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 A B S T R A C T

In the evolving sixth generation (6G) landscape, the integration of reconfigurable intelligent surfaces (RIS) 
with unmanned aerial vehicles (UAVs) offers a revolutionary opportunity to optimize data collection in the 
Internet of things (IoT) through deep reinforcement learning (DRL) and improve energy efficiency and network 
performance. This paper aims to study how reconfigurable intelligent surfaces and deep reinforcement learning 
can help increase throughput and energy efficiency in unmanned aerial vehicle-controlled Internet of things 
networks. The focus is on improving the capabilities of unmanned aerial vehicles to efficiently collect data in 
different regions and ensure safe landings. Divided into two phases, the study first improves the directional 
capacity and flexibility of unmanned aerial vehicles and then evaluates the integration of reconfigurable 
intelligent surface technology. We introduce two deep reinforcement learning models, namely the directional 
capacity and flexible reconnaissance (DCFR) model and the reconfigurable intelligent surface model, and 
compare them with a benchmark model. We found significant improvements in communication and data 
collection efficiency. The simulation results show an 8.18% increase in data collection performance and a 
6.92% increase in collected data per unit energy when using reconfigurable intelligent surfaces, with a 10.59% 
increase in collection performance and a 22.64% increase in energy efficiency. Furthermore, an unmanned 
aerial vehicle optimized with the double deep Q-network algorithm effectively identified optimal trajectories 
for data collection, confirming the significant benefits of reconfigurable intelligent surfaces in unmanned aerial 
vehicle-controlled Internet of things networks.
1. Introduction

In the era of ubiquitous connectivity, the integration of Internet 
of things (IoT) networks with unmanned aerial vehicles (UAVs) offers 
unprecedented opportunities for the intelligent collection and dissem-
ination of data across vast and diverse areas. The dynamic nature 
of UAVs, coupled with their ability to quickly cover and adapt to 
different geographical areas, makes them an ideal carrier for IoT appli-
cations that require large-scale data interaction. However, the inherent 
limitations of UAV communication capabilities, such as throughput, 
range and reliability, require innovative solutions to improve signal 
quality and network performance. IoT networks constitute a communi-
cation infrastructure wherein billions of devices interconnect, enabling 
data sharing and interaction across various sectors such as health-
care, energy, agriculture, and industrial automation, thereby impacting 
numerous facets of daily life (Atzori et al., 2010). However, the perfor-
mance of IoT networks may be constrained due to limited resources 
and challenges such as energy consumption by devices within the 
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network. Consequently, managing IoT networks efficiently necessitates 
innovative solutions to enhance network performance (Gubbi et al., 
2013; Zanella et al., 2014).

UAV hold significant potential for enhancing the performance and 
efficiency of IoT networks. For example, they can be an ideal solution 
for tasks such as data collection, routing, and enhancing communica-
tion capabilities within IoT networks (Mozaffari et al., 2019). UAVs are 
characterized by their low cost, rapid mobility, and expansive coverage 
capabilities, rendering them effective tools for deployment within IoT 
networks (Mozaffari et al., 2019).

In this context, reconfigurable intelligent surfaces (RIS) are proving 
to be a transformative technology that has the potential to significantly 
increase the efficiency of wireless communication networks. By intel-
ligently manipulating electromagnetic waves, RIS can improve signal 
propagation and extend communication links between IoT devices and 
UAVs. In particular, RIS can facilitate the reduction of signal losses in 
communication, thereby enabling more secure communication between 
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transmitters and receivers, particularly in scenarios where direct line-
of-sight communication is obstructed (Huang et al., 2019; Mnih et al., 
2013). This paper explores the role of RIS in extending the capabilities 
of IoT networks with UAVs, with a focus on how RIS can be used to 
optimize data collection processes.

There is a notable lack of research on RIS-based data collection 
using UAVs in combination with deep reinforcement learning (DRL) 
techniques. (Almasoud, 2023) develop a robust framework for data col-
lection in IoT environments using UAVs and RIS enhanced by landing 
platforms for increased anti-jamming resilience. The study applies an 
ant colony optimization algorithm to refine the routing of UAVs and 
clustering of IoT devices. This introduces a novel method to improve 
the flexibility and robustness of the network. However, the focus re-
mains on ant colony algorithms and resilience rather than dynamic 
adaptability. Chu et al. (2023) studied resource allocation and power 
distribution in a wirelessly operated IoT network supported by stati-
cally configured RIS elements to increase communication efficiency, 
but it lacked the integration of UAVs and adaptive learning algorithms, 
which revealed a gap in adapting to dynamic environments. Chen et al. 
(2023) addressed the energy constraints in IoT systems by utilizing 
active RIS for multiple access configurations, focusing on energy ef-
ficiency and improving signal quality, but omitting UAVs and deep 
learning strategies for real-time decision making. In contrast, Fan et al. 
(2023) successfully combined RIS with UAVs in urban environments to 
optimize data freshness using a DRL model, focusing primarily on Age 
of Information (AoI) rather than maximizing throughput. Similarly, the 
study conducted by Qi et al. (2024) reduces AoI in vehicular networks 
by integrating UAVs with RIS, using a multi-step duelling double deep 
Q-network (MSD3QN) to fine-tune UAV trajectories, RIS phase adjust-
ments and spectrum allocation, significantly improving data timeliness 
and network coverage. Despite the progress, existing research generally 
overlooks the combination of throughput maximization, RIS-assisted 
data collection via UAVs and leveraging reinforcement learning.

Our research aims to comprehensively integrate all the aforemen-
tioned elements, as portrayed in Fig.  1, where users communicate with 
UAV through RIS in the interest of maximizing throughput. Therefore, 
UAV’s trajectory decisions for efficient data collection becomes promi-
nent. The aim of this paper is to design and develop a novel method for 
data collection by incorporating RIS-assisted throughput maximization 
in UAV-powered IoT networks considering DRL. The main contributions 
of this paper are as follows:

• We design and develop the directional capacity and flexible re-
connaissance (DCFR) model to improve the performance of the 
Bayerlein model proposed in Bayerlein et al. (2020). The moti-
vation behind developing the new DCFR model is to prevent the 
agent from getting stuck in a certain state.

• We provide a method to integrate RIS into an existing IoT network 
to improve the energy efficiency and data collection performance 
of the UAV. To this end, we have developed the RIS model to 
demonstrate the additional performance improvement in data 
collection and energy efficiency.

• We introduce a new metric, collected data per unit energy, to 
measure the energy efficiency performance of the RIS model 
which integrates the RIS technology into the existing IoT network. 
Together with the data collection ratio, this new metric is very 
useful to determine whether a model is energy efficient.

• We conducted a comprehensive analysis of the overall perfor-
mance for each model, i.e. the Bayerlein model, the DCFR model 
and the RIS model. We also uncovered specific scenarios where 
the Bayerlein model stalls the agent and provided the DCFR solu-
tion to these challenges by analysing each scenario individually.

The rest of the paper is structured as follows. Section 2 discusses the 
related work while Section 3 elaborates on the proposed system model 
along with RIS system model. Section 4 presents the generic solution 
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approaches that are leveraged, whereas Section 5 discusses the DCFR 
model along with the integration of RIS as an extension to the DCFR 
model. Section 6 comprehensively evaluates all the proposed models. 
Finally, Section 7 concludes the paper.

2. Related work

Unmanned Aerial Vehicles (UAVs) have emerged as a pivotal tech-
nology in the realm of IoT networks, offering versatile and efficient 
solutions for data collection in diverse and challenging environments. 
Their mobility, adaptability, and cost-effectiveness have positioned 
them as essential tools in applications such as disaster management, 
smart agriculture, and environmental monitoring (Haider et al., 2022).

UAVs serve as mobile nodes capable of traversing complex terrains 
and collecting data dynamically from IoT devices. Unlike traditional 
static base stations, UAVs can adapt their trajectories in real time to 
optimize data collection based on environmental and network condi-
tions. Their ability to establish line-of-sight (LoS) communication links 
further enhances their suitability for data collection tasks (Wang et al., 
2024; Haider et al., 2022).

In IoT networks, UAVs facilitate efficient data gathering from sen-
sors deployed in remote or inaccessible regions. Their utility in agri-
culture is particularly noteworthy, where they assist in monitoring 
crop health, optimizing irrigation schedules, and assessing soil condi-
tions. UAVs enable timely data collection, which is critical for preci-
sion agriculture applications. By employing multi-objective optimiza-
tion techniques, UAVs balance energy consumption, data rate, and 
latency, ensuring the sustainability and effectiveness of data collection 
operations (Haider et al., 2022; Liu et al., 2024).

