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Abstract—We address the problem of anomaly detection in
machine perception. The concept of domain anomaly is introduced
as distinct from the conventional notion of anomaly used in
the literature. We propose a unified framework for anomaly
detection which exposes the multifacetted nature of anomalies
and suggest effective mechanisms for identifying and distinguish-
ing each facet as instruments for domain anomaly detection.
The framework draws on the Bayesian probabilistic reasoning
apparatus which clearly defines concepts such as outlier, noise,
distribution drift, novelty detection (object, object primitive),
rare events, and unexpected events. Based on these concepts
we provide a taxonomy of domain anomaly events. One of the
mechanisms helping to pinpoint the nature of anomaly is based
on detecting incongruence between contextual and noncontextual
sensor(y) data interpretation. The proposed methodology has
wide applicability. It underpins in a unified way the anomaly
detection applications found in the literature. To illustrate some of
its distinguishing features, in here the domain anomaly detection
methodology is applied to the problem of anomaly detection for
a video annotation system.

Index Terms—Domain anomaly, anomaly detection framework,
machine perception, anomaly detection mechanisms

I. INTRODUCTION

Machine perception systems are invariably designed to
deliver a specific functionality and consequently, they are
domain dependent. Their design involves collecting a lot of
training data and all the modules needed to accomplish a
required task are trained as part of the design exercise. If the
application domain changes, such systems are paralysed. They
cannot adapt to a new scenario, even if there is a considerable
degree of commonality between the existing competence and
the desired new competence.

When the system is exposed to a new experience, some
or all of the current models used by the system will fail to
relate observed sensor(y) data to a correct meaning. This will
be reflected in the support for various hypotheses allowed by
each model becoming weak. We shall refer to this phenomenon
as anomaly, which should trigger other mechanisms to initiate
transfer of learning, so that the system can regain its useful
functionality.

We address the problem of anomaly detection in machine
perception. Building on the current state of the art in detecting
anomalous events [39], [50], [58], the main goal of the paper
is to develop a general framework for anomaly detection. We
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introduce the concept of domain anomaly, which differs from
the conventional meaning of anomaly in the sense that it relates
to a set of models characterising a domain. By a domain
anomaly we understand a situation when none of the existing
models can explain observed data. Using a mathematical ap-
paratus drawing on Bayesian probabilistic reasoning, existing
anomaly detection approaches are presented in a unified way
and novel detection mechanisms are proposed. The innovative
feature of the framework is that it exposes the multifacetted
nature of anomaly and makes it possible to identify the
diverse causes that can give rise to anomalous events, as
well as corresponding detection mechanisms. The proposed
extension of known anomaly detection mechanisms in the
literature is very important as it enables the anomaly detection
system to select an appropriate response. In particular, we
shall distinguish between measurement outliers, distribution
contamination, distribution model drift, new objects composed
of known primitives, and new primitive model vocabularies.
These nuances will allow us to introduce a taxonomy of
domain anomaly events.

The contributions in this paper can be summarised as
follows:

• We develop a unified framework for anomaly detection.
This framework is a major extension of the conventional
anomaly detection approaches reviewed in the papers of
Markou and Singh [35], [36] and encompasses the recent
important contributions to the anomaly detection problem
presented in [58].

• We identify the concept of sensor data quality and model
drift as essential elements of anomaly detection, facilitat-
ing understanding of its underlying causes.

• We argue that anomaly can also be caused by a model
drift which is not necessarily observable in terms of out-
liers, and suggest mechanisms for model drift detection
and classification.

• We propose a novel methodology for anomaly detection
which draws on these criteria. The methodology uses
jointly i) the concept of observation likelihood, ii) de-
cision reject option, iii) congruence [58] of multiple (e.g.
noncontextual and contextual [60], [33]) interpretations,
iv) sensor data quality [34], v) and model drift to detect,
identify and categorise different anomalies.

• We argue that Bayesian surprise [25] is not an ideal con-
cept to measure incongruence of multiple interpretations
and propose an alternative which obviates the pitfalls of
Bayesian surprise.
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• We identify and distinguish a number of different
anomaly scenarios based on the proposed approach.

Some aspects of the proposed methodology are illustrated
on the problem of anomaly detection in the context of transfer
learning from automatic interpretation of videos of tennis
singles to tennis doubles. We show that even in this relatively
simple case, more than one model of the application domain
triggers anomaly. We demonstrate that the proposed method-
ology successfully identifies the nature of these anomalies.

The paper is organised as follows. In the next section we re-
view the literature on anomaly detection. However, in machine
perception there are only a few examples of anomaly detection,
mainly dealing with the discovery of new objects. Section
III introduces the concept of domain anomaly and discusses
various mechanisms for anomaly detection categorised by the
type of model (generative in Section III-A or nongenerative
in Section III-B) adopted for automatic sensor(y) data inter-
pretation. We discuss the role of incongruence between the
interpretations generated by multiple experts as an anomaly
flagging mechanism in Section III-C. Most commonly multiple
sensor(y) data interpretations are derived by contextual and
non-contextual experts. A typical example of contextual deci-
sion schemes is presented in Section IV. A unified framework
for anomaly detection is introduced in Section V where we
elaborate some of the nuances of anomaly and how they relate
to concepts such as unexpected event, rare event, outlier, out of
vocabulary object, and out of vocabulary object primitive. The
framework and anomaly detection methodology are applied
to the task of domain anomaly detection in a sports video
annotation system in the context of transfer of learning in
Section VI. The paper is drawn to conclusion in Section VII.

II. RELATED WORK

The problem of anomaly detection has received considerable
interest in the literature because of its practical potential. Our
aim is to look at anomaly detection in the context of com-
plex machine perception systems performing reasoning using
multiple hierarchical models where the notion of anomaly
assumes new levels of complexity. We shall draw on the
existing surveys to define a baseline for anomaly detection
and a platform from which more complex notions can be
developed.

The early interests in abnormality, see e.g. [15], recorded
in the statistical literature in the nineteen century, were moti-
vated by problems of normal distribution parameter estimation
caused by discordant observations. This seminal work even-
tually led to the theory of robust estimation [24]. Although
solving a different problem, the byproduct of robust estimation
methodology is the identification of outliers, which can be
used for anomaly detection [44], [7].

The classical view of anomaly as an outlier from some
known distribution [6], [1] which represents normality is re-
ferred to as point anomaly. The basic classification of anomaly
detection approaches applicable to point anomaly, which has
been introduced in preceding surveys [35], [36], [22], [2],
identifies the following categories:
• statistical [7], [21], [41], [37]

• nearest neighbour [31]
• classification [42], [55], [26], [38], [49], [27], [12]
• clustering [19], [20]

A recent comprehensive and influential review [10] augments
this classification by two other categories of methods, namely

• information theoretic [4]
• spectral [61]

These approaches use different criteria to define abnormality
but basically they relate to the same notion of anomaly.

