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On the utility of dreaming: A general
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hallucination
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Abstract
We consider the benefits of dream mechanisms – that is, the ability to simulate new experiences based on past ones – in
a machine learning context. Specifically, we are interested in learning for artificial agents that act in the world, and opera-
tionalize ‘‘dreaming’’ as a mechanism by which such an agent can use its own model of the learning environment to gen-
erate new hypotheses and training data.

We first show that it is not necessarily a given that such a data-hallucination process is useful, since it can easily lead
to a training set dominated by spurious imagined data until an ill-defined convergence point is reached. We then analyse
a notably successful implementation of a machine learning-based dreaming mechanism by Ha and Schmidhuber (Ha, D.,
& Schmidhuber, J. (2018). World models. arXiv e-prints, arXiv:1803.10122). On that basis, we then develop a general
framework by which an agent can generate simulated data to learn from in a manner that is beneficial to the agent. This,
we argue, then forms a general method for an operationalized dream-like mechanism.

We finish by demonstrating the general conditions under which such mechanisms can be useful in machine learning,
wherein the implicit simulator inference and extrapolation involved in dreaming act without reinforcing inference error
even when inference is incomplete.
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1. Introduction

Although dreaming is an everyday aspect of human
existence, its precise function, if any, remains uncertain.
While some consider it an epiphenomenon with no
proper functionality, others see dreaming as having
adaptive benefits (see, for example, Zink & Pietrowsky,
2015, for 11 different structural and biological theories
of dreaming, which vary greatly in the function they
ascribe to dreams).

In particular, it is noteworthy that the phenomeno-
logical aspect of dreams – that is, the consciously per-
ceived experience associated with them – is not always
central to (or even necessarily considered in) theories
regarding their function. For example, a popular idea
holds that the primary role is in memory processing
(Crick & Mitchinson, 1983, 1995; Hobson, 1994), while

others see them as a way to deal with emotional con-
cerns (Hartmann, 1998). Even theories that consider
dreams to be a series of events (influenced by the drea-
mer’s past) within a model of the world in which the
dreamer actively participates (Foulkes, 1985) do not
necessarily give a role to the phenomenological aspects.
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As pointed out by Revonsuo (2000), there is no func-
tion to the narrative beyond ‘‘producing novel and
unique mnemonic configurations’’ in such accounts.

By contrast, phenomenological aspects play a cen-
tral role in theories that consider dreams to by a simu-
lator of different aspects of life, such as the ‘‘immersive
spatiotemporal hallucination model of dreaming’’
(Windt, 2010), the ‘‘social simulation theory’’
(Brereton, 2000; Revonsuo, Tuominen, & Valli, 2015)
or the ‘‘threat simulation theory’’ (Revonsuo, 2000;
Valli & Revonsuo, 2009). Here, the fundamental tenet
is that dreams are not merely replays of previous
experiences; instead, dreams contain aspects different
from waking life, are less constrained than other
thought processes and lack self-reflection and orienta-
tional stability (Hobson, Pace-Schott, & Stickgold,
2000).

In general terms, such simulation theories of dream-
ing propose that dreaming serves as a preparation for
future waking interactions – dreams can be understood
as the ability to simulate new experiences based on past
ones. Such a characterization is also consistent with a
predictive coding perspective of cognition: an ‘‘REM
dream constitutes a form of prospective image-based
code which identifies an associative pattern in past
events and, therefore, portrays associations between
past experiences (rather than the experiences as such)’’
(Llewellyn, 2016, emphasis in text).

The emphasis here is thus on the sensorimotor
oriented nature of dreaming (Svensson, Thill, &
Ziemke, 2013). For example, it has been suggested that
dreams allow one to rehearse the motor actions neces-
sary for the approach or avoidance behaviours appro-
priate to the identified patterns in events, and that it is
such processing that enables the integration between
expectation, perception and action thought to charac-
terize predictive coding while awake (Llewellyn, 2016).

It follows that dream-like simulation mechanisms
might also find applications in machine learning, for
example for artificial agents that need to learn about
both their environment and the consequences of their
actions. In general, this remains a relatively unexplored
area of research, although dreaming-inspired
approaches have previously been used in robotics work
(Svensson et al., 2013; Windridge & Kittler, 2008,
2010), and Bojarski et al. (2017), for example, trained a
deep network to steer a car by complementing the
training data with simulated image-steering pairs.
Similarly, data simulation has previously come to the
fore among researchers as a means of accommodating
the training requirements of deep learning (Bayraktar,
Yigit, & Boyraz, 2018; Gaidon, Wang, Cabon, & Vig,
2016; Hinterstoisser, Lepetit, Wohlhart, & Konolige,
2017). In particular, domain randomization (Borrego
et al., 2018; Tremblay et al., 2018) has arisen as a data-
simulation form of particular recent focus, in which

random, non-realistic perturbations are applied to
existing data (e.g. via random texture addition) in order
to enhance generalisation capability. More recently, Ha
and Schmidhuber (2018) and Piergiovanni, Wu, and
Ryoo (2018), for example, proposed dream-inspired
mechanisms for machine learning.

In this paper, we are concerned with the conditions
under which such dream-like mechanisms, that is, the
generation of additional training data from past experi-
ence, can be of use in a machine learning context. At
first glance, it is not obvious that such a utility even
exists. If we follow the simulation theories sketched out
above, then dreaming may be defined as utilizing a
learning agent’s own model of the learning environment
in order to generate additional data points, which are
then used to further improve the learning model (see
also Thill & Svensson, 2011, for a related discussion).
This is therefore different from learning by simulation
in the more traditional machine learning way (in which
the simulation provides the model of the learning envi-
ronment – but that model is not itself subject to a learn-
ing process). Rather, one might consider dreaming as
the very specific subset of learning by simulation within
which the simulation environment is also learned from
real world interaction.1

However, in terms of classical machine learning,
such an implementation, that is, simultaneously learning
the world model and its simulation to generate training
data, looks seriously conceptually flawed. For instance,
if we have a hyperplane-based binary learning model
(such as a support vector machine (SVM) or percep-
tron) trained initially upon the training set of label/
vector pairs (where X n is any vector space, or Hilbert
space for pattern recognition)

T = f(x1, l1), (x2, l2), (x3, l3), . . .g
li 2 f+1, � 1g, xi 2 X n

ð1Þ

such that the perceptron/SVM learns the hyperplane
characterized by weight vector and bias (~v, b), then we
might, on this basis, generate a new set of label pairs
consistent with this learning hypothesis of the form
(b:~v,+1) and (� b:~v, � 1).