Despite their advantages, UAV-based data collection faces signifi-
cant challenges, including energy constraints, communication interfer-
ence, and the need for timely data delivery. Limited onboard energy re-
stricts the operational duration of UAVs, necessitating efficient energy 
management strategies. Advanced trajectory planning and clustering 
techniques address this issue by minimizing unnecessary movements 
and optimizing data collection routes (Wang et al., 2024; Haider et al., 
2022).

Additionally, environmental factors such as obstacles and channel 
interference can hinder communication reliability. The integration of 
RIS has been shown to mitigate these issues by enhancing signal prop-
agation and establishing reliable communication links in obstructed 
environments (Haider et al., 2022). Ensuring data timeliness is another 
critical concern, particularly for time-sensitive applications. Metrics 
such as Age of Information (AoI) are employed to evaluate and optimize 
data freshness during transmission (Wang et al., 2024; Mondal et al., 
2024).

We categorize the related work into two subsections followed by 
the critical evaluation of these relevant works, the first one is concerned 
with the IoT data collection using DRL, whereas the second one focuses 
on the integration of RIS to enhance the data collection performance of 
UAVs.

2.1. Utilizing UAVs for IoT data collection

Chen et al. (2019) focus their attention on enhancing the efficiency 
of data collection in large-scale UAV-supported wireless sensor net-
works. UAVs are deployed for collecting sensor data to improve the 
effectiveness of the data collection process. The study divides the target 
area into clusters, and cluster head selection and data transmission 
rules for each cluster are determined based on the information value 
and power levels of the nodes. While sensor nodes collect environmen-
tal information in response to events, UAV serves as a mobile data 
collection centre. A direct future prediction (DFP) model is utilized 
to plan the trajectory of the UAV, maximizing the total information 
value collected while achieving multiple target tasks with low power 
consumption. Simulations demonstrate that the DFP model outperforms 
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Fig. 1. Users to communicate with UAV through RIS for efficient data collection.
traditional methods. The approach demonstrates advantages such as 
efficient clustering and trajectory planning, which significantly enhance 
data collection efficiency and power consumption. However, the com-
putational overhead in DFP implementation and potential scalability 
challenges for larger networks are notable disadvantages.

Bayerlein et al. (2020) address route planning and data collection in 
UAV-supported IoT networks using DRL-based models. Specifically, in a 
data collection scenario from IoT devices involving challenges, such as 
limited flight time and obstacle avoidance, regulatory restrictions, the 
learned control policy using double deep Q-network (DDQN) and expe-
rience replay stands out for its ability to adapt extensively to changes 
in environmental parameters. The method provides high adaptability 
to dynamic environments and effectively manages complex constraints 
such as obstacle avoidance and limited flight time. However, its disad-
vantages may include limited generalizability beyond trained scenarios 
and high training time and resource requirements for DRL models.

Cicek (2021), the aim is to enhance the efficiency of using UAV 
for data collection from sensors in IoT networks. The paper presents 
an approach addressing current issues, such as limited UAV battery 
and deterministic operating times by enabling UAV to swap batteries 
at stations where battery replacement is conducted. Additionally, in 
a network with sensors where data upload times are uncertain, the 
UAV’s journey planning and battery replacement times are jointly opti-
mized to minimize total data loss. The proposed reinforcement learning 
algorithm outperforms other methods in the computations conducted 
and achieves a significant reduction in data loss. This approach is ad-
vantageous for effective battery management and significant reduction 
in data loss through optimized journey planning. However, it relies 
heavily on the availability of battery swap stations and has limited 
flexibility for real-time adjustments.

Benmad et al. (2022) examine the utilization of multiple UAVs 
and the determination of optimal trajectories in the data collection 
process of wireless sensor networks (WSNs). The rapid deployment 
capabilities and access to challenging terrains of UAV provide sig-
nificant advantages to the data collection process. However, energy 
constraints are a significant concern for both WSN and UAV. Therefore, 
this study propose to jointly optimize trajectories in order to optimize 
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energy transfer for all UAV and minimize data collection time. These 
approaches utilize intuitive methods such as nearest insertion algorithm 
(NIA) and greedy algorithm (GA). It is concluded that the proposed 
methods effectively facilitate the efficient utilization of UAV in the 
data collection process and can enhance the performance of WSNs. 
The study demonstrates advantages in optimizing energy transfer and 
enabling faster data collection in challenging terrains. However, it 
faces limitations in the scalability of heuristic methods and potential 
inefficiencies in highly dynamic environments.

Li et al. (2022) investigate the trajectory design problem for UAV 
used in data collection systems for large-scale time-sensitive IoT ser-
vices. Although UAV have advantages such as automatic maneuverabil-
ity and flexible mobility, ensuring the freshness of collected data under 
the constraint of limited flight energy is a challenging task. Therefore, 
a new metric called age of information (AoI) is utilized to measure 
information freshness, and the problem of jointly optimizing power 
control and trajectory design to minimize average AoI is addressed. 
To solve this complex problem, an approach based on DRL-based 
multi-agent method is proposed by decomposing power control and 
trajectory design into independent subtasks. Simulation results demon-
strate that the proposed method outperforms other methods in terms of 
performance and stability. The proposed method offers advantages in 
improving data freshness using the AoI metric and achieving superior 
performance and stability through multi-agent DRL approaches. How-
ever, the complexity in implementing multi-agent DRL and the resource 
intensity required for real-time operations are significant drawbacks.

In a nutshell, these studies highlight the integration of UAVs in IoT 
data collection and the use of DRL models to improve efficiency and 
performance in wireless sensor networks. Chen et al. (2019) show how 
UAVs guided by a DFP model optimize data collection by dynamically 
planning trajectories based on the information value and energy sup-
ply of the nodes, significantly outperforming conventional methods. 
Bayerlein et al. (2020) use DDQN to navigate UAVs through complex 
environments with constraints such as limited flight time and obsta-
cles, demonstrating the adaptability of the model. Cicek (2021) focus 
on minimizing data loss by optimizing UAV flight paths and battery 
management, while Benmad et al. (2022) investigate energy-efficient 
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trajectory planning for multiple UAVs to speed up data collection in 
difficult terrain. Finally, Li et al. (2022) address the timeliness of data 
in IoT services using an ‘‘Age of Information’’ metric and a multi-
agent DRL approach, achieving superior performance and stability in 
trajectory and energy management. Overall, these studies highlight 
the central role of DRL in revolutionizing UAV-based data collection 
strategies in IoT frameworks, promising significant improvements in 
network efficiency, data relevance and operational autonomy.

2.2. UAV data collection enhanced by RIS

Reconfigurable intelligent surfaces (RIS) are increasingly recog-
nized as a key technology for future sixth generation (6G) networks 
to improve network capacity, coverage, efficiency and security while 
minimizing energy and hardware costs. However, the integration of 
RIS into current infrastructures significantly complicates network man-
agement, especially when controlling numerous RIS elements. Efficient 
optimization strategies are crucial to fully exploit the capabilities of 
RIS. To this end, Zhou et al. (2023) provide a comprehensive analysis 
of the AI-based RIS assisted communication networks, where problem 
formulations with different objectives and constraints are investigated, 
a comparison of optimization strategies in terms of stability, robustness 
and optimality is presented and their applications to 6G networks are 
discussed, also highlighting future challenges.

Bjornson et al. (2020) evaluate the performance of RIS compared 
to traditional Decode-and-Forward (DF) relaying to improve the effi-
ciency of wireless networks. Through rigorous analytical and numerical 
analyses, the study shows that despite its potential to manipulate signal 
propagation via software-controlled metasurfaces, RIS requires a signif-
icantly larger number of elements to outperform DF relaying in terms of 
energy efficiency and signal strength. The results emphasize that while 
RIS can theoretically reduce transmission power and improve energy 
efficiency, especially at higher data rates, its practical use requires 
large-scale implementation, which may limit its utility in scenarios 
where compact and less resource-intensive solutions are preferable. 
This article highlights the critical balance between the size of the RIS 
element and its effectiveness in real-world wireless communication 
environments.

