
Intent Classification for a Management

Conversational Assistant

Abdelrahman H. Hefny

Faculty of Computers & Information

Technology

National Egyptian E-Learning

University

Giza, Egypt

ahefny@eelu.edu.eg

Georgios A. Dafoulas

Computer Science Department

Faculty of Science and Technology

Middlesex University

London,United Kingdom

G.Dafoulas@mdx.ac.uk

Manal A. Ismail

Computer Engineering & Systems

Department

Faculty of Engineering

Helwan University

Cairo, Egypt

mismaeel@eelu.edu.eg

Abstract—Intent classification is an essential step in

processing user input to a conversational assistant. This work

investigates techniques of intent classification of chat messages

used for communication among software development teams with

the aim of building an intent classifier for a management

conversational assistant integrated into modern communication

platforms used by developers. Experiments conducted using rule-

based and common ML techniques have shown that careful

choice of classification features has a significant impact on

performance, and the best performing model was able to obtain a

classification accuracy of 72%. A set of techniques for extracting

useful features for text classification in the software engineering

domain was also implemented and tested.

Keywords—intent classification, chatbot, conversational

assistant, natural language understanding, dialog act recognition

I. INTRODUCTION

Classifying the intent of user-generated text is essential for
many information system applications such as search engines,
e-commerce, question answering, and conversational agents
[1]. Due to recent advances in artificial intelligence,
conversational assistants are gaining attention as a way to
increase productivity by automating complex processes that
usually require human intervention [2]. Interaction with such
assistants is mainly done using natural language via either
speech commands or written text. Intent detection and
classification, sometimes referred to as semantic utterance
classification, is one of the basic steps of processing a user’s
utterance in a task-oriented conversational agent. During this
step, a user utterance is classified to determine its intent from a
list of predefined intents and redirect the conversation
according to a specific scenario based on the detected intent.
This computational task is often implemented as part of the
natural language understanding (NLU) module in the
conversational agent. A similar task, dialog/speech act
recognition, is performed in non-task-oriented dialog systems,
which classifies the dialog act (DA) of the user's utterance as a
first step of processing [3, 4, 5, 6].

This work investigates techniques of intent classification of
text chat messages used for communication among software
development teams. The purpose of this work is to build an
intent classifier for a management conversational assistant
(chatbot) integrated into modern communication platforms

used by software developers. The proposed chatbot will
interact with developers via private channels and will also
monitor and react to messages on multi-party chat rooms. Such
chatbot would assist team management in various ways such as
answering frequently asked questions or monitoring a task
progress. This research investigates two main approaches for
intent classification, a rule-based approach based on hand-
crafted rules, and a statistical approach using well-known
machine-learning (ML) algorithms.

Previous work in this area studied techniques for intent
classification and dialog act recognition in several domains.
Some recent studies investigated the use of conversational
assistants in the field of software engineering. Applications
include recommending experts [7], automating low-level
workflows [8], resolving conflicts [9], and answering questions
based on code repositories [10].

The major contributions of this work are:

1) A proposed list of intent categories for classifying

software developers chat messages from a

management perspective.

2) A set of techniques for extracting useful features for

text classification in the software engineering

domain.

3) Investigation of several text classification techniques

for classifying intents of software developers’ chat.

All implemented code is also provided for reference

via the project’s website.1

The remainder of this paper is structured as follows.
Section II provides a review on related work. Section III
explains the research method and design. Section IV discusses
experiments and results. Finally, section V presents the main
conclusions.

II. RELATED WORK

The following sections describe related work in three main
categories: A) intent classification techniques, B) applications
of text classification in the software engineering domain, and
C) conversational assistants in the software engineering
domain.

1
 https://github.com/abdelrahman0101/MCA

A. Intent Classification Techniques

Almost all common text classification techniques were used
in dialog act recognition or intent classification in
conversational agents. These techniques vary from simple
pattern matching with hand-crafted rules to advanced
techniques that use deep neural networks.

Rule-based pattern matching techniques were traditionally
used for utterance classification in chat-bot and question
answering systems. Examples of chatbots with rule-based
utterance classification include AutoTutor [11], a domain-
portable intelligent tutoring system, and DBpedia chatbot [12],
a chatbot designed to enhance interactions in the DBpedia
community.

