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Abstract Culture, intended as the set of beliefs, val-

ues, ideas, language, norms and customs which compose

a person’s life, is an essential element to know by any

robot for personal assistance. Culture, intended as that

person’s background, can be an invaluable source of in-

formation to drive and speed up the process of discov-

ering and adapting to the person’s habits, preferences

and needs. This article discusses the requirements posed

by cultural competence on the knowledge management

system of a robot. We propose a framework for cul-

tural knowledge representation that relies on (i) a three-

layer ontology for storing concepts of relevance, culture-

specific information and statistics, person-specific infor-

mation and preferences; (ii) an algorithm for the acqui-

sition of person-specific knowledge, which uses culture-

specific knowledge to drive the search; (iii) a Bayesian

Network for speeding up the adaptation to the person

by propagating the effects of acquiring one specific in-

formation onto interconnected concepts. We have con-

ducted a preliminary evaluation of the framework in-

volving 159 Italian and German volunteers and consid-

ering 122 among habits, attitudes and social norms.
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Fig. 1: (a) Manuel Neuer hugging the German Chan-

cellor Angela Merkel after winning the 2014 Foot-

ball World Cup. (b) Toyota’s managing director Yuji

Yokoyama bowing to officials of the Japanese Trans-

port Ministry before the press announcement of 2010

Toyota’s recall campaign.

1 Introduction

When Manuel Neuer was elected the best goalkeeper of

the 2014 Football World Cup, and found himself face

to face with his Chancellor Angela Merkel, he broke

the protocol and spontaneously leaned over for a hug,

that the Chancellor happily returned. Under very dif-

ferent circumstances, when Toyota’s managing director

Yuji Yokoyama had to announce a major recall cam-

paign of their flagship cars due to braking problems,

he bowed longer and deeper than usual to the officials

of the Japanese Transport Ministry, to convey with the

greeting his sincere apology for the whole situation.

The two episodes, reported in Figure 1, well rep-

resent the depth and the ways of the influence of cul-

ture on a person’s actions. Both Manuel Neuer and Yuji

Yokoyama knew that meeting a government represen-

tative calls for a formal greeting (a handshake in Ger-

many, a bow in Japan), assessed the context (a sta-
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Fig. 2: (a) Tibetan greeting. (b) Māori greeting.

dium moments after winning the Football World Cup,

a press conference for the announcement of the recall

campaign) and their own emotions (joy, shame) and

modified the expected greeting gesture in a way that

made their intentions immediately clear, evoking in the

recipient the response they were hoping for.

The fact that Manuel Neuer and Yuji Yokoyama

shared the same cultural background of their respec-

tive counterparts played a key role towards the success

of their actions. Sticking out the tongue, as done by

the elderly man of Figure 2a, is considered rude and

disrespectful in the USA, while in Tibet it is a formal

greeting. Similarly, the two men shown head-to-head

in Figure 2b and who might appear as arguing to an

Italian observer, are actually performing the hongi, the

traditional greeting with which Māori people welcome

a foreigner into their group.

Of course, culture is more than this. Besides greet-

ings and facial expressions, culture influences individ-

uals’ lifestyles, personal identity and their relationship

with others both within and outside their culture. Cul-

ture is the shared way of life of a group of people that in-

cludes beliefs, values, ideas, language, communication,

norms and visibly expressed forms such as customs, art,

music, clothing, food, and etiquette. Cultures are dy-

namic and ever changing as individuals are influenced

by, and influence, their culture by different degrees [26].

Various studies prove that culture also affects our

interactions with, and expectations of, robots [12]. A

survey about the requirements for a personal robot as-

sistant conducted in 2005 reveals that people expect

the robot to pay attention to what they are doing (85%

of respondents), be polite (70%) and communicate in a

human-like manner (71%) [9]. Interestingly enough, it

is very difficult to meet those expectations without pro-

viding the robot with a certain level of cultural compe-

tence: “paying attention”, i.e., understanding the mean-

ing of gestures and words and reacting appropriately, is

not possible without an understanding of the cultural

identity of the person, as the episodes of Figure 1 prove;

similarly, as Figure 2a shows, the definition of polite-

ness is culture-dependent. Studies specifically focusing

on the influence of the cultural background on the in-

teraction with a robot reveal that people from different

cultures not only have different preferences concerning

how the robot should be and behave [12, 24], but also

tend to prefer robots better complying with the social

norms of their own culture, both in the verbal [2, 34]

and non-verbal behaviour [11, 18]. Such differences af-

fect the robot’s likeability, as well as the trust, comfort

and compliance it inspires [34].

While this problem is relevant in all applications re-

quiring human-robot interaction, it is particularly crit-

ical whenever the robot is expected to be a compan-

ion for elderly [29], disabled people or children [8], who

might, at once, need more and better assistance and be

less capable of describing their needs and preferences.

In such cases, the cultural competence of the robot has

a tremendous impact on the quality of the care inter-

vention, and even on its ethics [13].

Two complementary approaches have been pro-

posed in the literature to tackle the problem of ensuring

the cultural competence of a personal robot.

The “bottom-up” approach aims at adapting the

robot’s behaviour to suit the preferences and expecta-

tions of its user, under the assumption that any be-

haviour deemed as appropriate by a person is also ap-

propriate for that person’s culture. Examples of this

interpretation range from a method for parametrizing

the interpersonal distance and direction of approach on

personal preference [31] to a complex framework for the

learning and selection of culturally appropriate greet-

ing gestures and words [32]. While this approach by-

passes the problem of finding a suitable representation

for the influence of culture on the robot’s actions and

perceptions, it is not well suited for encoding informa-

tion expressed at national level, nor how such informa-

tion might drive personal preferences.