Al-Hilo et al. (2023) investigate the integration of RIS with UAVs to 
optimize data collection in IoT networks under time pressure. Using 
DRL for trajectory planning and block coordinate descent for RIS 
configuration, the study shows that such integration can significantly 
improve the connectivity and energy efficiency of UAVs in data col-
lection. Detailed simulations show that the method is more than 50% 
superior to traditional approaches. This emphasizes the potential of RIS 
to transform the handling of IoT data in urban environments where 
line of sight is often obstructed. The method demonstrates significant 
advantages in improving connectivity and energy efficiency, partic-
ularly under time-constrained conditions. However, the reliance on 
complex configurations and trajectory planning algorithms may present 
computational challenges.

Mondal et al. (2022) focus on the treatment of inter-node in-
terference in IoT networks through RIS. They develop optimization 
techniques to maximize spectrum and energy efficiency using phase 
shifts of RIS elements and power allocation between IoT devices. The 
study addresses non-convex optimization problems by dividing them 
into subproblems that are solved alternately and employing advanced 
algorithms such as conjugate gradients on Riemannian manifolds and 
pricing-based techniques. The numerical results show significant ef-
ficiency gains compared to traditional networks and highlight the 
effectiveness of RIS in improving the performance of IoT networks 
while keeping computational complexity manageable. The approach 
offers advantages in significantly improving spectrum and energy effi-
ciency while keeping computational complexity manageable. However, 
its reliance on solving complex non-convex problems may limit its 
scalability to larger networks.
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Yao et al. (2022) investigate the use of RIS on UAVs to increase 
the energy efficiency of wireless powered air-to-ground communica-
tion networks (WPCNs). A system is presented in which UAVs reflect 
energy via RIS to energy-constrained hybrid access points (HAPs), 
which then communicate with users in blind areas. The study models 
energy efficiency as a non-convex quadratic programming problem 
and proposes a joint optimization algorithm for power and phase 
shifts. The simulation results show that the proposed RIS-based model 
achieves an energy efficiency improvement of up to 160% compared 
to conventional amplify-and-forward relay systems. This emphasizes 
the potential of RIS to significantly improve the performance of air-
to-ground communication networks. The proposed system achieves 
significant advantages in energy efficiency, with improvements of up 
to 160% compared to conventional systems. However, addressing the 
non-convex nature of the problem requires substantial computational 
resources.

Mei et al. (2022) employ RIS to enhance communication between 
UAVs and ground terminals by focusing signals between UAVs and 
ground terminals towards the intended users. DRL is utilized to opti-
mize the 3D position of UAVs and the phase shift of RIS, demonstrating 
that DRL can significantly enhance the energy efficiency of RIS-enabled 
UAV systems.

Cao et al. (2021) propose a non-stationary geometry-based channel 
model for multiple-input multiple-output (MIMO) channels using RIS 
applied to UAVs. The adjustable reflection phases of RIS are optimized 
based on the received signal power. The study investigates the impact 
of the number of RIS reflective units, geometric area, and UAV speed 
over channel statistics. Results demonstrate that optimizing the phases 
of signals reflected by RIS can increase received signal power and 
mitigate the effects of multipath fading, whereas increasing the number 
of RIS reflective units significantly reduces spatial correlation.

Lian et al. (2023) propose a new channel model using RIS to en-
hance the performance of UAV communication systems. The proposed 
model considers the geometry and scattering characteristics of RIS 
reflective units. Additionally, the impact of the number and size of RIS 
reflective units on channel characteristics is examined. Results show 
that communication performance can be improved with RIS by increas-
ing the number and size of reflective units. The model demonstrates 
advantages in improving communication performance by leveraging 
the size and number of RIS reflective units. However, the scalability 
and cost implications of increasing reflective unit size and numbers are 
potential drawbacks.

Wang and Zhang (2023) propose a novel approach to minimize 
energy consumption in UAV-based communication systems. By utilizing 
active RIS technologies, the power of communication signals between 
UAVs and ground users is effectively enhanced. Using a hierarchical 
DRL model, energy consumption of UAVs and ground users is concur-
rently minimized. Simulations demonstrate that active RIS usage can 
significantly reduce energy consumption of UAVs and ground users 
when the thermal noise power on RIS is substantially lower than that 
of UAVs and ground users.

Al-Jarrah et al. (2021) analyse the impact of RIS used for UAV 
communication on system capacity. In the examined system, RIS panels 
on some UAVs modify the phase of incoming waves before being 
reflected to the receiving UAV, while the effect of phase errors on 
capacity is also considered. Results indicate that phase errors affect 
capacity, but at high signal-to-noise ratio (SNR) and above a certain 
threshold, phase errors become negligible.

Park et al. (2022) proposes a novel framework to improve wireless 
connectivity in smart railways using an RIS-assisted UAV system. This 
system aims to maximize the minimum achievable rate of trains by 
jointly optimizing the trajectories of the UAVs and the phase shifts of 
the RIS. The challenges posed by non-convex problems are addressed 
by decomposing them into sub-problems, which are then solved using 
Binary Integer Linear Programming and Soft Actor-Critic methods. Ex-
tensive numerical simulations confirm the effectiveness of the proposed 
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model and show significant improvements in data rate and connectivity 
for intelligent orbital systems. The integration of RIS with UAVs offers 
a promising solution for overcoming obstacles and improving seamless 
communication in high-speed railway environments. The framework 
demonstrates significant advantages in enhancing data rates and con-
nectivity in high-speed railway environments. However, addressing the 
non-convex challenges requires substantial computational resources, 
which may limit real-time deployment.

Wang et al. (2024) introduces a framework to address key chal-
lenges in UAV-assisted IoT networks, focusing on improving data time-
liness and energy efficiency while mitigating the effects of jamming. 
By integrating RIS to enhance signal quality, the framework optimizes 
UAV trajectories using an innovative particle swarm algorithm and 
adjusts IoT device power through convex approximation techniques. 
The combined approach effectively balances energy consumption and 
communication reliability, showing significant improvements in data 
freshness and anti-jamming capabilities. While the framework offers ad-
vantages like enhanced connectivity and adaptability, it also faces chal-
lenges such as high computational demands, reliance on RIS placement, 
and scalability limitations in dense networks.

As the aforementioned literature highlights, the integration of RIS 
with UAVs and IoT systems significantly improves the capabilities of 
6G networks. Techniques such as DRL can optimize the trajectories 
of UAVs and RIS setups and improving communication efficiency. RIS 
technology increases signal strength and reduces energy consumption, 
albeit it may increase the complexity due to non-convex optimization 
of the resources. The use of RIS in UAVs in urban areas increases 
the efficiency of data collection and shows that it is possible to solve 
line-of-sight problems and extend network coverage. In addition, de-
velopments in phase shift design and power optimization contribute 
to significant improvements in spectrum and energy efficiency. This 
enables RIS to fulfil the requirements of future technologies with high 
capacity and low latency.

2.3. Critical evaluation

It is clear from the aforementioned related work that the integration 
of UAVs and IoT networks has demonstrated remarkable potential in 
addressing data collection challenges in complex and dynamic environ-
ments. However, the inherent limitations of UAVs, such as restricted en-
ergy capacity and communication range, and the complexity introduced 
by non-convex optimization in RIS-assisted networks, have presented 
significant challenges. This section critically analyses key studies in 
this domain, discussing their contributions, advantages, and limita-
tions, while positioning our proposed work as a novel contribution to 
overcome some of these shortcomings.

The performance comparison among existing works highlights dis-
tinct advantages and limitations that frame the context for this study. 
Chen et al. (2019) demonstrated efficient clustering and trajectory 
planning for large-scale networks, yet their approach faced scalability 
challenges and computational overhead, which our study addresses by 
employing DRL for dynamic trajectory optimization. Bayerlein et al. 
utilized DDQN for high adaptability in dynamic environments but 
encountered agent stalling, which is resolved in our work through the 
DCFR model’s enhanced robustness. Cicek (2021) focused on effective 
battery management and data loss reduction but relied on static battery 
swap stations, limiting real-time flexibility. Our integration of DRL and 
RIS mitigates this limitation by enabling dynamic adaptability. Mondal 
et al. (2024) achieved notable spectrum and energy efficiency gains 
through RIS phase optimization, though scalability to larger networks 
was hindered by non-convex problem-solving, a challenge we overcome 
by introducing the novel metric collected data per unit energy and RIS-
based optimization. Fan et al. (2023) effectively reduced the Age of 
Information (AoI) using DRL models but did not emphasize throughput 
maximization, which is a core focus of our framework. Almasoud 
(2023) leveraged ant colony optimization for anti-jamming resilience 
5 
but lacked adaptability in dynamic conditions, a gap we fill with DRL-
enhanced trajectory optimization. Wang et al. (2024) integrated RIS 
with particle swarm optimization (PSO) and convex approximation 
for anti-jamming and energy efficiency, but their approach faced high 
computational demands and scalability challenges in dense networks. 
Our study addresses these gaps by introducing the novel metric collected 
data per unit energy and improving energy-efficient data collection in 
randomized IoT deployments using RIS integration along with DRL. 
This comparison underscores the distinct contributions of our study 
in addressing scalability, adaptability, and performance metrics while 
bridging the limitations of prior works. A summary of the critical 
evaluation is provided in Table  1.

