a A) = if mem a A then ifold f g z A else f (g a) (ifold f g z A)

However, our package does not yet support generalized recursion (i.e. allowing the
recursive clause to contain not only references to the recursive result ifold f g z A, but to
the argument itself too, as in mem a A), so we have to take a slight detour, first defining

nonfreerec ifold′ : (α→ β)→ β→ α fset→ α fset×β where

ifold′ g z Emp = (Emp, z)

ifold′ g z (Ins a A) = case ifold′ g z A of (A′, b)⇒
if mem a A then (A′, b) else (A′, f (g a) b)

18

and then defining ifold f g z = snd ◦ ifold′ f g z. (This is the standard way to encode
generalized recursion as primitive recursion.) The same trick can also define the HOL4
and PVS iterators, which assume a fixed left-commutative f : α→ β→ β:

nonfreerec hfold : β→ α fset→ β where

hfold z Emp = z

hfold (Ins a A) = if mem a A then hfold z A else f a (hfold z A)

In the HOL4 standard library, hfold operates on the larger type α set; Homeier [11]
also defines a custom finite-set type and defines hfold on it using his quotient pack-
age. In PVS, hfold operates on a custom subtype of α set. Isabelle also has an iterator
customized to nonempty finite sets, definable by nonfree recursion (see below).

The benefit of all these representations is that each offers a different view, hence a
different recursion principle for (nonempty) finite sets. Tannen and Subrahmanyam [25]
argue with examples that each view has its own advantage, and also relates some of
these views uniformly for sets, bags and lists in a categorical framework. In order to
really take advantage of these offers, we of course need to pick one single type where
we transfer all these principles. It turns out that proving embedding or isomorphisms
between these types is relatively easy: all are defined using nonfree recursion. For in-
stance,

nonfreerec K : α fset→ α fset′ where

K Emp = Emp′

K (Ins a A) = Un (Singl a) (K A)

establishing a bijection between the two types, as can be relatively easily checked (after
proving a few lemmas). Since finite sets are developed in Isabelle using the predicate
finite on the type α set of arbitrary sets, we actually prefer to transport all the recursion
principles there, by embedding the algebraic types. After the isomorphic transfer to
α set, we enable a variety of iterators restricted to finite sets, each having its on own
contract.

Another view to nonempty finite sets we considered is the following singleton-insert
view:

datatype α nfset′ = Singl α | Ins α (α nfset′)
where Ins1: Ins a (Ins b A) = Ins b (Ins a A)

and Ins2: Ins a (Ins a A) = Ins a A

In this view, we can define Nipkow and Paulson’s recursor for finite sets [17], where an
associative-commutative operator f : α→ α→ α is fixed:

nonfreerec nfold : α fset→ α where

nfold (Singl a) = a

nfold (Ins a A) = if mem a A then nfold A else f a (nfold A)

19

Here is an example of an embedding into the bigger type α fset. For instance, the
following embeds α fset′ into α set:

nonfreerec J : α fset′→ α set where

J Emp′ = /0
J (Singl a) = {a}

J (Un A1 A2) = J A1 ∪ J A2

That J is an injection and that its image consists of precisely the finite sets follow
routinely by fset′-induction and finite-induction, respectively.

The algebraic specifications of finite (nonempty) sets yield the following collection
of iterators:

– fold_fset : β→ (α→ β→ β)→ β→ α set,
– fold_fset′ : β→ (α→ β)→ (β→ β→ β)→ β→ α set,
– fold_nfset : β→ (β→ β→ β)→ β→ α set,
– fold_nfset′ : (α→ β)→ (α→ β→ β)→ β→ α set,

each with its own contract:

– If fset_alg E I, then:
• fold_fset E I Emp = E
• ∀a A. finite A −→ fold_fset E I ({a} ∪ A) = I a (fold_fset E I A)

– If fset_alg′ E S U, then:
• fold_fset′ E S U Emp = E
• ∀a. fold_fset′ E S U {a}= S a
• ∀A1 A2. finite A1 ∧ finite A2 −→

fold_fset′ E S U (A1∪ A2) = U (fold_fset′ E S U A1) (fold_fset′ E S U A2)