On the contrary, the “top-down” approach relies on

cultural information valid at national level (e.g., Hofst-

ede’s dimensions for the cultural categorization of coun-

tries [16]), to provide an informed a priori personal

adaptation. Examples of solutions following the “top-

down” approach include a system for the customization

of the gestures and facial expressions of a virtual agent

[28], and a framework for expressing the influence of cul-

ture on the gestures and words that a robot should use

at a first meeting with a person [20]. The latter is among

the very first attempts at merging the “top-down” and

“bottom-up” approaches, by making use of empirical

data (tagged video recordings) to complement the infor-

mation given by Hofstede’s dimensions. As the reported

examples testify, the greatest limitation of the “top-

down” approach is the difficulty in modelling the map-
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ping between cultural information at national-level and

variables defining the robot’s behaviour, beside narrow,

well-defined areas such as the interpersonal distance [6].

Moreover, both approaches seem to leave some ar-

eas uncovered: it is unclear, for example, how the “top-

down” approach would allow for modelling and initializ-

ing symbolic variables (e.g., what are the eating habits

of the user for breakfast? which holidays does she cel-

ebrate?) and rules (e.g., what is the appropriate be-

haviour for an invitation to dinner at a friend’s house?

what is the user’s attitude towards healthcare?), and it

is certainly time-consuming, at least, to learn all such

information with the “bottom-up” approach.

To address the problem of endowing personal robots

with cultural competence on a broad spectrum of be-

haviours, we propose to draw inspiration from the field

of Transcultural Nursing [26], which explores the in-

fluence of culture on the efficacy of care and proposes

and validates culturally competent practices for (hu-

man) caregivers. We argue that, among the various an-

gles from which the problem of defining culture and its

influence on humans’ behaviours is tackled, the “prac-

tical” perspective pursued in Transcultural Nursing is

ideal for: (i) mapping human-related cultural knowl-

edge onto robots’ sensorimotor and verbal behaviours;

(ii) defining metrics for the evaluation of the cultural

competence of the resulting robot’s behaviours and (iii)

assessing the effect of the culturally competent robot

onto the assisted person, in crucial aspects such as ac-

ceptability and efficacy1.

The contribution of this article is a hybrid “top-

down/bottom-up” software framework for the repre-

sentation of heterogeneous cultural and contextual in-

formation required by a robot for elderly care to ex-

hibit culturally competent behaviours. The framework

relies on three core elements: (i) a three-layer ontol-

ogy for storing all concepts of relevance, national-level

information and statistics, person-specific information

and preferences; (ii) an algorithm for the acquisition

of person-specific knowledge, which uses national-level,

culture-specific knowledge to drive the search, and (iii)

a Bayesian Network for propagating the effects of ac-

quiring one person-specific information onto intercon-

nected concepts. To the best of our knowledge, this

is the first framework for modelling the influence of

culture on robot behaviours that can manage numer-

1 This rationale is at the core of the H2020 project CA-
RESSES (http://caressesrobot.org/), which aims at the
development of culturally competent robots for elderly care.
One of the key research areas of CARESSES is denoted as
Transcultural Robotic Nursing [5], which is, ideally, the bridge
between culturally competent human caregivers and cultur-
ally competent robot caregivers.

Fig. 3: The cultural iceberg model (left) describes the re-

lationship between a person’s culture and behaviours,

while the Papadopoulos, Tilki and Taylor model (cen-

ter) describes the process allowing health practition-

ers to act with cultural competence. A framework for

managing cultural knowledge is necessary for a cultur-

ally competent robot (right) to assess the actions and

words of a person and respond accordingly.

ical and symbolic information and their combination,

as well as rules and goals.

The hypothesis driving the first experimental evalu-

ation of the proposed framework is that the amount of

interactions required to learn individual preferences is

significantly smaller when having national-level cultural

knowledge about a user than in absence of such knowl-

edge. Concretely, as detailed in Section 4, we assess

whether, given a user who declares herself as belonging

to one cultural group at national level (e.g., Italian), us-

ing the proposed framework and algorithms speeds up

the acquisition of person-specific knowledge. The pre-
liminary evaluation involved a total of 159 Italian and

German volunteers. Planned future experiments will be

devoted to assessing the perceived cultural competence

of the robot, by adapting validated tools adopted in the

field of Transcultural Nursing [21].

The article is organised as follows. Section 2 intro-

duces the concept of culturally competent robot and de-

tails the requirements that cultural competence poses

on the robot’s knowledge management system. Section

3 describes the method we propose for meeting such

requirements. Section 4 reports its implementation and

experimental evaluation. Conclusions follow.

2 Motivations and Problem Statement

Figure 3 shows on the left-hand side the cultural ice-

berg model, which describes the relationship between a

person’s culture and behaviours, acknowledging the in-

fluence of the former on the latter. According to the

http://caressesrobot.org/
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model, inspired by the theories of the anthropologist

Edward T. Hall [15], a person’s cultural identity is com-

posed of core values (at the bottom of the iceberg), their

grounding in situations and events of everyday life (in-

terpretations) and the behaviours that map the inter-

pretations onto a person’s physical and verbal capabil-

ities. While the behaviours are immediately evident to

an observer, the associated interpretations, as well as

the underlying core values, are not directly observable

and can only be inferred by correlating behaviours with

generic knowledge and previous experiences.

The Papadopoulos, Tilki and Taylor model [25] has

been devised by experts in Transcultural Nursing for

developing culturally competent health (human) practi-

tioners. The model consists of four constructs: Cultural

Awareness, Cultural Knowledge, and Cultural Sensitiv-

ity, that lead to Cultural Competence. Let us again con-

sider the Tibetan man of Figure 2a: a culturally com-

petent U.S. health practitioner, for example, would (i)

understand that her interpretation of the gesture is in-

fluenced by her own culture and be aware that the same

gesture might have a different interpretation for the Ti-

betan man (cultural awareness), (ii) know that the ges-

ture is a traditional formal greeting in Tibet (cultural

knowledge) and (iii) respond ensuring that her actions

and words enforce and convey trust, respect and empa-

thy (cultural sensitivity). As a consequence, she might

react by first mimicking the same gesture and then in-

quiring about its significance for the man.