Learning of normality depends on the training data avail-
able. It can be based on samples representing the mundane
(normal) process, or both normal data and samples of abnor-
mal observations. The statistical approaches normally model
the distribution functions, whereas the classification methods
strive to delineate normal observations by a boundary of
normality. This can be learnt from one class training data
(set of positive training instances) [52], [53], [54], [46],
[40] or using negative samples as well (negative, anomalous
instances) [43], [50]. The learning process can be supervised,
semi-supervised or unsupervised. Often the training data is
corrupted by anomalies. A learning scheme that takes labelling
impurities into account has been proposed e.g. in [16]. The
relative merits of learning a positive instances detector rather
than a negative instances detector has been investigated by
[17].

The point anomaly does not capture anomalous situations
such as those where individual observations may be consistent
with normal data, but collectively, behaviourally or in context,
the observations deviate from normality. In their survey, Chan-
dola et al. [10] and [45] do identify this notion of anomaly
and review the existing literature as a separate category, with
one of the solutions being a conversion of these notions of
anomaly into a point anomaly detection problem. A typical
example of anomaly in context is an ordered sequence of
observations, such as time series, where any single observation
in the sequence may appear normal, but as a group, or jointly
with its neighbours, the observation is an outlier [28], [8],
[47], [33]. Anomalies in sequences of symbolic data have been
studied in [13] and spatial outliers in [51]. A Markov chain
model has been applied in [60].

More complex situations arise in multisensor systems where
it is important to discriminate between corrupted data, faulty
sensor nodes, and interesting events such as intrusion [18],
[14], [11], [48], [62]. The various scenarios cannot be dis-
tinguished by simple point anomaly detection, but more so-
phisticated reasoning is required [39]. Often the detection of
anomaly is motivated by the need to adapt to new environ-
ments [63].

In systems with multilevel representation of knowledge,
each phenomenon will have more than one model (reference),
depending on the number of levels of knowledge representa-
tion. This gives rise to a completely new notion of anomaly, a
compound anomaly. The recent paper on rare events detection
[23] is tackling such a problem, but under the assumption
that some examples of rare classes are available for learning.
Our approach draws on the fact that in the case of compound
anomalies the respective interpretations of observations based
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on the models at the different levels of representation disagree.
This disagreement is referred to as incongruence. There is very
little work in this emerging problem area, with the exception
of speech recognition.

Incongruence detection is the focus of a European Union
project Dirac, concerned with the detection of rare events.
The idea advocated in [57], [56], [58] is to compare the
outputs of weak and strong classifiers. A discrepancy in
their output is flagged as incongruence. The approach follows
the efforts in out-of-vocabulary word detection [9]. In this
case the weak classifier, i.e. the phoneme detector, may
be delivering phoneme hypotheses with confidence, but the
sequence of detected phonemes is rejected by the strong,
contextual classifier, because the word they correspond to does
not exist in the system vocabulary. This discrepancy would
suggest that an out-of-vocabulary word has been encountered,
rather than a noisy speech segment which would produce
low confidence phoneme hypotheses. Other examples include
anomaly detection in multi-modal systems, where discord is
manifest in the inconsistency of evidence provided by different
data channels (modalities) [5].

The work in [57] and [65] uses the notion of compound
anomaly detectable via incongruence for the detection of new
subcategories of objects by measuring the disparity between a
generalised context classifier (when giving a low confidence
output) and a combination of ’specific-level’ classifiers (gen-
erating a high confidence output).

These pioneering efforts in detecting anomalous observa-
tions in perception systems have identified new problems
that require novel notions of anomaly and the corresponding
formulations of the anomaly detection problem. It is our aim in
this paper to develop a comprehensive framework for anomaly
detection which will expose the deficiencies of the existing
solutions. More positively, the framework will identify all the
mechanisms needed for determining the true nature of anomaly
and its detection. This framework is developed in the next
section.

III. ANOMALY DETECTION MECHANISMS

In general, any domain will be characterised by a set of
models M ,

M = {Mi|i = 1, ..., ND} (1)

where Mi is a specific model relating to an element of domain
D, and ND represents the number of models characterising
the domain. The set, M , will be referred to as the domain
model and it will be assumed that it has been loaded into the
system operational memory to enable the interpretation system
to function. It should be noted that each element of domain D
may consist of multiple submodels, thus forming a subdomain.
For instance, one of the elements of the tennis video domain
is a set of objects pertinent to the domain. Recognising these
objects will require object appearance models and the set of
such models will form a subdomain.

We are interested in detecting domain anomaly, by which
we understand the failure of the domain models to explain the
observed data. The functional form of a model depends on
the modelled phenomenon. In very broad terms, all models

used in machine perception can be categorised into generative
and nongenerative. In the case of generative models, there is
a transparent relationship between observations and models.

Nongenerative models lose the direct link to observations.
This is exemplified by discriminative models which aim to
identify the class identity of a sensory stimulus. However,
a class identity is not sufficient to synthesise any specific
observation which conveyed the class identity information
in the first instance. Nongenerative models transform the
interpretation problem from modelling observations to parti-
tioning the observation space. The latter invariably introduces
extrapolation which makes it difficult, if not impossible, to
detect anomalies.

In the following we shall look at these two types of models
from the anomaly detection point of view in more detail. Most
importantly, neither generative, nor nongenerative methods
directly detect domain anomaly, which arises when none of
the domain models is able to explain the observed data.
Nevertheless, they are the key instruments in domain anomaly
detection and after their overview in the rest of the section,
their role in domain anomaly detection will be discussed in
Section V.

A. Generative models

Generative methods link model identity and measurements
in a direct manner. In general the measurements will be derived
from the sensor(y) data in some fashion. In computer vision,
at the lowest level we may be dealing directly with image
pixels, or with some higher level representations, such as
image descriptors, or shape primitives. A generative model
specifies how measurements are generated. By the same token,
given a measurement, we can hypothesise a model and verify
whether the measurement could have possibly been generated
by the model by computing the likelihood of the observation.
Typically, especially when dealing with signals captured by a
sensor, the assumed generative process will be probabilistic.
However, there are other generative models, e.g. grammatical
models, which also link a model directly to observations but
in this case via a set of deterministic generative rules. For the
moment, we shall confine our discussion to probabilistic gen-
erative models which are defined by probability distributions.
We shall refer to them as distributional models.