– If nfset_alg S U, then:
• ∀a. fold_nfset S U {a}= S a
• ∀A1 A2. finite A1 ∧ finite A2 ∧ /0 6∈ {A1, A2} −→

fold_nfset S U (A1∪ A2) = U (fold_nfset S U A1) (fold_nfset S U A2)

– If fset_alg S I, then:
• fold_fset S I Emp = E
• ∀a A. finite A ∧ A 6= /0 −→ fold_fset S I ({a} ∪ A) = I a (fold_fset S I A)

where fset_alg, fset_alg′ and nfset_alg are the predicates corresponding to the various
algebraic-datatype specifications (analogous to bag_alg):

– fset_alg E I—I is left-commutative and left-idempotent with unit E;
– fset_alg′ E S U—U is ACI with unit E;
– nfset_alg S U—U is ACI;
– nfset_alg′ S I—I is left-commutative and left-idempotent.

20

B.2 Sum of Two Algebraic Structures

A construction similar to the one for polynomials in §2.2 yields the sum of two rings,
or any other algebraic structures, such as semigroups:

datatype (α : semigroup, β : semigroup) sum = Left α | Right β |
Times ((α, β) sum) ((α, β) sum)

where a1 ∗a2 = a −→ Times (Left a1) (Left a2) = Left a
and a1 ∗a2 = a −→ Times (Right a1) (Right a2) = Right a
and Times (Times x y) z = Times x (Times y z)

In general, for a class of algebras A and B specified equationally (such as groups,
rings, etc.), their sum is built by taking the free algebra of terms over the set-theoretic
sum of their carriers A+B, factored to the following equations:

– identification of the new operation with the already existing ones on the A and B
fragments (e.g., the first two clauses above);

– the equations characterizing the class of algebras (e.g., the third equation above).

B.3 Higher Order Abstract Syntax

In the context of §2.3, we define the higher-order abstract syntax (HOAS interpretation
of λ-terms into λ-terms over constants augmented with constants for application and
abstraction:

datatype β const = Old β | app | lam
The definition includes a statement of substitution and freshness compositionality:

nonfreerec hoas : (α, β) lterm→ (α, β const) lterm where

hoas (Ct c) = Ct (Old c)

hoas (Var y) = Var y

hoas (App s t) = App (App app (hoas s)) (hoas t)

hoas (Lam x s) = Lam x (hoas s)

hoas (s [t/y]) = (hoas s) [(hoas t) / y])

fresh y s −→ fresh y (hoas s)

B.4 Regular Expressions

The following defines regular expressions over an alphabet α up to the Kleene algebra
equations, known to form a complete axiomatization of equality up to the generated
language.

datatype α reg = Let α | Zero | One |
Plus (α fset′) (α fset′) | Times (α fset′) (α fset′)

where (e1 + e2)+ e3 = e1 +(e2 + e3) and e1 + e2 = e2 + e3
and 0+ e = e and e+ e = e and (e1 · e2) · e3 = e1 · (e2 · e3)
and 1 · e = e and e ·1 = e and 0 · e = 0
and e1 · (e2 + e3) = (e1 · e2)+(e1 · e3)
and (1+(e∗ · e))+ e∗ = e∗ and (1+(e · e∗))+ e∗ = e∗

and (e · e1)+ e1 = e1 −→ (e∗ · e1)+ e1 = e1
and (e1 · e)+ e1 = e1 −→ (e1 · e∗)+ e1 = e1

21

where we wrote infix + and × for Plus and Times and ·, postfix ∗ for Star, and 0 and 1
for Zero and One.5 The last two equations are conditional; they express the minimality
of e∗ among the prefix points of λx. x · e and λx. e · x w.r.t. the order a ≤ b defined as
a+b = b.