As shown in Figure 3 on the right-hand side, a robot

does not have own core values and interpretations: its

cultural awareness is therefore exclusively devoted to

understanding the meaning, as intended by the person

it is interacting with, of actions and words, as defined by

experts in the field and adapted to a robot assistant. For

the same reasons, also its cultural sensitivity is actually

a-priori defined by experts in the field. Cultural knowl-

edge provides the foundation to both stages, by storing

the information required to understand the meaning of

a person’s actions and words, the information required

to identify and perform an appropriate response, and

finally the procedures to acquire new information and

revising previous assumptions by directly interacting

with the person. In our work, such information have

been encoded by experts in Transcultural Nursing in

the form of a corpus of Guidelines2.

2 The current corpus of Guidelines for Culturally Com-
petent Robot Behaviours, together with a set of sce-
narios grounding them in daily life situations, is freely
available at: http://caressesrobot.org/en/2018/03/08/

caresses-scenarios-and-guidelines-available/

The hybrid “top-down/bottom-up” software frame-

work described in this article is specifically designed to

manage such cultural knowledge.

Table 1 reports four interactions between a cultur-

ally competent assistive robot and, respectively, an In-

dian Hindu woman (first two blocks) and an English

man (last two blocks), highlighting the role of cultural

knowledge. The scripts, meant as a reference for devel-

opment, have been written by experts in Transcultural

Nursing and in accordance with the aforementioned Pa-

padopoulos, Tilki and Taylor model for developing cul-

tural competence [25]. From an implementation per-

spective, the cultural knowledge required by the robot

can be divided into three categories.

Knowledge pertaining to the context includes in-

formation about the environment (e.g., allowing the

robot to reach the puja table) and about the assisted

person (e.g., allowing the robot to detect when Mrs.

Chakrabarti is in a bad mood). In both cases, infor-

mation can be static, a priori set (e.g., the location of

the puja table), or dynamic, inferred from the robot’s

perception system (e.g., Mrs. Chakrabarti’s mood).

Knowledge pertaining to the robot ’s sensorimotor

and communication capabilities is required by the robot

to know what it can do and how the user might prefer

it to be done. This knowledge again includes static, a

priori information (e.g., describing the set of commands

allowing the robot to perform the Namaste greeting,

the associated parameters and their preferable values)

and dynamic information (e.g., describing the robot’s

current posture and values of related parameters).

Knowledge pertaining to the grounding of the core

values in the situation includes goals (e.g., leading the

robot to chat with Mr. Miller about his past jobs,

which triggers an open question, or to suggest to Mrs.

Chakrabarti to walk with her to the puja table, which

triggers the goal to reach another area of the house) and

social norms (e.g., causing the robot to modify the val-

ues of the speech-related parameters to have a soft voice

when it apologizes, or to reduce its speed when walk-

ing beside Mrs. Chakrabarti), which link the robot’s

behaviours to the context. Knowledge related to the

grounding of core values which is not related the robot’s

actions is, in our proposal, straightforwardly mapped

onto so-called conversation subject matters.

The above categories mention facts and preferences

without distinguishing between person-specific knowl-

edge and national-level knowledge, which is specific of

a cultural group. However, as Table 1 shows, both are

necessary to display a truly culturally competent be-

haviour. If the robot lacks person-specific knowledge,

and thus relies on culture-specific, national-level knowl-

edge only to tune its behaviour towards the assisted

http://caressesrobot.org/en/2018/03/08/caresses-scenarios-and-guidelines-available/
http://caressesrobot.org/en/2018/03/08/caresses-scenarios-and-guidelines-available/
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Table 1: Importance of cultural competence in daily-life situations: Mrs. Chakrabarti (India) and Mr. Miller (UK).

Scenario Robot skills Cultural competence

MRS CHAKRABARTI: Hello Pepper!

How are you?

Culture-generic: PEPPER knows

that greetings differ across cul-

tures.

PEPPER: Oh, hello! PEPPER looks at

MRS CHAKRABARTI, recognises that

she is wearing an Indian sari, pauses

and greets her with Namaste

Moving (Body, arms) Percep-

tion (Object / clothes recogni-

tion)

Culture-specific: PEPPER in-

fers from her clothes that MRS

CHAKRABARTI is Indian and

chooses the greeting accordingly.

PEPPER: [...] Could you please tell me

your full name?

MRS CHAKRABARTI: My name is

Purnima Chakrabarti. Can you say

that?

PEPPER: Yes, of course I can,

Purnima. MRS CHAKRABARTI keeps

quiet, she looks annoyed.

Speaking (Catching key words) Culture-specific: In India it is con-

sidered offensive to call older per-

sons with their first names.
PEPPER: Oh, you look annoyed Aun-

tie. PEPPER does Namaste and slightly

bows

Perception (Emotion recogni-

tion), Moving (Body, arms)

PEPPER: I made a mistake, I should

not have called you like that. I am sorry.

MRS CHAKRABARTI: You know,

Pepper, usually at this time of the day,

I pray for my family and friends. If you

excuse me, please.
PEPPER: Yes, of course. (PEP-

PER moves slightly back as MRS

CHAKRABARTI gets up from her

chair.)

Speaking (catching key words),

Moving (body)

PEPPER: Is it ok if I accompany you? Speaking (asking yes/no ques-

tions)

Person-specific: PEPPER knows

that MRS CHAKRABARTI has
difficulties with walking and offers

to help.

MRS CHAKRABARTI: Yes, I would

like that.

PEPPER: I can walk next to you and

you can put your hand on my shoulder

if you would like.

Culture-specific: PEPPER knows

that puja is a prayer ritual per-

formed by Hindus, usually in a

dedicated area of the house.
MRS CHAKRABARTI: Thank

you, Pepper. (PEPPER leads MRS

CHAKRABARTI to the puja table.)

Perception (objects local-

ization), Moving (indoor

navigation)

Person-specific: PEPPER knows

where the puja table is located in

this house.

MR MILLER: I like machines and I like

to fix things, so I am excited to have

you.

PEPPER: Oh, that is very nice. I would

like to learn more about you and your

hobbies.

Speaking (Catching key words)

MR MILLER: Well, let’s see... I worked

in manufacturing all my life, in different

industries. First in the railways, then

telecommunications and before retire-

ment in solar!