A distributional model p(x) applies to a phenomenon where
the process, generating members of a population, is char-
acterised by a probability distribution over all its possible
multidimensional outcomes, x, i.e. x is a random vector
variable. An anomaly is an observation that is not consistent
with our model. In general, an anomaly is manifest in a very
low likelihood value of observation x, and can be detected by
measuring p(x).

An outlier relates to a single observation. In many inter-
pretation tasks, instantiation of a model involves multiple
observations. We can still apply the notion of outlier to
all the observations {x1, ..., xk} jointly, by using the joint
distribution p(x1, ..., xk) as our model. By assuming that our
observations are independent, identically distributed (i.i.d.)
random variables, we we can measure the log likelihood of
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their occurrence using

log p(x1, ...., xk) =

∫
p̂(x) log p(x)dx (2)

where p̂(x) is the empirical distribution modelling the ob-
servations, while p(x) is the hypothesised model distribution.
Alternatively we can adopt the Kulback-Leibler divergence

∆KL =

∫
p̂(x) log

p̂(x)

p(x)
dx (3)

Comparing the two measures in (2) and (3) we note that they
are related. The advantage of the Kulback-Leibler divergence
is that it goes to zero when the empirical and model distri-
butions are identical. In contrast, the optimum value of log
likelihood, which will be achieved when the two distributions
are identical, will be distribution dependent. This may cause
some problems in setting anomaly detection threshold.

For multiple observations, the test in (3), which we shall
refer to as Distribution anomaly, is more powerful than the
likelihood test in (2), as each observation individually may be
consistent with the model distribution and therefore, it would
not be flagged as outlier. However, together the observations
define an empirical distribution p̂(x), which may deviate from
the model distribution.

It cannot be over-emphasised that neither outlier anomaly
nor distribution anomaly necessarily imply domain anomaly.
They simply indicate whether one or more observations are
consistent with a hypothesised model. Observations that are
anomalous with respect to a given model may be perfectly
consistent with another model. Thus observations are anoma-
lous with respect to a domain (subdomain) if and only if they
cannot be explained by any of the models characterising the
domain (subdomain).

B. Nongenerative Models

Nongenerative models do not explicitly estimate the mea-
surement distributions. Consequently they do not facilitate
any testing for measurement consistency with a hypothesised
model. This renders anomaly detection rather difficult. A
typical scenario where nongenerative models are used for
sensory data interpretation is data classification. Nongenerative
models are favoured in pattern classification because they
focus on the classification task, rather than on modelling
the class conditional measurement distributions. Owing to the
emphasis on classification, rather than on generative mod-
elling, the resulting solutions tend to yield better classification
performance.

To formalise the discussion, consider a domain Ω with
elements ωi, i = 1, r each representing a class. Suppose
the elements of Ω are not directly observable, i.e. they are
observable only indirectly via a vector of measurements x.
Then the interpretation of an observation becomes a standard
pattern recognition problem where x is assigned to that class
which is most probable, i.e.

x→ ωi if P (ωi|x) = max
l
P (ωl|x) (4)

It has been suggested in [58] that instead of working directly
with the a posteriori class probabilities, it may be preferable

to use a normalised version, ∆c(x), referred to as decision
confidence, which is defined as

∆c(x) =
P (ωi|x)− ei

1− 2ei
(5)

where ei is the average probability of objects belonging to
class ωi being misclassified. However, either measure, (eq. (4)
or (5)), may suggest false confidence as an aposteriori class
probability can be high even when p(x) → 0, i.e. when the
measurement is an outlier. This explains why discriminative
classification methods cannot detect an anomaly reliably. They
will always identify the most probable hypothesis whether
they are competent to make a decision or not. Thus alternative
solutions are required, as suggested in [58] (see the paragraph
on incongruence below).

It is evident that if discriminative models are to be used
to get better classification performance, they need a gating
channel that will use one of the observation anomaly detection
methods described in Subsection III-A to establish whether the
output of a discriminative model procedure can be accepted
or rejected. Alternatively, this gating could be accomplished
using a discriminative method such as [52], [53], [54], [46].
However, these one-class classifiers would have to learn the
domain of the measurement distribution p(x), rather than the
classification task itself. Thus even in this case one would need
a separate method for anomaly detection and for classification.
This is an important conclusion which contributes to the
understanding of the anomaly detection problem. We shall
return to this point in Section V.

Note also that although the decision confidence measure
discussed above cannot be used alone for anomaly detection,
it is a useful measure for characterising the sensory data inter-
pretation landscape, especially helping to distinguish anomaly
from labelling errors due either to genuine ambiguity, or noisy,
or otherwise corrupted measurements.

C. Incongruence

Although a single expert does not have the capacity to detect
and or qualify unexpected events, the ability to detect anomaly
improves dramatically when more than one expert is involved
in decision making [58]. In the past decade or so, we have
seen the tendency to engage more than one expert for sensory
data interpretation for a multitude of reasons. Multiple experts
improve performance by exploiting
• multiple modalities of sensing
• multiple representations
• contextual information
• interpretation process structuring

If a domain is characterised by more than one model type, the
chance of two models reacting in exactly the same way to an
anomaly is quite low.

Let P̃ (ωj |x) and P (ωj |x) denote the aposteriori probabil-
ities associated with the hypothesis that model ωj explains
the input data, which have been generated by two experts.
The idea of measuring incongruence emerged in the context
of speech recognition where one of the challenges is to detect
out-of-vocabulary words, and this is achieved by comparing
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noncontextual and contextual phoneme classifiers [29]. This
idea has been considerably developed within the European
project DIRAC where it has been extended and applied to
other multiple classifier scenarios to detect incongruence of
multimodal experts [5] and to the problem of detecting novel
subclasses of objects [57]. By considering the aposteriori
class probability distribution output by one of the experts as
a reference, one can detect incongruence by measuring the
Kulback-Leibler divergence between the two distributions [29]
as

∆BS =

r∑
j=1

P̃ (ωj |x) log
P̃ (ωj |x)

P (ωj |x)
(6)

which is known as the Bayesian surprise [25]. A close in-
spection of the measure reveals that it goes to infinity for
any hypothesis ω for which P (ω|x) → 0 while P̃ (ω|x) 6= 0.
This can occur even for insignificant hypotheses and result in
producing false alarms of incongruence. To avoid the problems
associated with the Bayesian surprise measure we propose
an alternative which focuses on the dominant hypotheses
flagged by the two experts. Let us denote these hypotheses
by µ̃ = arg maxω P̃ (ω|x) and µ = arg maxω P (ω|x). Then
an incongruence indicator can be defined as

∆max =
1

2
[|P̃ (µ̃|x)− P (µ̃|x)|+ |P̃ (µ|x)− P (µ|x)|] (7)

though other norms could be used as well. This incongruence
measure has several advantageous characteristics. It is sym-
metric, i.e. its value does not depend on an arbitrary choice
of one of the experts as a reference. It eliminates the noise
injected by the nondominant classes. Its values are not driven
to infinity, but are confined to the interval (0, 1).