The generated-language operator can then be defined by nonfree recursion using the
same clauses as for standard recursion:

nonfreerec lang : α reg→ (α list) set where

lang (Let a) = {[a]}
lang (e1 · e2) = {w1@w2 | w1 ∈ lang e1 ∧ lang e2}

lang e∗ = Kl (lang e)

*** etc ***

Where Kl is the Kleene-star operator on languages. So can be the standard interpretation
in the algebra of relations over a type β, parameterized by an interpretation of the letters:

nonfreerec rint : (α→ (β×β) set)→ α reg→ (β×β) set) where

rint f (Let a) = f a

rint f (e1 · e2) = rint f e1 ◦ rint f e2

rint f e∗ = Tr (rint f e)

*** etc ***

where Tr is the reflexive-transitive closure on relations. In both cases, the emerging
goals are proved using library facts about lists, sets and relations.

C Algorithmic Rule Systems

The various transformations on terms that are necessary to animate the metatheory are
realized as algorithmic rule systems. These are collections of rules about moded judg-
ments, which are defined predicates in Isabelle/HOL. The definition of such a judgment
constitutes its semantic meaning, while the rules are theorems that constitute the algo-
rithm we use to synthesize the outputs and establish the judgment.

The animation strategy for algorithmic rule systems can be regarded as a deter-
ministic variant of Lambda-Prolog [16], with a local backtracking primitive, support
for non-pattern matching and some Isabelle-specific enhancements. At the moment we
provide no mechanisms for checking totality of these algorithms, which justify meta
arguments about such rule systems in Twelf [20]. Such a justification is not pressing
in our case because we only animate the rules on ground terms, but additional checks
would be beneficial of course.

The main benefit over tactics is the ease of development because higher-order term
manipulation is direct, the soundness of the composition of facts is separated from the

5 Here and elsewhere: We use infix notations for the readability of this paper—currently the
package does not provide support for it.

22

dynamic invocation and is proved only once, treatment of contexts is implicit, modi-
fications of the various judgments just consists in emitting clauses (esp. local ones as
premises of subgoals) instead of tinkering with ML data structures.

Forward Rules Integrated with the infrastructure for algorithmic rule systems is a novel
algorithmic principle for context enrichment, which we call “forward rules”. They drive
the animation of the metatheory that we describe below.

For reasons of space we only give a conceptual motivation. We want to declaratively
specify the generation of theory content, i.e. definitions of type constructors, terms and
theorems. Forward rules are small theory extension steps represented as implicational
theorems about moded judgments. Algorithmically speaking, they wait for input facts,
process them with algorithmic rule systems, issue foundational theory extension mech-
anisms as side effects, and make output facts available.

C.1 Simplified Isomorphic Transfer

Isomorphic Transfer refers to an algorithmic rule system that synthesizes isomorphisms
away from an input setoid and transforms input terms to their image under the isomor-
phism away from the input setoid. We do not show this rule system in full generality
here, but rather focus on a simplified version on types instead of setoids. For more
details we refer to the first author’s master thesis [22].

We need the notion of lifting bijections f : α→ α′, g : β→ β′ to the function space:

f � g := (λh : α→ β. g◦h◦ f−1) : (α→ β)→ (α′→ β′)

We can then specify how to form isomorphisms away from an input type. This is real-
ized by the following rules for the judgment α'. α′ via f := bijection f : α→ α′ with
input α.

α'. α′ via f β'. β′ via g
(α→ β)'. (α′→ β′) via f � g bool'. bool via id

We use the identity on booleans because we want to map true propositions to true propo-
sitions. Rules for other type constructors are formulated similarly.