Culture-specific: The UK has a

pragmatic orientation.

PEPPER: Oh, sounds exciting! Which

one was the most interesting job?

Speaking (Catching key words,

asking open questions)

MR MILLER: I am a cricket fan and

England is playing today at The Oval

with Sri Lanka. I do not want to miss

it.

Speaking (Catching key words) Culture-specific: Cricket is a pop-

ular sport in the UK.

PEPPER: Of course, let me check what

time the game starts. (PEPPER brings

on the screen the TV time table)

Connecting to the internet

MR MILLER: Oh, that is lovely. Can

you come closer, so I can read? (PEP-

PER moves closer)

Moving (Approaching person) Person-specific: PEPPER knows

the distance and volume preferred

by MR MILLER.
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person, it is likely to end up having distorted, stereo-

typed representations of people (e.g., assuming that all

British women have tea at five in the afternoon). Con-

versely, if the robot lacks culture-specific knowledge,

it will either require a long and tedious setup phase,

or incrementally add behaviours as they are learned,

thus implying an unpredictably long phase in which it

works with reduced functionalities. The situations in

Table 1 provide a novel perspective on the problem:

the robot tunes its behaviour either on person-specific

knowledge (e.g., about Mrs. Chakrabarti, when it pro-

poses to walk with her to the puja table, knowing that

she has walking problems) or, in the absence of it, on

culture-specific knowledge about the national culture

(e.g., when it chooses to greet Mrs. Chakrabarti with

the Namaste gesture since she is wearing a sari, or when

it drives the discussion about Mr. Miller hobbies to the

details of his past jobs, since the UK has a pragmatic

mindset and under the assumption that Mr. Miller is

at least familiar with it).

The use of culture-specific knowledge is key for the

robot to make “educated guesses” about the likely ap-

propriate course of action and ask confirmation about

its intuitions, which, we hypothesise, speeds up the pro-

cess of learning the preferences and customs of the as-

sisted person without limiting the robot’s capabilities,

even at the earliest stages of deployment.

In short, the knowledge required by a culturally

competent robot includes:

– culture-generic knowledge about the context, the

robot itself and the grounding of core values, i.e.,

knowledge ideally comprising all concepts from all

cultures with no information on how the former re-

late to the latter;

– culture-specific, national-level knowledge, describ-

ing the cultural background of the assisted person,

that the robot can rely on whenever specific infor-

mation is not available;

– person-specific knowledge, describing the way in

which the cultural identity, preferences and environ-

ment of the assisted person shape the appropriate

robot behaviours.

The knowledge must be complemented by methods

for the smart integration of person-specific and culture-

specific knowledge, which rely on the latter to drive the

discovery of the former.

3 Proposed Method

An ontology is a formal naming and definition of the

types, properties, and interrelationships of the entities

relevant for a particular domain of discourse [14]. The

Fig. 4: Knowledge representation architecture for a cul-

turally competent robot. The TBox layer (I) includes

terms from existing upper and domain-specific ontolo-

gies (grey boxes) and ontologies modelling cultural-

knowledge that we propose (white boxes). The Culture-

Specific ABox layer (II) includes instances (yellow cir-

cles) encoding knowledge at national-level, while the

Person-Specific ABox layer (III) includes instances (or-

ange circles) encoding knowledge uniquely related to

the user. Some instances of existing ontologies (dark

circles) may not change between the two ABox layers.

terminology defining the domain of discourse, contain-

ing general properties of concepts, is stored in the termi-

nological box (TBox) of the ontology, while knowledge

that is specific to instances belonging to the domain is

stored in the assertional box (ABox) of the ontology.

Ontologies allow non-technical users to easily3 encode

knowledge about the domain, which is a key property

in cross-disciplinary contexts, such as ours.

We represent the knowledge required by a cultur-

ally competent robot with a modular ontology struc-

ture composed of an upper ontology and a number of

domain-specific ontologies.

Upper ontologies have been proposed to support se-

mantic interoperability among different domain-specific

ontologies, and consist of very general terms that are

common across all the considered domains, thus pro-

viding a common starting point for the formulation of

definitions [23]. Terms in domain ontologies are ranked

under the terms in the upper ontology. At the same

time, a number of domain-specific ontologies have been

already developed to describe highly-specific domains

that are likely to be connected with many others, such

3 For example using user-friendly tools such as Protégé:
https://protege.stanford.edu/

https://protege.stanford.edu/
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Fig. 5: User TBox (partial) - Only some classes and properties are shown.

as the Time ontology4 proposed as a standard for the

Semantic Web by the W3C, or the Food, Politics, Sport

and Wildlife ontologies included in the BBC collection5.

We adopt the OWL-2 language [33] to describe the

ontology. In the OWL-2 formalism, the TBox is com-

posed of classes and properties, which include data

properties, relating instances of a class to literal data

(e.g., strings, numbers), and object properties, relat-

ing instances of a class to other instances. Instances

of classes and properties are stored in the ABox.6

The relationship between the TBox and the ABox

of the ontology is sketched in Figure 4. The Figure de-

scribes four core elements:

– Culture-generic knowledge, a layer that stores the

terminology (TBox - I) required to represent all the

information related to the context, the robot, and

the grounding of the core values, ideally for all the

cultures of the world;

– Culture-specific settings, a layer that stores the as-

sertions (CS-ABox - II) required to represent cul-

tural information at national level;

– Person-specific settings, a layer that stores the as-

sertions (PS-ABox - III) required to represent the

unique cultural identity, preferences and environ-

ment of the assisted person;

– Assessment & Adaptation, an algorithm (A&A) for

the discovery of person-specific settings in light of

culture-specific settings, e.g., relying on “educated

guesses” to be confirmed through dialogue or au-

tonomous robot observation.

4 http://www.w3.org/TR/owl-time/
5 http://www.bbc.co.uk/ontologies
6 We prefer the term “instance” to the OWL-2 term “indi-

vidual” because the latter is commonly used as a synonym of
“person”, which might lead to confusion in this article.

