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Abstract—This paper considers an underlay access strategy
for coexisting wireless networks where the secondary system
utilizes the spectrum owned by the primary system to simul-
taneously support multiple secondary users. In the considered
scenario, the throughput performance of each system is limited
by the interference imposed by the other. Hence, improving
the performance of one system conflicts with that of the other.
We analyze the fundamental trade-off between the tolerance
interference level at the users of the primary system and
the total achievable throughput of the users of the secondary
system. We introduce a beamforming design problem as a multi-
objective optimization problem with contradictory objectives, i.e.,
minimizing the interference imposed on each primary user while
maximizing the intended signal received at every secondary user,
taking into account the uncertainty in the estimation of channel
state information (CSI). Assuming the uncertainty of the CSI
is confined in hyper-spherical sets, we then map the proposed
optimization problem to a robust counterpart under the worst
case of CSI estimation error. We finally transform the robust
counterpart into a standard semidefinite programming form
which is convex and can be solved by standard optimization
packages. Simulation results confirm the effectiveness of the
proposed scheme against various levels of CSI estimation error.

I. INTRODUCTION

In an underlay spectrum access cognitive radio network,
where the primary and secondary networks share the same
radio resource [1], there exist fundamentally contradictory
interests between the primary and secondary networks. The
performance of each network, e.g. system throughput, is
limited by the interference imposed by the other. Since the
radio resource is owned by the primary network, the sec-
ondary system has to operate in a way that its interference
inflicted on the primary users are less than the interference
threshold/tollerance level defined by the primary system. The
interference threshold is normally a fixed maximum tolerable
level, see, e.g., [1] and references therein. It has been shown
that beamforming is an efficient method for the secondary
system to manage its interference [2]–[6].

Motivated by the fact that the primary system can tolerate
a higher interference level in certain cases,1 we recently intro-

1For instance, when the primary system experiences a lower traffic load or
the primary receiver has a sophisticated coding technique [7].

duced in [8] a multi-objective optimization problem (MOP),
see e.g, [9], [10], that simultaneously optimizes two contra-
dicting objectives. The first one is to minimize the interference
due to the transmission of the cognitive base station (BS) on
each primary user (PU). The second one is to maximize the
intended signal received at each secondary user (SU). As the
SUs share the same resource, maximizing received signal at
any SU conflicts with that of the other. Therefore, we included
a set of SINR constraints to ensure that each SU is provided
with its required level at least. To protect the primary system,
interference levels at PUs are kept below their thresholds.

Our previous work in [8] was based on the perfect chan-
nel state information (CSI). In many practical scenarios, the
available CSI at BSs is imperfect due to several reasons, e.g.,
estimation error, delay and the quantization error that may
arise as a result of limited feedback from a user terminal to
a BS [11]. Since the performance of a normal beamforming
approach deteriorates and the constraints in such beamforming
optimization problem are usually violated under CSI estima-
tion error, see e.g. [8] and [12], it is desirable to develop a
scheme that is robust to the imperfect CSI.

This paper takes a further step by introducing a robust
beamforming design to the original multiobjective optimiza-
tion problem proposed in [8]. We model the uncertainty of
CSI obtained by the transmitter confined in hyper-spherical
sets. We then derive a robust counterpart for the proposed
optimization problem for the worst case of CSI estimation
error, and then transform the robust counterpart into a standard
SDP form which is convex and can be solved using standard
optimization packages. Simulation results indicate the trade-
off between the interference tolerance at PUs and the total
achievable throughput at SUs. The proposed approach provides
robust against error in CSI estimation at the cost of a decease
in the total attainable SUs’ throughput. It however guarantees
all the SUs’ SINR and PUs’ interference constraints.

Notations: Tr (·): trace operator; Y ≽ 0: a positive
semi definite matrix; 4: element-wise inequality; (yi)

U
i=1 :[

y1 y2 · · · yU
]T

; E(x): expected value of x.



II. SYSTEM MODEL

Consider a primary system in cellular communication net-
work with N PUs. Utilizing underlay spectrum access [1],
a cognitive BS servers U SUs sharing the spectrum of the
primary network subject to the interference temperature con-
straint at the PUs. The beamforming technique is adopted
at the cognitive BS which is equipped with M antennas.
We assume single antenna setting at the SUs and PUs. The
received signal at the ith SU is

yi = hH
s,iwisi +

U∑
j=1,j ̸=i

hH
s,iwjsj + ni, (1)

where hH
s,i = h̃H

s,i + eHs,i is the true channel between the
cognitive BS and ith SU, h̃H

s,i ∈ C1×M and eHs,i ∈ C1×M

are, respectively, the estimated channel and its corresponding
estimation error, wi ∈ CM×1 is the beamforming vector for
the ith SU, si is the data symbol to be sent to the ith SU and ni

is a zero mean circularly symmetric complex Gaussian noise
with variance σ2

i , i.e., ni ∼ CN (0, σ2
i ). The primary system

imposed interference at the SUs is considered as an additive
background noise [13]. For brevity the average transmitted
symbol energy to SU i at the cognitive BS is assumed to
be unity. Let Rs,i = E

