A Proof Calculus for Attack Trees in Isabelle

Florian Kammuiller

Middlesex University London and
Technische Universitat Berlin
f.kammueller@mdx.ac.uk

Abstract. Attack trees are an important modeling formalism to iden-
tify and quantify attacks on security and privacy. They are very useful
as a tool to understand step by step the ways through a system graph
that lead to the violation of security policies. In this paper, we present
how attacks can be refined based on the violation of a policy. To that end
we provide a formal definition of attack trees in Isabelle’s Higher Order
Logic: a proof calculus that defines how to refine sequences of attack
steps into a valid attack. We use a notion of Kripke semantics as formal
foundation that then allows to express attack goals using branching time
temporal logic CTL. We illustrate the use of the mechanized Isabelle
framework on the example of a privacy attack to an IoT healthcare sys-
tem.

1 Introduction

Identifying attacks and quantifying the attacker is a major challenge in security
engineering. Attack trees are a simple classical approach but they still thrive in
practical applications. One of the reasons is their simplicity and transparency to
the user; the other is that their notion of attack analysis is a natural mechanism
of a gradual approach to understanding security risks. In this paper, we provide
a formal basis for attack trees in the interactive theorem prover Isabelle: a proof
calculus for attack trees using a notion of refinement and attack validity. An
existing emulation of modelchecking [6] provides a Kripke semantics for the proof
calculus for attack trees. We introduce the proof calculus and the underlying
mechanisation of the Kripke semantics. Finally, we illustrate the application of
the presented Isabelle formalisation of attack trees on a case study from the
health care sector which is the target of the CHIST-ERA project SUCCESS [3].

The main novelty of this paper is a mechanized theory for attack trees using
Kripke structures to provide a state based foundation for the attack sequences as
well as enabling the combination with the branching time logic CTL to facilitate
detection and analysis of attacks.

The paper first introduces attack trees, Kripke structures, and attack tree
refinement (Section 2) before presenting the proof calculus (Section 3). Section
4 then summarises the Isabelle Insider framework that can be used as an ap-
plication of the attack tree formalisation. A health care system Insider attack
is introduced and used as an illustrative example for the application of Isabelle
attack trees and Kripke structures.

2 Attack Trees and Kripke Structures

2.1 Attack Trees

Attack Trees [16] are a graphical tree-based design language for the stepwise
investigation and quantification of attacks. We believe that attack trees are a
succinct way of representing attacks and thus not only useful as an immediate
tool to quantify the attacker as part of a security analysis but also a good way
of making security and privacy risks transparent to users. In attack trees [16,13],
the root represents a goal, and the children represent sub-attacks. Sub-attacks
can be alternatives for reaching the goal (disjunctive node) or they must all be
completed to reach the goal (conjunctive node). Figure 1 illustrates the clarity
of this graphical formalism by giving an example of an attack tree for opening
a safe [16]. Leaf nodes represent the basic actions in an attack. Nodes of attack

open safe
pick lock learn combo cut open safe _ install
improperly
find written get combo
combo from target
threaten blackmail cavesdrop bribe
listen to get target to
conversation state combo

Fig. 1. Attack tree example illustrating mainly disjunctive nodes for alternative attacks
refining the root node “open safe” and one conjunctive node for “eavesdrop”.

trees can be adorned with attributes, for example costs of attacks or probabilities
which allows quantification of attacks (not used in the example). Sub-trees can
be combined disjunctively (or-nodes) or conjunctively (and-nodes).

As much as this clarity is encouraging to employ the formalism in the early
stages of a security engineering process, it is also abstract and may lead to
ambiguities. Therefore, it is desirable to lay foundations for attack trees that help
us to use them not only to grasp intuitive attacks but to provide a foundation
that helps to disambiguate and verify the intuition.

There are excellent foundations available based on graph theory [13]. They
provide a very good understanding of the formalism, various extensions (like
attack-defense trees [12] and differentiations of the operators (like sequential
conjunction (SAND) versus parallel conjunction [5]) and are amply documented

in the literature. These theories for attack trees provide a thorough foundation
for the formalism and its semantics. The main problem that adds complexity to
the semantical models is the abstractness of the descriptions in the nodes. This
leads to a variety of approaches to the semantics, e.g. propositional semantics,
multiset semantics, and equational semantics for ADtrees [12]. The theoretical
foundations allow comparison of different semantics, and provide a theoretical
framework to develop evaluation algorithms for the quantification of attacks.