It is easy to see that there may be concepts (e.g., the

definition of “woman”, or “day”) for which we do not

need to create different instances in the culture-specific

and person-specific layers. Such instances are ignored

by the Assessment & Adaptation algorithm.

3.1 Culture-generic Knowledge

As discussed in Section 2, the knowledge required by

our application includes:

1. context-related information, describing (1) the as-

sisted person and (2) the environment;

2. robot-related information, describing (3) the actions

that the robot can perform, (4) their parameters

and, eventually, (5) their combination into higher

level planning operators;

3. information related to the grounding of core values,

describing (6) goals, (7) social norms and (8) con-

versation subject matters.

3.1.1 Context domain

Figure 5 shows a portion of the TBox defining the

User domain. In the Figure, boxes denote classes (e.g.,

User, Human), solid lines denote hierarchical “is a” re-

lationships (e.g., User is a Human), and dashed lines

denote object properties (e.g., hasRelative). Data prop-

erties (e.g., hasAge) appear within the box of the class

they refer to. Since User is a Human it inherits from

its parent class the data properties hasName, hasAge,

hasGender, as well as the object properties hasBirthday,

hasNationality, hasLivingPlace. In addition, it may be re-

lated to other classes through specific object properties

http://www.w3.org/TR/owl-time/
http://www.bbc.co.uk/ontologies
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Fig. 6: Environment TBox (partial) - Only some classes and properties are shown.

such as hasRelative and hasFriend, which define the net-

work of people whom the robot is expected to meet or

know about and their relation with the User. Among

the other properties, User is characterized by having

a Robot (or more): in a simplified Description Logics

formalism [3] this is expressed as:

User v Human u ∃hasRobot.Robot (1)

Figure 6 shows a portion of the TBox defining the

Environment domain, i.e., a person’s house with those

furniture, appliances and objects within it, which are

of relevance for the interactions (e.g., because they are

strong indicators of a person’s cultural identity, such

as the Tatami, or tightly connected to habits and pref-

erences, such as the TeaCupSet and the Coffeemaker).
This knowledge also serves as a reference for the robot’s

perception system, allowing for linking static, semantic

information to dynamic, numerical data (not described

in this article). It is important that the descriptions of

the Environment and all other domains are not limited

to relevant or common classes and properties for one

nation and culture, but rather include concepts from

many countries and cultures. Although it is surely un-

likely that an elderly English woman sleeps on a tatami,

it is not impossible: cultural competence demands that

the caregiver is able to accept such a possibility, and

act appropriately.

3.1.2 Robot domain

The design of an ontology for the representation of

robot tasks is a complex and open issue, tackled, for ex-

ample, by a dedicated IEEE Working Group [17], and it

goes beyond the scope and goals of this article. In the

present work, we exclusively focus on the representa-

tion of those elements related to the robot’s behaviour

which depend on cultural factors (shown in Figure 7).

Let us consider the action ApproachUserAction, that

describes an atomic sensorimotor behaviour that the

robot shall perform to move from one location to an-

other, close to where the user is. The action has a num-

ber of parameters, including final location and final dis-

tance from the person. While the former is contingent

and tightly related to the task at hand, it is easy to see

that the latter might change in accordance with cultural

and personal preferences [6]. We leave the representa-

tion of the culture-independent elements required for

planning to suit the requirements of the chosen plan-

ner [19], and represent culture-dependent parameters

of actions with the class CulturalParameter: the object

property hasParameter relates actions to each cultural

parameter they have. Each cultural parameter is rep-

resented as a subclass of CulturalParameter, which has

a number of data properties to specify admissible val-

ues and semantic meanings associated with those values

(e.g., allowing for defining a certain range of Volume val-

ues as “low”). The fact that the same parameter might

have different preferred values in different situations

(e.g., someone living in a condominium might want the

robot to lower its Volume in the evening not to disturb

the neighbours) is modelled by building a collection of

subclasses below the parameter, with one class per situ-

ation of relevance (e.g., VolumeEvening). The taxonomy

of subclasses corresponding to different situations and

their initial values are defined by experts2 and revised

through interaction [27].

State-of-the-art planners [19] typically group ac-

tions into higher-level planning operators, which repre-

sent more complex robot behaviours. As an example, let

us consider the GreetOperator, which requires the robot

to perform a greeting gesture and utter an appropriate

sentence. The gesture, the sentence, and the relation be-

tween the two are all culture-dependent: we represent

each planning operator as a subclass of Operator, which
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Fig. 7: Robot TBox (partial) - Only some classes and properties are shown.

Fig. 8: Conversation Subject Matters TBox (partial) - Only some classes and properties are shown.

is linked to actions via the object property hasAction.

Variants of an operator are modelled as a collection

of subclasses of the operator (e.g., GreetBowOperator,
GreetNamasteOperator and GreetWaveOperator repre-

sent three different greetings adopted in different cul-

tures across the world). The mechanism we adopt to let

the planner know which operator is to be preferred with

a specific culture, or person, is described in Section 3.2.

3.1.3 Core values domain

Goals, i.e., objectives driving the robot’s behaviour, are

modelled as subclasses of the class Goal and expressed in

the planner formalism as a desired state that the robot

should achieve. As for actions and planning operators,

culture-independent properties of goals and norms are

not shown in the Figure. As an example, seeing the

assisted person entering the room where the robot is

might trigger the goal StartInteraction, which requires

the robot to offer its assistance to the user, while a

specific request from the user might trigger the goal

ShowTV (as it happens with Mr Miller, see Table 1).

All the goals that the robot shall be able to accept

must be described in the ontology. During interaction,

the robot uses this information to trigger or suggest

goals to be achieved depending on direct requests or

the cultural knowledge it has about the person (e.g.,

the goal AccompanySomewhere is proposed as the robot

detects that Mrs Chakrabarti is heading to the puja

room for prayer, see Table 1).
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Fig. 9: The classes Topic and User and the property

hasTopic allow for storing culture-specific and person-

specific information and relate it to other concepts.