However, this does not appear to get us very far; the
total training set is thus now T [ (b:~v,+1)[
(� b:~v, � 1). If we were to learn a new hyperplane
(~v0, b0) on the basis of this data and generate new data
points, our data set would now be

T [ (b:~v,+1) [ (� b:~v, � 1)

[ (b0:~v0,+1) [ (� b0:~v0, � 1)
ð2Þ

Iterating this process leads to a training set that is
dominated by the generated data, which is in effect
nothing more than a diary of hypotheses that have been
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rejected and updated until a (spurious) point of conver-
gence is achieved

Tfinal ’ (b:~v,+1) [ (� b:~v, � 1)

[ (b0:~v0,+1) [ (� b0:~v0, � 1)

[ (b00:~v00,+1) [ (� b00:~v00, � 1)

[ (b000:~v000,+1) [ (� b000:~v000, � 1) . . .

ð3Þ

It is therefore not trivially true that something can
be gained from dream-like data generation within in a
standard supervised learning setting. Nonetheless, Ha
and Schmidhuber (2018), for example, have recently
demonstrated dreaming within a reinforcement learn-
ing context, in which an artificial agent learns to play a
computer game utilizing (in addition to the standard
mechanisms of reinforcement learning) an offline
dreaming mechanism within which the agent plays its
own internal representation of the game and thereby
refines its own world model, thereby improving learn-
ing rates in relation to the non-dreaming variant of the
process. In contrast to biological dreaming, however,
their model effectively introduces a firewall between
learning the world representation and learning the
appropriate strategy to act in the world.

Here, we build on this work and the previously dis-
cussed biological insights to develop a general model of
dreaming for artificial agents. The approach that we
adopt will be mechanism agnostic, consistent with a
‘‘cognitive systems’’ approach. We do not assume spe-
cialist knowledge of machine learning, but base our dis-
cussions on the model by Ha and Schmidhuber (2018)
for illustrative purposes.

Before evolving this argument in full, though, we
note as an important aside that generative methods
have achieved a good deal of attention recently in a
game-theoretic/deep-learning context through the suc-
cesses of Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014; Radford, Metz, & Chintala,
2015). Within this paradigm, a generator G and a dis-
criminator D play an adversarial two-player minimax
game such that G aims to warp a randomly sampled
uniform latent space so as to mimic the data distribu-
tion within the input domain in a manner capable of
deceiving the decision classifier D (which is itself trained
on samples labelled respectively as generated/ground
truth). The system thus aims to convergently arrive at a
point at which the generator maximally replicates the
input domain (according to a composite generative/
discriminative loss function) with respect to the latent
parameter space. Such networks exhibit a notable
capacity to generate images and text-sequences, where
recurrent and convolutional network architectures can
be exploited, perhaps in conjunction with class-specific
conditioning (Mirza & Osindero, 2014).

The generative aspect of GANs clearly has some
connections to dreaming in the sense that randomly

instantiated parameters are translated into an input
space and then used for further training of the system
(in fact, Schmidhuber’s early work was a key inspira-
tion in GAN development). However, there are signifi-
cant differences; the key aim of a GAN is to
parameterize the input domain in order to replicate the
source (or, in the case of bidirectional GANs, to com-
pactly feature-encode the input domain), rather than to
optimize an agent’s actions with respect to goals within
a replicated environment.

A particular GAN variant does exist, however, that
can be used in conjunction with environment goal set-
ting, namely, generative adversarial imitation learning
(Ho & Ermon, 2016). Here, expert trajectories (i.e.
state/action sequences) that are to be replicated by the
learning agent are provided in advance, such that the
agent seeks to parameterize an optimal policy model
that replicates the expert. In particular, for expert tra-
jectories tE;pE and sampled trajectories ti;pui

derived from the inferred policy model parameterized
by u at iteration i, the discriminator D’s parameters w

are updated along a gradient: Et½rwlog(Dw(s, a))�+
EtE½rwlog(1� Dw(s, a))�, which is the characteristic
update policy of a GAN; the generative policy model
update is similarly GAN-like.

However, despite these superficial similarities, it is
apparent that the states s referred to in the above forma-
lization of generative adversarial imitation learning are
to be considered representative a priori and are not, in
themselves, subject to potential dream-based modifica-
tion, unlike the state spaces we shall henceforth consider.
The s-equivalents (i.e. the atomic units of ‘‘representa-
tion’’) in the following should thus be understood as
themselves the subject of learning. We thus conceptually
differentiate dreaming from simulation learning, reinfor-
cement learning and imitation learning.

In principle, though, GAN-based approaches could
be fruitfully combined with representation learning of
the type to be outlined in order to parameterize a per-
ceptual model; however, as it does not have a bearing
on the central argument of the paper, we do not con-
sider it here. In the remainder of the paper, we will thus
firstly give an overview of the successful approach by
Ha and Schmidhuber (2018) before deriving a more
general model of dream-like mechanisms. We then
demonstrate under which conditions such mechanisms
can generally be useful in assisting a learning process
and follow this with an experimental validation of the
main finding.

2. High-level summary of Ha and
Schmidhuber’s (2018) approach to
dreaming

We first give a high-level ‘‘bird’s eye’’ view of the under-
lying conception behind Ha and Schmidhuber’s (2018)
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dreaming model in order to be able to abstractly char-
acterize this approach prior to proposing our own gen-
eral model of dreaming. Note that we will use our own
notation in order to later discuss generalizations of this
approach.