It should be noted that any incongruence detected between
the outputs of experts only flags potential anomalies, rather
than pinpointing their origin and nature. For that a follow-up
analysis using observational anomaly detectors would have to
be carried out. This will further be explored in Section V.

D. Overview of findings

It is pertinent to summarise the key points of the discus-
sion so far. The classical methods of anomaly detection are
concerned with observational anomalies, which are of two
types: likelihood anomaly (outliers) or distributional anomaly,
depending on whether we are dealing with single or multiple
measurements. Detectors based on these notions of anomaly
do not directly flag a domain anomaly, but are the means of
detecting domain anomaly.

Commonly, data interpretation processes make use of non-
generative models which are often preferred to generative ones
because of their focus on decision boundaries and their speed
of execution. However, they also have a disadvantage; they
lack the capacity to detect domain anomalies. However, when
the interpretation process involves multiple experts for each
decision, the situation changes. In particular, incongruence
between the outputs of multiple nongenerative models is
indicative of potential domain anomaly. Incongruence can also
help to qualify the type of anomaly, even in the case of gener-
ative classifiers. It can be measured using Bayesian surprise.

Once incongruence is detected, the cause of anomaly and its
nature must be analysed using supplementary techniques based
on observational anomaly detection.

IV. CONTEXTUAL CLASSIFIERS

In the previous section we showed that nongenerative mod-
els do not have the capacity to detect domain anomaly, with
the exception of the cases when more than one expert is
involved in the instantiation of a hypothesis. Incongruence of
the expert outputs is a sufficient condition for anomaly, the
nature of which has to be established by further processing.
In the list of scenarios where multiple experts might be
engaged in interpretation, the contextual classifier category is
a particularly important family. It encompasses classification
approaches where sensor(y) data is represented hierarchically
in the process of deriving a symbolic representation of the
sensor(y) signals, as in the application discussed in Section
VI. At each level of representation we then have two opinions
on the class identity of a segment of data, voiced by a
noncontextual expert, using only the measurements relating
to the data segment, and a contextual expert which bases the
decision on the information drawn from both the segment and
its neighbours. The noncontextual classifiers are often referred
to as weak classifiers and contextual ones are known as strong
classifiers.

Contextual classifiers [60], [33] are important not only
because of their prevalence in machine perception, but also
because they provide information that facilitates a deeper
analysis of anomalous situations. From the methodological
point of view they are interesting because contextual decision
making can be formulated in many different ways.

Hierarchical models are composed of objects (object prim-
itives) which are combined at the next level to construct
higher level concepts. Let a meaningful group be constituted
by k components with associated measurements xi, i =
1, ..., k and their labels θi. Then apart from noncontex-
tual interpretation of each component based on P (ωi|xi),
we can also interpret objects in context by computing
P (θi|x1, .., xk, θ1, ...., θi−1, θi+1, .., θk), which can be be ex-
pressed as

P (θi|x1, .., xk, θ1, ...., θi−1, θi+1, .., θk) =
p(x1,...,xk|θ1,..,θk)P (θ1,..,θk)∑

λ p(x1,...xk|θ1,..,θi=λ,...,θk)P (θ1,..,θi=λ,...,θk)

(8)

where P (θ1, ...θi, .., θk) is the prior world model of object
configurations, and p(x1, ..., xk|θ1, .., θk) denotes the joint
measurement distribution. We can see that anomaly detection
becomes quite complex. First of all, individual object detectors
can produce anomalous results either because of the associated
measurement is an outlier, or the primitive concept is missing
from the list of primitives. We can also have an anomaly
caused by a missing item in the world model. Low values of
the joint measurement distribution could also be flagging an
outlier. Thus there are four drivers behind anomalous situations
and, to understand the meaning of anomaly, these have to
be properly differentiated. We shall explore these different
situations further in Section V.

As anomalies of different kinds can occur jointly, meth-
ods for pinpointing their cause is required. The observation
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anomaly and incongruence measures discussed in Section III
can be used as anomaly detection mechanisms, and help
to identify different anomaly scenarios from the combinato-
rial list of possibilities generated by the four main drivers
of anomaly. There are various ways this can be accom-
plished. For instance, for each primitive, i, we would ex-
pect an agreement between the probability, P (θi|xi), as-
signed by a weak (non contextual) expert and P̃ (θi|xi) =
P (θi|x1, .., xk, θ1, ...., θi−1, θi+1, .., θk) assigned by a strong
(contextual) classifier. The sequence of incongruence measure
values ∆(i), i = 1, ..., k would need to be further analysed
to discriminate between different scenarios. There are some
simple scenarios which are indicative of, for instance, the
existence of an unknown class, or (the case) of noisy mea-
surements. However, the complexity of the anomaly landscape
is quite high, especially taking into account the role of
measurement likelihoods in identifying outliers. There are no
comprehensive anomaly measures at the moment which could,
in a systematic way, reflect all the different anomaly scenarios.

When the labels on the neighbouring primitives are not
available, the computation of the strong classifier probability
P̃ (θi|xi) = P (θi|x1, .., xk) involves compounding the sup-
porting evidence for a particular hypothesis over all contextual
interpretations. This will be illustrated in Section VI-A where
we discuss an example application exercising features of the
proposed framework.

As already pointed out in Section III-A, in many cases
objects or phenomena constituted by primitives do not have
a fixed structure, as for instance, do words in a vocabulary,
which are defined in terms of specific sequences of charac-
ters. The structure will be determined by a grammar, or a
probabilistic model capable of generating different structures.
There are many models that fall into this category, with a
Markov model being the most common. Under the Markovian
assumption the computation of the contextual probabilities
of the class identity of the successive primitives can be
considerably simplified.

V. ANOMALY DETECTION FRAMEWORK

One of the key mechanisms of anomaly detection exploited
in many of the scenarios is outlier detection. In almost all
cases outlier detection relates to probability distributions,
but domain anomaly arises when one or more observations
cannot be explained by our world models. As a result of the
unified treatment of the anomaly detection problem in different
scenarios, a number of important conclusions emerge, which
facilitate the development of an appropriate anomaly detection
methodology for machine perception applications.