An isomorphism away from an input type has to map term constructions that in-
habit the type to corresponding concepts in the target type. The term transformation is
represented by the judgment t : α 7→ t′ : α′ via f := bijection f : α→ α′ ∧ f t = t′

with input t. We now give rules for transforming selected term constructions.

t1 : (α→ β) 7→ t′1 : (α′→ β′) via f � g t2 : α 7→ t′2 : α′ via f
(t1 t2) : β 7→ (t′1 t′2) : β′ via g

α'. α′ via f ∀x, x′. x : α 7→ x′ : α′ via f → (t x) : β 7→ (t′ x′) : β′ via g
(λx : α. t x) : (α→ β) 7→ (λx′ : α′. t′ x′) : (α′→ β′) via f � g

α'. α′ via f
(∀) : ((α→ bool)→ bool) 7→ (∀) : ((α′→ bool)→ bool) via (f � id)� id

23

The rules for the other logical constants are similar.
The algorithmic meaning of the abstraction rule is the following: to transform an

abstraction (λx :α. t x), we synthesize the isomorphism f away from the domain α, to α′

(synthesized), with a subcall to the judgment α'. α′ via f . We then transform the body
of the abstraction. We fix fresh variables x, x′, register the local rule x : α 7→ x′ : α′ via f
stating that x maps to x′ under the isomorphism f and start the recursive transformation
of the body t x. This recursive call results in output types and terms that we match
against β, β′, t′ x′ (t′ is the unknown, x′ is fixed) and g. Matching against t′ x′ works by
higher-order pattern matching. Finally we construct the outputs (λx′ : α′. t′ x′), α′→ β′,
f � g of the judgment and compose the transformation rule with the theorems stating
instances of its premises, to derive its conclusion.

To invoke the isomorphic transfer under a user-specified isomorphism, we register
additional rules that describe the construction of isomorphisms away from the addi-
tional type constructions and provide rules that realize the transfer of the elementary
terms in these types.

Because of the tendency to employ under-specifications in HOL, we actually imple-
mented the transfer between setoids, not just types. Noteworthy is also the algorithmic
isomorphism that realizes currying on finite products, which is ad hoc higher-order
term transformation that overrides the default behaviour of the application rule and is
prominently used when animating the metatheory.

D More Details on The Instantiation of the Metatheory

We give a high-level overview of the steps necessary to animate the metatheory :

– We introduce finite datatypes to instantiate the sorts, parameter sorts, operation and
relation symbols of the signature.

– We construct functions on these finite datatypes, representing the sorting of opera-
tions and relations

– We check inhabitedness of the sorts by forward chaining of sort inhabitedness im-
plications resulting from the sorting of operations.

– We embed the parameter types into their finite sum type, the parameter universe,
and register bijections out of these subsets back to the parameter types. We use the
inverse of this isomorphism to transfer the parameter conditions, as given by the
user, to relations over the parameter universe.

– We typecheck the Horn formulas and reflect them into the representation used by
the metatheory. Parameter conditions become the corresponding relations over the
parameter universe. We establish the well-sortedness of these Horn formulas.

– We instantiate the locale which contains the metatheory and discharge its assump-
tions with the facts established with the steps above.

– For each sort, we emit a typedef with the quotient terms of this sort as the represent-
ing set. These newly defined types are the mutually recursive datatypes we present
to the user. We register bijections from the representing sets to them.

– We transform the term interpretation of the operation and relation symbols under
this isomorphism. We define the constructors and relations on the datatypes by
emitting definitions with these transformation results.

24

– We transfer and post-process the meta-theorems to propositions about the mutually
recursive datatypes.

The last step, i.e. the animation of the meta-theorems, employs mainly the following
transformation steps:

– Quantifications over sorts, parameters sorts, operation and relation symbols are un-
rolled to become conjunctions, which is just a rewriting step.

– Quantification over a variable interpretation becomes quantifications over single
variable values. We achieve this by updating the variable interpretation on all oc-
curring variables to use universally quantified values and evaluating the definition
of satisfiability. This gets rid of the variable interpretation in favor of the universally
quantified values.

– Quantification over a sort-dependent predicate becomes quantifications over predi-
cates, one for each sort. We achieve this by rewriting bounded quantifications over
sort-dependent predicates.

– Quantification over tuples in finite products becomes quantifications over elements,
with the tuple variables replaced by tuples containing the element variables.

– We transfer under the isomorphism from the term model and the parameter universe
to the types presented to the user.

– We apply standard rewrite rules to achieve palatable propositions adhering to Is-
abelle’s rule format.