Surprisingly, the use of an automated proof assistant, like Isabelle, has not
been considered despite its potential of providing a theory and analysis of at-
tacks simultaneously. The essential attack tree mechanism of disjunction and
conjunction in tree refinement is relatively simple. The complexity in the theo-
ries is caused by the attempt to incorporate semantics to the attack nodes and
relate the trees to actual scenarios. This is why we consider the formalisation of
a foundation of attack trees in the interactive prover Isabelle since it supports
logical modeling and definitions of datatypes very akin to algebraic specification
but directly supported by semi-automated analysis and proof tools.

2.2 Attack Tree Datatype in Isabelle

The attack trees formalisation including Kripke structures is formalised in Is-
abelle’s Higher Order Logic. All sources are available online [7]. This Isabelle
formalisation constitutes a tool for proving security properties using the assis-
tance of the semi-automated theorem prover [11]. Isabelle is an interactive proof
assistant based on Higher Order Logic (HOL). Applications can be specified as
so-called object-logics in HOL providing reasoning capabilities for examples but
also for the analysis of the meta-theory. An object-logic contains new types, con-
stants and definitions. These items reside in a theory file, e.g., the file AT. thy
contains the object-logic for attack trees. This Isabelle Insider framework is a
conservative extension of HOL. This means that an object logic does not intro-
duce new axioms and hence guarantees consistency.

Attack trees have already been integrated as an extension to the Isabelle
Insider framework [9,15] but with a limited scope to conjunctive nodes only and
no added semantics to construct a proof calculus. In the current paper, we not
only generalise the attack trees for arbitrary state systems but also properly
extend to disjunctive nodes.

The principal idea is that base attacks are defined as a datatype and attack
sequences as lists over them. Base attacks consist of actor’s moves to locations,
performing of actions and stealing of credentials stored at locations as expressed
in the following datatype definition.

datatype baseattack = Goto "location"
| Perform "action"
| Credential "location"

The following datatype definition attree defines attack trees. The simplest case
of an attack tree is a base attack. Attacks can also be combined as the conjunction
or disjunction of other attacks. The operator @, creates or-trees and ¢, creates

and-trees. And-attack trees [@% and or-attack trees I combine lists of attack
trees [either conjunctively or disjunctively on the attack goal s. The attack goal
s is of arbitrary type «. It can be instantiated simply to the type string to
represent the attack goal “informally” by an attack name. However, we can here
also instantiate to a predicate type thereby enabling a constructive predicative
description of the attack state using logic.

datatype attree = BaseAttack "baseattack" ("N (_)")
| AndAttack "attree list "a" _ @5\—)..)
| OrAttack "attree list" "a" ("_ @(v*)")

The functions get_attseq and get_attack are corresponding projections on at-
tack trees returning the entire attack sequence or the final attack (the root),
respectively. They are needed for defining the rule for attack refinement in Sec-
tion 2.4.

2.3 Kripke Structures

Due to the expressiveness of Higher Order Logic (HOL), Isabelle allows us to
formalise within HOL the notion of Kripke structures and temporal logic by
directly encoding the fixpoint definitions for each of the CTL operators [6]. To
realize this, a change of the considered system’s state needs to be incorporated
into Isabelle. A relation on system states is defined as an inductive predicate
called state_transition. It introduces the syntactic infix notation I —; I’ to
denote that system state I and I’ are in this relation.

inductive state_transition :: [state, state] = bool ("_ —; _")

The definition of this inductive relation is given by a set of specific rules which
are, however, not yet necessary to understand the notion of a Kripke structure
and attack trees. They can be left out for the moment and will be introduced in
Section 4.1, when we present the application of a healthcare Insider attack.
The set of states of a Kripke structure can be defined as the set of states
reachable by the state transition from some initial state, for example, Istate.

Example_states = { I. Istate —;"* I }

The relation —;~* is the reflexive transitive closure — an operator supplied by
the Isabelle theory library — applied to the relation —;.

The Kripke constructor combines a set of states, like the above example, and
an initial state into a Kripke structure that is the graph formed by the closure
over the state transition relation —; starting in the initial state.

Example Kripke = Kripke Example states {Istate}

When we now try to verify that some global security policy, say global_policy,
holds for all paths globally in the example system, this can be expressed as
follows in our Isabelle embedding of Kripke structures and branching time logic
CTL [6].