The various output states of anomaly assessment are sum-
marised in Table I. They can be identified by analysing the
relevant factors which include the likelihoods of measurements
made on objects (components), the distribution of aposteriori
probabilities for the various object/component hypotheses,
aposteriori probabilities of contextual labelling of components,
or unconditional likelihood of joint observations on multiple
components. Anomaly can also be caused by distribution
drift, and this can in principle happen without any individual

observation being an outlier. An anomaly can be also a
manifestation of some measurement corrupting processes such
as noise. This situation should be recognised by means of
auxiliary measurements such as image (sensor data) quality
measures.

Referring to the multiplicity of the factors that can lead
to anomaly, the identification of the different situations is far
from trivial. We can clearly conclude that none of the papers
reviewed in Sections II and III are capable of detecting and
distinguishing all the nuances of anomaly. The key approach
used in the literature, which effectively defines a reject class,
makes use of only one of the measures listed in Table I, i.e.
the distributions of posteriori class probabilities. The work in
[32] supports a more sophisticated detection and analysis of
anomaly, but it does not take into account all the cues identified
in Table I. In principle it is extendible to identify certain
other anomaly cases. However, even this approach is limited in
scope, as it does not take the measurement distributions into
account and has no mechanism for independent assessment
of the quality of observational data to avoid generating false
anomaly positives.

We propose a comprehensive methodology for anomaly
detection which builds on the evaluation measures suggested
for the various anomaly factors in the literature. The key
contribution here is that all the relevant factors have to be
evaluated jointly. Thus for single entities, we have to assess
measurement likelihood, decision ambiguity and sensory data
quality. For structures, in addition, we have to measure incon-
gruence between noncontextual and contextual interpretations
of the structural primitives, as well as the likelihood of joint
observations of these primitives. The bag of tools therefore
comprises:

1) Observation anomaly (outlier) detector- using likeli-
hood (e.g. p(xi|θi), p(xi),∀i, p(x1, ..., xk). An outlier
can be identified using any of the standard methods
suggested in the literature (viz a comprehensive review
in [35]), such as likelihood falling below a certain
threshold.

2) Reject option detector- The lack of convincing support
for any of the hypotheses associated with an application
domain, whether relating to single entities or structures.
A reject option can be flagged by measures defined
in terms of aposteriori probabilities of the various hy-
potheses, such as the decision confidence measure [58]
introduced formally in (5) or an entropy measure. Note
that a lack of confidence in a decision may be due
entirely to genuine ambiguity, and can be observed even
in the case of good quality sensor data.

3) Incongruence detector- Any inconsistency between the
interpretations suggested by two experts in general,
and by noncontextual and contextual labelling processes
relating to the components of a structure in particular,
is potentially indicative of anomaly. The nature of an
anomaly flagged by incongruence will depend on the re-
spective confidences in these two decision outcomes. In-
congruence can be measured as suggested, for instance,
in (7) in Section III, or using machine learning [32].
The anomaly types associated with incongruence include
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Fig. 1. Domain anomaly detection system architecture. The sensor(y) data
to be interpreted feeds into a discriminative object/primitive (noncontextual)
classification system. The output of the noncontextual decision making system
is then channelled to a contextual classifier. The ”noncontextual model” stands
for object/primitive/component model, and the contextual model captures
the ”scene” (configuration) information. Both classifier outputs are fed into
decision incongruence detector and model drift monitor.The sensor(y) data
is also processed by generative models to measure the marginal and joint
likelihoods of the observations. These likelihoods help to detect and qualify
anomalous situations, with the help of data quality estimates and decision
confidence measurements.

unexpected event, where a given component is out of
context, a rare event, where a given configuration of
components occurs very infrequently, and an unknown
structure (out of vocabulary word).

4) Sensory data quality gauge- An independent assess-
ment of sensory data quality is necessary to disam-
biguate some of the anomaly cases where the above
detectors alone would not be able to judge whether,
for instance, incongruence between noncontextual and
contextual labelling of structural components is caused
by model inadequacy or by measurement errors. This is
a largely unexplored area, but it is evident that sensory
data quality is a multifacetted concept. Standard mea-
sures of, e.g., signal to noise ratio, resolution, bandwidth,
contrast, etc. and their combination, will be indicative
of various aspects of quality and can be used for this
purpose (see e.g. [34]).

A schematic diagram of the overall anomaly detection
system is shown in Figure 1. The system is illustrative of
the case when the multiple (two) discriminative models re-
late to noncontextual and contextual labelling of individual
objects/primitives. For other scenarios, such as multimodal

experts, the system would have to be suitably adapted. The
anomaly detection subsystem engages five different mecha-
nisms: Observation outlier detection, and decision confidence
estimation for the contextual and non contextual classifiers,
data quality gauging, decision incongruence detection, and
model drift monitoring. The anomaly detection system dia-
gram subsumes the noncontextual decision-making scenario
where the scene model would not exist, and congruency would
not be measurable. It cannot be over-emphasised that the
detection of an anomaly and its comprehensive qualification
cannot be successfully accomplished without all these sources
of information contributing to the final inference. We do not
detail the actual anomaly analysis processes as they will be
problem specific. The anomaly analysis stage of the system
in Figure 1 can identify different states of the sensor(y) data
interpretation (model instantiation) process and can detect
different types of anomaly, depending on the information
provided by the different gauging systems, which have been
identified and suitable measures suggested. In the following
the various output states will be briefly elaborated.

a) No anomaly: This refers to the normal mode of
operation when a good quality observation supports a distinct
hypothesis from the available set of possible interpretations.

b) Noisy measurement: When the measurements are
affected by noise, the interpretation of a single entity will
inevitably become more ambiguous. The ambiguity will be
reflected in the entropy of the aposteriori class probability
distribution. This case should be flagged by a quality mea-
surement extracted from the sensory data.

c) Unknown object: When sensory data relates to an
object which has no model in the existing model database,
the likelihoods of the unconditional measurement distributions
will be low or even report outliers. This will inevitably lower
the entropy of aposteriori class probabilities and consequently
the decision confidence. However, these two indicators alone
cannot differentiate between the noisy measurement scenario
discussed in Paragraph b above and the case of an unknown
object. While the latter should trigger a learning mode during
which the model database is augmented by a new object
model, the former should simply issue a warning about the low
confidence in interpretation, as a result of noisy observation.
These two types can be discriminated with the help of a
suitable measure of sensory data quality. The case of unknown
object would be reflected in the sensory data quality measure
indicating good quality signal.

d) Measurement model drift: Unrepresentative training
data, or changes in environmental conditions, may result in
measurement model drift when the designed system is de-
ployed operationally. Such a drift will not necessarily be mani-
fest in the detection of outliers. These changes can be detected
by monitoring the measurement distributions over time and by
comparing them with the learnt models. Potentially there are
two main situations of interest. Either the underlying models
remain conceptually the same and a drift simply signifies that
the measurement model should be adapted to accommodate
the range of operational conditions. Alternatively, the drift is
a result of semantic domain changes which call for learning
new domain models.