3. System model

Bayerlein’s research in Bayerlein et al. (2020) served as the foun-
dational system model for this study, with modifications incorporated. 
The subsequent section provides a concise summary of the adapted 
system model.

3.1. Map, scheduling and communication models

a- Map and system structure. As in Bayerlein et al. (2020), we follow 
the 2D Manhattan grid map model that is illustrated at the top of Fig. 
2, which also portrays an abstracted 3D view of the general system 
model encompassing IoT devices, UAV and RIS as well as NFZ and 
landing zone. UAV collects data from 𝐾 number of IoT devices and each 
IoT device is located on the ground with a position 𝑢𝑘 = [𝑥𝑘, 𝑦𝑘, 0]𝑇 ∈
R3 𝑎𝑛𝑑 𝑘 ∈ [1, 𝐾].

b- Scheduling model. The data collection task is performed over a 
specific time period 𝑇 ∈ N. Duration of UAV operation is divided 
into equally spaced mission time slots 𝑡 ∈ [0, 𝑇 ]. The UAV’s position 
[𝑥(𝑡), 𝑦(𝑡), ℎ]𝑇 ∈ R3 with constant altitude ℎ and its 2D projection on 
the ground is determined by 𝐩(𝑡) = [𝑥(𝑡), 𝑦(𝑡)]𝑇 . Each mission time slot 
is divided into smaller communication time slots 𝑛 ∈ [0, 𝑁]. Scheduling 
is arranged in a way so that node 𝑘 initiates transmission towards the 
UAV at time slot 𝑛, which is represented by 𝑞𝑘(𝑛) ∈ {0, 1}.

c- Communication model. The communication between the UAV and the 
IoT devices is modelled with line-of-sight (LoS)/Non-LoS point-to-point 
channels using log-distance path loss and shadowing. The information 
rate at time 𝑛 for the 𝑘th device is defined as (Bayerlein et al., 2020) 

𝑅𝑘(𝑛) = 𝑙𝑜𝑔2(1 + (
𝑃𝑘

𝜎2
⋅ 𝑑𝑘(𝑛)−𝛼𝑙 ⋅ 10𝜂𝑙∕10)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑆𝑁𝑅

), (1)

where 𝑃𝑘 is the transmit power, white Gaussian noise power at the 
receiver is 𝜎2, distance between UAV and IoT device is depicted as 
𝑑𝑘(𝑛), path loss exponent is 𝛼𝑙 and 𝜂𝑙 ∼  (0, 𝜎2𝑙 ) is the Gaussian random 
variable. Note that SNR in Eq. (1) is averaged over small scale fading. 
An IoT devices is served by the UAV in each communication time 
slot 𝑛 for uploading the remaining data given that the link with the 
highest 𝑆𝑁𝑅𝑘(𝑛) value is selected by the aforementioned scheduling 
mechanism.

3.2. RIS model

We base our RIS model on the work conducted in Bjornson et al. 
(2020), which concludes that to beat decode-and-forward relaying 
scheme, RIS requires large reflecting elements and/or very high rates 
both in terms of minimizing the total transmit power and maximizing 
the energy efficiency.

We consider 𝑀 number of RIS located at different positions to serve 
sensors as portrayed in Fig.  2 so that RIS can enable the reflection of 
the incident signal towards UAV, while each RIS is equipped with 𝐸
discrete reflecting elements. The deterministic channels from sensor 𝑠
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Table 1
Critical evaluation of this study compared to some of the existing literature.
 Study Advantages Disadvantages Gaps addressed in this study  
 Chen et al. (2019) Efficient clustering and trajectory planning for 

large-scale networks.
High computational overhead and limited 
scalability.

Introduces DRL to optimize trajectories 
dynamically, addressing scalability and 
computational challenges.

 

 Bayerlein et al. (2020) High adaptability in dynamic environments 
using DDQN.

Limited generalizability. Develops the DCFR model to overcome agent 
stalling, improving robustness in dynamic 
environments.

 

 Cicek (2021) Effective battery management and significant 
reduction in data loss.

Relies heavily on battery swap stations and 
lacks flexibility for real-time adjustments.

Combines DRL and RIS for real-time adaptability, 
minimizing reliance on static configurations.

 

 Mondal et al. (2022) Significant improvement in spectrum and 
energy efficiency using RIS phase optimization.

Non-convex problems limit scalability in 
larger networks.

Integrates RIS with DRL to enhance scalability and 
introduces a novel metric (collected data per unit 
energy).

 

 Fan et al. (2023) Effective reduction in Age of Information (AoI) 
using DRL.

Focuses on AoI, neglecting throughput 
maximization.

Maximizes throughput using DRL-enhanced UAV 
and RIS integration.

 

 Almasoud (2023) Anti-jamming resilience and robust static 
performance through ant colony optimization.

Static optimization lacks adaptability to 
dynamic conditions.

Employs DRL for dynamic UAV trajectory 
optimization, enabling real-time adaptability.

 

 Wang et al. (2024) Enhances signal quality and energy efficiency 
with RIS, mitigates jamming using PSO and 
convex approximation, focusing on 
anti-jamming.

High computational demands, reliance on 
RIS placement accuracy, and scalability 
issues in dense networks.

Introduces a novel metric (‘‘data per unit energy’’) 
and improves energy efficiency and data collection 
in randomized IoT deployments using RIS with 
DRL.

 

through UAV 𝑢 are experienced in order of [𝐡𝑠𝑘𝑟𝑘 , 𝐡𝑟𝑘𝑢] ∈ C𝑁 , where 
for example, 𝐡𝑠𝑘𝑟1  represents the channel from sensor 𝑘 to the first RIS 
considering 𝐾 number of RIS as each RIS is dedicated to one sensor and 
[𝐡(⋅)]𝑖 denotes 𝑖th component of the concerned RIS. Noting that the size 
of each reflecting element is smaller than the wavelength, e.g., 𝜆∕5×𝜆∕5
and 𝜆∕8 × 𝜆∕8 are reported in Bjornson et al. (2020), so that it can 
scatter the incoming signal using a near constant gain in all direction 
of interest (Bjornson et al., 2020) with adjustable amplitude and/or 
phase. For each RIS, signal model can be represented by a diagonal 
matrix 𝜣𝑟1 ,…,𝑟𝐾 = 𝛼diag𝑟1 ,…,𝑟𝐾 (𝑒

(𝑗𝜃1),… , 𝑒(𝑗𝜃𝐸 )) for a tunable phase-shift 
array of 𝜽𝑟1 ,…,𝑟𝐾 = [𝜃1, 𝜃2, 𝜃3,… , 𝜃𝐸 ]𝜽∈[0,𝜋], respectively, where 𝛼 ∈ [0, 1]
denotes the fixed amplitude reflection coefficient. Following the RIS 
models derived in Bjornson et al. (2020), the achievable rate at the 
UAV 𝑢 given each sensor can be formulated as follows:

𝑅𝑟𝑘 (𝐸) = max
𝜽𝑟𝑘,∀𝑘∈{1,…,𝐾}
𝐸

log2
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⎜
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𝑆𝑁𝑅𝑟𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (2)

where 𝑆𝑁𝑅𝑟𝑘  represents the received SNR at the UAV from 𝑘th sensor 
via the 𝑘th RIS, depicted as 𝑟𝑘. For each task time slot 𝑡, RIS establishes 
𝛿 times communication to UAV via RIS model using the duration of 
communication time slot 𝑛. For a fair comparison to Bayerlein et al. 
(2020), we assume that our channel model incorporates shadow fading 
in addition to Bjornson et al. (2020). In Section 5.2, we provide more 
details on how RIS is adopted to our system.