2.1. Learning

Assume some underlying a priori input world represen-
tation I = fi1, i2, i3 . . .g, for instance a set of images
described as a lattice of red, green, blue (RGB) inten-
sity values. Complementary to this is an action
‘‘space’’A= fa1, a2, . . .g representing a possible set of
actions that can be applied in order to bring about
transition between images, that is, an : ix ! iy (we shall
ignore any transitional stochasticity at this level; how-
ever, see below). We can equivalently represent this via
characteristic functions as a(X , Y )! f0, 1g, with the
map to 1 occurring when the action transition is achiev-
able; both representations of the action mapping will
be useful in the foregoing. Note that this is typically
defined by an onto relationship jan(I)j � jI j3 jI j– that
is, we can apply the entire action set to any given image
ix, but cannot necessarily transition to any arbitrary
image iy.

Within this context, and the specific domain context
of a computer game, Ha and Schmidhuber (2018) set
out firstly to learn a compact representation of I by
using an autoencoder (i.e. so as to hopefully obtain an
optimally compact symbolic representation of the
underlying configuration space of I at the apex of the
autoencoder hierarchy). Call this compact representa-
tion Z; Z is thus mapped to I via the learned autoenco-
der function M– that is, M : I ! Z.

There is implicitly also now an induced mapping in
the action space an : M(ix)! M(iy) (or equivalently
an : Zx ! Zy ), since it is implicitly assumed (but not
guaranteed) that the visual mapping retains essentially
the same level of determinism of the action set – that is,
it is assumed that the learned autoencoding mapping in
the visual domain does not cause excessive degeneracy
of possible action transitions (and therefore introdu-
cing an additional mapping-based stochasticity) that
would render the game unplayable; in other words, it is
assumed that the optimal action–response strategy
within the input domain also translates into the symbolic
state space invoked by M . In practice, this is achieved
by hand-selecting the encoding bottleneck width so as
to retain the essence of the image domain in terms of
the actions required to play the game in question.

In the normal (i.e. non-dreamed) mode of learning,
Ha and Schmidhuber (2018) learn a predictive mapping
between actions and hidden states of the autoencoder –
that is, given M : I ! fzg (z 2 Z i.e. a hidden state of I)
they attempt to learn

P=P(zt+1jat; zt; ht)

where ht, t 2 f1, 2, 3 . . .g are the sequential hidden
states of a learned Recurrent Neural Network (RNN)
that attempts to efficiently represent transition
sequences between action state and compact visual
state pairings

(a1, z1), (a2, z2), (a3, z3), . . .

Thus, P in effect learns the probabilities of (a, z)
sequences

P’ P(zt+1j(at, zt, at�1, zt�1, at�2, zt�2, at�3, zt�3, . . . at�w, zt�w))

over some temporal window width w.
For our purposes, we can disregard the parameter w

and model this approach as attempting to predict
M(it+1) given some iinitial and the percept–action pair
sequence

S
(a, i)
t = ( at,M(it)), ( at�1,M(it�1)), . . .ð Þ

so as to arrive at the modelled probability function

P’ P M(it+1)jS(a, i)
t

� �
(The RNN component of this process is thus per-

forming the mapping R : S
(a, i)
t ! ht+1, such that h can

be considered a compact parametrization of S(a, i).)
Ha and Schmidhuber (2018) then learn a simple

‘‘Controller’’ model C for determining courses of action
to take in order to maximize the expected cumulative
reward (e.g. game score) such that the majority of the
learning complexity is associated with the world model
(i.e. in M and P, not C).

C thus maps zt and ht directly to a preferred action
at each time step

C : (zt, ht)! at

which is equivalent to

C : M(it),R S
(a, i)
t

� �� �
! at

Of course, actually carrying out this action will trig-
ger a transition in the agent’s world as represented
within the input domain it ! it+1 (which will be pre-
dicted with a certain accuracy by P).

2.2. Instantiation of dreams

Thus far, the process outlined is essentially reinforce-
ment learning with an additional autoencoding phase
on the input. However, because Ha and Schmidhuber
(2018) have learned a predictive model for zt+1, there
arises the possibility of dreaming in P, in which the
agent learning process can be entirely decoupled from
the environment.
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Thus, instead of feeding actions back to the environ-
ment, it is proposed that learning of C (but not M or
P) can still take place if we use the generative iteration
sequence

C : argmax
zt

P ztjS(a, z)
t�1

� �
,R S

(a, z)
t�1

� �� �

! at & S
(a, z)
t  S

(a, z)
t�1 [ at, argmax

zt

P ztjS(a, z)
t�1

� �� �

where S
(a, z)
t =(at, zt, at�1, zt�1, . . . ).

For C to be generally learnable within a reinforce-
ment learning context, an alternative version of the
above may be given in which an environmental reward
r is also explicitly generated by the P function

P’ P M(it+1), rt+1jS(a, i)
t

� �
such that the general dreaming iteration becomes

C : argmax
(zt , rt)

P (zt, rt)jS(a, z, r)
t�1

� �
,R S

(a, z, r)
t�1

� � !
! at and

S
(a, z, r)
t  S

(a, z, r)
t�1 [ at, argmax

(zt , rt)

P (zt, rt)jS(a, z, r)
t�1

� � !

ð4Þ

where S
(a, z, r)
t =(at, zt, rt, at�1, zt�1, rt�1, . . . ).

Here, the function argmax
zt

P ztjS(a, z)
t�1

� �
is chosen

throughout so as to straightforwardly give a concrete
value of zt for iterative compactness in the above.
However, note that in the original paper, the value of zt

is actually a random sample from zt;P ztjS(a, z)
t�1

� �
and

thus potentially has better coverage than the above
approach. We omit this here as this consideration
has no bearing on our purpose (the final model in
Section 3.3 does not incorporate argmax2).

To bootstrap this process, P(zt+1jat, zt, ht) and M(I)
must be initially trained via ‘‘motor babbling’’ (i.e. ran-
dom action input followed by observation and collation
of the output) in the same way that infant mammals are
observed to bootstrap their learning (Shevchenko,
Windridge, & Kittler, 2009; Windridge & Kittler, 2007).
Following the bootstrap phase, the second part of the
learning process is thus to optimize C with respect to
the reward r over the full temporal horizon of the learn-
ing agent (an infinite horizon if we require optimality).

