
Weak bisimilarity coalgebraically

Andrei Popescu

University of Illinois at Urbana-Champaign and
Institute of Mathematics Simion Stoilow of the Romanian Academy

Abstract. We argue that weak bisimilarity of processes can be conve-
niently captured in a semantic domain by a combination of traces and
coalgebraic finality, in such a way that important process algebra aspects
such as parallel composition and recursion can be represented composi-
tionally. We illustrate the usefulness of our approach by providing a
fully-abstract denotational semantics for CCS under weak bisimilarity.

1 Introduction

Weak bisimilarity (henceforth referred to simply as bisimilarity) is one of the
most interesting equivalences defined on nondeterministic interactive processes.
A nondeterministic process p may take one of several actions ai and transit
to a process pi; among the possible actions, there is the silent, unobservable
action, τ . Intuitively, a process may take a τ action at any time without being
noticed, while any other action is observable. Now, the (behavioral) identity of
two processes p1 and p2 can be determined by the following two clauses (and
their symmetrics): (i) if p1 may do something internally (i.e., take zero or more
τ actions) becoming p′1, then p2 may as well do something internally becoming
p′2, behaviorally identical to p′1; (ii) if p1 may do something internally, then take
an observable action a, then again do something internally eventually becoming
p′1, then p2 may as well go through a similar series of steps (consisting of action
a possibly succeeded and/or preceded by some silent steps) eventually becoming
p′2, behaviorally identical to p′1. The strong bisimilarity of processes is a useful,
but often too crude, approximation of bisimilarity, obtained by assuming the
internal action τ observable.

The typical route for introducing processes is through some syntactic con-
structs building terms whose behavior is given by an SOS-specified labeled tran-
sition system. The identity of a process can then be taken to be the bisimilarity
class of a term. A more direct, and often more insightful way of establishing the
identity of the described processes is to show that process terms really describe
processes, in other words, to assign a denotation from a domain of processes
(or behaviors) to each term. The agreement between bisimilarity defined opera-
tionally and the kernel of the denotation map is referred to as full abstraction.

Bisimilarity, although extensively studied in various operational settings [14,
15, 20], has not benefited yet, in our opinion, from a suitable compositional
denotational-semantics account within process algebra. (Although a certain ad
hoc compositionality for CCS and CSP has been achieved in [2] and could be
achieved along the lines of [18], and non-compositional denotational models for
CCS, CSP and π under weak bisimilarity have been sketched in [12, 13] – see

also Section 4.) To the contrary, strong bisimilarity, having a simpler structure,
has received compositional fully-abstract semantics, both domain-theoretic [1,
10, 22] and coalgebraic [18, 24], based on hypotheses that hold (or merely using
techniques that work) for many process calculi in current use. The same holds
true for may/must testing equivalence, also simpler than bisimilarity but in a
different way (namely, in that establishing it does not involve any alternating
game as for strong bisimilarity and bisimilarity) [6, 11, 3].

The difficulty with assigning compositional denotational semantics for bisim-
ilarity seems to emerge from the fundamental divorce between two features:
(I) the traditional one-action-depth, “branching-time” presentation of a process

calculus;
(II) the “linear-time” consideration of τ∗-sequences in the definition of bisimi-

larity.
Considering (I), one is tempted to transform right away the conditional rules
from the SOS presentation of the system into corresponding corecursive or fix-
point recursive definitions, leading to problems with (II).

The solution proposed by this paper comes from resisting this temptation,
and acknowledging that, due to the possibility of melting observable actions into
silent actions via communication, in order to handle what happens arbitrarily τ -
deep into processes, one also needs to deal with what happens arbitrarily deep
along any sequence of actions. This might suggest to abandon coalgebraic se-
mantics altogether and go after some form of pure trace semantics,1 but this
would be a mistake, since the very nature of bisimilarity is coalgebraic – the
infinite game that defines bisimilaritiy is a journey into processes with infinitely
often occurring stops and restarts. Instead, we shall combine traces with coal-
gebra, identifying a process with all pairs (traceOfActions,continuationProcess)
such that that trace of actions is possible and leads to that continuation.

Technically, we shall regard bisimilarity as strong bisimilarity where the “ac-
tions” are now sequences of observable actions, and where a chain of zero or more
τ actions is represented by the empty sequence ε. The monoidal properties of
the set of action sequences shall be reflected in modal axioms for the final coal-
gebraic semantic domain. Of course, defining semantic operations within such
an approach requires a preliminary combinatorial study of sequences/traces of
actions, that need to be shuffled in consistent ways. As it happens, paying a
priori attention to traces has its rewards – operations on processes like parallel
composition and iteration, main characters in process algebra, receive concise,
uniform and conceptually clear definitions.

After we discuss the above constructions in an abstract semantic domain
(without reference to syntax), we illustrate the usefulness of our approach by
defining a novel denotational semantics for Milner’s Calculus of Communicating
Systems (CCS) [14]. The semantics will be both compositional and fully abstract.

1 In this paper “coalgebraic semantics” will mean: semantics involving a domain which
is a final coalgebra of some kind, and thus it is inhabited by items having a rele-
vant branching structure. We contrast this with a (pure) trace semantics, where the
branching structure is ignored.

2

Here is how the remaining of the paper is structured. The rest of this section
is dedicated to general mathematical preliminaries and conventions. Section 2
discusses, in coalgebraic terms, semantic models for weak bisimilarity. Section
3 shows that our approach yields naturally a fully-abstract semantics for CCS
under weak bisimilarity. Section 4 draws conclusions and discusses related work.

Preliminaries and conventions. When we introduce a metavariable (such as
x) to range over a certain domain, we implicitly assume that this is also the case
for its version decorated with accents and subscripts (such as x1, x

′). We use
λ-abstractions informally, at the meta-level.

Throughout our exposition, we shall make the standard distinction between
classes and sets, and we shall occasionally refer to collections and families of
classes – such references could be avoided in well-known ways, or alternatively
we could consider a three-level tower of Grothendieck universes, where we could
place our sets, classes and collections. Thanks to their standardness w.r.t. our
constructions, we shall not worry about foundational issues in this paper, beyond
insisting that for a class C, P(C) denotes the class of subsets (and not subclasses)
of C.