Social norms represent additional constraints relat-

ing goals, planning operators, actions and cultural pa-

rameters with specific contexts. Concretely, they define

additional goals that must be met, specific situations

(states) that must be achieved/avoided, planning oper-

ators, actions or values of the cultural parameters which

must be chosen/avoided in a specific situation. Norms

are expressed in the planner formalism and modelled

in our ontology with the class Norm. As for planning

operators, the mechanism we adopt to let the planner

know which goals and norms are suitable for a specific

culture, or person, is described in Section 3.2.

Figure 8 shows a portion of the TBox defining

the Conversation Subject Matters domain, intended as

the collection of knowledge which is meant at keep-

ing the interest of the user and show the robot’s

attentiveness to the person’s values, preferences, be-

liefs, etc. Figure 8 focuses on the terms describing

the user’s AttitudeTowardsEating, AttitudeTowardsSports
and AttitudeTowardsHolidays, which are the ones con-

sidered during the experimental evaluation. Specific

habits and preferences are modelled with subclasses,

such as EatingBreakfast, with object properties such as

hasBeverage and hasFood relating the preference/habit

to actual objects (e.g., drinks and food). As already

stated, the TBox should represent concepts (e.g., drinks

and food) that are typical of as many cultures as pos-

sible, whichever the nationality of the user, to avoid

stereotypes. Luckily, many of such concepts (e.g., all

possible beverages) are part of existing domain ontolo-

gies that are imported in our representation.

While some preferences and attitudes can be related

to goals and social norms (e.g., a conversation about

eating habits occurring in the late afternoon leads the

robot to ask the person whether she wants assistance

for preparing dinner), most of them are only used for

“chit-chatting”, under the intuition that users might

appreciate a robot that is familiar with the very same

concepts they are familiar with.

The above principle forces the robot to tune in on

the user’s preferences concerning the robot, which does

not necessarily mean that it will end up mimicking the

assisted person. Concretely, the fact that a user is Ital-

ian, for example, does not constrain the robot to be-

have as an Italian, or as expected with an Italian; the

robot will rather act in accordance with its knowledge

of culture-specific Italian habits at the beginning, and

progressively change its behaviour as it discovers how

the person likes it to be.

3.2 Culture-specific Settings

Figure 9 shows the solution we propose to store in-

formation about how all aforementioned concepts are

related to culture-specific (national-level) and person-

specific (user) preferences and settings.

The class User represents the person assisted by

the robot, that is related to all the concepts described

in Section 3.1 by ownership (e.g., of objects and fur-

niture), preferences, habits, beliefs, etc. Instances of

User can be of two types: culture-specific instances (CS-

ABox layer in Figure 4) are used to store information

about national-level culture, while person-specific in-

stances (PS-ABox layer in Figure 4) describe real peo-

ple assisted by the robot. The class Topic is a super-

class to all classes in the context, robot and ground-

ing of core values domains (see Figures 5, 6, 7, 8).

Its data property hasQuestion contains the question(s)

the robot should use to ask the user about any in-

stance subsumed by Topic (e.g., “Is it ok if I stand

this close to you?” for English-speaking instances of

the class ApproachDistance), while the data proper-

ties hasPositiveSentence and hasNegativeSentence con-

tain sentences that the robot can use to express, respec-

tively, a positive or a negative attitude towards the in-

stance subsumed by Topic (e.g., hasPositiveSentence for

an instance of the class Kitchen might be “The kitchen is

the heart of a home!”, while hasNegativeSentence for an

instance of the class AttitudeTowardsSports, borrowed

from the actress Phyllis Diller, could be “My idea of

exercise is a good brisk sit!”). All sentences, and espe-

cially negative ones, should be checked by experts, to

ensure that they are ethically and culturally sound.

Definition 1 The likeliness7 l(a) of an instance asser-

tion a is a value in the range [0, 1], associated with the

7 We introduce the term likeliness for two reasons: (i) to
highlight the fact that it is not necessarily the result of sta-
tistical analyses, but it can also be provided by experts on
the basis of qualitative assessment; (ii) to provide a unique
name for the a posteriori probability (see Definition 1), the
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assertion a. It corresponds to a reasonable estimate, to

the best of available knowledge, of the a posteriori prob-

ability of the assertion a.

In the culture-specific ABox layer describing culture

C, the data property hasLikeliness is filled with the prob-

ability l(a) that assertion a (an instance of Topic) holds

for a person, given that we know that she belongs to

culture C. To clarify the concept, let us assume that

the chances that a British person does some sport are

quite high. This information might be represented in

the culture-specific ABox as:

User(GB GEN)

DoesSport(GB DOES SPORT)

hasTopic(GB GEN,GB DOES SPORT)

hasLikeliness(GB DOES SPORT, 0.7)

(2)

which corresponds to saying that there exists a

culture-specific instance GB GEN of the class User
(representing British culture at national level) and

an instance GB DOES SPORT of DoesSport v
AttitudeTowardsSports, that the second is a filler of

the former for the property hasTopic (which allows

the robot to use the sentences in GB DOES SPORT,

presumably in English), and that the data property

hasLikeliness of GB DOES SPORT is set to 0.7.

Definition 2 In the culture-specific layer, we define

the likeliness l(a) as depending only on the national

culture C and hence ideally corresponding to the con-

ditional probability of assertion a given the evidence of

C : p(a|C).

Beside the mathematical definition, the likeliness

has a practical meaning which might change for dif-

ferent classes. With no loss in generality, we can de-

fine a hierarchy of object properties subsumed by

hasTopic, highlighting the different meanings in which

the user/instance relation is intended. For example,

User might be related to instances of classes in the En-

vironment domain by the property hasOwnership, to in-

stances of classes in the Robot domain by hasPreference,

to instances of classes in the Conversation Subject Mat-

ters domain by hasHabit, hasBelief, hasAttitude, which

are all derived from hasTopic.