We note, however, that there is no in principle dis-
tinction between environmental rewards and environ-
mental observations; the former can in fact be treated
simply as a salient subset of the latter (i.e. such that the
reward function may be defined r = f (z)). If C is para-
metrized by some vector a, then the dreaming learning
problem in C can be defined as

argmax
a

Xt

j= 1
f (zj)

s:t:

C(a) : argmax
zt

P ztjS(a, z)
t�1

� �
,R S

(a, z)
t�1

� �� �

! at & S
(a, z)
t  S

(a, z)
t�1 [ at, argmax

zt

P ztjS(a, z)
t�1

� �� �

that is, with C acting as before (i.e. prior to inclusion of
the reward function), but now with the a parametriza-
tion explicit.

3. A general model of dream-like
mechanisms

3.1. Recasting the problem in terms of
perception–action systems

To summarize the previous, Ha and Schmidhuber
(2018) have proposed a successful model for dreaming
in which an optimal action response model C may be
learned offline via dreaming, while the visual prediction
function P and the visual representation function M

are learned online in a prior process via motor babbling
(the reward function f is given a priori). However, the-
ories regarding the function of dreams that focus on
learning in such a sense (such as the threat simulation
theory, see Valli & Revonsuo, 2009) typically posit that
an agent also learns to represent the world in this pro-
cess (Thill & Svensson, 2011). For example, Adami
(2006) theorized that a robot could, after a day’s expe-
rience, replay its actions and thereby infer a model of
the environment.

To extend the dreaming mechanism discussed so far,
a key question is therefore whether some other of the
functions it uses, besides C, could also be learned off-
line. It is therefore relevant to consider perception–
action (PA) cognitive bootstrapping (Windridge &
Kittler, 2008, 2010; Windridge, Felsberg, & Shaukat,
2013; Windridge, Shaukat, & Hollnagel, 2013), which
aims to pursue the epistemological limits of simulta-
neous learning of a world model and its representa-
tional framework (i.e. the framework in terms of which
the world model is formed).

In this case, initial learning again takes place online
through motor babbling with respect to a simple input
percept space, and progressively builds higher level
abstractions of the types of feasible action within this
space, aiming to form the most compact hierarchical
model of environmental affordances consistent with the
active capabilities of the agent, such that high-level
exploratory action/perception hypotheses are progres-
sively grounded through the hierarchy in a top-down
fashion (consequently, representation is a bottom-up
process, and action execution is a top-down process). In
this case, there is no explicit reward model or
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reinforcement learning process required; convergence
naturally occurs when the most compact hierarchical
PA model is formed of the environment consistent with
the agent’s active capabilities.

We can now return to the Ha and Schmidhuber
(2018) approach and map this onto a PA framework.
By doing this, we can be explicit about how the work is
expanded to provide a general dreaming mechanism.
To do this, we first group the various functions of the
model into two classes based on whether they relate to
perception or to action, further splitting the functional-
ity of f to do this. The perception class contains the
visual prediction function P, the visual representation
function M and the reward function f (considered as a
perception), while the action class consists of the opti-
mal action response model C and the reward function
in its aspect of optimization objective.

In other words, the first group contains functions
concerned with the representation of the environment’s
affordances (i.e. the response of perceptions to actions,
treating the rewards as observations), while the second
group is concerned with the planning of actions with
respect to these affordance possibilities. We may thus
regard the former group as learning an ‘‘environment
simulator’’ and the latter group as learning an ‘‘envi-
ronmental strategy’’ with respect to this simulator.

As an aside, note that this characterization also high-
lights why dreaming works in this scenario: if we first
learn a good simulator – for instance, if we have cor-
rectly inferred the rules of chess by observation – then it
becomes possible to learn a good strategy offline, that
is, without reference to any external observations, by
generating our own observations. For example, as long
as the domain-rule inference step is correct, we could in
principle, if not in practice, exhaustively play chess
games entirely offline to find the optimal strategy.

The interesting question, however, arises in relation
to the earlier stages of learning, specifically when the
‘‘simulator rule inference’’ is not yet complete. For
dreaming-like mechanisms to provide an added value
over mere simulation-based learning, dreaming must
still be useful when the rules are not completely accu-
rately inferred. Suppose, for example, that we have a
partially accurately inferred model of the rules of chess
in which every rule apart from that of en passant is
known. An offline simulator constructed from this par-
tial rule inference would still be highly capable, and, in
particular, would be sufficient to enable the playing of
simulated games (i.e. generation of novel training data)
that would enable the offline learning of highly effec-
tive (if not fully complete) chess strategies (not least
because the en passant rule is only rarely deployed). Of
course, chess can be characterized as a functionally
closed environment; in an open environment, partial
rule inference would be the norm, and any simulator
rule inference would typically have to be beneficial

under partial conditions very far from the convergence
asymptote.

3.2. Formalization of the general dream-like
mechanisms

We can now consider, given the functional separation
into ‘‘environmental simulator’’ and ‘‘environmental
strategy’’, a very generalized dream model consisting of
just an online environmental affordance inference
model E that attempts to learn the probability function

P (it+1, rt+1)jS(a, i, r)
t

� �
from partial sampling (where

S
(a, i, r)
t =(at, it, rt, at�1, it�1, rt�1, . . . )), in conjunction
with a parameterized strategy inference model

Ia : it, S
(a, i, r)
t�1 ,E

� �
! at that attempts to maximize the

reward
P

rt over time given the inference model M ,
which it may freely sample offline via dreaming (i.e.
such that it can consider novel sequences

S
0(a, i, r)
t =(a0t, i

0
t, r
0
t, a
0
t�1, i

0
t�1, rt�1, . . . ).

We can again treat the reward r as a special case of
environmental observation (i.e. a subset of i) such that
it is mediated via an indicator function g. In this case
we have that the dreaming learning problem is to infer
an environmental simulator E and an environmental
strategy model H (which we hence distinguish from I)
such that

E;P itjS(a, i)
t�1

� �
ð5Þ

and

Ha0 : it, S
(a, i)
t�1 ,E

� �
! at

s:t:

a0= argmax
a

Xt

j= 1

g ijjaj;Ha(S
0
j�1(a, i))

� � ð6Þ

In the offline dreaming mode, the update function
for S

0(a, i)
t is thus

S
0(a, i)
t  S

0(a, i)
t�1 [

Ha0 it, S
0(a, i)
t�1 ,E

� �
, argmax

it

E (itjS0(a, i)t�1

� �� �

The history S0(a, i) = (a0t, i
0
t, a
0
t�1, i

0
t�1, . . . ) here is cru-

cial; if we, for example, were to make the Markov
assumption for simplicity, that is, such that actions
were not time dependent – or equally that the environ-
ment had no ‘‘memory’’ beyond that summarized by its
current configuration – then the environmental strategy
would require no learning at all, but instead be a simple
act of maximizing the immediate reward.