3.3. Problem formulation

For one mission time slot 𝑡 ∈ [0, 𝑇 ], the achievable throughput is 
given by the sum of all achieved rates of the activated communication 
time slot 𝑛 ∈ [0, 𝑁] over 𝐾 (𝑘 ∈ [1, 𝐾]) number of IoT devices and given 
by Bayerlein et al. (2020) 

𝐷(𝑡) =
𝛿(𝑡+1)−1
∑

𝑛=𝛿𝑡
𝑞𝑘(𝑛)𝑅𝑘(𝑛), (3)

where 𝑞𝑘(𝑛) ∈ {0, 1} represents the activated communication link from 
which the UAV starts collecting data. We also introduce RIS to help 
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increase the data collection performance and throughput via RIS is 
formulated as follows, 

𝐷(𝑡) =
𝛿(𝑡+1)−1
∑

𝑛=𝛿𝑡
𝑞𝑘(𝑛)𝑅𝐸

𝑟𝑘
(𝑛), (4)

where, 𝑅𝐸
𝑟𝑘
 depicts the achievable rate given 𝐸 number of reflecting 

elements for 𝑘th RIS that assists communication at time slot 𝑛. The 
UAV’s data collection mission aims to maximize the overall throughput 
while minimizing the flight duration, which is constrained by the 
maximum flight time, NFZs, obstacle avoidance and landing points.

State during mission time slot t, 𝑠𝑡 = (𝐃𝑡,𝐩𝑡, 𝑏𝑡,𝐌,𝐔), representing 
state-space with device data, UAV position, remaining flying time, en-
vironment map (NFZ and landing/takeoff positions) and IoT device po-
sitions, respectively. UAV has  = {𝑛𝑜𝑟𝑡ℎ, 𝑒𝑎𝑠𝑡, 𝑠𝑜𝑢𝑡ℎ,𝑤𝑒𝑠𝑡, ℎ𝑜𝑣𝑒𝑟, 𝑙𝑎𝑛𝑑}
six actions, which later extended to ten actions encompassing diagonal 
moves to increase directional capacity.

The optimization problem was formulated as a reward function 
within the framework of a Markov decision process (MDP) and was 
realized using DRL model. Readers are referred to Bayerlein et al. 
(2020) for further details as we follow a similar methodology to solve 
this optimization problem.

4. Solution approaches

4.1. Q-Learning

Q-learning is a model-independent methodology in the field of rein-
forcement learning (RL) that enables an agent to refine and optimize its 
strategy by interacting with its environment. At any given point in time 
𝑡, the agent observes a state 𝑠𝑡, and performs an action 𝑎𝑡 based on this 
observation. The environment then issues a reward 𝑟(𝑠𝑡, 𝑎𝑡) depending 
on the effectiveness of the action that sets the agent to a new state 𝑠𝑡+1. 
The overall goal for the agent is to determine a policy 𝜋, i.e. a strategy 
that maximizes the accumulated rewards. This strategy 𝜋 describes an 
optimal distribution of actions resulting from the prevailing state.

Q-learning attempts to iteratively refine the state–action-value func-
tion, commonly referred to as the Q-function quantifying the expected 
total return resulting from the execution of a particular action in a 
particular state and serves as a central component in the policy (𝜋) 
learning process and given by, 

𝑄𝜋 (𝑠, 𝑎) = E [𝑅 |𝑠 = 𝑠, 𝑎 = 𝑎], (5)
𝜋 𝑡 𝑡 𝑡
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Fig. 2. RIS system model.
where represents the expected discounted cumulative return from the 
current state 𝑠𝑡 until reaching a terminal state at time 𝑇  given by, 

𝑅𝑡 =
𝑇
∑

𝑗=𝑡
𝛾 (𝑗−𝑡)𝑟(𝑠𝑗 , 𝑎𝑗 ), (6)

where 𝛾 represents the discount factor balancing the weight of imme-
diate and future rewards.

4.2. DDQN and experience replay

The Double Deep Q-Learning (DDQN) algorithm is a further de-
velopment of Deep Q-Networks (DQN) and uses deep neural networks 
to approximate the Q-function with improved convergence properties. 
DDQN shows superior performance due to its refined update mecha-
nism, especially in environments characterized by extensive state and 
action spaces. In this method, a secondary target network is used for 
the Q-function updates. This mitigates the overestimation error that 
occurred in its predecessors and promotes more stable convergence 
throughout the training phase (Hasselt, 2010).

Experience replay is a technique that is often used to reduce tem-
poral correlations within the training data set. In this approach, the 
agent’s experiences are encapsulated as tuples of the form (𝑠𝑡, 𝑎𝑡, 
𝑅𝑡, 𝑠𝑡+1) and archived in a replay buffer. Throughout the training 
process, the agent improves its learning process by extracting random 
minibatches from this memory. Such a method makes it easier for the 
agent to draw on previous experience and utilize it evenly, promoting 
a more even distribution of learning opportunities (Sutton and Barto, 
2018).

4.3. Centred global map

In the study, we used the centred global map technique advocated 
by Bayerlein et al. (2020) to process the map layers with a focus on 
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the location of the UAV. This method improves the ability to gener-
alize across different scenario parameters and represents a pioneering 
example of the centring approach to global maps.

The map centring procedure is portrayed in Fig.  3. During this 
process, the maps were enlarged to a dimension of (2𝑀 − 1)𝑥(2𝑀 − 1). 
The centre of the original map was then repositioned to match the 
UAV’s location so that the agent can capture the entire map regardless 
of its position.

Using a centred map has advantages as the relational assignment 
of neurons within the ‘‘flatten’’ layer changes. Without centring, the 
neurons in this layer correspond to the features at fixed positions. 
With the map centred, however, these neurons correlate with features 
in relative positions, which increases the efficiency of the learning 
processes, especially when the agent has to initiate actions based on 
its relative position.

4.4. DDQN architecture

We adopted the neural network model of Bayerlein et al. (2020) 
encompassing the preprocessing of the centred map and its subsequent 
use in the neural network, which is portrayed in Fig.  4. The centred map 
is passed through convolutional layers and then fed into fully connected 
layers. In these layers, the ReLU activation function is used and the 
outputs represent the Q-values corresponding to each action. During 
training, the softmax policy is used to ensure the balance between 
exploration and exploitation of the agent. This policy determines the 
agent’s probability for each action based on the current state. During 
evaluation, the action with the highest Q-value is determined and this 
action is implemented (Bayerlein et al., 2020).

The agent is capable of reconstructing a defined number of past 
episodes essential for any DRL algorithm’s training. Each episode con-
sists of a tuple with state, action, reward, and the following state 
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Fig. 3. Centred map with the UAV’s location represented by a green star and the intersection of the dashed lines (Bayerlein et al., 2020).
Fig. 4. Double DQN architecture with combined experience replay.
(𝑠𝑡, 𝑠𝑡+1, 𝑟𝑡, 𝑎𝑡). These tuples are used to train the policy neural network 
using batch learning. As shown Fig.  4, the training process includes 
calculating the loss  and updating the policy 𝑄𝜃 by minimizing , in 
accordance with the methodology described in Bayerlein et al. (2020).

4.5. Model assumptions and constraints

The proposed Double DQN model operates under several assump-
tions and constraints to effectively address the problem of UAV tra-
jectory optimization in RIS-assisted IoT networks. The environment is 
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modelled as a finite Markov decision process (MDP), assuming that the 
current state–action pair fully determines the next state and reward. 
The state representation incorporates UAV location, energy levels, com-
munication quality, and RIS phase configurations, while the action 
space includes discrete movements and RIS reconfigurations, executed 
within fixed time slots. The reward function is designed to prioritize 
throughput maximization and energy efficiency, penalizing actions that 
result in excessive energy consumption or violations of operational 
constraints, such as no-fly zones. To enhance training stability, the 
DQN employs experience replay with a finite buffer, assuming that 
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random sampling breaks temporal correlations and improves conver-
gence. However, the model is constrained by the UAV’s limited energy 
budget, which restricts the number of actions and overall mission 
duration. Additionally, computational resources onboard the UAV im-
pose limitations on the complexity of the neural network architecture 
and training processes. The 𝜖-greedy policy for exploration assumes a 
balance between exploration and exploitation to converge towards the 
optimal policy, while the long-term reward optimization is influenced 
by the discount factor, constraining the trade-off between immedi-
ate and future rewards. These assumptions and constraints form the 
foundation for the model’s design and implementation, providing a 
framework that balances computational feasibility with performance 
optimization.