7



e) Measurement ambiguity: Genuinely ambiguous
measurement will give rise to low confidence decisions.

f) Congruent labelling: A structure is formed by its
components (primitives). Different configurations of compo-
nents define different structures. If noncontextual and contex-
tual labelling of the components are congruent, then the obser-
vations are deemed to be consistent with the domain models
and the conduct of the interpretation process is considered to
be normal. Some configurations of components may occur less
frequently than others. Such configurations are congruent but
correspond to rare events.

g) Unknown structure: If the component labelling is
performed with confidence, but the resulting configuration
does not exist in the domain model base, the observations
most likely relate to an unknown structure. A typical exam-
ple of this situation is out-of-vocabulary word detection in
speech recognition. In this application words are composed
of phonemes, and the world of all the possible utterances
is modelled by a vocabulary, i.e. a list of valid words. If a
speech utterance contains a word which is not included in
the vocabulary, such as proper names of people and places,
the phoneme recogniser may function with confidence but fail
to output a sensible interpretation. However, the contextual
interpretation of the components will be incongruent with the
noncontextual interpretation. This incongruence observed in
the context of good quality sensory data will be indicative of
the configuration of components forming no known structure.
The model base will have to be updated to make it complete,
or potentially a new domain model will have to be created
(e.g. vocabulary for another language).

h) Unexpected structural component: Here the most
likely cause of the measurements on some components being
outliers is the absence of a relevant object/component model.
Although in this scenario the sensory data quality would be
high, the observational evidence would fail to support any
component model in the model base and the event would be
deemed to be unexpected, signifying a domain anomaly. Note
that unexpected event could also arise for instance when, for
computational expediency, only a subset of object models is in
active use. However, if the observed data cannot be interpreted
congruently using the active section of the model base, but
is interpretable using an extended or complete model base,
then the relevant event would not be anomalous. In fact it
would be a rare event. Unexpected event could also be caused
by spurious noise which affects only the measurements on a
single object/component. Such an event would be unexpected
by virtue of the prevalent context. The reasoning mechanism
(not elaborated herein) that analyses the various anomaly
qualifying measures would have to allow for all the possible
outcomes and, if necessary, instigate a follow up exploration
to disambiguate the various options.

i) Unexpected structure and structural components:
When the application domain of a machine perception system
is changed, neither component models, nor structure models
are relevant to observations. A simple example is an optical
character recognition system designed for automatic reading
and understanding (word level) text in English presented with
a text in Arabic. In such a case neither the world model

(vocabulary), nor the set of Latin character measurement
models will be relevant to the task. The domain change will be
characterised by most observations being classified as outliers
for all class conditional measurement distributions, accompa-
nied by a systematic failure of component interpretation. If, at
the same time, the sensory data quality is high, these anomaly
detection measures will be indicative of a major change in the
sensory data content and the system will have to switch to a
training phase to learn the new domain models.

j) Noisy joint measurements: If the anomaly detection
tools discussed in the previous paragraph exhibit similar symp-
toms, but the sensory data quality is deemed to be low, the
most likely interpretation of the situation is that more than one
observation are severely corrupted by noise or changes in the
sensory data acquisition conditions. The first corrective step in
this situation is to initiate a system diagnosis and environment
monitoring check to eliminate any malfunction.

k) Component model drift: Referring to our discussion
in Paragraph d above, the class conditional measurement
distributions relating to structural components may be subject
to drift. Again, this would not necessarily become obvious
from individual observations as these may perfectly well be
distribution inliers. However, monitoring these distributions
over time would give an opportunity to detect any drift that
requires adaptation, or alternatively, that may be indicative of
the underlying models being rendered irrelevant by a change of
sensory data content. The techniques suggested in Paragraph
d would be applicable to the problem of model drift and its
identification.

l) Ambiguous measurements: Ambiguous interpreta-
tion of components may give rise to false positive incongru-
ence. In such situations, the anomaly detection mechanism
should be disabled.

The domain anomaly cases discussed in the preceding
paragraphs are identified in Table I. Their taxonomy derives
from the type of subdomain they relate to, namely a component
subdomain or a configuration subdomain, resulting in the
following three categories:

1) Component Domain Anomaly CpntDomAn
2) Configuration Domain Anomaly CfgDomAn
3) Component and Configuration Anomaly

Cpnt&CfgDomAn
The observational and distributional anomalies are merely
some of the detection tools that are needed to flag and identify
a domain anomaly.

In Table I we cite one or two examples for each category of
anomaly, as well as the cases where data quality or decision
ambiguity measures are used to disable anomaly detection
mechanisms so as not to generate false positives. The examples
in the next section arise in interpreting a video of tennis
doubles using a system trained on tennis singles. The only
exceptions (no examples given) are Case i which would arise
in e.g. speech recognition where a change of language would
potentially involve both new component and new configuration
models, and Case l, where a detected drift of component
distributions could be accompanied with a change of high level
rules. For instance, analysing a badminton video with a tennis
game interpretation system would be a case in point.
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VI. ANOMALY DETECTION IN TENNIS VIDEO
INTERPRETATION

We shall demonstrate some elements of the architecture
discussed in the previous section on the problem of anomaly
detection in the domain of sports video annotation. The
anomaly detection problem arises in the context of an au-
tonomous system which has the ability to interpret video
of tennis singles, and the long term aim is to transfer this
competence to a new domain, such as game of badminton,
volleyball, or table tennis.

The tennis annotation system we use as a basis is quite
complex, comprising more than 15 modules, with each module
realising its functionality with the help of multiple models
[30], [59]. The modules perform, for instance, tennis court
localisation, the detection and tracking of players and the ball,
and detecting ball events that are identified by a rapid change
in the ball direction caused by a bounce, hit or net. The high
level modules of the system process the ball events and player
information to make decisions about the match score.

An integral part of the system operation is the ability to
flag anomalous situations and thereby identify when some of
the modules and/or models no longer have the competence to
interpret the incoming data. Thus every module is equipped
with an anomaly detection system engaging some or all the
elements of the general architecture introduced in Figure 1.
For simplicity we shall limit our discussion to a simple
scenario where the system, which has been designed to process
videos of tennis singles, is suddenly presented with a video
of tennis doubles. Clearly, in this simple situation many of
the system modules will function normally. The exceptions
are the player detection module which should report the most
apparent change between the domain of tennis singles and that
of tennis doubles, that is the number of players present. More
subtle is the change of rules relating to the definitions of the
play area in singles and doubles respectively. The detection of
these two anomalies will now be discussed in turn.