In general, a0 and i0 may be sampled uniformly, or
via any other stochastic strategy, from their parent
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variables A and I (i.e. so that A and I consist of the set
of their respective instantiations). Note that in the for-
mer case, this must be given a priori; however, the latter
may be built up greedily via motor babbling (hence,
actions are in a key sense here prior to perceptions; a
central tenant of PA learning, see Windridge & Thill,
2018).

Note also that this general characterization avoids
any explicit mention of intermediate hidden variables,
such as those previously deployed for learning temporal
and visual configuration states. Such variables can thus
be considered here as artefacts of finding accurately
generalizing models of E and H , that is, compact para-
meterizations that correlate to the underlying physical
configuration rather than its spatio-temporal manifes-
tation. By default, the Ha and Schmidhuber (2018)
approach thus does not appear to require that it
becomes possible, as a result of these reparameteriza-
tions, to specify dreams at a higher level of abstraction
of the input dimension rather than solely within the
original spatio-temporal input space. This is an interest-
ing observation insofar as it is in stark contrast with the
core ideas underlying PA subsumption hierarchies of
representation within PA cognitive bootstrapping
(Windridge & Kittler, 2008, 2010), where this compact-
ness of PA parametrization is fundamental in proposing
and exploring or testing environmental representations.

However, given the existence of the possibility of
representational compression (as indicated by the auto-
encoder function M), this requirement can be incorpo-
rated by modifying Equations (5) and (6) to remap the
input space i! M(i), such that the functional learning
takes place at the higher level of abstraction. Note,
again, that we must retain the integrity of the action
domain in proposing this perceptual remapping, that is,
such that action-initiated transitions in the remapped
spatio-temporal domain remain discernible

ai : ix ! iy ) x 6¼ y

(we may call this requirement with respect to any pro-
posed representational domain remapping a-discernibil-
ity). We have thus derived a generalized model of
dream-like mechanisms for machine learning in which
the role of representation is demonstrated to be ancil-
lary to the crucial aspects of simulation inference and
simulation strategy optimization.

As a final aside, although it is not the focus of the
present paper, we can note that this also suggests the
possibility of stacking intermediate representations
hierarchically, such that actions and perceptions are
treated subsumptively (again a key component of PA
bootstrapping (Windridge & Kittler, 2008, 2010)).
Subsumption could thus embody any intrinsic hierarch-
ical modularization of actions (e.g. the notion that ‘‘fill
container’’ is necessarily built upon the prior notion of
‘‘movable object’’), although, in a reinforcement

learning context, any stacking would need to respect
the reward function, r.

3.3. Maximizing the utility of a generalized
dream-like mechanism

Having arrived at the formulation in the preceding sec-
tion, we now need to demonstrate that there is a tangi-
ble benefit. In other words, we need to verify that we
do not simply end up with an elaborate version of the
naive example sketched in the introduction whereby we
merely end up with a spurious training set that adds no
actual benefit.

To begin with, the immediately apparent difference
is that here, the learning problem is only partially
dream-assisted: E is learned via online collection of real
data, while H is (optionally) learnable offline via
dreaming. It is therefore reasonable to define a measure
of the utility of dream-like mechanisms in terms of time
required for the algorithm to terminate with success. In
other words, assume there exists a fixed termination
point HT reached in the sequence of transformations of
the environmental strategy model H ! H 0 (built on the
environment model E). Dream-like mechanisms demon-
strate their utility if that is arrived at more rapidly in the
case of additional offline learning of dream sequences
S
0(a, i)
t derived from previous iterations of H and E.
To demonstrate that the model proposed here fulfils

this requirement, we begin by drawing an explicit com-
parison with the spurious example from the introduc-
tion. This can be done by rewriting Equation (6) such
that the optimization of a0 with respect to the reward
function g is no longer made explicit and simply
enfolded into a function H ½E�, which, in relation to an
environmental learned model E and a history of envi-
ronmental representations i and prior actions S

(a, i)
t1 [ it,

gives rise to a specific action at at time t, that is,
H ½E� : (S(a, i)

t1 [ it)! at.
The update function for S0(a, i) in the dreaming mode

is thus unchanged from before in that it requires input
from both E and H . Folding the argmax function into
E as Em (again for simplicity), we thus arrive at a highly
simplified representation of the dreaming data-update
function of the following broad form

S
0(a, i)
t  S

0(a, i)
t�1

[ H ½Em� : S
0(a, i)
t�1 [ it

� �
! at ,Em : S

0(a, i)
t�1

� �
! it

� �
(where it is hopefully clear that Em must be enacted
before H at any given time interval).

The dreamed sequence S
0(a, i)
t (along with others like

it if the agent is learning in batch) is then used to adapt
H such that the (now internal optimization criterion) is
satisfied. This results in a transformation H ½E� ! H 0½E�,
which – it is claimed – will be similarly optimal (or at
least closer to optimality) as if it had been trained with
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sequences derived from the real world (i.e. of the form
S(a, i)).

H ½E� is equivalent to a classifier of optimal actions in
relation to (partially sampled) input strings of the form
S(a, i) in the sense that H ½E� is an interpolator (given that
classifiers in general are regressors with a discrete output
variable that produce output for all conceivable inputs,
interpolating between training data) of action class out-
puts over the whole input space. Em may be similarly
regarded as a classifier of ‘‘future representations’’ (whose
support is real rather than dreamt in the case of Ha &
Schmidhuber, 2018). Taken together, H ½E� and Em may
thus be considered as ‘‘classifiers of future data states’’,
where the data in question is their own input.