The use of a comprehensive culture-generic TBox

and a culture-specific ABox describing the relation be-

tween a given culture and all the elements defined in the

TBox allows for avoiding stereotyped representations of

cultures. It is a well know fact that “biscotti (cookies)

conditional probability (see Definition 2) and the evidence
(see Definition 3), which our algorithms for the Assessment
& Adaptation (see Section 3.4) use concurrently.

are commonly eaten for breakfast in Italy”8, but, al-

though this is probably true for many Italian men and

women, it is not valid for all of them. While the stereo-

type simply assumes that what is valid for most is valid

for all, our culture-specific layer specifies the likeliness

of many different food to be eaten for breakfast by an

Italian person. This means that not only the culture-

specific layer is truly representative of all the facets of

a culture, but also that it allows individuals belonging

to a culture to stray away from its most likely options

as far and as many times as they want.

Figure 10 shows the portion of the culture-specific

ABox of GB GEN related to breakfast habits and pref-

erences9. In the Figure, boxes denote instances of

classes (e.g., GB GEN, GB EATING BREAKFAST), yel-

low dashed lines denote assertions of object properties

(e.g., GB BISCUITS EATING BREAKFAST is a filler of

GB EATING BREAKFAST for the property hasFood).

Data properties (e.g., hasQuestion) appear within the

box of the instance they refer to, while hasLikeliness val-

ues appear on the top-left corner of the instance they

refer to and are denoted with literals instead of num-

bers, with 0.05 mapped to Very Low (VL), 0.1 to Low

(L), 0.2 to Medium (M), 0.4 to High (H), 0.7 to Very

High (VH). The reason for this choice is practical: while

it is very difficult to obtain precise likeliness values from

statistical analyses, it is much easier to infer approxi-

mate, qualitative values from the vast (but often inho-

mogeneous) corpus of information in the literature and

on the web (see Section 4). A discrete representation of

likeliness values makes it easier to merge approximate

and precise values. Lastly, blue solid lines are used to

remind the reader of existing hierarchical relationships

between the classes that the instances belong to (e.g.

in the TBox, GreenTea is a Tea).

Figure 11 shows the portion of the culture-specific

ABox of GB GEN related to robot goals, actions and

cultural parameters. Likeliness values are used to spec-

ify how appropriate each instance is for the British cul-

ture, and guide the decisions of the planner which ulti-

mately determines the robot’s behaviour. As an exam-

ple, if the situation calls for a greeting, the robot will

execute the operator GB GREET WAVE OPERATOR,

since it has a higher likeliness than all other available

greeting operators. Similarly, whenever executing the

action GB APPROACH USER ACTION it will set its pa-

rameter approach distance to the range of values speci-

fied by GB LONG APPROACH DISTANCE, which is the

most likely setting among available ones. Lastly, the

goal GB WEATHER FORECAST, having high likeliness

8 https://en.wikipedia.org/wiki/Breakfast#Italy
9 As usual, only object and data properties that are relevant

for the discussion are shown.

https://en.wikipedia.org/wiki/Breakfast#Italy


12 B. Bruno, C. Recchiuto et al.

Fig. 10: ABox describing British culture-specific (GB prefix) breakfast habits.

Fig. 11: ABox describing British culture-specific (GB prefix) robot goals, actions and cultural parameters.

for the British culture, is likely to be pro-actively sug-

gested by the robot as a service it can provide.

Instances of classes are created so that each in-

stance is filler for no more than one object prop-

erty derived from hasTopic, and its name is guaran-

teed to be unique by including the name of the in-

stance itself and the one whose property is filled (as

in GB BISCUITS EATING BREAKFAST). This means

that, by considering all instances of Topic and property

assertions derived from hasTopic, the culture-specific

ABox layer is a tree rooted in the corresponding in-

stance of User (e.g., GB GEN in Figures 10 and 11).

This constraint is key for storing into instances unam-

biguous contextual information about their predeces-

sors in the tree, e.g. to distinguish between “biscuits

that the person may or may not eat for breakfast”

(i.e., the instance GB BISCUITS EATING BREAKFAST)

and “biscuits that the person may or may not

have with tea in the afternoon” (i.e., the instance

GB BISCUITS EATING AFTERNOONTEA, not shown

in the Figure), and even “biscuits that the person may

or may not need to buy”. This constraint is exploited

by the Assessment & Adaptation algorithm (see Sec-

tion 3.4) to ensure that the robot does not give wrong

interpretations to the person’s statements.

The sentences stored in the data prop-

erties hasQuestion, hasPositiveSentence, and

hasNegativeSentence ensure that the robot can

discuss the instance they refer to with the user.
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Fig. 12: ABox describing British culture-specific (GB prefix) and person-specific (Dorothy Smith) knowledge.

We adopt two mechanisms to fill the data prop-

erties above. A number of complete sentences (such

as “Having a healthy breakfast is very impor-

tant: feeding the body, nourishing the soul!” in the

instance GB EATING BREAKFAST) are encoded at

setup time by the designer and validated by ex-

perts2. As videogame designers know, dramatization

is key for improving the user’s experience, and it

can hardly be achieved through automatic compo-

sition of sentences [4, 30]. However, manually en-

coding all verbal utterances is very time consuming.

As a backup solution, we rely on simple automated

composition mechanisms, which exploit the hierarchi-

cal structure of the ontology and the unique con-

nections between instances defined by the property

hasTopic. As an example, in Figure 10 the instance

GB EATING BREAKFAST encodes the hasQuestion “Do

you have $hasName for breakfast?”, which is automat-

ically copied and filled in all the instances that are

filler of GB EATING BREAKFAST along the property

hasTopic (e.g., GB GREENTEA EATING BREAKFAST
and GB NATTO EATING BREAKFAST), by using the

value of the corresponding data property hasName.

3.3 Person-specific Settings

The core element of the person-specific ABox

layer is the instance of User which corresponds

to the real person assisted by the robot, e.g.,

User(DOROTHY SMITH). All instances of Topic and its

subclasses connected to User(DOROTHY SMITH) be-

long to the person-specific ABox layer and uniquely re-

fer to that specific user.

Definition 3 In the person-specific layer, the likeliness

l(a) corresponds to the evidence of assertion a collected

through interaction with the user.