Another common approach for intent classification is the
use of supervised ML techniques. This approach alleviates the
need for writing and finetuning hand-crafted rules by training a
statistical ML algorithm on a manually labeled set of data.
Examples of ML algorithms used for this task are Support
Vector Machine (SVM), Maximum Entropy (ME), and Naive
Bayes (NB) [13, 14]. Recent research on intent classification
made use of new advances in deep learning techniques [15, 16,
17, 18]. Deep neural networks can achieve higher performance
than other statistical ML algorithms but usually require a much
larger dataset.

B. Text Classification in the Software Engineering Domain:

Text classification has had several applications in the
software engineering domain. Maalej, et al. [19] studied the use
of simple string matching, Naive Bayes, Decision Trees, and
Maximum Entropy for the classification of app reviews into
bug reports, feature requests, user experiences, or ratings.
Classification features included metadata such as star rating,
length, verb tense, and sentiments in addition to text features.

Arya, et al. [20] studied the classification of issue
discussions of open source software based on information type.
Using qualitative content analysis, they identified 16
information types in issue discussions. Two supervised
classifiers that use Logistic Regression and Random Forest
were trained on a labeled dataset with textual and
conversational features such as sentence location and length
and participant role.

Wood, et al. [21] conducted a “Wizard of Oz” experiment
to detect dialog act types in developer question/answer
conversations during debugging. It involved 30 professional
developers fixing bugs for 2 hours while using a simulated
virtual assistant for help. The conversations were, then,
annotated using open coding to identify 26 dialog act types.
After solving inter-annotator disagreements, a Logistic
Regression classifier was trained on the labelled data
represented using binary Bag-of-Words with three shallow
features; normalized length, words count, and number of
seconds since previous message.

Classification of online discussions about software
applications and services was studied by Ramirez, et al. [22].
They investigated the classification of text comments into
enhancement requests vs other types of requests based on
speech-act analytics. A dataset of sentences extracted from

online discussions was first annotated with 20 speech act tags
using a set of lexico-syntactic rules. The speech act tags are
then used as a classification feature for classifying sentences
into either enhancement requests or not, using three ML
algorithms; J48, Sequential Minimal Optimization (SMO), and
Random Forest.

C. Conversational Assistants in Software Engineering:

Several studies presented chatbots intended for supporting
software engineers in their work. Cerezo et al. [7] designed a
chatbot for recommending experts in the Pharo programming
language community. The chatbot classifies a user message
into one of 7 categories based on calculated term frequency,
then it identifies names of source code artifacts (key concepts)
and uses an expert recommender system to recommend an
expert in the specified artifact.

Instead of manually building intent classifiers, some other
studies made use of cloud-based chatbot services such as
Google's DialogFlow, Amazon's Alexa, IBM's Watson
Assistant, or Microsoft's LUIS [23]. These services allow
designers to build a chatbot solution by providing example
utterances and setting rules for triggering responses without
having to manually code it in a programming language; thus,
they provide an excellent choice for rapid prototyping and for
non-programmers. Nonetheless, manually built solutions can,
sometimes, outperform these black-box services in intent
classification tasks [24].

Bradley et al. [8] used Amazon Alexa services to build a
prototype for Devy, a conversational developer assistant that
listens to developer's voice commands, infers her high-level
intent, prompts her for any additional information, and
automatically invokes a low-level actions workflow with the
help of an automatically generated context model. Another
work that uses a cloud-based service is Sayme by Paikari et al.
[9]. Its goal is to detect and resolve conflicts between
developers while working on the same project on collaboration
platforms such as GitHub. They used DialogFlow and trained it
on 28 to 45 phrases per intent. The chatbot also uses a Python
backend with a MySQL DB to store needed data. DialogFlow
was also used by Abdellatif et al. [10] to implement MSRBot, a
chatbot to answer questions of software developers based on
information extracted from software repositories. Questions
shown are mostly related to code commits, bug tickets, and
developer’s responsibility. While Devy, Sayme and MSRBot
focus on helping developers perform their tasks by automating
their low-level workflows, resolving conflicts, or answering
questions based on code repositories, this work is focused on
building a chatbot for tasks related to project management. In
addition, the proposed chatbot will not only interact with
developers via private channels but will also monitor and react
to messages on multi-party chat rooms.