(
hs,ih

H
s,i

)
, then Rs,i = R̃s,i + ∆s,i

where R̃s,i = Eh̃s,i

(
h̃s,ih̃

H
s,i

)
, ∆s,i = Ees,i

(
es,ie

H
s,i

)
. Fur-

thermore, let W = {w1,w2, · · · ,wU} be the set of candidate
beamforming vectors in the cognitive BS for all SUs. The
SINR at SU i is

gi (W) =
wH

i

(
R̃s,i +∆s,i

)
wi∑U

j=1,j ̸=i w
H
j

(
R̃s,i +∆s,i

)
wj + σ2

i

. (2)

Let Rp,t = E
(
hp,th

H
p,t

)
where hp,t = h̃H

p,t + eHp,t is
the true channel between the cognitive BS and the tth PU,
h̃H
p,t ∈ C1×M and eHp,t ∈ C1×M are, respectively, the

estimate channel and its corresponding error. We can write
Rp,t = R̃p,t +∆p,t where R̃p,t = Eh̃p,t

(
h̃p,th̃

H
p,t

)
, ∆p,t =

Eep,t

(
ep,te

H
p,t

)
. We aim to design beamforming vectors for

the cognitive BS such that the total interference imposed on
every PU t, i.e.,

∑U
i=1 w

H
i Rp,twi, is kept below its threshold

It. We assume that the primary system is able to update its
interference thresholds, i.e., It, and provide that information
to the secondary system. Methods for calculating, providing
It and robust solution to inaccuracies of It are out of scope
of this paper. Hereafter, if otherwise stated, i ∈ {1, · · · , U}
and t ∈ {1, · · · , N}.

III. PROPOSED APPROACH

We design the beamforming vector wi for each SU in
the cognitive BS considering their required SINR. In this
paper, our objective is to maximize the intended signal power
received at each SU i, i.e., wH

i Rs,iwi, while minimizing

the corresponding interference inflicted at each PU t, i.e.,∑U
i=1 w

H
i Rp,twi. Let

fs,i (W) = −wH
i Rs,iwi = −wH

i

(
R̃s,i +∆s,i

)
wi (3)

and

fp,t (W) =

U∑
i=1

wH
i Rp,twi =

U∑
i=1

wH
i

(
R̃p,t +∆p,t

)
wi,

(4)
the objective vector is then defined as

f (W) = [fp,1 (W) , · · · , fp,N (W) ,

fs,1 (W) , · · · , fs,U (W)] . (5)

We now define the decision space

D ,
{
W | (γi)Ui=1 4 (gi (W))

U
i=1 ,

(fp,t (W))
N
t=1 4 (It)

N
t=1 ,

U∑
i=1

wH
i wi ≤ Pm

}
(6)

where γi is the required SINR level at SU i and Pm is
the cognitive BS maximum transmit power. We propose the
following MOP:

min
W∈D

f (W) . (7)

In (7), the set of SINR constraints guarantees each SU
being served with its required level at least. The optimization
problem then tries to tune the beam to further improve each
SU’s received signal strength and thus to raise the achievable
throughput above the required level as far as possible.

Let λp,t > 0 ∀t, λs,i > 0 ∀i and
∑N

t=1 λp,t+
∑U

i=1 λs,i = 1.
According to [10], the Pareto optimal solution2, i.e., Ŵ , to the
MOP defined in (7) can be obtained as the optimal solution
to the following SOP

min

N∑
t=1

λp,tfp,t (W) +

U∑
i=1

λs,ifs,i (W) ,

s. t. gi (W) ≥ γi, ∀i
fp,t (W) ≤ It,∀t
U∑
i=1

wH
i wi ≤ Pm.

(8)

To account for the imperfection of channel estimation, here
we assume that the uncertainty in the estimation of channel
covariance matrices δs,i and δp,t are confined within hyper-
spherical sets Es,i and Es,i, respectively, with radius δs,i and
δp,t defined as

Es,i =
{
∆s,i ∈ CM×M : ∥∆s,i∥ ≤ δs,i

}
, ∀i (9)

Ep,t =
{
∆p,t ∈ CM×M : ∥∆p,t∥ ≤ δp,t

}
, ∀t. (10)

2Properly Pareto optimal solutions are defined as Pareto optimal solutions
with bounded trade-offs amongst the objectives [10].