5. Navigation & Reconnaissance and RIS integration

In Phase-1 of this section, we explain the methodology on how 
the directional capacity is enhanced and the flexible reconnaissance is 
maintained, while the details of the integration methodology of RIS are 
provided in Phase-2.

5.1. Phase-1: Enhanced directional capacity and flexible reconnaissance 
(DCFR)

The system model described in Section 3.1 is used for Phase-1. Since 
the movement of the UAV in four directions, i.e., east, west, north, south
does not provide enough directional capacity, the UAV is arranged in 
eight directions encompassing the movement action towards east, west, 
north, south, south-east, south-west, north-east, north-west. Noting that 
hovering and landing movements are default actions of the agent. In 
addition to improving the directional capacity, we have also developed 
Algorithm 1 to further improve the UAV’s reconnaissance flexibility.

Our investigations in Bayerlein et al. (2020) reveal that in some 
scenarios (e.g. when the amount of data was low and the IoT device 
was far away) the UAV did not become active to collect data and 
did not capture this data. This situation was attempted to be solved 
with Algorithm 1 that was added to the simulation. If the UAV has 
enough energy while there is data to collect in the environment, the 
UAV will be activated to make further discoveries. After these changes, 
the simulation was retrained with 2 million iterations. The results 
were compared to the pre-trained model and the impact on the data 
collection rate was analysed. The effects of these changes were analysed 
with manually created scenarios, and the effects on the average data 
collection rate and energy efficiency in 1000 random scenarios were 
investigated.

Therefore, the solution approach provided in Phase-1 reflects both 
the enhanced directional capacity and the algorithm developed in 
Algorithm 1, which is referred to as DCFR model in rest of the paper.

Algorithm 1 Enhancing UAV’s reconnaissance flexibility.
1. while getRemainingData()>0:
2.  ...
3.  if getRemainingData() > 0 → data available at IoT

 else proceed to Step 6 for landing.
4.  if isLanding≠true, proceed to Step 7.
5.  if getUAVEnergy() >10 unit, proceed to Step 7,
6.  else isLanding=true and proceed to Step 9.
7.  → chose a random direction but landing position

 and proceed to Step 3.
8.  ...
9. end while
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5.2. Phase-2: Integration of RIS

Without loss of generality, the integration of RIS is considered along 
with the energy efficiency it brings to the overall system model. MDP 
based reward problem considered a parameter called remaining flight 
time 𝑏𝑡.

For comparison purposes, regular data collection is assumed to be 
relayed over a DF system. For such system, we assumed a rate of 8.94 
bit/s/Hz, as highlighted in Table  2, which is reproduced from Bjornson 
et al. (2020) for adopting the impact of RIS into our system model from 
energy efficiency perspective. For a given rate, as highlighted in Table 
2, we can consider that energy efficiency of RIS is around 30% better 
compared to DF for each communication attempt of time slot 𝑛, which 
also performs better compared to single input single output system 
(SISO). Therefore, we can assume that 30% performance improvement 
against DF is a lower bound because beyond certain rate requirements, 
DF also performs better than SISO case as highlighted in Bjornson et al. 
(2020). In RIS comparison scenario, every communication at time slot 𝑛
is assumed to be assisted by an RIS. Each sensor is served by a different 
RIS, where sensors and the UAV have a NLOS channel, while sensor-
RIS-UAV channels maintain LOS. RIS model considers 𝐸𝑜𝑝𝑡 elements and 
its EE reflects the relevant optimized phase shifts in rate calculations 
and thus the 𝑆𝑁𝑅𝑟𝑘  as formulated in Eq. (4). Given above assumptions, 
for a given rate 𝑅 and bandwidth 𝐵, we follow the energy efficiency 
(EE) in Bjornson et al. (2020) and formulate both RIS and DF scenarios, 
respectively, as follows. 

𝐸𝐸𝑟𝑘 = 𝐵 ⋅
𝑅

𝑃 𝑟𝑘
𝑡𝑜𝑡𝑎𝑙(𝐸𝑜𝑝𝑡)

, 𝐸𝐸𝐷𝐹 = 𝐵 ⋅
𝑅

𝑃𝐷𝐹
𝑡𝑜𝑡𝑎𝑙

, (7)

where 𝑃 𝑟𝑘
𝑡𝑜𝑡𝑎𝑙(𝐸𝑜𝑝𝑡) and 𝑃𝐷𝐹

𝑡𝑜𝑡𝑎𝑙 represent the power consumption of RIS 
and DF, respectively, and readers are referred to Bjornson et al. (2020) 
for further details, as we focus our attention on the energy efficiency 
brought by the RIS as a saving coefficient (SC), which is derived as 
follows, 

𝑆𝐶 =
𝐸𝐸𝑟𝑘 − 𝐸𝐸𝐷𝐹

𝐸𝐸𝑟𝑘
. (8)

Therefore, using 
̂𝐸𝑈𝐴𝑉 (𝑛) = 𝐸𝑈𝐴𝑉 (𝑛) − (𝐸𝑈𝐴𝑉 (𝑛) ⋅ 𝑆𝐶), (9)

we can update the UAV energy dissipation per mission time slot 𝑡
assuming that RIS assists all the communication in each time slot 𝑛, 
resulting in a slower consumption of 𝑏𝑡 flight duration. This translates 
𝑏𝑡 − 𝐸𝑈𝐴𝑉 (𝑡) into 𝑏𝑡 − 𝐸𝑈𝐴𝑉 (𝑡) leveraging RIS, where 𝑡 is composed of 
𝛿 times of 𝑛 time slots. Considering EE of each time slot 𝑛, overall EE 
𝐸𝑈𝐴𝑉 (𝑡) is averaged over 𝛿 attempts, we can then formulate the average 
EE brought by RIS 𝑟𝑘 compared to DF for each mission time slot 𝑡, as 
follows. 

𝐸𝑈𝐴𝑉 (𝑡) =
1
𝛿

𝛿(𝑡+1)−1
∑

𝑛=𝛿𝑡

̂𝐸𝑈𝐴𝑉 (𝑛),∀𝑡, (10)

Note that 𝐸𝑈𝐴𝑉 (𝑡) designed in a way so that it reflects the average 
EE brought by RIS compared to DF as a lower bound and this value is 
fed into the MDP-based reward maximization problem, provoking less 
consumption of remaining flight time 𝑏𝑡 compared to the case without 
RIS.

6. Experimental evaluation

In this section, we first provide the evaluations for the proposed 
‘‘DCFR Model’’ contrasted against the model developed in Bayerlein 
et al. (2020). Then, we investigate the evaluation results after RIS 
integration as opposed to the model in Bayerlein et al. (2020) and to the 
proposed DCFR model. To clarify, ‘‘DCFR Model’’ is an extension to the 
model proposed in Bayerlein et al. (2020), which we call as ‘‘Bayerlein 
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Table 2
Comparing the energy efficiency of RIS to that of decode and forward (DF) for a 
specified rate, which is reproduced from Bjornson et al. (2020).
 Achievable rate 
[bit/s/Hz]

RIS energy 
efficiency

Decode-and-forward 
(DF) energy 
efficiency

RIS energy 
efficiency compared 
to DF [%]

 

 8.8 113.26 89.01 21.42  
 8.9 112.11 81.02 27.73  
 8.94 111.65 77.95 ≈30  
 9 110.95 73.49 33.76  
 9.1 109.78 66.44 39.48  
 9.2 108.61 59.89 44.86  
 9.3 107.44 53.84 49.89  
 9.4 106.26 48.28 54.57  

Table 3
Symbols and descriptions used for the grid map (Bayerlein et al., 
2020).

Model’’ in rest of the paper, and the RIS-integrated model, namely ‘‘RIS 
Model’’, is also a cumulative extension to the DCFR Model.

It is important to understand the meaning of the symbols used at 
the grid map considered in our analyses that is outlined in Table  3. 
These symbols mainly show the constraints of the map, such as NFZ 
and physical obstructions, as well as represent the actions of the agent 
(UAV).