With this, we have now arrived at a formulation that
looks similar to the initial example of dreaming that
had no discernible benefit. The crucial reason that there
is a benefit for the self-generated data in our model is
that there is not necessarily a negative consequence to
partially accurate inferences of intermediate models of
action, even though H ½E� can be considered to be con-
cerned with the ‘‘classification accuracy’’ (with respect
to the reward criterion) of the proposed action in rela-
tion to the given input S

(a, i)
t .

This is a consequence of the fact that the sequences
S0(a, i) generated by dream-like mechanisms are, even if
suboptimal with respect to maximizing the reward func-
tion, still capable of providing a novel sampling of the
‘‘classifier’’ input domain. Further, the reward function
calculation (the fact of a reward being given in relation
to a percept) for this sampling is itself independent of
the accuracy (i.e. representativity). In other words, the
representational accuracy of the reward function is not
an issue in the learning problem.

Rather, the only concern is around the ideality of a
proposed action with respect to the reward function. It
is thus a fundamental aspect of the success of the Ha
and Schmidhuber (2018) approach to dreaming that
the reward function itself is not learned, but given a
priori, without which the learning problem would be
entirely ungrounded. Here, again, we can note a paral-
lel with learning in biological entities, for which the
‘‘reward function’’ is provided via the biological neces-
sity of survival within a natural selection context, and
is thus external to the agent.

It is hence clear that what dream-like mechanisms
offer with respect to optimizing the H ½E� function is
increased sampling of the space of Sa, t, albeit with
potential errors in the sample generation due to imper-
fectly learned intermediate models of H ½E�. Crucially,
however, errors implicit in the dream sequences S are
only errors of exploration, not errors of label inference.

Equally importantly, it does not matter if the
learned function Em is entirely ‘‘erroneous’’ in its map-
ping of the input domain as long as a-discernibility is
retained.3 As long as this is the case, it does not matter
if Em is a poor replication of the input domain I . We

therefore propose that what is actually required for the
Em learning problem (as opposed to the H ½E� learning
problem) is simply obtaining the most compact remap-
ping of the input domain I consistent with the retention
of a-discernibility. Other (perhaps more cognitively
loaded) notions of ‘‘representativity’’ can be disre-
garded, again in line with key priorities of hierarchical
PA learning (Windridge & Kittler, 2008, 2010). This
also demonstrates that the primary contribution of Ha
and Schmidhuber’s (2018) employment of the standard
autoencoding accuracy criterion – seeking to obtain the
most accurate representation of the input domain con-
sistent with the compression implied by the information
bottleneck – ultimately lies solely in simplifying the
learning problem due to the smaller number of para-
meters. In particular, accuracy of replication of the
input domain does not in itself guarantee retention of
a-discernibility. For instance, we could arbitrarily
hyper-rotate the basis of the configuration space
obtained by the autoencoding without any consequence
at all for the learning problem.

We might also, as an extension of this approach,
consider further optimization of Em during the H ½E�
learning procedure outside of the dreaming loop; there
is nothing in principle in the framework described here
that prevents this. Indeed, it is in many respects natural
to learn Em greedily: each proposed action by the action
proposition model H ½E� (even imperfectly converged) is
capable of chancing upon a novel input i that can be
added to the input domain for further Em learning.
Moreover, this naturally sits alongside the general Em

model learning: non-novel perceptual transitions can of
course generate data capable of improving Em (consis-
tent with the previous a-discernibility considerations).

The most generalized model of learning for dream-
ing is therefore a reinforcement learning system in an
environment T in which sequences are generated in the
following manner.

Online mode

S
(a, i)
t  S

(a, i)
t�1

[ H ½Em� : S
(a, i)
t�1 [ it

� �
! at , T : S

(a, i)
t�1

� �
! it

� �
; Em

Offline mode

S
0(a, i)
t  S

0(a, i)
t�1

[ H ½Em� : S
0(a, i)
t�1 [ it

� �
! at, Em : S

0(a, i)
t�1

� �
! it

� �
where H ½Em� is initiated via motor babbling (which it
may be required to repeat throughout learning to avoid
local minima).

Here the bars above H and E indicate that the rele-
vant model is subject to ongoing optimization within
the respective mode (online or offline, as indicated). In
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the case of H , however, note that, because it is initiative
of actions rather than predictive of actions, the relevant
optimization takes place with regard to an internal
reward function that is not adapted in relation to the
environment (cf. the earlier discussion); only in this
way is the dreaming model properly founded.

4. Illustrative example

Following the experimental demonstration by Ha and
Schmidhuber (2018) of the concrete utility of dreaming
in a deep-learning context, we have thus established, on
a priori grounds, the necessary conditions under which
dreaming can be an effective strategy (in particular the
a priori nature of the reward function). Having arrived
at a correspondingly generic formulation of dreaming,
we can now demonstrate and approximately quantify
this utility. We do so using a highly simplified experi-
mental illustration to demonstrate this without reliance
on the wider deep-learning context of Ha and
Schmidhuber (2018), in which the presence of other fac-
tors potentially complicates the understanding of the
core dreaming mechanism.

4.1. Agent and environment

The choice of environment model will be as follows.
Assume an a priori action set model a+, a�f g with iso-
morphisms onto the positive and negative integers

a+ $ I+
� �

, a� $ I�f g such that actions form a very
simple Lie group (isomorphic to the simplest orthogo-
nal group in one dimension, O(1)). Further assume that
the percept domain also has an intrinsic group struc-
ture arising from isomorphism with the positive reals
p$ R+ (we shall henceforth assume that this is an
equality for simplicity).

An environment model can then be built by greedy
accumulation of (percept, action, reward) tuples arising
from motor babbling (i.e. such that the tuples form the
components of an exploratory sequence S). In this con-
text, it should be noted that, provided we assume a
fixed initial state for the sequence S, the valuePjSj

1 a+ �
PjSj

1 a�
� �

defines a set of equivalence classes

over S that are isomorphic to the (positive and nega-
tive) integers I . That is, the action group corresponds
to relative transpositions of an agent with respect to a
fixed environment. The ground-truth model is hence
equivalent to a fixed reward function over a space X .
In this case, given that all environmental states are
accessible to the agent, the environment model in effect
attempts to predict the function f : x 2 X ! R on the
basis of previous arbitrary translations (i.e. motor bab-
bles) and the resulting reward/percept. In this very sim-
plified case, the formation of the environment model is
hence nothing other than regression modelling of the
function f : x! R on the basis of n random samples.