By “relation” we mean, by default, “binary relation”. For a relation R ⊆
A× B, R^ ⊆ B × A is its converse. Given a function f : A → B and A′ ⊆ A,
Im(f) is the image of f and f|A′ is the restriction of f to A′. We usually denote
function application by juxtaposition, as in f x, but sometimes (especially when
dealing with fixed operators) also employ the parenthesized notation f(x). Given
f : A → B, a ∈ A and b ∈ B, f [a← b] : A → B is defined by (f [a← b])a′ = b if
a′ = a and = f a′ otherwise. A∗ is the set of finite sequences/traces of items in
A, i.e., the set of words over the alphabet A. # denotes, in an infixed manner,
word concatenation, and ε the empty word. (I.e., (A∗,#, ε) is the monoid freely
generated by A.) Thus, for two words w1, w2 ∈ A∗ (unless otherwise stated),
w1#w2, and not the simple juxtaposition w1w2, denotes their concatenation.
However, given the elements a1, . . . , an ∈ A, we write a1 . . . an for the word
(sequence) built with these letters (in this order). A+ denotes A∗ \ {ε}. IN is
the set of natural numbers. For m,n ∈ IN , m,n is {i.m ≤ i ≤ n}. Unless
otherwise stated, m,n, i, j, k range over IN . In proofs, “IH” means “the inductive
hypothesis”.

2 Semantic domain for weak bisimilarity

In this section, we present a semantic domain for weak bisimilarity based on
traces of actions, and show its connection with, and its advantage over a more
standard domain based on single actions.

Cls denotes the hyper-category of classes and functions between classes. In
what follows, we shall employ basic concepts and results about coalgebras [19].
Given a functor F : Cls → Cls, an F -coalgebra is a pair (D, δ : D → F D). A
morphism between two F -coalgebras (D, δ) and (D′, δ′) is a map f : D → D′

such that (F f) ◦ δ = δ′ ◦ f . A stable part of an F -coalgebra (D, δ) is a subclass
X ⊆ D such that ∀x ∈ X. δ x ∈ F X; a stable part X yields a subcoalgebra

3

(X, δ |X). Given a fixed set Z, the functor P(Z ×) on Cls maps each X to
P(Z × X) and each f : X → Y to λK. {(z, f x). (z, x) ∈ K}. Fix Act, a set of
actions. We only consider coalgebras for P((Act ∪ {ε}) ×) and P(Act∗ ×),
which we call one-step, and multi-step coalgebras, respectively. (We have these
functors act on classes rather than sets in order to ensure the existence of their
final coalgebras – see below. An alternative would have been to replace P(X)
with Pk(X), the set of subsets of X of cardinality less than k, for a large enough
cardinal k (such as 2ℵ0) – we prefer our current solution since it does not commit
to any arbitrary choice.)

Domains of processes under strong bisimilarity are typically modeled as final
one-step coalgebras. However, if the desired process identity is bisimilarity, then
(also having in mind that operations like parallel composition need to take a
deeper, multi-step look into the argument processes) it is more natural to con-
sider a suitable multi-step coalgebra as the domain. But also we would like to keep
in sight that bisimilarity is a weakening of strong bisimilarity by internalizing
τ , in particular, to be able to infer bisimilarity from strong bisimilarity without
any detour, and also to infer bisimilarity as usual, by showing how to simulate
single steps only (by multi-steps). These lead to the following constructions.

Given a multi-step coalgebra (D, δ), an element d ∈ D is said to be:

– reflexive, if (ε, d) ∈ δ d;
– transitive, if ∀w,w′, d′, d′′. (w, d′) ∈ δ d ∧ (w′, d′′) ∈ δ d′ ⇒ (w#w′, d′′) ∈ δ d;
– prefix-closed, if ∀w,w′, d′′. (w#w′, d′′) ∈ δ d⇒ (∃d′. (w, d′) ∈ δ d ∧ (w′, d′′) ∈
δ d′);

– monoidal, if it is reflexive, transitive and prefix-closed.

(D, δ) is said to be monoidal if all elements of D are monoidal.
Let (Preproc, unf : Preproc→ P(Act∗×Preproc)) be the final multi-step coal-

gebra. We call the elements of Preproc preprocesses, and unf the unfolding map.
Let Proc, the class of processes, be the stable part of (Preproc, unf) cogenerated
by the class of all monoidal preprocesses. This notion of process encompasses
two ideas. First, processes have a linear-time structure which is compatible with
the monoid of action sequences (via reflexivity and transitivity) and has no dis-
continuities (via prefix-closeness). Second, processes have the above linear-time
properties preserved by the branching-time, coalgebraic structure – one should
think of a process as an hereditarily monoidal preprocess, that is, a preprocess
π such that π is monoidal and the preprocesses from all its arbitrarily deep
unfoldings are so.

The properties of the linear-time structure, making sense for any transi-
tion system labeled with sequences of actions (i.e., for any multi-step coal-
gebra), are the essential features of weak bisimilarity. Our choice to impose
these properties hereditarily deep for elements in the final multi-step coalge-
bra makes (Proc, unf : Proc → P(Act∗ × Proc)) (where unf here denotes the
restriction of unf : Preproc → P(Act∗ × Preproc)) the final monoidal multi-
step coalgebra, featuring the following corecursive definition principle: to de-
fine a (parameterized) operation f : Param × Procn → Proc, it suffices to
organize Param × Procn as a monoidal multi-step coalgebra by defining δ :

4

Param × Procn → P(Act∗ × (Param × Procn)) (then take f to be the unique
morphism between (Param × Procn, δ) and (Proc, unf)).

Moreover, the fact that (Proc, unf) is simple (being a subcoalgebra of the
(absolutely) final coalgebra), yields standardly a (coinductive) proof principle:
Assume θ ⊆ Proc× Proc is a strong bisimulation on Proc (regarded as an Act∗-
labeled transition system), in that the following hold for all (π, π′) ∈ θ:

– ∀(w, π′′) ∈ unf (π).∃π′′′. (w, π′′′) ∈ unf (π′) ∧ (π′′, π′′′) ∈ θ;
– ∀(w, π′′) ∈ unf (π′).∃π′′′. (w, π′′′) ∈ unf (π) ∧ (π′′′, π′′) ∈ θ.