Example Kripke - AG global_policy

The relation —; provides a transition between states of a system. State tran-
sitions transform a state into another state by actions that change this state. In
the human centric systems that we focus on, these actions are executed by ac-
tors. By contrast for attack trees, we have not yet explicitly introduced an effect
on the system’s state but we equally investigate and refine attacks as sequences
of actions eventually mapping those actions onto sequences of base attacks. In
the current approach, we use the Kripke models as the semantics for the attack
tree analysis. More precisely, the sequences of attack steps that are eventually
found by the process of refining an attack, need to be checked against sequences
of state transitions possible in the Kripke structure that consists of the graph of
system state changes.

Technically, we need a slight transformation between sequences of steps of the
system’s state changing relation —; and sequences of actions of actors leading
to states where policies are violated. We simply annotate the state transitions
by actions. Then, sequences of actions naturally correspond to the paths that
determine the way through the Kripke structure and can be one-to-one translated
into attack vectors.

Formally, we simply define a relation very similar to —; but with an addi-
tional parameter added as a superscript after the arrow.

inductive state_step :: [state, action, state] = bool ("_ -0 "

We define an iterator relation state_step_list over the state_step that
enables collecting the action sequences over state transition paths.

inductive state_step_list :: [state, action list, state] = bool
(u_ _>(,) _u)
where
state_step_list_empty: I BN
state_step_list_step : [I ENCIES SN SO B |
= I % 17

With this extended relation on states we can now trace the action sequences.
Finally, a simple translation of attack sequences from the attack tree model to
action sequences can simply be formalised by first defining a translation of base
attacks to actions.

primrec transform :: baseattack = action

where

transform_move: transform (Goto 1’) = move |
transform_get: transform (Credential 1’) = get |

transform_perform: transform (Perform a) = a
From this we define a function transf for transforming sequences of attacks.

primrec transf :: baseattack list = action list

where

transf_empty : transf [] = [] |

transf_step: transf (ba#l) = (transform ba)#(transf 1)

2.4 Attack Refinement

The main construction concept for attack trees is refinement defined by an in-
ductive predicate refines_to syntactically represented as the infix operator C.
Intuitively, refinement corresponds to developing an attack tree from the root
to the leaves (see Figure 2). Refinement is an order relation on sub-trees of
an attack tree formalising this intuition. There are rules trans and refl mak-
ing the refinement a preorder; the rule refineI shows how attack vectors can
be integrated into the refinement process by extending an abstract attack into
a conjunctive sequence of more concrete attacks. The term sublist rep 1 a
(get_attseq A) replaces an attack a by the attack sequence 1 in the attack
sequence of attack tree A given by its leaves. The definition of this function is
a straightforward recursive list function and omitted here for brevity [7]. The
rule refine0 defines how an attack A can be refined into a disjunction of attacks
as if each of these attacks refines A. The complete definition of the inductive
definition of attack tree refinement is given in Table 1.

inductive refines_to :: [attree, state, attree] = bool ("_ o "
where
refinel: [[I —»71I°; I? —>l/ I’?; transf 1 = 1°;
sublist_rep 1 a (get_attseq A) = (get_attseq A’);
get_attack A = get_attack A’ | = A C; A’ |
refine0: V A’ € set(as). A C; A’ A get_attack A =s =— A C; as &Y |
trans: [[AE]A’;A’ E[A”]]:>AEIA”|
refl : ALC; A

Table 1. Attack tree refinement: inductive definition containing defining rules.

An application can be seen in Section 4.3 where we apply the attack tree
analysis to the health care case study.

| Goto bankapp |/| Perform eval |

| Goto sphone | | Goto bankapp |

| Perform get | | Goto sphone |

Fig. 2. Attack refinement for healthcare case study (see also Section 4.3).

The refinement of attacks allows the expansion of top level abstract attacks
into longer sequences or disjunctions. Ultimately, we need to have a notion of
when a sufficiently refined sequence of attacks is valid. This notion is provided
by the proof calculus for attack trees which allows the deduction of validity of
attacks expressed formally as I, h - a saying that in the state I the actor h can
perform attack a. The proof calculus integrates attack tree refinement and is
presented in the following Section 3.

3 Proof Calculus

The proof calculus for attack trees provides a notion of validity of an attack
tree with respect to a given system and an attacker. The definition of the proof
calculus for attack trees is given in Tables 2 and 3.