Furthermore, for any M ×M Hermitian positive semidefinite
matrix, Y, ∥Y∥ ≤ δ, and a M×1 arbitrary vector x, we have

xHYx ≤ xHδIx. (11)

Utilizing (11), we then evaluate the worst case effect of the
channel estimation error on fs,i (W) and fp,t (W) as follows:

max
∥∆s,i∥≤δs,i

fs,i (W) = −wH
i

(
R̃s,i − δs,iI

)
wi (12)

and

max
∥∆p,t∥≤δp,t

fp,t (W) =
U∑
i=1

wH
i

(
R̃p,t + δp,tI

)
wi, (13)

Similarly, utilizing (11) we then write the worst case of
error on gi (W) as (14)3 given at the top of next page. Hence,
in the worst case (8) can be cast as (15) given at the top of
next page.

We proceed by defining beamforming matrix Wi = wiw
H
i ,

where Wi ≽ 0 and Wi is a rank-one matrix.4 Then, by
rearranging the constraints, using xHYx = Tr

(
YxxH

)
,

problem (15) is converted to the SDP form in (16) shown
on next page, where {Wi} = {W1, · · · ,WU} is the set
of beamforming matrices. When transforming (15) into (16),
we have dropped the rank-one condition on Wi. Following
the same approach in the proof of Theorem 1 in [8], one
can prove that the optimal solutions to problem (16) are
rank one. Therefore, the transformed problem (16) maintains
the optimality of the original problem (15). The optimization
problem in (16) can be solved by the SeDuMi solver, provided
by CVX optimization package [15], to obtain the set of optimal
beamforming matrices W⋆

i .

IV. SIMULATION RESULTS

In this section, the performance of the proposed scheme
is investigated and compared against a baseline introduced in
[8]. We consider a cognitive cellular network with 2 PUs and
2 SUs. The PUs are located at −50◦ and 50◦ while the SUs
are located at −10◦ and 10◦ relative to the array broadside.
The distances from the SUs and PUs to the cognitive BS are
0.5km and 1km, respectively. The (p, q)th entry of the M×M
channel matrice Rs,i or Rp,t is obtained using [16]:

ξe
j2π∆

ℓ [(q−p)sinϕ]e−2[π∆σa
ℓ {(q−p)cosϕ}]

2

, (17)

where ξ represents the channel gain coefficient, ϕ is the angle
of departure, ∆ is the antenna spacing at the BS, σa is the
angular spread and ℓ is the carrier wavelength. In (17), we
set ∆ = ℓ/2, σa = 2◦, ξ = 34.5 + 35log10(d) captures the
distance-dependent path-loss, where d is the distance in meters
with d ≥ 35m, a log-normal shadow fading with 8dB standard
deviation, and a Rayleigh component for the multi-path fading

3This type of worst-case evaluation for SINR was first introduced in [14].
4A matrix is rank one if its largest number of linearly independent

columns/rows is one.
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Fig. 1. Total throughput of the SUs vs. angle separation between PUs and
SUs. SUs’ SINR requirements γi = 10dB ∀i. δ = 0.01 ∗ ||R||

channel. The noise power spectral density, the noise figure at
each SU, and antenna gain are assumed to be -174dBm/Hz,
5dB, and 15dBi, respectively.

Fig. 1 illustrates the approximation of Pareto frontiers of
the proposed and the baseline scheme.5 The proposed scheme
is shown with different error levels δ.6 Fig. 1 indicates the
fact that there is a trade-off between the interference tolerance
level at PUs and the total achievable throughput of SUs. The
higher the interference tolerance level at the PU is, the higher
total throughput can be attained by the SUs. Fig. 1 also
shows that the performance of the proposed robust scheme
decreases as the error level in the estimation of CSI increases.
This can be explained as follows. As the uncertainty of
users’ CSI increases, the proposed approach has to reduce
it transmit power to protect the PUs, consequently, the total
throughput at SUs is reduced. The proposed scheme also
maintains the SINR constraint of 10dB at each SU as it can
be seen from the figure that the total throughput at SUs is
always greater than 2 log2(1 + 10) = 6.92bits/s/channel-use.
Furthermore, Fig. 1 reveals that the baseline scheme provides
higher total SU throughput than the proposed approach. This
higher performance, however, comes at a cost of harming the
PUs as shown in Figs. 2 and 3.