Then π = π′ for all (π, π′) ∈ θ.
Thanks to the affinity between Proc and the monoidal structure of Act∗, we

also have a simpler (but equally powerful) proof principle which reflects more
closely the traditional way of dealing with weak bisimilarity, by showing how to
simulate single actions only:

Let θ ⊆ Proc× Proc be such that the following hold for all (π, π′) ∈ θ:

– ∀(w, π′′) ∈ unf (π). |w| ∈ {0, 1} ⇒ (∃π′′′. (w, π′′′) ∈ unf (π′) ∧ (π′′, π′′′) ∈ θ);
– ∀(w, π′′) ∈ unf (π′). |w| ∈ {0, 1} ⇒ (∃π′′′. (w, π′′′) ∈ unf (π) ∧ (π′′′, π′′) ∈ θ).

Then π = π′ for all (π, π′) ∈ θ.
The latter proof principle may appear, at first, as if employing strong bisimu-

lation (w.r.t. single actions) – but remember that processes absorb the monoidal
properties of action sequences; in particular: ε is identified with (any sequence
in the language) ε∗, thus meaning “zero or more silent steps”; the single action a
is identified with ε∗#a#ε∗, meaning “a preceded and succeeded by zero or more
silent steps”. Thus, weak bisimulation is what we really deal with here, strong
bisimulation being only a particular case.

The fact that each process is uniquely identified by its behavior w.r.t. se-
quences of length 0 or 1 (i.e., elements of Act ∪ {ε}) suggests a more compact
representation of the domain of processes as a one-step coalgebra. As already
mentioned, the choice of the (absolutely) final one-step coalgebra as the semantic
domain for strong bisimilarity typically already yields the desired properties (in
particular, full abstraction [18]). However, here, since we are after bismilarity, we
shall require that processes, even in this more compact representation with single
steps, retain the affinity with the monoid of action sequences – this means here
that zero or more ε-steps can always be appended and/or prepended “silently”,
yielding a property similar to monoidality that we shall call ε-monoidality. (Al-
though the constructions below are not needed later in the paper, they are useful
for placing our domain in a context that clarifies its connection with the tradi-
tional view on bisimilarity and its benefit w.r.t. compositionality.)

Let (Cpreproc, unfc) be the final one-step coalgebra. We call the elements of
Cpreproc compact (representations of) preprocesses. Given a one-step coalgebra
(D, δ), an element d ∈ D is said to be: ε-reflexive, if (ε, d) ∈ δ d; ε-transitive,
if ∀d′, d′′ ∈ D. (ε, d′) ∈ δ d ∧ (ε, d′′) ∈ δ d′ ⇒ (ε, d′′) ∈ δ d; ε-loud-transitive, if
∀d′, d′′, d′′′ ∈ D.∀a ∈ Act. (ε, d′) ∈ δ d∧(a, d′′) ∈ δ d′∧(ε, d′′′) ∈ δ d′′ ⇒ (a, d′′′) ∈
δ d; ε-monoidal, if it is ε-reflexive, ε-transitive and ε-loud-transitive. (D, δ) is

5

said to be ε-monoidal if all elements of D are ε-monoidal. (The ε-monoidal one-
step coalgebras are essentially Aczel’s τ -colagebras [2].) Let Cproc, the class
of compact (representations of) processes, be the stable part of the one-step
coalgebra (Cpreproc, unfc) cogenerated by the class of all ε-monoidal compact
preprocesses. Then (Cproc, unfc : Cproc→ P((Act ∪ {ε})× Cproc)) is the final
ε-monoidal one-step coalgebra.

Next, we write π for processes and σ for compact processes. Using the finality
of Cproc and Proc, we define two maps, pack : Proc → Cproc and unpack :
Cproc → Proc, for moving back and forth between a process and its compact
representation:

– unfc (pack(π)) = {(w, pack(π′)). (w, π′) ∈ π ∧ w ∈ Act ∪ {ε}};
– unf (unpack(σ)) = {(w1# . . .#wn, unf (unpack(σ′))). n ∈ IN ∧ (∀i ∈ 1, n. wi ∈

Act ∪ {ε}) ∧ (∃σ1, . . . , σn+1. σ1 = σ ∧ σn+1 = σ′ ∧ (∀i ∈ 1, n. (wi, σi+1) ∈
σi))}.

Thus, pack(π) retains from π (and from all its (arbitrarily deep) continuations)
only the one-step continuations, while unpack σ expands σ (and all its continua-
tions) along all possible sequences of steps. pack and unpack are mutually inverse
bijections.

Compact processes are coalgebraically only one-step deep, hence correspond
more directly to the traditional operational semantics presentation of process
calculi. However, in our context of (weak) bisimilarity, these compact one-step
representations have a salient disadvantage compared to (multi-step) processes:
crucial operations in process calculi, such as parallel composition and iteration,
are not definable purely coalgebraically2 on compact processes, the one-step
coalgebra falling short on providing means to describe the composite process.

To illustrate this point, assume that Act is endowed with a bijection − : Act→
Act which is involutive (in that a = a for all a ∈ Act), and say we would like to
define CCS-like parallel composition on processes (thus, we assume that a and a
are to be interpreted as complementary actions, whose synchronization yields a
silent action). The main task in front of us is to show how sequences of actions
interact, possibly nondeterministically. Knowing how single actions interact, and
assuming an interleaving semantics, we obtain the following recursive definition
of the parallel composition (or synchronized shuffle) | : Act∗ ×Act∗ → P(Act∗):

– ε|ε = {ε};
– (a#w1)|(b#w2) = a#(w1|(b#w2)) ∪ b#((a#w1)|w2), if a 6= b;
– (a#w1)|(b#w2) = a#(w1|(b#w2)) ∪ b#((a#w1)|w2) ∪ w1|w2, if a = b.

(Above, we overloaded # in the usual fashion, to denote both # : Act∗ ×
Act∗ → Act∗ and its componentwise extension to Act∗ × P(Act∗) → P(Act∗),
given by w # S = {w # w′. w′ ∈ S}.)

Now, parallel composition of processes, | : Proc×Proc→ Proc, simply follows
coinductively the interaction law prescribed by action sequence composition:

2 In the sense that a definition based entirely on coalgebraic finality is not available.

6

unf (π1|π2) = {(w, π′1|π′2) : ∃w1, w2. w ∈ w1|w2 ∧ (w1, π
′
1) ∈ unf (π1) ∧

(w2, π
′
2) ∈ unf (π2)}.