For individual attack steps, it presupposes a definition of the behaviour of an
attacker in a system given by the enables predicate to set off the derivation of
valid base attacks (rules att_act, att_goto, att_cred). This enables predi-
cate is treated here as an abstract predicate over the state describing whether
an actor is entitled by the policy to execute a specific action. In the application
example in the following section, we will see an example for a concrete definition
for this enables predicate in the Isabelle Insider framework.

The rule att_ref states that an abstract attack that can be refined into a
valid concrete attack is itself valid. The rule att_comp_and defines how an attack
as @i/ can be conjoined with a valid conjunctive attack as’ @% into a larger
conjunctive attack as @ as’ @%. The operator @ is the Isabelle list operator for
appending two lists. In this rule, the system state I before the first attack needs
to allow a state transition I —* I’ to the state I’ before the second attack.
Since Isabelle is a Higher Order Logic theorem prover, the variables I, I’ are
higher order variables. This permits a flexible instantiation within a derivation
and a gradual development of concrete states that exhibit corresponding pre-
conditions and post-conditions of attacks. Since we use the reflexive transitive
closure —* (available in Isabelle as a constructor of relations) the rule also
allows the pre-states and post-states I, I’ to be identical. Thus, we can in one
rule express sequential and concurrent conjunctive attacks. We do not need a
separate rule for SAND as in other foundations for attack trees, e.g. [5]. The rule
for disjunctive composition uses universal quantification to express that a list of
disjunctive attacks needs to have the same pre-state and post-state (these states
I, I’ are fixed by the same quantifier) in order to be unified in an “or” attack
tree. The rule att_comp_and defines how two and-sequences of attacks can be
added to one larger attack.

As a consequence of introducing also or-attacks for attack trees, we naturally
create the need to define how or-attacks and and-attacks relate to each other. We
therefore extend the inductive definition with the distribution rules presented in
Table 3.

An advantage of using an interactive theorem prover like Isabelle is that
the rules of the inductive definition can be used to derive within the theorem

inductive is_and_attack_tree :: [state, actor, attree]l = bool
"_, _F_"™
where
att_act: enables I 1 ha —=— I, hF N(Perform(a)) |
att_goto: enables I 1 h (move) =— I, h - N (Goto 1) |
att_cred: enables I 1 h (get) =—> I, h AN (Credential 1) |
att_ref: [AC; A’; I, hHF A] = I,htE A |
att_and_one: I, h+a =— I, h+ [a] &% |
att_comp_and: [I, h - as EBf\’; I -" I, I’, h b as’ &) |
— I, ht as @ as’ ®} |
att_comp_or: [V a € (set(as)). I, hF a A get_attack a = s |
= I, h F as @

Table 2. Proof calculus for attack trees: main part

att_and_distr_left: I, h F ([a,(as ®J)] D)
= I, h+ ((map (A x. [a, x]®R) as) &) |
att_and_distr_right: I, h = ([(as &%),a]l &)
= I, ht ((map (A x. [x, a] ®R) as) &) |
att_or_distr_left: I, h - ((map (A x. [a, x]®L) as) &)
= I, h+ ([a,(as &] ®) |
att_or_assoc_right: I, h F ((map (A x. [x, al] BL) as) &)
= I, h - ([(as ®Y),a] ®R)

Table 3. Proof calculus for attack trees: distributivity rules

prover. This avoids introducing inconsistencies but in general also enables the
development of meta-theory, i.e., theoretical consequences of the definitions of
the concepts, here attack trees. For example, standard rules, like associativity
rules, for attack trees can be derived. But also other rules, like for example a
“one-step” composition rule for and-attacks adding just a single attack a at the
front of an attack sequence as using the cons-operation # on lists.

lemma att_comp_and_cons: [I, htk a; I’, ht as @& ; I =" I’]
= (I, ht (a# as) &)

In this paper, we base the definitions of system, actors, their behaviour,
and the corresponding state transitions on the Isabelle Insider framework. The
presented proof calculus for attack trees is easily applicable to other models of
applications by exchanging the behaviour predicate and using the corresponding
state transition relation. The calculus only considers attacks by single actors.
An extension to sets of actors can be defined in a straightforward manner based
on this calculus.

4 Application: Insider Attack in IoT Healthcare

In this section, we finally illustrate how the proof calculus for attack trees is
applied to an example. We instantiate the formalism to the Isabelle Insider
framework that supports the representation of infrastructures as graphs with
actors and policies attached to nodes. These infrastructures are the states of
the Kripke structure for the attack trees. This section gives a brief summary
of the main relevant parts of the Isabelle Insider framework: actions, actors,
infrastructures, behaviour and state transition relation. We next give a summary
of our health care case study before illustrating how the attack tree analysis is
performed on it using the attack tree mechanism.