The dataset and simulation environment used in this study are 
designed to evaluate the proposed methodology comprehensively. The 
UAV initiates each new mission within a map grid composed of 16 × 16 
cells, each grid cell having a size of 10 × 10 m. IoT devices are 
randomly positioned within this grid, with data quantities assigned 
randomly between 5 and 20 units per device. UAV energy levels are 
initialized randomly between 50 and 150 units for each trial to simulate 
diverse operating conditions. The UAV starts with 𝑏𝑡 remaining flight 
time, which is decremented by one after every action the UAV takes, 
given the action space in the regular scenario. This is generalized with 
the RIS saving coefficient, which is set to 30% by default compared to 
the DF scenario, as highlighted in Table  2, and can be adjusted to any 
value of interest. The predetermined rate 𝑅 is leveraged to optimize the 
number of reflecting elements 𝐸, further enhancing energy efficiency.

The UAV flies at a constant altitude sufficient to establish LOS and 
NLOS channels between sensors and the UAV while considering obsta-
cles such as buildings, NFZs, and RIS positions. The communication 
environment includes urban scenarios with shadowing effects modelled 
using ray tracing, ensuring a realistic propagation environment. The 
UAV agent has no prior knowledge of the channel and learns it dynam-
ically following the methodology and propagation parameters outlined 
in Bayerlein et al. (2020) and Esrafilian et al. (2019). Monte Carlo 
simulations were conducted over 1000 trials to ensure robust statistical 
evaluation.
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Fig. 5. Presenting the success rate of the UAV after 2 million training iterations 
(generated on the basis of the peak values achieved during training).

We also use three main metrics to evaluate the performance of the 
agent in different scenarios comparing aforementioned models.

• Collection ratio reveals the data collection performance of the 
model.

• Successful landing helps understand if a UAV has safely landed 
given a mission is completed.

• We introduced a new metric, namely collected data per unit energy, 
revealing if the data is collected in an energy efficient manner. 
This metric is very helpful along with the collection ratio. If the 
collection ratio is high, then one can readily understand whether 
this data collection process was conducted by consuming less 
energy.

6.1. Phase 1: Evaluation of DCFR model

Bayerlein Model proposed in Bayerlein et al. (2020) underwent 
retraining incorporating the modifications outlined in Section 5.1, and 
the training outcomes were captured as depicted in Fig.  5. It is evi-
dent from the figure that the UAV achieved its peak success rate at 
90.63%. Beyond this point, it exhibited no further enhancements and 
maintained a plateau in performance.

6.1.1. Evaluating the directional capacity of UAV
In this scenario, 15 units of data, each corresponding to one of 

the 10 IoT devices in the system, were loaded and their positions 
were manually adjusted. The UAV’s energy capacity is set at 150 units. 
The UAV’s directional capacity and data collection performance while 
moving in four directions (East, West, North, South) are illustrated 
in Fig.  6(a). Furthermore, using the same IoT device positions, units 
of data, and energy capacity, the UAV’s directional capacity and data 
collection performance in eight directions (East, West, North, South, 
Southeast, Southwest, Northeast, Northwest) are depicted in Fig.  6(b).

As the results in Fig.  6 show, the UAV, which could move in eight 
directions, completed the data collection task in less time. Despite 
collecting all the available data, it did not exhaust its energy reserves 
(black arrows indicate that the drone moves when no further data col-
lection is required). In addition, as shown in Fig.  6(a), after collecting 
all data except the data from the red IoT device, the UAV attempted 
one last data collection before landing, but was unsuccessful. In Fig. 
6(b), however, data was successfully collected from all devices owing 
to the enhanced directional capacity. Even though Fig.  6 portrays the 
impact of the UAV’s directional capacity, the improved data collection 
performance is an outcome of the proposed DCFR model encompassing 
the enhanced directional capacity and the proposed Algorithm 1.
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Fig. 6. (a) The trajectory of the UAV, capable of movement in four directions, alongside the data collection performance, (b) The trajectory of the UAV, maneuverable in eight 
directions, accompanied by the corresponding data collection performance.
More explicitly, the eight-directional movement allowed the UAV 
to minimize redundant paths and adjust its trajectory to cover more 
IoT devices within the same energy constraints. As shown in Fig.  6, 
the UAV operating in eight directions not only completed the data 
collection task more efficiently but also retained sufficient energy 
reserves, demonstrating superior trajectory optimization. These results 
highlight the critical role of increased manoeuvrability in improving 
UAV operations, particularly in dynamic IoT environments.

6.1.2. Manually configured scenarios
In scenarios where sufficient energy is available but certain sensors 

provide less data or are too far away, the UAV has the option of not 
collecting data from these sensors and flying to its landing position. In 
some cases, the UAV was not able to detect data from these devices 
and therefore could not initiate take-off (Bayerlein et al., 2020). In 
such a scenario, there is a risk of losing crucial data from sensors 
with relatively small but important information. To solve this problem, 
we have proposed an algorithm described in Algorithm 1 as part 
of the DCFR approach. By refining the algorithm to recognize data 
availability and enabling further exploration when energy allows, our 
system achieves higher efficiency in data collection compared to the 
approach described in Bayerlein et al. (2020).
Scenario-1: Reconnaissance capability. In Fig.  7, 5 data units are loaded 
into the blue device and 15 data units into the orange device. The 
amount of energy of the UAV is 150 units. The position of the IoT 
devices in Fig.  7(b) was manually placed according to the positions 
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used in Fig.  7(a) to allow a fair comparison of the data collection 
performance between Bayerlein model proposed in Bayerlein et al. 
(2020) and our DCFR model. In Fig.  7, the blue colour indicates the 
situation in which no data is collected and the orange colour indicates 
the situation in which it is collected.

In Fig.  7(a), the UAV remained still because it could not detect the 
data on the IoT devices. Contrarily, in Fig.  7(b), the UAV recognizes the 
remaining data on the red IoT device and lands safely after collecting 
all the data. The data collection success rate in this case becomes 100%. 
It is evident that the DCFR model using Algorithm 1 enables the UAV 
to make more discoveries if there is data on the IoT devices.

The inability of the Bayerlein model to detect data on IoT devices, 
as seen in Fig.  7(a), is due to its static exploration strategy, which 
fails to adapt to sparse or low-data scenarios. In contrast, the DCFR 
model, equipped with Algorithm 1, dynamically adjusts its exploration 
and prioritizes underutilized data sources, as shown in Fig.  7(b). This 
ensures no data is left uncollected, achieving a 100% success rate. 
This result is particularly significant for real-world applications where 
critical but sparse data must be prioritized, such as in disaster response 
or emergency monitoring.
Scenario-2: Data collection from devices with low amount of data. In this 
scenario, data ranging from 5 to 20 units are manually allotted to 10 
IoT devices, while the UAV’s energy level is measured at 150 units. 
The positioning of the IoT devices remains the same in both cases, 
as portrayed in Figs.  8(a) and 8(b). The distribution of data on these 
devices is as follows: blue (20 units), orange (10 units), green (18 



I. Ertas and H. Yetgin Engineering Applications of Artiϧcial Intelligence 155 (2025) 110952 
Fig. 7. (a) The case in which the UAV is unable to detect the data on devices, (b) The trajectory of the UAV with the DCFR model encompassing Algorithm 1.
units), red (5 units), purple (19 units), brown (12 units), pink (15 
units), grey (14 units), olive green (13 units) and cyan (12 units).

In Fig.  8(a), despite five attempts using Bayerlein model to establish 
a communication with the red device (having the least amount of data), 
the UAV was unable to receive any data and then landed at the opposite 
landing point due to insufficient energy. In this case, the overall success 
rate of data collection stands at 96.38%. However, with the DCFR 
model retrained using the algorithm described in Algorithm 1, the data 
collection success rate rose to 100%, as shown in Fig.  8(b). Remarkably, 
the UAV still had enough energy to return safely to its starting point 
after completing the data collection from IoT devices. This outcome un-
derscores the importance of integrating adaptive learning mechanisms 
for efficient energy utilization in data collection missions.
Scenario-3: Data collection from the no-fly zone. In this particular sce-
nario, a sum of 150 units of data, ranging from 5 to 25 units each, was 
distributed among 10 IoT devices. One of these devices was located 
within a no-fly zone for UAVs, while another was situated at a con-
siderable distance from the remaining devices. The UAV starts with an 
initial energy level of 150 units.