Note the separation of concerns in our definition of |: first we dealt with
action sequence combinatorics, so that afterwards the definition of parallel com-
position of processes was stated purely coalgebraically, composing together the
continuations of the components to yield the continuations of the composite. On
the other hand, if trying to define parallel composition on compact processes, one
finds the coalgebraic one-step depth of the latter insufficient for describing even
the one-step behavior of the composite – this is because a step of the composite
σ1|σ2 may result from an arbitrarily long sequence of interactions between steps
taken by continuations of σ1 and σ2. In fact, any reasonable definition of parallel
composition on Cproc would essentially appeal to our multi-step domain Proc,
unpacking the components σ1 and σ2, composing these unpacked versions in
Proc, and then packing the result (i.e., the operation on Cproc would be essen-
tially pack((unpack σ1)|(unpack σ2))). This suggests that Proc, and not Cproc,
is the fundamental domain for compositional weak bisimilarity.

One may argue that, via the bijections pack and unpack, Proc and Cproc are
really the same domain, so that considering one or the other are two sides of
the same coin. However, Proc and Cproc take nevertheless two distinct views
to processes, with the multi-step view brought by Proc, as explained above,
allowing for a cleaner compositionality and separation of concerns when defining
process composition. When the effect of actions becomes more complex, with
possible changes of the communication topology, the multi-step view brings an
insight into the semantics of a calculus under bisimilarity which is essential
for apprehending the “right” semantic operations for full abstraction – this is
illustrated in [17], where we define a fully-abstract semantics for the π-calculus
under weak bisimilarity. A simpler illustration of our approach is presented in
the next section, where we give a novel semantics for CCS which is both fully
abstract and compositional.

3 Denotational semantics for CCS

In this section we use our approach from the previous section to endow CCS
under (weak) bisimilarity with a fully abstract compositional denotational se-
mantics. We achieve this in two steps:

– first, we consistently modify the CCS transition system to employ traces of
actions rather than single actions;

– second, we define the semantic operators on the domain Proc from the pre-
vious section and show that they reflect the behavior of trace-based CCS.

The first step, although consisting of a purely syntactic transformation, is the
actual realization of our insight concerning the semantics of weak bisimilarity,
since it emphasizes behavior along arbitrarily long traces. The second step is in
many aspects routine, as it merely “institutionalizes” in a final coalgebra the
above trace-based behavior. If it were not for the second-order features given by
the fixpoint operators, we could have directly employed the general theory from

7

[18, 24] for this second step – however, fixpoints in combination with arbitrary
traces did bring additional difficulties which required ad hoc resolutions, not
covered yet, as far as we see, by any general theory of denotational semantics
for SOS formats.

Concepts and notations concerning transition systems. We shall consider
several transition system specifications, which are parameterized by classes State,
of states, and classes Label, of labels and consist of descriptions (of some kind)
of labeled transition systems. In our cases:

– State will be Term or Proc and Label will be Act ∪{τ}, (Act ∪{τ})∗ or Act∗;
– the description will consist of either a set of SOS rules (such as CCS and

CCST below) or the indication of a coalgebra which yields standardly a
labeled transition system (such as (Proc, unf)).

Given a transition system specification TS, we write `TS s
l−→ s′ to indicate

that s l−→ s′ is inferable in TS (i.e., belongs to the described labeled transition
system). TS has the following associated notions. A relation θ ⊆ State× State is
called:

– a strong TS-simulation, if the following holds for all (s, t) ∈ θ: if `TS s
l−→ s′

for some l and s′, then there exists t′ such that `TS t
l−→ t′ and (s′, t′) ∈ θ;

– a strong TS-bisimulation, if both θ and θ^ are strong TS-simulations.

The strong TS-bisimilarity relation, denoted ∼TS , is the union of all strong TS-
bisimulations, and is also the largest strong TS-bisimulation.

In case Label = Act ∪{τ}, we also have weak versions of the above concepts,3

which we describe below. Given a regular language L over Act ∪ {τ}, we write
Ì TS s

L−→ s′ to indicate that there exists a word w = α1 . . . αn ∈ L (with the
αi-s in Act ∪ {τ}) and s0, . . . , sn such that s0 = s, sn = s′, and si

αi+1−→ si+1

for all i ∈ 0, n− 1. (Notice the usage of the symbol Ì , distinct from `, to
denote a notion of “deduction” which is not primitive in TS, but derived from
`.) Examples of regular languages L include τ∗ and τ∗#a#τ∗ for some a ∈ Act.
A relation θ ⊆ State× State is called:

– a TS-simulation, if the following hold for all (s, t) ∈ θ:
• if Ì TS s

τ∗−→ s′ for some s′, then there exists t′ such that Ì TS t
τ∗−→ t′

and (s′, t′) ∈ θ;
• if Ì TS s

τ∗#a#τ∗−→ s′ for some s′ and a ∈ Act, then there exists t′ such

that Ì TS t
τ∗#a#τ∗−→ t′ and (s′, t′) ∈ θ.

– a TS-bisimulation, if both θ and θ^ are TS-simulations.

The TS-bisimilarity relation, denoted ≈TS , is the union of all TS-bisimulations,
and is also the largest TS-bisimulation.

3 As before, we shall omit the prefix “weak”.

8

The following trace-based characterization of simulation (hence of bisimilar-
ity), as seen in Section 2 crucial for our approach to compositionality, is known
already from [14]. Let delτ : (Act ∪{τ})∗ → Act∗ be the map that deletes all the
τ -s. A relation θ ⊆ State× State is a TS-simulation iff the following hold for all
(s, t) ∈ θ: if Ì TS s

v−→ s′ for some s′ and v ∈ (Act ∪ {τ})∗, then there exist t′

and w ∈ (Act ∪{τ})∗ such that delτ (v) = delτ (w), Ì TS t
w−→ t′ and (s′, t′) ∈ θ.

Thus, according to this characterization, in the bisimilarity game one has to
match a trace of actions with a trace “τ -equivalent” to it. Henceforth we take
this characterization as the very definition of TS-simulation. (Notice that, in our
semantic domain Proc from Section 2, τ is absorbed in the monoidal structure,
hence “τ -equivalence”, that is, “ε-equivalence”, coincides with strong bisimilar-
ity, which in turn coincides, by the internal full abstraction, with equality.)