4.1 Isabelle Insider framework

The Isabelle Insider framework [11] is based on a logical process of sociological
explanation [4] inspired by Weber’s Grundmodell, to explain Insider threats by
moving between societal level (macro) and individual actor level (micro).

The interpretation into a logic of explanation is formalized in the Isabelle In-
sider framework [11]. The micro-level and macro-level of the sociological explana-
tion give rise to a two-layered model in Isabelle, reflecting first the psychological
disposition and motivation of actors and second the graph of the infrastruc-
ture where nodes are locations with actors associated to them. Security policies
can be defined over the agents, their properties, and the infrastructure graph;
properties can be proved mechanically with Isabelle.

In the Isabelle/HOL theory for Insiders, one expresses policies over actions
get, move, eval, and put. The framework abstracts from concrete data — actions
have no parameters:

datatype action = get | move | eval | put

The human component is the Actor which is represented by an abstract type
actor and a function Actor that creates elements of that type from identities
(of type string):

typedecl actor
type_synonym identity = string
consts Actor :: string = actor

Policies describe prerequisites for actions to be granted to actors given by pairs
of predicates (conditions) and sets of (enabled) actions:

type_synonym policy = ((actor = bool) X action set)

Policies are integrated with a graph into the infrastructure providing an organ-
isational model where policies reside at locations and actors are adorned with
additional predicates to specify their ‘credentials’, and a predicate over locations
to encode attributes of infrastructure components:

datatype infrastructure = Infrastructure
"igraph" "location = policy set"
"actor = bool" "location = bool"

These local policies serve to provide a specification of the ‘normal’ behaviour of
actors but are also the starting point for possible attacks on the organisation’s
infrastructure. The enables predicate specifies that an actor a can perform an
action a’€ e at location 1 in the infrastructure I if a’s credentials (stored in
the tuple space tspace I a) imply the location policy’s (stored in delta I 1)
condition p for a:

enables I 1 a a’ = 3 (p,e) € delta I 1. a’ € e
A (tspace I a A lspace I 1 — p(a))

This definition of the behaviour for the Insider framework allows to define the
rules for the state transition relation of the Kripke structure (see Section 2.3)
for each of the actions. Here is the rule for move.

move: [G = graphl I; a @Qg 1; 1 € nodes G;
1’ € nodes G; a € actors_graph(graphI I);
enables I 1 (Actor a) move;
I’ = Infrastructure (move_graph_a a 1 1’
(graphI I))(delta I)(tspace I)(1lspace I)
ﬂ:>I—>iI’

4.2 Health Care Case Study

The case study we use as a running example in this paper is a simplified scenario
from the context of the SUCCESS project for Security and Privacy of the IoT
[3]. A central topic of this project for the pilot case study is to support security
and privacy when using cost effective methods based on the IoT for monitor-
ing patients for the diagnosis of Alzheimer’s disease. As a starting point for the

10

design, analysis, and construction, we currently develop a case study of a small
device for the analysis of blood samples that can be directly connected to a mo-
bile phone. The analysis of this device can then be communicated by a dedicated
app on the smart phone that sends the data to a server in the hospital.

In this simplified scenario, there are the patient and the carer within a room
together with the smart phone.

We focus on the carer having access to the phone in order to support the
patient in handling the special diagnosis device, the smart phone, and the app.

The insider threat scenario has a second banking app on the smart phone
that needs the additional authentication of a “secret key”: a small electronic
device providing authentication codes for one time use as they are used by many
banks for private online banking.

Assuming that the carer finds this device in the room of the patient, he can
steal this necessary credential and use it to get onto the banking app. Thereby
he can get money from the patient’s account without consent.

bankapp

healthapp

Fig. 3. Health care scenario: carer and patient in the room may use smartphone apps.