III. PROPOSED CLASSIFICATION MODELS

This research investigates two main approaches for intent
classification; a rule-based approach based on hand-crafted
rules, and a statistical ML approach. The proposed intent
categories are based on analysis of an archived dataset of chat

messages. The following sections describe the dataset analysis
and the classification techniques.

A. Dataset Analysis and Annotation

A dataset of archived chat messages was analyzed to
determine the possible intent classes, and to specify the set of
rules used in rule-based classification. This dataset was
collected from a text chat platform used by multi-national
university students during their work on course projects mostly
related to software engineering.

Based on the preliminary analyses, the dataset was
annotated using an open-coding methodology to indicate
various topics and dialog acts. The result is the following list of
14 chat topics:

1. Greetings

2. Informal/off-topic talk.

3. Meeting schedule.

4. Individual expertise.

5. Platform problems.

6. Project/Task Requirements.

7. Project/Task schedule.

8. Task assignment.

9. Task implementation tools.

10. Task implementation details.

11. Task status or progress.

12. Feedback on submitted work.

13. General planning.

14. Coordination and organization of work.

Within each of these topics, chat messages may have
different dialog acts. A simplified list of relevant dialog acts is
used:

1. Information.

2. Suggestion.

3. Request.

4. Question.

5. Positive reply (agreement).

6. Negative reply (disagreement).

7. Partially positive/negative reply.

This work focuses on detecting the intent of a chat message
to enable a conversational agent to participate in a group chat
as an assistant to team management. For this purpose, a
message intent is categorized into one of 13 categories by
combining main topics and dialog acts. TABLE I describes
each category.

In order to test the accuracy of the classification techniques
and to train a supervised machine learning classifier, a labeled
dataset is needed. Chat messages in the dataset were labeled to
indicate the intent of each message based on the results of
preliminary analysis and open coding. However, since careful
labeling of the dataset requires much time and effort, it was
applied on a smaller subset with only 8030 chat messages. In
addition, the length of chat messages vary as some messages
may contain several sentences with different indications and
some sentences may span several chat messages. Those
messages were manually split or joined so that most datapoints

are meaningful and have single intent labels. During the
labelling process, chat messages were also reviewed to correct
basic spelling and grammatical errors resulting from low
English language proficiency of some participants. A list of
words that represent named entities such as persons or software
tools were also collected and stored in database.

The number of messages in each category vary significantly
with the largest class being “Others”. This is because many
chat messages are simple short phrases that carry no specific
intent related to the software engineering domain such as
simple “yes”, “no”, or “ok” answers. Such messages are
labeled with just a dialog act tag and the intent “Others”.
Finally, since the performance of most ML classification
algorithms is affected by the balance of the dataset, the dataset
was augmented by a small set of 210 samples manually written
by researchers to support low-frequency classes. The final
frequency of each intent category is shown in Fig. 1.

Fig. 1. Number of Messages in Each Intent Category

TABLE I. INTENT CATEGORIES

Intent Description

1 Greet
Greeting and introduction. Primarily used

when opening a conversation.

2 Plan task
Task assignment and scheduling, and general

work planning.

3 Query plan
Questions and requests for information on

task plan.

4
Schedule

meeting
Discussions of next meetings schedule.

5
Report

progress

Report the status and progress of a specific

task.

6
Query

progress

Questions and requests for information on

task status and progress.

7
Request

feedback

Requests for feedback on completed work or

proposed ideas.

8 Give feedback
Giving feedback on completed work or

proposed ideas.

9 Discuss task Discussions of technical details.

10 State rules
Information on work rules, such as the use of

tools, file formats, and task submission.

11 Query rules
Questions and requests for information on

work rules.