CCS recalled. For the presentation of CCS, we follow [14] rather closely. We
shall not consider the full CCS, but a version restricted in one essential way and
in several inessential ways.

The essential restriction consists of allowing only guarded sums. For arbi-
trary sums, (weak) bisimilarity is not a congruence, hence a priori impossible
to capture by a compositional denotation. On the other hand, the congruence
cogenerated by bisimilarity can receive such a denotation by an adaptation of
our approach, but we feel that this would bring technical complications orthog-
onal to the main ideas of this text. Thus, we take the (rather customary) view
that the “real CCS calculus” is that with guarded sums only – already in [14]
(at page 113) it is noted: “[weak bisimilarity] is a congruence if we limit the use
of Summation to guarded sums [...]. In fact, in applications we hardly ever use
Summation in any other way.” (Also, unguarded sums are excluded already at
the syntax level in monographs (of related calculi) such as [20].)

The inessential restrictions consist of excluding the restriction and renaming
operators and dealing with simple (non-mutual) recursion only. These features
are of course essential to the calculus, but inessential to the presentation of our
semantics, since it is immediate how they can be handled in our framework.

On the other hand, we do not require the fixpoint expressions to be guarded.
Guardedness is a convenient/desired feature in the context of strong bisimilarity,
since there it guarantees (in the presence of finite summations) finite branch-
ing. But since weak bisimilarity is infinitely branching anyway, here unguarded
replication does not raise new fundamental problems, and yields perfectly valid
behavior – for example, the π-calculus-style replication !P is only definable by
an unguarded fixpoint expression, µX.X|P .

Henceforth, we call “CCS” the indicated restricted version of CCS, presented
below in detail. We fix the following:

– A set Act, of loud actions, ranged over by a ; an item τ 6∈ Act, called the
silent action; Act ∪ {τ} is called the set of actions and is ranged over by α;

– A map − : Act→ Act such that a = a for all a ∈ Act.
– An infinite set Var, of (process) variables, ranged over by X,Y .

9

– A set Index, of indexes (for summations), ranged over by i, j; I will range
over P(Index). (Index is not required to be finite.)

The set Term, of (process) terms, ranged over by P,Q, is given by the following
grammar:

P ::= X |
∑
i∈I

αi. Pi | P |Q | µX.P

In a term µX.P , X is bound in P – this notion of binding yields standardly a no-
tion of alpha-equivalence on terms. We identify terms modulo alpha-equivalence.
P [Q/X] denotes the term obtained from P by (capture-free) substituting all free
variables of P with Q. P [Q/X]n denotes P [Q/X] . . . [Q/X] (n times).

The CCS transition system infers triples P α−→ P ′:

·∑
i∈I αi. Pi

αj−→ Pj

(Sum)
[j ∈ I]

P
α−→ P ′

P |Q α−→ P ′|Q
(ParL)

Q
α−→ Q′

P |Q α−→ P |Q′
(ParR)

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′
(Com)

P [(µX.P)/X] α−→ P ′

µX.P
α−→ P ′

(Rec)

Trace-based CCS. We first employ our insight concerning arbitrarily long
traces for compositional bisimilarity at the syntactic level, by defining the fol-
lowing system CCST, a variation of CCS with traces instead of single actions as
labels. (In the rule (ParT) below, | : Act∗ ×Act∗ → P(Act∗) is the synchronized
shuffle defined in Section 2.)

·
P

ε−→ P
(Silent)

Pj
w−→ P ′∑

i∈I αi. Pi
αj#w−→ P ′

(SumT)
[j ∈ I]

P
w1−→ P ′ Q

w2−→ Q′

P |Q w−→ P ′|Q′
(ParT)
[w ∈ w1|w2]

P [(µX.P)/X] w−→ P ′

µX.P
w−→ P ′

(RecT)

The rules of CCST were produced by taking the reflexive-transitive closure of
the rules of CCS, i.e., by composing the system CCS with itself horizontally an
indefinite number of times. In the process, we also made sure that zero or more τ
actions were identified with the empty trace ε, and in particular we have added
the rule (Silent).

Lemma 1. Ì CCS is closed under the rules that define `CCST (modulo the
absorbtion of τ for the case of parallel composition), namely:
(1) Ì CCSP

ε−→ P .

(2) If j ∈ I and Ì CCSPj
w−→ P ′, then Ì CCS

∑
i∈I αi. Pi

αj#w−→ P ′.
(3) If Ì CCSP

w1−→ P ′, Ì CCSQ
w2−→ Q′, and v ∈ delτ (w1)|delτ (w2), then there

exists w such that delτ (w) = v and Ì CCSP |Q
w−→ P ′|Q′.

(4) If Ì CCSP [(µX.P)/X] w−→ P ′, then Ì CCS µX.P
w−→ P ′.

Proof. (1): Immediate. (2) and (4): By case analysis on whether w is empty.
(3): By an easy (but tedious) induction on the sum of the lengths of w1 and w2,
using the definition of | on traces. ut

10

The next proposition states the fact we naturally expect from CCST – that
it indeed produces precisely the traces of actions produced by CCS, with the
τ -actions absorbed.

Proposition 1. The following hold for all P, P ′ ∈ Term, w ∈ (Act ∪{τ})∗, and
v ∈ Act∗:
(1) Ì CCSP

w−→ P ′ implies `CCST P
delτ (w)−→ P ′.

(2) `CCST P
v−→ P ′, then there exists w′ ∈ (Act ∪ {τ})∗ such that delτ (w′) = v

and Ì CCSP
w′−→ P ′.

Proof. (1): Easy induction on w. (2): Immediate consequence of Lemma 1. ut

As a consequence, we have the identity between CCS-bisimilarity and strong
CCST-bisimilarity:

Corollary 1. For all P,Q ∈ Term, P ≈CCS Q iff P ∼CCST Q.

Proof. Immediate from Proposition 1 (using the aforementioned trace-based
characterization of bisimilarity). ut

Semantic domain and operators. The semantic domain is the one advo-
cated in Section 2, namely the carrier set Proc of the final monoidal multi-step
coalgebra (Proc, unf : Proc→ P(Proc×Act∗)).