4.3 Health Care Case Study in Isabelle Insider Framework

We only model two identities, Patient and Carer representing a patient and
his carer. We define the health care scenario in the locale scenarioHealthcare.
The syntax fixes and defines are keywords of locales that we drop together
with the types for clarity of the exposition from now on. The double quotes
? 257 represent strings in Isabelle/HOL. The global policy is ‘no one except the
patient can use the bank app’:

fixes global_policy :: [infrastructure, identity] = bool
defines global_policy I a = a # ’’Patient’’ —
—(enables I bankapp (Actor a) eval)

The graph representing the infrastructure of the health care case study has the
following locations: (0) smart phone, (1) room, (2) bank app, and (3) health app:

11

In order to define the infrastructure, we first define the graph representing the
scenario’s locations and the positions of its actors. The actors patient and carer
are both initially in room. The graph is given as a set of nodes of locations and
the actors residing at certain locations are specified by a function associating
lists of nodes with the locations.

ex_graph =
Lgraph {(room, sphone), (sphone, healthapp),
(sphone, bankapp)}
(A x. if x = room then
[’’Patient’’, ’’Carer’’] else [])

In the following definition of local policies for each node in the office scenario,
we additionally include the parameter G for the graph. The predicate Qg checks
whether an actor is at a given location in the graph G.

local_policies G =
(A x. if x = room then {(\ y. True,{get, put, movel})}
else (if x = sphone then
{((\ y. has (y, ’’PIN’’)), {put,get,eval,move}), (A y. True, {1}
else (if x = healthapp then
{((Ay. (3 n. (n Qg sphone) A Actor n = y)),
{get,put,eval,move})}
else (if x = bankapp then
{((\ y. (3 n. (n Qg sphone) V (n Qg bankapp)
A Actor n = y A has (y, ’’skey’’))),
{get,put,eval,move})}
else {})))

In this policy, any actor can move to the room and when in possession of the PIN
can move onto the sphone and do all actions there. The following restrictions
are placed on the two other locations.

healthapp: to move onto the healthapp and perform any action at this loca-
tion, an actor must be at the position sphone already;

bankapp: to move onto the bankapp and perform any action at this location, an
actor must be at the position sphone already and in possession of the skey.

The possession of credentials like PINs or the skey is assigned in the infras-
tructure as well as the roles that actors can have. We define this assignment as
predicate over actors being true for actors that have these credentials. For the
health care scenario, the credentials express that the actors Patient and Carer
possess the PIN for the sphone but Patient also has the skey.

ex_creds =
(A x. if x = Actor ’’Patient’’ then
has (x,’’PIN’’) A has (x, ’’skey’’)
else (if x = Actor ’’Carer’’ then
has (x, ’’PIN’’) else True))

The graph and credentials are put into the infrastructure hc_scenario.

12

hc_scenario = Infrastructure
ex_graph (local_policies ex_graph)
ex_creds ex_locs

4.4 Attack Tree Analysis

System states in the application to the Insider framework are given by infrastruc-
tures. The initial state corresponds to the above hc_scenario; following states
are introduced by applying the state transition function. We introduce the fol-
lowing definitions to denote changes to the infrastructure. A first step towards
critical states is that the carer gets onto the smart phone. We first define the
changed infrastructure graph.

ex_graph’ = Lgraph
{(room, sphone), (sphone, healthapp),
(sphone, bankapp)}
(A x. if x = room
then [’’Patient’’] else
(A x. if x = sphone
then [’’Carer’’] else [1))

The dangerous state has a graph in which the actor Carer is on the bankapp.

ex_graph’’ = Lgraph
{(room, sphone), (sphone, healthapp),
(sphone, bankapp)?}
(A x. if x = room
then [’’Patient’’] else
(A x. if x = bankapp
then [’’Carer’’] else []1))

The critical state of the credentials is where the carer has the skey as well.

ex_creds’ =
(A x. if x = Actor ’’Patient’’ then
has (x,’’PIN’’) A has (x, ’’skey’’)
else (if x = Actor ’’Carer’’ then
has (x, ’’PIN’’) A has (x, ’’skey’’)
else True))

We use these changed state components to define a series of infrastructure states.

hc_scenario’ = Infrastructure
ex_graph (local_policies ex_graph)
ex_creds’ ex_locs

hc_scenario’’ = Infrastructure
ex_graph’ (local_policies ex_graph’)
ex_creds’ ex_locs

hc_scenario’’’= Infrastructure
ex_graph’’ (local_policies ex_graph’’)
ex_creds’ ex_locs

13

We next look at the abstract attack that we want to analyse before we see how
Kripke structures and temporal logic support the analysis.

The abstract attack is stated as [Goto bankapp, Perform eval] @797
The following refinement encodes a logical explanation of how this attack can
happen by the carer taking the skey, getting on the phone, on the bankapp and
then evaluating.

move—grab

[Goto bankapp, Perform eval] @)

Ehc,scenario
move—grab

[Perform get, Goto sphone, Goto bankapp, Perform eval] @)
This refinement is proved by applying the rule refinel (see Section 2.4). In fact,
this attack could be found by applying refineI and using interactive proof with
Isabelle to instantiate the higher order parameter 71 in the following resulting
subgoal.