Hence, in order to maximize the reward, the agent
should seek to predict the magnitude of the translation
action required to reach the maxima on the basis of
previous actions/rewards.

The illustrative example presented here could thus
be considered a primordial or proto-biological example
of dreaming (although note that the broad conception
as formulated in Section 3 is inherently more general,
and is able to, for example, apply in arbitrary environ-
ments in which no such clear conception of a fixed
background space exists). As indicated, our approach
to dreaming is much more fundamentally a PA model
in which actions are conceptually prior to perceptions
and ‘‘the world is its own model’’ (since we do not, in
general, explicitly assume X a priori).

It also greatly simplifies matters in the following to
assume that reward scales monotonically with percept
values in the simplest manner, that is, such that p}r.
We can thus simplify the environment model by dis-
carding r and assuming that maximizing p maximizes r

in accordance with this proportionality assumption.
To form the action model, the agent seeks to build a

bigram model of greedily accumulated action(initial per-
cept, output percept/reward) tuples such that, for a given
percept, maximization over a row-normalized histo-
gram acts to select a specific action (percept maximiza-
tion being equivalent to reward value maximization).
To apply the model for a specific input percept (ground
truth or dream generated), a nearest-neighbour alloca-
tion of the novel percept is made with respect to the
existing greedy percept database p1, p2, . . . pjSj (there is
hence a many-to-one mapping of potential to modelled
percepts, with a hypothetical asymptote at the point at
which the relationship becomes a strict bijection were
the agent to directly experience all hypothetical percep-
tual states).

4.2. Experimental setup

The spatialized ground-truth domain model (that is to
say, the underlying environment of the agent) that we
select to govern the intrinsic PA relationship that the
learning agent experiences is defined to be the sum over
three independently parameterized Poisson functions in
order to generate an asymmetric and multi-modal dis-
tribution within the finite spatial window in which the
agent is constrained to operate

XjSj
1

a+ �
XjSj

1

a�

 !
! i

p(i)=
X3

k = 1

a(k)e�l(k) l(k)x(i)+b(k)

(x(i)+b(k))!
: i 2 I , i . 1, i\Xspan

� �

Xspan hence governs the extent and resolution of the
action space X created by the group structure (i thus
represent a regular set of spatial samples of the fixed
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background domain that the agent’s actions can poten-
tially reach).

For each distinct experimental run, the above distri-
bution is re-initialized via the following hyper-
parametric distributions, which are found to maintain
a good range of distributional modalities (i.e. 1, 2 or 3
modes) within the window defined by Xspan

a(k);[ 1 : (Xspan)=2
� �

+2Xspan

b(k);[ 1 : X
1
2
span

n o
+X

1
2
span

l(k)=[ 1 : 9X
1
2
span

n o
+3X

1
2
span

Each experimental run thus consists of 60 alternat-
ing cycles of four-sample motor-babbling explorations
followed by inference of the perception model, after
which an optimal motor action model is calculated
such that the agent is capable of attempting to maxi-
mize the reward within any given translation scenario
(which in this simplified case is equivalent to perform-
ing the action that obtains the maximal percept value
with respect to the inferred environment model). We
hence illustrate the typical situation of partial ground-
truth inference due to intrinsic model bias in the initial
stages of learning.

The dreaming variant of the agent performs an addi-
tional step in which a further set of 2Xspan imaginary
motor babbles are carried out with respect to the
inferred (interpolative) model in order to derive an
enriched action model, in which actions may again be
calculated so as to maximize the reward. The two
action models (i.e. the model derived via dreaming plus
babbling and the model derived by babbling alone) are
then tested by being placed within a series of 3Xspan test
scenarios in which the agent has to compute the opti-
mal action with respect to a random spatial placement
within the current ground-truth domain. We perform a
total of 50 experimental runs and take average quanti-
ties in the following.

For the perceptual inference model, we adopt a pie-
cewise linear-interpolation of percept samples so as to
guarantee asymptotic convergence. The model thus
constituted is hence inherently capable of generating
novel percepts from the discrete percept samples; in
particular, the model can generalize over the full range
of p, even if these percepts have not been directly expe-
rienced by the agent by virtue of the group relationship
that exists over p. p is hence a quasi-Kantian synthetic
a priori (in this regard, it is important to note that these
dreamed percepts cannot in themselves be in error,
being relationally defined a priori; rather, it is their
action relationships with the other percepts that is the
subject of empirical validation/falsification (Windridge
& Thill, 2018)). In inferring a range of novel percepts
(i.e. the continuous interpolated percept values with
respect to the discrete percept inputs) we thus fulfil a

key criterion of dreaming given at the outset, that is,
novel perceptual inference.

During the real/dreamed phases the system thus
accumulates generated action(initial percept, output
percept/reward) tuples from, respectively, real/imagined
motor babbling in order to constitute the action model
via greedy bigram histogram accumulation (the sim-
plest possible state–action transition model of H). The
dream-generated percept transitions brought about by
dreamed agent actions are thus added to the real per-
cept transitions in the agent’s motor-babbled action
model on an equivalent basis. a-discriminability is thus
automatically satisfied by virtue of the implicit bijectiv-
ity between actions and perceptual transitions.

4.2.1. Results. The results are shown in Figures 1–4. An
illustration of the relative richness of the dreamed and
non-dreamed action models with increasing iteration
number is given in Figure 1 (with actions superposed so
as to show the aggregate percept transition matrix); the
corresponding cumulative reward obtained by the agent
for a given action with/without dreaming is presented

Figure 1. Illustration of relative enrichment of dreamed and
non-dreamed action models with iteration number (actions are
here superposed so as to form a histogram matrix of possible
percept–percept transitions within the model; the vertical
colour-bar denotes count number).
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in Figure 3 (arguably the key result). The benefit of the
dream cycle is clearly apparent in both cases. Because
of the intrinsic group relationship that exists between
actions, percepts and rewards, it is also possible to
quantify both a ‘‘perceptual error’’ and an ‘‘action
error’’ for any given agent action; for the latter, the
average deviation from the maximal possible reward/
percept is quantified versus the iteration number in
Figure 2 while, for the former, Figure 4 shows the dra-
matic improvement in input perceptual quantization
that arises from the presence of dream cycle motor
babbling.