As for the semantic operators, the ones corresponding to the summation
and parallel composition syntactic constructs have almost necessary definitions
induced automatically by the de Simone SOS format of the CCST rules that
involve these constructs:
- For each I ⊆ Index, SumI : (I → (Act ∪ {ε})× Proc)→ Proc, by
unf (SumI((αi, πi)i∈I)) = {(ε,SumI((αi, πi)i∈I))} ∪ {(αi#w, π′). i ∈ I ∧ (w, π′) ∈
unf (πi)};
- Par : Proc× Proc→ Proc, by
unf (Par(π1, π2)) = {(w,Par(π′1, π

′
2)). ∃w1, w2. (w1, π1) ∈ unf (π′1) ∧ (w2, π2) ∈

unf (π′2) ∧ w ∈ w1|w2} (where again | : Act∗ × Act∗ → P(Act∗) is the synchro-
nized shuffle defined in Section 2).

Notice that, in the case of summation, we have explicitly added a self-ε-
transition to ensure reflexivity of the result. The other properties, namely, tran-
sitivity and prefix-closeness, can be easily seen to be preserved by SumI . More-
over, Par is easily seen to preserve monoidality. These mean that the definitions
of these operators are correct corecursive definitions on Proc.

In order to define a semantic operator corresponding to the µ construct, we
cannot simply transliterate the corresponding rule (RecT) as we did for the other
operators. Indeed, (RecT) is not in de Simone or in other amenable format that
would allow a local semantic definition. However, (RecT) can be replaced with
the following:

P [P/X]n w−→ Q′

µX.P
w−→ Q′[(µX.P)/X]

(RecT’)

11

Intuitively, the recursive unfolding of a (sub)term µX.P in a derivation needs
to be performed only once, atomically, for a sufficiently large depth n.

In the next lemma (and henceforth) we write `CCST ,k P
w−→ Q to indicate

the fact that P w−→ Q has a derivation of height at most k in CCST.

Lemma 2. (1) If `CCST ,k P [(µX.P)/X] w−→ P ′, then there exist n ∈ IN and
Q′ such that Q′[(µX.P)/X] = P ′ and `CCST ,k P [P/X]n w−→ Q′.
(2) If `CCST P [P/X]n w−→ P ′, then `CCST µX.P

w−→ P ′[(µX.P)/X]

Proof. (1): By induction on k. (2) By induction on the definition of `CCST . ut

Now we are ready to define the semantic operator Fix : (Proc→ Proc)→ Proc
(corresponding to µ) corecursively:
unf (Fix(F)) =

⋃
n≥1{(w,F ′(Fix(F))).∀π ∈ Proc. (w,F ′ π) ∈ unf (Fn π)}.

(where F : Proc→ Proc and Fn denotes F ◦ . . . ◦ F (n times))
Again, one can immediately check that the above is a correct definition.

The definition is a rather standard semantic representation of the rule (RecT’),
with the opening of the scope of X (regarding (RecT’) as being applied back-
wards) handled semantically via the interplay between functional binding and
universal quantification. On the other hand, the reader may legitimately wonder
whether a more abstract semantic definition of recursion, namely one employ-
ing genuine fixpoints instead of numbers, would be possible. Unfortunately, an
operator on processes whose (least) fixed point (according to some ordering)
would give our semantic recursive item does not seem to be available, because
of the non-continuous behavior of infinitely-branching recursion, which expands
the trees locally. By contrast, a domain-theoretic setting (not suitable here due
to infinite branching) allows itself to take global approximating snapshots from
the recursively growing trees, enabling the mentioned more elegant treatment
of recursion. (In the context of infinite branching, such snapshots would not be
enough to characterize the final trees.)

The coalgebra (Proc, unf) yields standardly an Act∗-labeled transition system
with processes as states: `Proc π

w−→ π′ iff (w, π′) ∈ unf (π). It is convenient
(including more readable) to rephrase the above coinductive definitions in terms
of this transition system:

– (C1) `Proc SumI((αi, πi)i∈I)
w−→ π′ iff (w = ε ∧ π′ = SumI((αi, πi)i∈I)) ∨

(∃i ∈ I, w′. w = αi#w′ ∧ `Proc πi
w′−→ π′).

– (C2) `Proc Par(π1, π2) w−→ π′ iff ∃w1, w2, π
′
1, π
′
2. w ∈ w1|w2 ∧ π′ = Par(π′1, π

′
2)

∧ `Proc π1
w1−→ π′1 ∧ `Proc π2

w2−→ π′2 .
– (C3) `Proc Fix(F) w−→ π′ iff ∃F ′, n ≥ 1. π′ = F ′(Fix(F))∧(∀π. Fn π w−→ F ′ π).

Everything is now almost set in place for the proof of full abstraction, except for
one final detail: in (RecT’), we need to make sure that P [P/X]n is smaller than
µX.P in some way, so that µX.P is simplified by an application of (RecT’). To
this end, we define the relation � ⊆ Term × Term as follows: P � Q iff one of
the following holds:

12

- ∃Q′. P = Q|Q′ ∨ P = Q′|Q;
- ∃I, (αi)i∈I , (Pi)i∈I , j ∈ I. P =

∑
i∈I αi. Pi ∧ Q = Pj ;

- ∃R,X, n. P = µX.R ∧ Q = R[R/X]n.

Lemma 3. � is well-founded, in that there exists no infinite sequence (Pk)k∈IN
such that ∀k. Pk � Pk+1.

Proof. Define ⊆ Term× Term inductively by the following clauses:
- µX.P P [P/X]n;
- If P P ′, then P |Q P ′|Q and Q|P Q|P ′;
- If j ∈ I and P P ′, then

∑
i∈I Pi

∑
i∈I P

′
i , where P ′j = P ′ and P ′i = Pi

form all i 6= j.
Let WF be the set of all terms well-founded w.r.t. , i.e., of all terms

P for which there exists no infinite sequence (Pk)k∈IN such that P0 = P and
∀k. Pk Pk+1.

Claim1: If P ∈ WF and ∀X.σX ∈ WF , then P [σ] ∈ WF (where σ is
any map in Var→ Term and P [σ] is the term obtained from P by applying the
substitution σ). (Proof: By induction on P .)

Claim2: If P ∈ WF , then P [P/X]n ∈ WF . (Proof: By induction on n,
using Claim1.)

Claim3: is well-founded. (Proof: By induction on terms, using Claim2 for
µ-terms.)