. ? .
hc_scenario —™ stV pe scenario’’’

This proof results in instantiating the variable 71 to the required attack sequence
[Perform get, Goto sphone, Goto bankapp, Perform eval].

So far, we have used the combination of a slightly adapted notion of the
state transition of the Kripke structures to build a model for attack refinement
of attack trees. We can further use the correspondence between Kripke struc-
tures and attack trees to find attacks. We first define the Kripke structure for
the health case scenario representing the state graph of all infrastructure states
reachable from the initial state.

hc_states = { I. hc_scenario —; I }
hc_Kripke = Kripke hc_states {hc_scenario}

Since it is embedded into Isabelle [6], we may use branching time logic CTL to
express that the global policy (see Section 4.3) holds for all paths globally.

hc_Kripke - AG {x. global_policy x ’’Carer’’}

Trying to prove this must fail. However, using instead the idea of invalidation
[10] we can prove the negated global policy.

hc_Kripke - EF {x. — global_policy x ’’Carer’’}
The interactive proof of this EF property means proving the theorem

hc_Kripke - EF {x. enables x bankapp
(Actor ’’Carer’’) eval}

This results in establishing a trace 1 that goes from the initial state hc_scenario
to a state I such that enables I bankapp (Actor ’’Carer’’) eval. This
I is for example hc_scenario’’’ and the action path get, move, move is a
side product of this proof. Together with the states on this path the transf
function delivers the required attack path [Perform get, Goto sphone, Goto
bankapp, Perform eval].

14

5 Conclusion

Summarizing, we have provided a mechanized foundation for attack trees. The
semantics of attack trees has been defined using an embedding of modelchecking
in Isabelle leading to a proof calculus for attack trees. We illustrated the benefits
on a health care case study of an Insider attack using the semantics on the
Isabelle Insider framework infrastructures as our system state but this state
model can be replaced by other suitable state models to apply Isabelle attack
trees and Kripke structures.

There is a range of observations concerning the relation between attack trees
and Kripke structures in Isabelle that we presented in this paper and whose
conception, construction, and demonstration represents our contribution.

— Kripke structures can be used as the underlying semantics for state based
systems interpreting the attacks, i.e., providing semantics for attack trees.

— Therefore, the state transition relation can be used to define refinement steps
in the refinement part of a proof calculus for attack trees.

— Higher Order Logic variables for pre-states and post-states of an attack step
can be dynamically derived in applications of our proof calculus.

— Temporal logic formulas in the branching time logic CTL can be used in our
Isabelle framework extension supporting the detection of attacks.

— The attack tree proof calculus serves as a logical basis to judge the validity
of an attack in a given model.

— The attack tree proof calculus can be applied to case studies as demonstrated
on an [oT health care application case study.

Clearly relevant to this work are the Isabelle Insider framework and its exten-
sions [11,9,8,6] but also the related experiments with the invalidation approach
for Insider threat analysis using classic implementation techniques like static
analysis and implementation in Java [15] or probabilistic modeling and analysis
[2].

We believe that the combination of Kripke structures and attack trees is
novel in the way we tie these concepts up at the foundational level. Considering
the simplicity of this pragmatically driven approach and the relative ease with
which we arrived at convincing results, it seems a fruitful prospect to further
explore this combination. Beyond the mere finding of attack vectors in proofs,
the expressivity of Higher Order Logic will allow developing meta-theory that in
turn can be used for the transfer between state based reasoning and attack tree
analysis.

The presented foundation of attack trees in Isabelle is consistent with the
existing foundations [13,12,5] but instead of providing an on paper mathemat-
ical foundation it provides a direct formalisation in Higher Order Logic in the
proof assistant. This enables the application of the resulting framework to case
studies and does not necessitate a separate implementation of the mathematical
foundation in a dedicated tool. Clearly, the application to case studies requires
user interaction. However, the formalisation in Isabelle supports not only the ap-
plication of the formalised theory but furthermore the consistent development of

15

meta-theorems thus guaranteeing consistency at all levels. In addition, dedicated
proof automation by additional proof of supporting lemmas is straightforward
and even code generation is possible for executable parts of the formalisation.