12 Report issues Reporting problems and work blockers.

13 Others Other or unclear intents.

B. Classification Techniques:

This research investigates the performance of several
models for intent classification of chat messages. A simple
rule-based pattern-matching model, and supervised ML models
using common classification algorithms. Prior to intent
classification, input text passes through several steps for
preprocessing, named-entity recognition, and feature
extraction. Preprocessing involves segmenting the text into
sentences and tokenizing each sentence into a list of tokens
(words, numerals, symbols ... etc.) and normalizing alphabetic
words by lemmatization. NLTK, a well-known Python library
for natural language processing, is used for tokenization,
normalization, and part-of-speech (POS) tagging. Named entity
recognition processes the text to detect tokens that represent
person names, dates and times, names of development tools,
and software engineering artifacts. It uses a simple set of
pattern-matching rules to detect those entities since the
application is closed-domain and the number of possible values
is limited. Feature extraction extracts a list of values used for
representing each chat message as an input to a classification
algorithm. Two types of features are used, textual features and
numeric features. Textual features are representations of actual
words and tokens in the text using term frequency-inverse
document frequency (TF-IDF), while numeric features are
calculated based on specific properties of the text. The choice
of these numerical features is based on related literature and the
analysis of data. Seven numeric features are used in this
research representing the message length, number of verbs in
past, present, and future tenses, and number of pronouns in
first, second, and third person forms. In addition, five features
represent numeric scores that indicate the existence of one of
five basic dialog acts in the message: question, request,
suggestion, agreement, and disagreement. These features are
calculated based on simple syntactic pattern-matching rules.
The complete NLU pipeline is shown in Fig. 2.

1) Rule-based classifier:
Rule-based classification uses a simple approach based on

keyword matching and simple linguistic features such as words
part of speech. In addition to using the detected named entities,
it depends on a lexicon of words that have special semantics
e.g. a common development activity.

2) Machine Learning Classifiers:
Four common ML techniques were used in this research.

Namely: Naïve Bayes (NB), Support Vector Machine (SVM),
Logistic Regression, and a Majority Voting ensemble based on
the first three classifiers. Implementation of ML classifiers was
done in Python using Scikit-learn, a widely used ML
framework [25]. The four techniques were trained on the

labeled dataset of chat messages. Each chat message is
represented using textual and numerical features. After
preprocessing and normalization, messages text is vectorized
into a TF-IDF vector representing the weight of each. Other
numerical features are normalized, and the complete set of
features is used for representing each chat message during
training.

IV. EXPERIMENTS AND RESULTS

To measure the effectiveness of using the extracted features
to discriminate various intent categories, dialog act detection
functions for the five basic dialog acts were tested against the
labeled dataset. TABLE II shows accuracy and macro average
F1-score for the five dialog act detectors.

It is worth noting that dialog act detection accuracy was
highly affected by simple DA clues such as question marks and
the word “please”. Also, each message in the dataset had only
one DA tag indicating the overall DA chosen by annotators,
while it may contain several parts, each with its own DA, and
the same utterance may also have more than one DA. For
example, a request could be phrased in the form of a question,
and hence, it should be classified as both request and question.
This means that the actual performance of the five DA
detectors is even better than what’s shown in TABLE II, which
was confirmed by error analysis.

ML classification models were tested with various
combinations of feature groups using textual features as a
common ground. Textual features are represented using TF-
IDF vectors with or without normalization and stop-words
removal. Each ML model was also initially tested with
different values of hyperparameters, and the best values were
chosen for later comparisons. Detailed implementation of
classification models and the chosen values of hyperparameters
are provided via the project’s website.

Only 80% of the dataset was used for training the ML

Tokenization and

Part-of-Speech

Tagging

Numeric features

calculation

Named Entity

Recognition
Normalization

Chat

Message

Tokenization and

Part-of-Speech

Tagging

Intent

Classification

Vectorization

Fig. 2. NLU Pipeline

TABLE II. ACCURACY AND MACRO F1-SCORE FOR DIALOG ACT

DETECTION

 Performance

Metric

Q
u

e
st

io
n

R
e
q

u
e
st

S
u

g
g
e
st

io
n

P
o

si
ti

v
e
 r

e
p

ly

N
e
g
a

ti
v

e
 r

e
p

ly

Accuracy (%) 91.45 89.79 87.78 90.40 98.39

Macro F1-Score 0.87 0.73 0.67 0.59 0.73

model, and the remaining 20% was kept for testing. TABLE III
shows a summary of results obtained from testing the proposed
classification techniques using accuracy, weighted average F1-
score, and macro average F1-score. The best performing model
was the majority-voting ensemble trained on TF-IDF and
numeric features without normalization nor stop-words
removal.