Of course, many other domain examples are concei-
vable beyond the very simple case illustrated, for
instance, those in which percepts do not directly corre-
spond to rewards, but are rather only indicative of a
certain likelihood of reward. In this case the environ-
ment model would have to additionally characterize
the associated percept/reward distribution. The relative
efficacy of dreaming will hence vary significantly from
domain to domain; the key point, though, is that
dreaming can potentially provide utility in any situa-
tion in which partially generalized environment models
are still capable of providing utility with respect to the
domain reward (which will typically be the case in any
domains in which the Pareto principle or submodular-
ity applies – that is, in which a ‘‘law of diminishing
returns’’ exists).

5. Discussion and conclusion

We have, in the above, provided a general formulation
of dream-like mechanisms and set out the conditions
under which it has utility for artificial learning.
Specifically, we have demonstrated how learning of

sequences that were generated offline can generalize to
be useful for online learning, concluding that such a
dream sequence generation can be used to aid sampling
of the r-optimization strategy in online scenarios pro-
vided we have an a priori evaluation function r.

If this were the only relevant aspect of dreaming, it
would, in principle, be possible to argue that the pro-
posed system is nothing more than an r-interpolation
process for sequences S

(a, i)
t , albeit with an arbitrary

separation of the a and i learning components. One
could thus claim that dreaming is not doing anything
other than a form of function learning that would be
conceptually equivalent to carrying out machine learn-
ing with respect to class outputs a and i. Therefore, it

Figure 2. Mean dreamed versus non-dreamed root mean
square action error versus iteration number (action error in
units defined by Xspan).

Figure 3. Mean dreamed versus non-dreamed cumulative
reward versus iteration number (in units defined by p/r
equivalence).

Figure 4. Mean dreamed versus non-dreamed root mean
square input percept quantization error versus iteration number
(in units defined by the percept group action).
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could then be claimed that we have merely found it effi-
cient to explicitly conduct some of the functional inter-
polation implicit in classifier learning explicitly as
sequence generation. In other words, one could be
tempted to reduce dreaming to just functional interpo-
lation via simulator inference with some semantic load-
ing relating to notions of representation.

However, we have argued that (provided a-discern-
ibility is retained) representation per se is a red her-
ring (at least outside of a PA learning context); the
critical aspect that makes dream-like mechanisms as
sketched here useful is that useful learning occurs even
when the environment and action models H and E are
imperfectly inferred (for evidence that human dreams
initially make use of imperfect simulation abilities4

that may be finetuned by validating resulting predic-
tions in the real world, see Thill & Svensson, 2011), by
virtue of the ‘‘fire-walling’’ of the reward function
optimization. Thus, the agent’s optimization is with
respect to an environmental reward that is indepen-
dent of, and prior to, the modelling of this environ-
ment, and cannot thus be subjected to ‘‘empirical
doubt’’, even though the reward is defined as a func-
tion of the environment representation I . One might
thus argue that cognitive updating is only conceivable
in relation to an environment of fixed and empirically
undoubtable rewards, as is, for example, the case for
biological agents, which are not free to arbitrarily re-
designate reward attributes, given that the conse-
quence of doing so would ultimately be existentially
threatening.

To conclude, we note that the framework we have
sketched here has application in deep learning in a rein-
forcement learning context (Ha & Schmidhuber, 2018;
Piergiovanni et al., 2018). Current typical deep neural
networks do use a hierarchical distribution of represen-
tation but require large amounts of training data to
exhaust combinations of modular factors within the
data (at whatever level of the hierarchy). Dream-like
mechanisms, as we have discussed them here, enable
the generation of relevant training data in a way that
(as we have seen) can be used to further train the learn-
ing model (with the caveats discussed above).
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Notes

1. It is important here to distinguish ‘‘simulation’’ in the
machine learning sense from more cognitive takes on
the term. In particular, the latter do not always presume
the existence of a model in the sense of an actual simula-
tor – rather, it is thought that neural activations underly-
ing the conceiving (but not the execution) of actions can
directly result in predictions of sensory consequences,
which can then be used to drive further action choices
(see Svensson, 2013; Svensson & Thill, 2016, for a more
thorough discussion).

2. Using a distribution over states (as in the Ha &
Schmidhuber case) can provide additional protection

against non-representative policy maxima in the partially
inferred environment model, and may thus enable more
rapid convergence in an alternating dream-exploration/
real-exploration scenario than would otherwise be the case.
The generic dreaming model evolved in this paper is thus
not to be considered optimal in convergence times; the aim
is rather to isolate just those bare aspects that are required
for dreaming – it is the most general model in this sense.

3. An interesting side-issue regarding the relation of percep-
tual error to a-discernibility concerns the nature of optical
illusions, which typically manifest as high-level (or global)
ambiguities in the visual domain that are unambiguous
(or else unrealizable) within the haptic-action domain: for
example, the well-known ‘‘impossible triangle’’ or ‘‘2-or-
3-pronged-fork’’ illusions, which exploit the lack of bijec-
tive correspondence between two-dimensional images and
three-dimensional volumetric occupancy. In each of these
cases there is a mismatch between high-level perceptions
and low-level actions. A critical aspect of hierarchical PA
learning, set out in detail by Windridge and Kittler (2008)
and Windridge and Thill (2018), is that there must exist
an a priori link between low-level (or local) perceptions
and actions in order that high-level (e.g. global volu-
metric) perceptions can be falsified. Hence, there is no
question of whether an erroneous Em model affects a-dis-
cernibility in relation to visual illusions, since from a PA
perspective, the situation is no different than that of per-
ceptual updating in general; that is, there is no difference
between an erroneous Em model and a visual illusion with
respect to the model update. (A related aspect of hier-
archical PA learning is that global consistency is generally
only enforced at the higher, more symbolic levels of the
hierarchy, with lower levels generally only para-consis-

tent– a situation also encountered in deep learning.)
4. In the sense of Hesslow (2012).
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14 Adaptive Behavior