In comparison to the existing foundations [13,12,5], the presented attack tree
framework only covers a portion of available extensions for attack trees. For ex-
ample, it does not support attack-defense trees, i.e., the integration of defenses
within the attack tree. This is a straightforward future development. Other work
on attack trees includes the extension of the formalism by probabilities and time
[1]. To support this quantitative analysis, automated verification techniques us-
ing modelchecking with the UPPAAL system and timed automata are applied as
well [14]. This direct application of modelchecking provides automated analysis
of attack trees but unlike our proof theory for attack trees it does not allow
any proofs about attack trees. Thereby, the consistency and partially also the
adequacy of the model is not guaranteed. However, we believe that a comple-
mentary use of these works with our more expressive formalisation is fruitful for
developing secure systems from early requirements.

References

1. F. Arnold, H. Hermanns, R. Pulungan, and M. Stoelinga. Time-dependent analysis
of attacks. In Principles of Security and Trust, POST’14, LNCS, pages 285-305.
Springer, 2014.

2. T. Chen, F. Kammiiller, I. Nemli, and C. W. Probst. A probabilistic analysis
framework for malicious insider threats. In T. Tryfonas and I. G. Askoxylakis,
editors, Human Aspects of Information Security, Privacy, and Trust - Third In-
ternational Conference, HAS 2015, Held as Part of HCI International 2015, Los
Angeles, CA, USA, August 2-7, 2015. Proceedings, volume 9190 of Lecture Notes
in Computer Science, pages 178-189. Springer, 2015.

3. CHIST-ERA. Success: Secure accessibility for the internet of things, 2016.
http://www.chistera.eu/projects/success.

4. C. G. Hempel and P. Oppenheim. Studies in the logic of explanation. Philosophy
of Science, 15:135-175, April 1948.

5. R. Jhawar, B. Kordy, S. Mauw, S. Radomirovic, and R. Trujillo-Rasua. Attack
trees with sequential conjunction. In 30th IFIP TC 11 International Conference
on ICT Systems Security and Privacy Protection (IFIP SEC’15), volume 455 of
IFIP Advances in Information and Communication Technology, pages 339-353.
Springer, 2015.

6. F. Kammiiller. Isabelle modelchecking for insider threats. In Data Privacy Man-
agement, DPM’16, 11th Int. Workshop, co-located with ESORICS’16, volume 9963
of LNCS. Springer, 2016.

7. F. Kammiiller. Isabelle insider framework with Kripke structures, CTL, at-
tack trees and refinement, 2017. Available from https://www.dropbox.com/sh/
rx8d09pf31cv8bd/AAALKtaP8HMX642f1040g4NLa?d1=0.

8. F. Kammiiller, M. Kerber, and C. Probst. Towards formal analysis of insider
threats for auctions. In 8th ACM CCS International Workshop on Managing In-
sider Security Threats, MIST’16. ACM, 2016.

9. F. Kammiiller, J. R. C. Nurse, and C. W. Probst. Attack tree analysis for insider
threats on the IoT using Isabelle. In Human Aspects of Information Security,

16

10.

11.

12.

13.

14.

15.

16.

Privacy, and Trust - Fourth International Conference, HAS 2015, Held as Part of
HCI International 2016, Toronto, Lecture Notes in Computer Science. Springer,
2016. Invited paper.

F. Kammiiller and C. W. Probst. Invalidating policies using structural information.
In IEEE Security and Privacy Workshops (SPW). IEEE, 2013.

F. Kammiiller and C. W. Probst. Modeling and verification of insider threats
using logical analysis. IEEE Systems Journal, Special issue on Insider Threats
to Information Security, Digital Espionage, and Counter Intelligence, 11:534-545,
June 2017 2017.

B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer. Attack-defense trees.
Journal of Logic and Computation, 24(1):55-87, 2014.

B. Kordy, L. Pietre-Cambacédes, and P. Schweitzer. Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer Science Review,
13-14:1-38, 2014.

R. Kumar, E. Ruijters, and M. Stoelinga. Quantitative attack tree analysis via
priced timed automata. In FORMATS 2015, pages 156-171, 2015.

C. W. Probst, F. Kammiiller, and R. R. Hansen. Formal modelling and analysis of
socio-technical systems. In Semantics, Logics, and Calculi (Nielsens’ Festschrift),
volume 9560 of LNCS. Springer, 2016.

B. Schneier. Secrets and Lies: Digital Security in a Networked World. John Wiley
& Sons, 2004.

17