A. Number of players anomaly

As we use a very simple motion-based blob detector, the
number of people detected will vary from frame to frame, as
it will be affected by the presence of other agents (line judges,
ball boys). Thus, normality has to be modelled in terms of a
distribution of the number of players over time in a video shot,
rather than as an instantaneous count.

Anomaly will be manifest as a deviation from the distri-
bution learnt during the system design. This will be detected
by the model drift monitoring module in Figure 1. For tennis
singles and doubles, examples of the respective distributions
are shown in Figure 2. A number of similarity measures
could be used to compare a test histogram p(x) with a model
histogram p̂(x), both with D bins, but we use the simple mode
difference MD(p(x), p̂(x)) = arg maxx p(x)−arg maxx p̂(x)
We find the upper and lower thresholds for which none of the
shots in videos of singles is rejected. an upper thresholds are
required for anomaly detection. Two videos of tennis singles
are used; one for training and one for validation. In order
to estimate the thresholds, comparisons on validation sets of
normal (singles) videos were performed and the maximum
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Fig. 2. Normalised histograms of the number of moving agents detected per
frame in the games of singles (top) and doubles (bottom).

differences determined. By measuring the similarity of the
learnt model with the histogram of the player count for a test
video, any deviation from the norm can be detected.

We conducted evaluation experiments with the videos in
Table II. With each play shot lasting up to 2 minutes, we
tested the anomaly detector on more than 5 hours of footage.

TABLE II
TENNIS VIDEOS USED IN EXPERIMENTS AND THEIR DURATION

Label Tennis match # play noise
shots mean ±std

A03WS Australia03 Women’s Singles 76 1.9± 0.1
A03MS Australia03 Men’s Singles 143 3.1± 2.3
J09WS Japan09 Women’s Singles 100 1.6± 0.5
A08WD Australia08 Women’s Doubles 164 1.3± 1.0
U06WD USA06 Women’s Doubles 66 1.5± 1.9

The results obtained with test video histograms computed
from the shot frames as a function of the number of play shots
are shown in Figure 3. The results show that even from the
frames of one shot the system can detect anomalies most of the
time. We see that with a temporal integration, i.e. accumulating
the statistics over several play shots, a perfect detection of
player count anomaly can be achieved. However, for the
training configuration used in Figure 3(c), the zero positive rate
on test singles is recovered only for video segments exceeding
9 shots.

A closer analysis revealed the importance of data quality
estimation in anomaly detection. At each pixel the intensity
standard deviation, estimated using robust statistics over a se-
quence of motion compensated frames in one shot, is averaged
over all scene pixels and shots. Table II shows the mean noise
measure and its standard deviation for each of the videos used
in this paper. Note that the amount of noise in some of the
training and validation videos is very different, which leads
to relatively high thresholds to eliminate false positives. This
causes under-detection of true anomalies in doubles for low
levels of temporal integration in Figures 3 (a) and (b). The
temporal integration over several shots improves the anomaly
detection performance. Note that in Figure 3(c) the quality of
the two videos used for training is comparable, which yields
tighter thresholds and the need for much shorter temporal in-
tegration to achieve a perfect anomaly detection performance.
However, the temporal averaging initially increases the false
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Fig. 3. Percentage of anomalies detected as a function of the number of shots used for the analysis on games of singles and doubles, using different
combinations of two games of singles for training and to set thresholds.

positive rate on singles, before it recovers for long temporal
integration periods. The conclusion from this study is that
”normality” can be defined reliably only when the quality of
data used for the system design (both training and validation)
and in operation (testing) is comparable. Thus the training
configurations A03MS+J09WS and A03WS+A03MS should
not be used for the system design, and no anomaly detection
should be attempted with A03MS on a system trained with
A03WS+J09WS. The data quality estimation module in the
anomaly system architecture in Figure 1 is absolutely essential
to flag any discrepancy between the quality of the sources of
data used for design and to inactivate the anomaly detection
module for inputs corrupted by noise.
B. Out-of-play area anomaly

The evolution of a tennis game can be described entirely in
terms of tennis ball events. These are the points in a tennis ball
trajectory where the direction of motion changes dramatically,
caused either by a player action, or by the ball bouncing off
the ground or hitting the net. At the end of a normal play, the
exchanges between the players may continue for a little while
out of the inertia of behaviour. The ball activity may also
be driven by other agents, such as ball boys, before finally
stopping.

Depending on where the ball events take place (side of the
court) and their type (hit, bounce), they can be classified into
the following categories:

Notation Event type
hitA ball hit by playerA
bounce inA ball bounces in play areaA
bounce outA ball bounces outside play areaA
netA ball played by playerA hitting the net
serveA serve delivered by playerA

These states are duplicated for player¬A.
These ball events are measurable and detectable, with uncer-

tainties, using cues such as ball event vicinity to each player,
and their relationship to the court. For a ball event, i, this
information is conveyed by the measurement vector xi, with its
measurement distribution for event type θi given by p(xi|θi).
Note, that the interpretation of ball events is dependent on
the previous state. In other words, the label, θi of ball event
i, is given by θi = arg maxω P (θi = ω|xi, θi−1)where

P (θi = ω|xi, θi−1) denotes the aposteriori event class prob-
ability function. Using the above measurement distributions,
this aposteriori probability for label θi is given as

P (θi|xi, θi−1) =
p(xi|θi)P (θi|θi−1)∑
θi
p(xi|θi)P (θi|θi−1)

(9)

In spite of its dependence on the previous state, this ball
event labelling process can be considered as noncontextual,
as it lacks the capacity to capture the complete picture of
the tennis game evolution. The full understanding of the
game is provided by a contextual model that processes the
complete sequence of events from the initial ball event, i.e.
the serve. The admissible sequence of ball events is modelled
using a Markov chain with learnt state transition probabilities.
This Markov model is used to monitor the state of play and
to decide which player should be awarded a point. This is
described in detail in [30].

When a ball event signals the end of play, by being classified
as a bounce out or hit twice by the same player, both the
noncontextual and the Markov models detect illegal evolution
of the game and the play is expected to terminate. Due to the
inertia of the player action, a few normal exchanges between
the players may follow the game terminating event, followed
by other ball events associated with the ball(s) being collected
from the court by the ball boys/girls. While the first exchanges
between players (typically not more than 3) may comply with
the rules of the game, the latter ball events will not, and will
form an illegal sequence.