Overall results indicate that both normalization and
removal of stop words had a negative impact on the
performance. This is justifiable, since normalization and stop-
words removal may remove some useful information that
would help improve intent detection. The use of numeric meta
features, on the other hand, had a positive effect that becomes
very clear when normalization or stop-words removal is
applied.

TABLE IV shows detailed test results for every intent
category using the majority voting ensemble. The best

performance was in the greet intent category, while the worst
performance was in report issue. The low value for the macro
average F1-score in most models was due to the very low
frequency of some categories resulting in a very small number
of samples in the training set compared to other categories.

V. CONCLUSIONS

The results show that intent classification of software
developers chat messages from a management perspective is
possible using common ML algorithms. Experiments
conducted on different classification models have shown that
careful choice of classification features has a significant impact
on performance. A set of techniques for extracting useful
features for text classification in the software engineering
domain was implemented and tested.

Future work will include further investigation of deep
learning techniques for intent classification on a larger dataset,
testing the proposed classification models on datasets of
industrial software engineering projects, and the integration of
intent classification into a complete conversational assistant for
software engineering team management.

VI. REFERENCES

[1] M. Hamroun and M. S. Gouider, "A survey on intention analysis:
successful approaches and open challenges," Journal of Intelligent
Information Systems, 2020.

[2] P. B. Brandtzaeg and A. Følstad, "Why People Use Chatbots," in Internet
Science, Cham, 2017.

[3] H. Chen, X. Liu, D. Yin and J. Tang, "A Survey on Dialogue Systems:
Recent Advances and New Frontiers," SIGKDD Explor. Newsl., vol. 19,
p. 25–35, 11 2017.

TABLE III. TEST RESULTS FOR CLASSIFICATION MODELS

Classifier

Accuracy Weighted F1 Macro F1
Technique

Textual

Features

Normalization

& Stop-words

Removal

Numeric

Features

Pattern Matching (Baseline) Raw text no yes 0.45 0.43 0.38

Naïve Bayes TFIDF

yes
yes 0.65 0.62 0.46

no 0.63 0.61 0.47

no
yes 0.68 0.66 0.52

no 0.67 0.66 0.53

Support Vector Machine TFIDF

yes
yes 0.67 0.67 0.56

no 0.64 0.63 0.49

no
yes 0.71 0.70 0.62

no 0.70 0.70 0.60

Logistic Regression TFIDF

yes
yes 0.68 0.68 0.58

no 0.64 0.64 0.49

no
yes 0.70 0.71 0.61

no 0.70 0.70 0.61

Majority Voting Ensemble

 (NB+SVM+LogReg)
TFIDF

yes
yes 0.70 0.69 0.59

no 0.67 0.66 0.52

no
yes 0.72 0.72 0.62

no 0.71 0.71 0.62

TABLE IV. DETAILED RESULTS FOR MAJORITY VOTING

ENSEMBLE

intent precision recall f1-score samples

discuss_task 0.79 0.80 0.80 357

give_feedback 0.66 0.48 0.55 84

greet 0.93 0.86 0.89 143

plan_task 0.57 0.68 0.62 120

query_plan 0.58 0.50 0.54 28

query_progress 0.62 0.54 0.58 28

query_rules 0.67 0.40 0.50 20

report_issue 0.40 0.33 0.36 24

report_progress 0.75 0.66 0.70 100

request_feedback 0.61 0.67 0.64 86

schedule_meeting 0.73 0.69 0.71 64

state_rules 0.55 0.39 0.46 46

others 0.72 0.79 0.75 496

[4] S. Hussain, O. Ameri Sianaki and N. Ababneh, "A Survey on
Conversational Agents/Chatbots Classification and Design Techniques,"
in Web, Artificial Intelligence and Network Applications, Cham, 2019.

[5] K. Ramesh, S. Ravishankaran, A. Joshi and K. Chandrasekaran, "A
Survey of Design Techniques for Conversational Agents," in
Information, Communication and Computing Technology, Singapore,
2017.

[6] A. Sameera, D. J. Abdul-Kader and Woods, "Survey on Chatbot Design
Techniques in Speech Conversation Systems," International Journal of
Advanced Computer Science and Applications(ijacsa), vol. 6, 2015.