In Fig.  9(a), due to the presence of the brown device within a no-
fly zone, the UAV is unable to approach closely, resulting in minimal 
data collection from this device. Furthermore, as the purple device is 
far away from the remaining devices, the UAV cannot fully detect it, 
so no data is collected from it. In contrast, in Fig.  9(b), the brown and 
purple devices contain significantly more data than the blue device, so 
the UAV prioritizes connecting to these devices after collecting some 
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data from the blue device. Consequently, it successfully collects all data 
from the purple device and almost all from the brown device. However, 
it only receives a small amount of data from the blue device, which 
contains 5 units of data. Upon examination of the figures, the total data 
collected amounts to 120 units in Fig.  9(a) and 145 units in Fig.  9(b). 
In both cases, the UAV lands safely within the intended landing zone. 
It is noteworthy that the DCFR model, considering the improvements 
of Algorithm 1 and representing Fig.  9(b), increases the amount of 
collected data by 16.7% compared to Fig.  9(a) representing Bayerlein 
model.

More explicitly, in environments with regulatory constraints, such 
as no-fly zones, the DCFR model demonstrated a 16.7% improvement 
in data collection (Fig.  9(b)) compared to the Bayerlein model (Fig. 
9(a)). This is attributed to the DCFR model’s ability to prioritize devices 
with high data volumes while respecting operational constraints. These 
results have practical implications for deploying UAVs in urban and 
regulated environments, emphasizing the need for intelligent trajectory 
planning.

6.1.3. Overall system performance with arbitrary parameter values
Parameter values for the overall system evaluation are provided in 

Table  4 involving 3 to 10 IoT devices randomly assigned with data 
quantities ranging from 5 to 20 units. The positioning of these devices 
on the map is also randomized in each trial. Additionally, the UAV’s 
energy level is randomly set between 50 and 150 units for each trial. 
The evaluation results are averaged over 1000 trials.
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Fig. 8. (a) Performance of the model in Bayerlein et al. (2020), (b) Performance of the proposed model retrained using Algorithm 1.
Table 4
Parameter values for the overall system evaluation.
 Parameters Values  
 Number of IoT device Randomized between 3-10  
 Device positioning Random in each trial  
 UAV energy level Randomized between 50–150  
 Amount of IoT data Randomized between 5–20  
 Number of trials 1000  
 Map grid dimensions 16 × 16 cells, each 10 m × 10 m  
 UAV altitude 10 m  
 Communication time slots 4 per mission time slot  
 Path Loss Exponent (LoS)/(NLoS) 2.27/3.64 (Bayerlein et al., 2020)  
 Shadowing Variance (LoS)/(NLoS) 2/5 (Bayerlein et al., 2020)  
 Transmission power Normalized (cell-edge SNR of −15 dB at 

grid corner)
 

 UAV velocity Constant, remains within the grid  
 Channel model LoS/NLoS with log-distance path loss and 

shadow fading
 

 RIS reflecting elements Optimized for energy efficiency (Bjornson 
et al., 2020)

 

 RIS saving coefficient 30% improvement over DF scenarios; 
adjustable based on rates (Bjornson et al., 
2020)

 

 UAV movement directions 4 or 8 directions  
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Table 5
Overall system performance evaluation of the DCFR model compared to Bayerlein
model.
 Evaluation metrics Bayerlein model (Bayerlein 

et al., 2020)
DCFR model 

 Successful landinga 0.983 0.986  
 Collection ratioa 0.831 0.899  
 Available data 80 242 81890  
 Collected data 66 055 72534  
 Dissipated energy 83072 85331  
 Collected data per unit energy 0.795 0.850  
a Values are normalized within the range of 0 to 1.

As illustrated in Table  5 and Fig.  10, a marginal improvement in 
the already high ‘‘Successful Landing’’ performance is observed. The 
main focus of the evaluation is therefore on the improvement of the 
‘‘Data Collection Rate’’, which shows an increase of 8.18%. In addition, 
the success of data collection per unit of energy has increased by 
6.92%. These results clearly demonstrate the effectiveness of the pro-
posed algorithm used to retrain the model to improve data collection 
performance and increase energy efficiency while maintaining similar 
‘‘successful landing’’ performance.
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Fig. 9. (a) No-fly zone scenario with the model from Bayerlein et al. (2020), (b) No-fly zone scenario with the proposed model considering Algorithm 1.
The increased ‘‘Data Collection Ratio’’ indicates the effectiveness of 
the DCFR model in ensuring higher coverage and retrieval of IoT device 
data. This improvement highlights the role of Algorithm 1 in optimizing 
UAV trajectories and energy usage. The higher ‘‘Collected Data per Unit 
Energy’’ reflects the enhanced energy efficiency achieved through the 
DCFR model, underscoring its potential for prolonged and efficient UAV 
operations in IoT networks.

These results emphasize the advantages of integrating the DCFR 
model over existing approaches, demonstrating its ability to achieve 
superior performance in data collection and energy management while 
maintaining a consistently high rate of successful landings. The findings 
validate the robustness of the proposed model and its practical appli-
cability to dynamic and constrained UAV-assisted IoT environments.

6.2. Phase-2: Evaluation of RIS model

As a cumulative extension to the DCFR model, RIS is incorpo-
rated using the methodology outlined in Section 3.2. This addition 
enabled the UAV to conserve more energy, consequently leading to 
an increase in the overall system performance. Within the scope of 
this study, after integrating RIS into the system to bolster data col-
lection and energy efficiency, the simulation is averaged over 1000 
random trials. The results obtained are presented in Table  6 and 
Fig.  11. A thorough examination of the results reveals that with the 
integration of RIS, the UAV’s data collection ratio increases by 10.59% 
and 2.22% compared to the Bayerlein model and DCFR model, re-
spectively. This improvement underscores the effectiveness of RIS in 
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optimizing UAV trajectories and signal coverage, allowing for higher 
data retrieval rates. Moreover, the amount of data collected per unit 
of energy sees a substantial increase of 22.64% and 14.7% compared 
to the Bayerlein model and DCFR model, respectively. These results 
highlight the role of RIS in reducing energy dissipation during UAV 
operations, enabling extended mission durations and enhanced sustain-
ability. Finally, RIS Model achieves a 0.995 successful landing rate, 
representing an improvement of 1.22% over the Bayerlein model and 
0.91% over the DCFR model. This demonstrates the reliability of the 
RIS model in ensuring safe mission completion, even under variable 
energy constraints.

The RIS model achieves a 0.995 successful landing rate, represent-
ing an improvement of 1.22% over the Bayerlein model and 0.91% 
over the DCFR model. This demonstrates the reliability of the RIS 
model in ensuring safe mission completion, even under variable energy 
constraints.

7. Conclusions and open challenges

This study explores the impact of integrating RIS technology to 
augment data collection process and energy efficiency of UAVs. The 
investigation unfolds in two phases. Initially, we enhance data collec-
tion capacity by refining UAV directional capacity and reconnaissance 
capability, resulting in an 8.18% increase in data collection rate and a 
6.92% rise in data collected per unit dissipated energy. Subsequently, 
RIS integration is conducted, elevating UAV data collection capacity 
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Fig. 10. Evaluating the overall performance of the Bayerlein model and DCFR model for; (a) Successful landing and data collection ratio, (b) Collected data per unit Energy.
Table 6
Evaluation of overall system performance following the integration of RIS.
 Evaluation metrics Bayerlein model (Bayerlein et al., 2020) DCFR model RIS model 
 Successful landinga 0.983 0.986 0.995  
 Collection ratioa 0.831 0.899 0.919  
 Available data 80 242 81890 83167  
 Collected data 66 055 7253 4 75682  
 Dissipated energy 83072 85331 77548  
 Collected data per unit energy 0.795 0.850 0.975  
a Values are normalized within the range of 0 to 1.
by up to 10.59% and data collected per unit dissipated energy by up to 
22.64%.

These advancements underscore RIS’s potential in refining the effi-
ciency of UAV-assisted data collection. Additionally, leveraging robust 
learning algorithms like DDQN in UAV data collection processes could 
offer deeper insights into the UAV’s surroundings and boost data collec-
tion capacity, especially in dynamic environments. Such findings pave 
the way for more sustainable and enduring UAV mission execution.

Future research could delve into assessing RIS performance across 
diverse scenarios and conducting in-depth analyses of its effects on 
other heterogeneous networks.
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Fig. 11. Evaluating overall performance of the Bayerlein, DCFR and RIS models regarding; (a) Successful landing and data collection ratio, (b) Collected data per unit Energy.
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