Now, we can prove that � is well-founded: Assume an infinite sequence
(Pk)k∈IN such that ∀k. Pk � Pk+1. We construct, recursively on k, a sequence
(Qk)k∈IN such that ∀k.Qk Qk+1, thus deriving a contradiction with Claim3.
In fact, we define the Qk’s via the contexts (i.e., terms with one hole) Ck[∗], by
Qk = Ck[P], where the Ck[∗]-s are defined as follows:
- C0[∗] = ∗ (the trivial context);
- if Pn+1 = R|Pn, then Cn+1[∗] = R |Cn[∗];
- if Pn+1 = Pn|R, then Cn+1[∗] = Cn[∗] |R;
- if Pn+1 =

∑
i∈I αi. Ri, j ∈ I and Pn = Rj , then Cn+1[∗] =

∑
i∈I αi. Hi, where

Hj = Cn[∗] and Hj = Rj for all j 6= i;
- if Pn+1 = µX.R and Pn = R[R/X]n, then Cn+1[∗] = Cn[∗].

It is easy to see that indeed the Qk-s (i.e., the Ck[Pk]-s) form a -chain. ut

Denotational semantics. The above semantic operators yield standardly an
interpretation 〈 〉 : Term → (Var → Proc) → Proc of the CCS syntax in envi-
ronments (via a higher-order version of the initial algebra semantics):

– 〈
∑
i∈I αi.Pi〉 ρ = SumI((αi, 〈Pi〉 ρ)i∈I);

– 〈P |Q〉 ρ = Par(〈P 〉 ρ, 〈Q〉 ρ);
– 〈µX.P 〉 ρ = Fix(λπ. 〈P 〉(ρ[X ← π])).

Lemma 4. The following hold for all X ∈ Var, P,Q ∈ Term, π ∈ Proc, ρ, ρ′ :
Var→ Proc and n ∈ IN :
(1) If ρ Y = ρ′ Y for all Y ∈ FV(P), then 〈P 〉 ρ = 〈P 〉 ρ′.
(2) 〈P [Q/X]〉 ρ = 〈P 〉(ρ[X ← 〈Q〉 ρ]).
(3) 〈P [P/X]n〉(ρ[X ← π]) = Fn+1 π, where F = λπ. 〈P 〉(ρ[X ← π]).

13

Proof. Points (1) and (2) state well-known facts holding for any standard inter-
pretation of syntax with static bindings in a domain (as is the case here). We
prove point (3) by induction on n. The base case, n = 0, follows from point (2).
For the inductive case, we have the following chain of equalities:
〈P [P/X]n+1〉(ρ[X ← π]) = 〈P [P/X]n[P/X]〉(ρ[X ← π]) = (by point (2)) =
〈P [P/X]n〉(ρ[X ← π][X ← 〈P 〉(ρ[X ← π])]) = 〈P [P/X]n〉(ρ[X ← 〈P 〉(ρ[X ←
π])]) = (by IH) = Fn+1(〈P 〉(ρ[X ← π])) = Fn+1(F π) = Fn+2 π. ut

We are finally ready to state the connection between CCST and Proc (which
leads to full abstraction):

Proposition 2. The following hold for all P, P ′ ∈ Term, π′ ∈ Proc, w ∈ Act∗,
and ρ : Var→ Proc:
(1) If `CCST P

w−→ P ′, then `Proc 〈P 〉 ρ
w−→ 〈P ′〉 ρ.

(2) If `Proc 〈P 〉 ρ
w−→ π′, then there exists P ′′ such that `CCST P

w−→ P ′′ and
π′ = 〈P ′′〉 ρ.
(In other words, for every ρ, the map P 7→ 〈P 〉 ρ is a morphism between the
multi-step coalgebra induced by CCST and (Proc, unf).)

Proof. (1): We prove by induction on k that `CCST ,k P
w−→ P ′ implies ∀ρ. `Proc

〈P 〉 ρ w−→ 〈P ′〉 ρ. The cases where the last applied rule was (SumT) or (ParT)
are immediate. We only treat the case of (RecT).

Assume `CCST ,k P [(µX.P)/X] w−→ P ′. Fix ρ. We need to show
`Proc 〈µX.P 〉 ρ

w−→ 〈P ′〉 ρ. Let F = λπ. 〈P 〉(ρ[X ← π]).
Fix π. By Lemma 2.(1), there exist n and Q′ such that

P ′ = Q′[(µX.P)/X] and `CCST ,k P [P/X]n w−→ Q′.
Let F ′ = λπ. 〈Q′〉(ρ[X ← π]). With IH, we have
`Proc 〈P [P/X]n〉(ρ[X ← π]) w−→ 〈Q′〉(ρ[X ← π]), i.e.,
`Proc 〈P [P/X]n〉(ρ[X ← π]) w−→ F ′ π,
hence, using Lemma 4.(3), `Proc F

n+1π
w−→ F ′ π.

We thus proved ∀π. `Proc F
n+1π

w−→ F ′ π, hence, with (C3),
`Proc Fix(F) w−→ F ′(Fix(F)). Moreover, by Lemma 4.(2), we have F ′(Fix(F)) =
〈Q′〉(ρ[X ← Fix(F)]) = 〈Q′〉(ρ[X ← 〈µX.P 〉 ρ]) = 〈Q′[(µX.P)/X]〉(ρ) = 〈P ′〉 ρ.
Ultimately, we obtain `Proc 〈µX.P 〉 ρ

w−→ 〈P ′〉 ρ, as desired.
(2): By well-founded induction on P (the lefthand side of the hypothesis) w.r.t.
� (since � is well-founded according to Lemma 3). Again, the cases where P
is a summation or a parallel composition are easy. We only consider the case of
recursion.

Assume 〈µX.P 〉 ρ w−→ π′. Let F = λπ. 〈P 〉(ρ[X ← π]). Then 〈µX.P 〉 ρ =
Fix(F), hence Fact0: Fix(F) w−→ π′. By Lemma 4.(3), we have
Fact1: 〈P [P/X]n〉 (ρ[X ← Fix(F)]) = Fn(Fix(F)),

Moreover, from Fact0 and (C3), we obtain n ≥ 1 and F ′ such that
π′ = F ′(Fix(F)) and ∀π. `Proc F

n π
w−→ F ′ π. In particular,

`Proc F
n(Fix(F)) w−→ F ′(Fix(F)), i.e., `Proc F

n(Fix(F)) w−→ π′, hence, with Fact1,
`Proc 〈P [P/X]n〉 (ρ[X ← Fix(F)]) w−→ π′.