We will show the transformation of the induction meta-theorem of the λ-terms
example. We include currying here, which was omitted in section 5.2. The recursive
function product : α set list→ α list set, product Nil := {[]}, product (Cons A As) :=
{Cons x xs | x ∈ A, xs ∈ product As} is necessary here to state bounded quantifica-
tions. To ease the presentation we write types instead of UNIV sets over them. Due to
reasons of space we will omit uninteresting parts of the proposition, writing . . . instead.
We start from a minor reformulation of the meta-theorem:

∀s. ∀ϕ ∈ (Π s2. (htrms s2→ bool)). ∀H ∈ htrms s.

(∀σ. ∀pl ∈ product (map params (arOfP σ)). ∀Hl ∈ product (map htrms (arOf σ)).

list_all2 ϕ (arOf σ) Hl→ ϕ (stOf σ) (Hop σ pl Hl))

→ ϕ s H.

First we unroll the sort quantifications. In our case there is only one sort, lt. We unfold
the quantification over operation symbols σ, omitting parts of the proposition corre-
sponding to σ = ct, σ = subst. We unfold the definition of arOfP, arOf, stOf and the

25

rewrite with the computational rules for map.

∀ϕ ∈ (Π s2. (htrms s2→ bool)). ∀H ∈ htrms lt.

(∀pl ∈ product [params a]. ∀Hl ∈ product [].

list_all2 ϕ [] Hl→ ϕ lt (Hop var pl Hl))

∧ (∀pl ∈ product []. ∀Hl ∈ product [htrms lt, htrms lt].

list_all2 ϕ [lt, lt] Hl→ ϕ lt (Hop app pl Hl))

∧ (∀pl ∈ product [params a]. ∀Hl ∈ product [htrms lt].

list_all2 ϕ [lt] Hl→ ϕ lt (Hop lam pl Hl))

∧ . . . → ϕ lt H.

Now we unroll the quantifications over finite products pl, Hl and sort-dependent predi-
cates ϕ and simplify further with the computational rule for list_all2.

∀ϕ0 ∈ (htrms lt→ bool). ∀H ∈ htrms lt.

(∀p1 ∈ params a. ϕ0 (Hop var [p1] []))

∧ (∀H1 ∈ htrms lt. ∀H2 ∈ htrms lt. ϕ0 H1∧ϕ0 H2→ ϕ0 (Hop app [] [H1, H2]))

∧ (∀p1 ∈ params a. ∀H1 ∈ htrms lt. ϕ0 H1→ ϕ0 (Hop lam [p1] [H1]))

∧ . . . → ϕ0 H.

Now we transfer under the isomorphisms from the quotient term model to the newly-
defined datatype and from the parameter universe to the parameter type: htrms lt→
α lterm, params a→ α. This results in:

∀ϕ0 ∈ (α lterm→ bool). ∀H ∈ α lterm.

(∀p1 ∈ α. ϕ0 (Var p1))

∧ (∀H1 ∈ α lterm. ∀H2 ∈ α lterm. ϕ0 H1∧ϕ0 H2→ ϕ0 (App H1 H2))

∧ (∀p1 ∈ α. ∀H1 ∈ α lterm. ϕ0 H1→ ϕ0 (Lam p1 H1))

∧ . . . → ϕ0 H.

We go on to apply further standard simplification rules to make this result adhere to
Isabelle’s rule format.

D.1 Animating the Iteration Principle
The animation of the iteration principle needs to construct the target interpretation of
sorts, operation and relation symbols first. This is analogous to the construction of the
parameter sort and parameter condition interpretations, so we omit a discussion. Satis-
faction of the Horn clauses in this interpretation is shown by processing the satisfaction
of each Horn clause under this interpretation with our transformation steps and com-
paring the result with the user-proven facts.

The generic iterator applied to each sort is transformed under the isomorphism into
a family of iterators, one for each of the mutually recursive datatypes. The iteration prin-
ciple and the preservation of relational consequences under iteration is also transformed
with our steps above.

26