[7] J. Cerezo, J. Kubelka, R. Robbes and A. Bergel, "Building an Expert
Recommender Chatbot," in 2019 IEEE/ACM 1st International Workshop
on Bots in Software Engineering (BotSE), 2019.

[8] N. Bradley, T. Fritz and R. Holmes, "Context-Aware Conversational
Developer Assistants," in 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), 2018.

[9] E. Paikari, J. Choi, S. Kim, S. Baek, M. Kim, S. Lee, C. Han, Y. Kim, K.
Ahn, C. Cheong and A. van der hoek, "A Chatbot for Conflict Detection
and Resolution," in 2019 IEEE/ACM 1st International Workshop on Bots
in Software Engineering (BotSE), 2019.

[10] A. Abdellatif, K. Badran and E. Shihab, "MSRBot: Using bots to answer
questions from software repositories," Empirical Software Engineering,
vol. 25, p. 1834–1863, 2020.

[11] A. Olney, M. Louwerse, E. Matthews, J. Marineau, H. Hite-Mitchell and
A. Graesser, "Utterance Classification in AutoTutor," in Proceedings of
the HLT-NAACL 03 Workshop on Building Educational Applications
Using Natural Language Processing - Volume 2, USA, 2003.

[12] R. G. Athreya, A.-C. Ngonga Ngomo and R. Usbeck, "Enhancing
Community Interactions with Data-Driven Chatbots–The DBpedia
Chatbot," in Companion Proceedings of the The Web Conference 2018,
Republic and Canton of Geneva, CHE, 2018.

[13] M. Y. H. Setyawan, R. M. Awangga and S. R. Efendi, "Comparison Of
Multinomial Naive Bayes Algorithm And Logistic Regression For Intent
Classification In Chatbot," in 2018 International Conference on Applied
Engineering (ICAE), 2018.

[14] C. Chelba, M. Mahajan and A. Acero, "Speech utterance classification,"
in 2003 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2003. Proceedings. (ICASSP '03)., 2003.

[15] S. Ravuri and A. Stoicke, "A comparative study of neural network
models for lexical intent classification," in 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), 2015.

[16] G. Tur, L. Deng, D. Hakkani-Tür and X. He, "Towards deeper
understanding: Deep convex networks for semantic utterance
classification," in 2012 IEEE international conference on acoustics,
speech and signal processing (ICASSP), 2012.

[17] J. Gao, M. Galley and L. Li, "Neural Approaches to Conversational AI,"
in The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, New York, NY, USA, 2018.

[18] S. Ravuri and A. Stolcke, "Recurrent neural network and LSTM models
for lexical utterance classification," in Sixteenth Annual Conference of
the International Speech Communication Association, 2015.

[19] W. Maalej, Z. Kurtanović, H. Nabil and C. Stanik, "On the automatic
classification of app reviews," Requirements Engineering, vol. 21, p.
311–331, 2016.

[20] D. Arya, W. Wang, J. L. C. Guo and J. Cheng, "Analysis and Detection
of Information Types of Open Source Software Issue Discussions," in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019.

[21] A. Wood, P. Rodeghero, A. Armaly and C. McMillan, "Detecting Speech
Act Types in Developer Question/Answer Conversations during Bug
Repair," in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, New York, NY, USA, 2018.

[22] I. Morales-Ramirez, F. M. Kifetew and A. Perini, "Speech-acts based
analysis for requirements discovery from online discussions,"
Information Systems, vol. 86, pp. 94-112, 2019.

[23] D. Braun, A. Hernandez Mendez, F. Matthes and M. Langen,
"Evaluating Natural Language Understanding Services for
Conversational Question Answering Systems," in Proceedings of the
18th Annual SIGdial Meeting on Discourse and Dialogue, Saarbrücken,
Germany, 2017.

[24] J. Schuurmans and F. Frasincar, "Intent Classification for Dialogue
Utterances," IEEE Intelligent Systems, vol. 35, pp. 82-88, 1 2020.

[25] P. Fabian, G. Alexandre, M. Vincent, T. Bertrand, I. Parietal, G. Olivier,
P. Peter, W. Ron, V. Jake and B. Mikio, Escikit-learn: Machine
Elearning in Python.