14

With IH, we find P ′ such that 〈P ′〉 (ρ[X ← Fix(F)]) = π′ and `CCST

P [P/X]n w−→ P ′. By Lemma 2.(2), we have `CCST µX.P
w−→ P ′[(µX.P)/X].

Moreover, by Lemma 4.(2), we have 〈P ′[(µX.P)/X]〉 ρ = 〈P ′〉 (ρ[X ← 〈µX.P 〉 ρ])
= F ′(Fix(F)) = π′, making P ′[(µX.P)/X] the desired term. ut

Corollary 2. The following are equivalent for all P,Q ∈ Term: P ∼CCST Q iff
〈P 〉 = 〈Q〉.

Proof. Immediately from Proposition 2 (since coalgebra morphisms preserve and
reflect strong bisimilarity, and since strong bisimilarity in Proc is equality). ut

Now, Corollaries 1 and 2 immediately yield full abstraction:

Theorem 1. The following are equivalent for all P,Q ∈ Term: P ≈CCS Q iff
〈P 〉 = 〈Q〉.

4 Conclusions and related work

We described an approach to (weak) bisimilarity and illustrated it by providing
a novel denotational semantics for CCS under bisimilarity which is both fully
abstract and compositional. Previous approaches to the denotational semantics
of bisimilarity CCS [2], as well as instances of more generic approaches [18] that
can in principle cover this case, essentially consider final one-step coalgebras for
the semantic domain. Other works on the denotation of related calculi either do
not feature compositionality [12, 13] or cover only strong bisimilarity and related
strong equivalencies [10, 22, 4, 23].

Models for process calculi which are intensional (in that the identity of the
semantic items does not coincide with bisimilarity or other targeted notion of
operational equivalence) were proposed in [8, 16, 9, 7, 21] (among other places).
The framework of [9] (extending the one of [16]) offers facilities to define and
reason “syntax freely” about weak bisimilarity in models which are already fully
abstract w.r.t. strong bisimilarity, via a suitable hiding functor. The relationship
between the abstract categorical machinery from there aimed at hiding the τ -
actions and our packing and unpacking bijections between processes and their
compact representations deserves future research.

Our technique of combining traces with coalgebra seems able to capture
bisimilarity of a wide range of process calculi. In particular, our transformation
of CCS into CCST could be soundly performed on systems in an SOS format of
a quite general kind, e.g., of the kind singled out in [5, 25] to ensure that weak
bisimilarity is a congruence. We have not worked out the details yet though.

With a bit of extra effort, we could have finetuned our definitions into domain-
theoretic ones using Abramsky powerdomains instead of powersets, along the
lines of [10, 22]. However, our semantics would then have not captured bisimi-
larity, but the weaker relation of having all finite subtrees bisimilar [1].

15

References

1. S. Abramsky.Adomainequationforbisimulation.Inf. Comput., 92(2):161–218, 1991.
2. P. Aczel. Final universes of processes. In MFPS’93, pages 1–28, 1993.
3. M. Baldamus, J. Parrow, and B. Victor. A fully abstract encoding of the pi-calculus

with data terms. In ICALP’05, pages 1202–1213, 2005.
4. M. Baldamus and T. Stauner. Modifying Esterel concepts to model hybrid systems.

Electr. Notes Theor. Comput. Sci., 65(5), 2002.
5. B. Bloom. Structural operational semantics for weak bisimulations. Theor. Com-

put. Sci., 146(1&2):25–68, 1995.
6. M. Boreale and F. Gadducci. Denotational testing semantics in coinductive form.

In B. Rovan and P. Vojtás, editors, MFCS, volume 2747 of Lecture Notes in Com-
puter Science, pages 279–289, 2003.

7. M. G. Buscemi and U. Montanari. A first order coalgebraic model of pi-calculus
early observational equivalence. In CONCUR, pages 449–465, 2002.

8. G. L. Cattani and P. Sewell. Models for name-passing processes: interleaving and
causal. In LICS 2000, pages 322–333, 2000.

9. M. Fiore, G. L. Cattani, and G. Winskel. Weak bisimulation and open maps. In
LICS’99, pages 67–76, 1999.

10. M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the π-calculus.
In LICS’96, pages 43–54, 1996.

11. M. Hennessy. A fully abstract denotational semantics for the π-calculus. Theor.
Comput. Sci., 278(1-2):53–89, 2002.

12. F. Honsell, M. Lenisa, U. Montanari, and M. Pistore. Final semantics for the
pi-calculus. In PROCOMET’98, pages 225–243, 1998.

13. M. Lenisa. Themes in Final Semantics. Dipartimento di Informatica, Universita‘
di Pisa, TD 6, 1998.

14. R. Milner. Communication and concurrency. Prentice Hall, 1989.
15. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts i and

ii. Inf. Comput., 100(1):1–77, 1992.
16. M. Nielsen and A. Chang. Observe behaviour categorically. In FST&TCS’95,

pages 263–278, 1995.
17. A. Popescu. A fully abstract coalgebraic semantics for the pi-calculus under weak

bisimilarity. Tech. Report UIUCDCS-R-2009-3045. University of Illinois, 2009.
18. J. J. M. M. Rutten. Processes as terms: Non-well-founded models for bisimulation.

Math. Struct. Comp. Sci., 2(3):257–275, 1992.
19. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput.

Sci., 249(1):3–80, 2000.
20. D. Sangiorgi and D. Walker. The π-calculus. A theory of mobile processes. Cam-

bridge, 2001.
21. A. Sokolova, E. P. de Vink, and H. Woracek. Weak bisimulation for action-type

coalgebras. Electr. Notes Theor. Comput. Sci., 122:211–228, 2005.
22. I. Stark. A fully-abstract domain model for the π-calculus. In LICS’96, pages

36–42, 1996.
23. S. Staton. Name-passing process calculi: operational models and structural opera-

tional semantics. PhD thesis, University of Cambridge, 2007.
24. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In

LICS’97, pages 280–291, 1997.
25. R. J. van Glabbeek. On cool congruence formats for weak bisimulations. In D. V.

Hung and M. Wirsing, editors, ICTAC, volume 3722 of Lecture Notes in Computer
Science, pages 318–333, 2005.

16