In order to investigate the effect of transmission of PUs, let
us define a normalized interference constraint value as fp,t(W)

It
where fp,t (W) is given in (4) and It is the interference
threshold/tollerance at tth PU. If the normalized interference
constraint value is less than 1 then the interference constraint
at each PU is maintained. Otherwise, interference constraint
at each PU is violated.

Figs. 2 and 3 depict the histograms of the normalized
interference constraint values, respectively, for PU 1 and PU

5For a given Im, Fig. 1 depicts the maximum achievable SU throughput.
6Without any loss of generation, we have set the same error level for all

users, i.e., δ = δs,i = δp,t, ∀i, t.



min
∥∆s,i∥≤δs,i

gi (W) =
wH

i

(
R̃s,i − δs,iI

)
wi∑U

j=1,j ̸=i w
H
j

(
R̃s,i + δs,iI

)
wj + σ2

i

(14)

min
{wi}

N∑
t=1

λp,t

U∑
i=1

wH
i

(
R̃p,t + δp,tI

)
wi −

U∑
i=1

λs,iw
H
i

(
R̃s,i − δs,iI

)
wi

s. t.
wH

i

(
R̃s,i − δs,iI

)
wi∑U

j=1,j ̸=i w
H
j

(
R̃s,i + δs,iI

)
wj + σ2

i

≥ γi, ∀i

U∑
i=1

wH
i

(
R̃p,t + δp,tI

)
wi ≤ It,∀t,

U∑
i=1

wH
i wi ≤ Pm

(15)

min
{Wi}

Tr

(
U∑
i=1

{[
N∑
t=1

λp,tR̃p,t +
N∑
t=1

λp,tδp,t − λs,iR̃s,i + λs,iδs,i

]
Wi

})
,

s. t.
(
1 +

1

γi

)
Tr
(
R̃s,iWi

)
−

U∑
j=1

Tr
(
R̃s,iWj

)
−

U∑
j=1,j ̸=i

δs,iTr (Wj)−
δs,i
γi

Tr (Wi)− σ2
i ≥ 0, ∀i,

It − Tr

(
R̃p,t

U∑
i=1

Wi

)
− Tr

(
δp,t

U∑
i=1

Wi

)
≥ 0, ∀t,

Pm −
U∑
i=1

Tr (Wi) ≥ 0,

Wi ≽ 0, ∀i,

(16)

2 at It = −15dBm ∀t, SINR level at SU γs,i = 10dB ∀i and
δp,t = δs,i = δ = 0.01 × ||R||, ∀i, t. It is clear from Figs. 2
and 3 that the proposed scheme effectively guarantees the
imposed interference on each PU is less than the requirement
while the baseline approach fails to protect the interference
constraints for more than 70% of the occurrences. This confirm
the effectiveness of the proposed scheme against the error in
the channel estimation.

As shown in Fig. 4, the Pareto frontier obtained by the
proposed approach can be designed by varying the number of
antennas. With 4 antennas, the proposed approach can main-
tain the required throughput for 2 SUs while taking care the
interference threshold for 2 PUs in the range from −10dBm to
−5dBm. When the number of antennas increases, the proposed
approach can provide much higher achievable throughput than
the original SU requirement. For example, with 12 antennas,
it offers 8 and 12.5bits/s/channel-use higher than the original
SU requirement at the PU interference thresholds of −15dBm
and −5dBm, respectively.

V. CONCLUSION

In this paper, we propose a multiobjective optimization
problem for coexisting wireless networks adopting an underlay
access strategy. Specifically, we formulate a beamforming
design problem as the linear combination of two contra-
dictory objectives, i.e., minimizing the interference imposed
on each primary user while maximizing the intended signal
received at every secondary user. The proposed beamforming
approach takes into account the uncertainty in the estimation
of channel state information. We then reformulate the proposed
optimization problem to a robust optimization problem under
the worst case of CSI estimation error. We finally transform
the robust optimization problem into a standard semidefinite
programming form which is convex and can be solved by
standard optimization packages. Simulation results confirm the
effectiveness of the proposed scheme against various levels
of CSI estimation error. Although all the constraints imposed
on the secondary system, i.e., SUs’ SINR levels and PUs’
interference thresholds, are maintained, the robustness comes
at the cost of lower total SUs’ throughput. Simulation results
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Fig. 3. Total throughput of the SUs vs. angle separation between PUs and
SUs. SUs’ SINR requirements γi = 10dB ∀i.

also indicate the fact that the baseline can provides higher
total SUs’ throughput than the proposed approach. However,
the former fails to maintain the interference tolerance level of
the PUs more than 70% of the occurrences.
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