Let the ball event, i, be a game terminating event, ω. Then
we would expect the last ball event in the sequence to have
index i + n where n is low. For n > 3 the sequence of
observed ball events would contain illegal transitions from the
point of view of the rules of a tennis game proper. Thus a
contextual check on the decision that θi is an end of play event
can be made by looking ahead at events θi+1, ..., θi+n, and
computing P (θi = ω|xi+1, ....,xi+n). We compute P (θi =
ω|xi+1, ...,xi+4) as

P (θi = ω|xi+1, ...,xi+4) =

 1 n ≤ 3 legal exch.
0 n ≥ 4 legal exch.
1 illegal

(10)
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A measure of incongruence between the non-contextual and
contextual probabilities of a fault event is used to signal a
potential anomaly. We adopt the measure introduced in (7).
For our two class problem, the measure can be shown easily
to simplify to

∆max = |P (θi = ω|xi, θi−1)− P (θi = ω|xi+1, ...,xi+4)|
(11)

The anomaly detection mechanism for this ball event in-
terpretation process also uses quality information, but as it
works with an intermediate representation (ball events, player
positions), rather than raw pixels, measuring the noise level
of the video is inappropriate. The notion of quality is task-
dependent and it must be defined for each process. As the
ball event detection and classification processes use local
contextual information, which to a large degree mitigates the
effect of noise, the data quality is satisfactory and the quality
assessment module does not report any quality issues. How-
ever, here the domain anomaly detection system engages the
confidence assessment modules as the ball event classification
is ambiguous close to bounce in and bounce out boundaries.
The ambiguity is the consequence of attempting to extract 3D
measurements from 2D projections. These measurement in-
accuracies lead to overlapping class conditional measurement
distributions, resulting in ambiguous noncontextual decisions.
These ambiguities could then cause incongruence between
contextual and non-contextual aposteriori class probabilities,
as measured in eq. (11). This is avoided by filtering out
incongruences associated with ambiguously determined class
labels. The decision confidence is determined by applying
measure (5) in Section III.B to the noncontextual probabilities
in (9). An experimentally determined confidence threshold
on the noncontextual posteriors carves out a 30 pixels wide
incongruence exclusion zone around the court boundaries.
The noncontextual decision-making threshold is determined
by training on matches of tennis singles, so that no anomaly
is detected in any singles videos. For any ball event in tennis
doubles, with quality measurement less than the threshold, no
anomaly is flagged either. Only ball events of ”good quality”
are analysed for incongruence. The details of the interpretation
process can be found in [3].

The game evolution module was evaluated on the same set
of videos discussed earlier. The training of the system was
carried out using tennis singles matches (A03MS, A03WS and
J09WS). The three videos were used in rotation as follows:
The first video was used to learn the module models. The
second video was used to set the confidence thresholds. The
third video was used for testing on unseen singles. The exper-
iment was performed three times for different combinations
of the videos. For each configuration, the system was then
run on two tennis doubles matches (A08WD,U06WD). The
anomaly detection results on unseen singles and doubles were
averaged over the three configurations. They are shown in
Table III where TP denotes true positive detections, FN false
negatives and FP false positive detections respectively. Note
that the resulting system detected no anomalies in the unseen
test tennis singles videos.

TABLE III
OUT-OF-PLAY ANOMALY DETECTION RESULTS.

Test video: TP FN FP
A08WD 7 37 0
U06WD 3 4 0.33

Ideally we would like to detect all the anomalies, i.e. the
sum of TP and FN . Unfortunately the decision confidence
filter set on tennis singles results in a relatively large number
of undetected anomalies, because many anomalous events fall
close to the inner tramline of the doubles play area. With
more sophisticated video processing techniques, or using a 3D
measurement system such as Hawkeye, the decision ambiguity
would be reduced considerably and a lower false negative rate
achieved. Nevertheless, the system detects a significant number
of anomalies which clearly indicate a domain change.

VII. CONCLUSIONS

We addressed the problem of anomaly detection in ma-
chine perception. We argued that the conventional notions
of anomaly such as outlier or distribution drift alone cannot
detect all anomalous events of interests in machine perception
where the key objective is to instantiate models to explain
observations. The inability to detect anomalies is aggravated
by the common use of nongenerative models for decision
making, which is motivated by their speed of processing and
better classification performance. However, such models lack
the inherent capacity to detect anomalous situations.

In order to clarify the anomaly landscape, we introduced the
concept of domain anomaly, which refers to the situation when
none of the models characterising a domain are able to explain
the data. We showed that a number of mechanisms are required
to detect a domain anomaly. They include detectors of outliers
of noncontextual and contextual measurement distributions,
detectors of incongruence of contextual and noncontextual sen-
sor(y) data interpretations, decision confidence estimation and
sensor(y) data quality assessment. These gauging mechanisms
jointly facilitate not only the detection of domain anomaly,
but also its identification. A taxonomy of domain anomalies,
which distinguishes between component, configuration, and
joint component and configuration domain anomaly events,
has been introduced.

We developed a unified framework for domain anomaly
detection. The framework draws on the Bayesian probabilistic
reasoning apparatus which clearly defines the concepts such
as outlier, noise, distribution drift, novelty detection (object,
object primitive), rare events, and unexpected events. The
proposed methodology has wide applicability and it underpins
in a coherent way the anomaly detection applications found
in the literature.

The proposed anomaly detection system architecture in-
cludes a mechanism for detecting incongruence between the
decisions of multiple classifiers, a measurement distribution
drift detector, data quality assessment and a decision ambiguity
monitor. The outputs from these modules are processed by a
reasoning mechanism to identify anomalies and their meaning.
Incongruence is gauged by a criterion related to the Bayesian
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surprise measure. The architecture is applied to two differ-
ent interpretation processes within a tennis video annotation
system to demonstrate the role of incongruence in domain
anomaly detection, and to emphasise the importance of data
quality and decision ambiguity assessment in distinguishing
genuine anomalies from false positives caused by noise or
ambiguous measurements.

According to the anomaly taxonomy introduced in Section
V, both applications in Section VI demonstrate Component
Domain Anomaly detection. In contrast to ”novelty” detection
studied in [56], the player count anomaly detects ”innovation”.
The out of play application flagged by incongruence detects
unexpected component in the context of the tennis game. Both
anomaly detectors distinguish and respond appropriately to
noise and ambiguity. We plan to demonstrate the detection of
Component and Configuration Domain Anomaly in the context
of transfer learning from tennis to badminton.
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