Concretely, evidence about Mrs. Smith’s habits con-

cerning sports may be represented as:

User(DOROTHY SMITH)

hasSpecific(GB GEN,DOROTHY SMITH)

Does sports(DS DOES SPORT)

hasSpecific(GB DOES SPORT,DS DOES SPORT)

hasLikeliness(DS DOES SPORT, 0)

(3)

Notice that, in the person-specific ABox layer, in-

stances of Topic do not need to be directly linked to the

user through property instances of hasTopic, as they

are simply fillers of the corresponding instances in the

culture-specific ABox layer for the hasSpecific property.

Figure 12 shows an example of an ABox including

both the culture-specific layer (yellow boxes) and the

person-specific layer (orange boxes). In the Figure, con-

nections between instances in the two layers (through

the hasSpecific property) are represented by overlapping

the boxes (i.e., without a corresponding arrow).

Instances are inserted in the person-specific layer at

two different times: in the setup phase, engineers, ex-

perts, the assisted person, caregivers and relatives, add

knowledge that is a priori available about the user (e.g.,

which rooms are part of her house and how they are con-

nected to each other), using ad-hoc prepared tools and
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Fig. 13: The offline initialization and online likeliness-

driven assessment phases, which, respectively, create

and update the person-specific ABox layer. Notice that

only one culture-specific layer is used.

tutorials aimed at facilitating the insertion and valida-

tion of knowledge; at run-time, the robot autonomously

acquires knowledge either from its own perceptual sys-

tem or from interactions with the user.

Notice that property instances of hasTopic are

only present in the culture-specific ABox layer (yel-

low arrows), whereas other property instances are only

present in the person-specific ABox layer (red arrows).

For example, in Figure 12 property instances of hasNext
are only specified at the person-specific level (because

they have little to no meaning at culture-specific level),

to connect instances of Room with each other to repre-

sent the topology of the specific house of the user. As a

consequence, the system can talk about rooms, but not

about their topological relationships.

As Figure 12 shows, at the end of the setup phase

the ontology lacks person-specific knowledge for many

instances. In all such cases, the robot must assess at

run-time person-specific knowledge (and adapt to it)

by using generic knowledge as a starting point.

Finally, notice that the black likeliness values in Fig-

ure 12 refer to the culture-specific layer, whereas the red

values refer to the person-specific layer: English people

might have a Medium probability of keeping a vase in

the cupboard, but we know for sure that Dorothy Smith

has one, since someone (Mrs. Smith herself, or a rela-

tive) added this piece of information during setup.

3.4 Likeliness-driven Assessment

The goal of the assessment and adaptation phase is to

learn the person-specific likeliness values (i.e., evidence)

for all instances of relevance for the interactions. Notice

that in some cases the likeliness in the person-specific

layer of the ABox will be 1 or 0, as the user, for ex-

ample, either has a TV in the bedroom or not, while

instances related to preferences or habits might lead to

a more varied output. Moreover, different methods for

the assessment of person-specific settings might have

different reliability (e.g., directly asking the user guar-

antees a more reliable assessment than autonomously

inferring information from sensor data) and such differ-

ences can be embedded in the person-specific likeliness

values and the way they are handled.

In our work, we assume that the robot acquires

person-specific knowledge by directly asking the user,

using the data property hasQuestion associated to all

instances of Topic. The simplest assessment procedure,

trivially, is to go through the instances one by one, with-

out using culture-specific information, which might lead

the robot to ask Mrs. Smith whether she likes Miso soup

(a Japanese dish) or Lasagne for breakfast.

We propose an algorithm, sketched in Figure 13

which consists of an offline initialization phase and an

online likeliness-driven assessment phase.

The initialization phase is composed of two steps. In

the first step, the person-specific ABox AU is populated

with the knowledge that is available at setup by experts,

relatives, etc. At the end of this step, as shown in Figure

12, some instances of the culture-specific ABox AC are

exactly replicated in AU, others have a corresponding

instance in AU, with different likeliness values and other

data properties, and others do not have a corresponding

instance in AU. In the second step, the assessment tree

TC is built from the culture-specific ABox AC to drive

the discovery of missing person-specific knowledge10.

Algorithm 1 details the second step. The routine

init(TC) initializes the assessment tree with the culture-

specific instance of User as root and returns it in r

(line 3). Then all the instances directly connected to

r through a property derived from hasTopic are added

to the tree by the function updateTopicsTree(...), one

level below root, and are returned in the set L (line 4).

In subsequent iterations (lines 5 - 11), each instance a∗

in L is considered, and all instances that are fillers of

a∗ for a property derived from hasTopic are added to

the tree, at the level below L until L is empty. If two

instances l1, l2 ∈ L belong to classes C1 and C2 that

have a child/parent relationship C2 v C1 in the TBox,

then l1 is directly linked to a∗ in the tree, whereas l2

10 TC is built from AC using OWL-2 APIs. In principle, build-
ing TC as a separate structure is not required, since the tree–
like structure of AC can be directly explored using OWL-2
APIs. From this perspective, Algorithm 1 shall be interpreted
as providing information about how AC is explored by Algo-
rithms 2 and 3.
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Fig. 14: The assessment tree corresponding to breakfast habits - British culture-specific (GB prefix).

Algorithm 1 Initialization

Require: AC

Ensure: TC
1: TC ← ∅
2: L← ∅
3: r ← init(TC)

4: L← updateTopicsTree(r,TC,AC)

5: while L 6= ∅ do

6: Lnext ← ∅
7: for all a∗ ∈ L do

8: Lnext ← Lnext∪
updateTopicsTree(a∗,TC,AC)

9: end for

10: L← Lnext

11: end while

is linked to l1 and not to a∗. Concretely, updateTopic-

sTree(...) ensures that the instance that belongs to the

superclass is the closest to the root in the tree.

At the end of Algorithm 1, there is a structure,

the assessment tree, which stores the knowledge in the

culture-specific layer in the form of a tree rooted in

the culture-specific instance of User and uses the ob-

ject property hasTopic, and the hierarchical relation-

ships among instances, to define branches. As discussed

in Section 3.2, the tree-like structure is key to ensure

that each instance has a unique context. As an exam-

ple, Figure 14 shows the assessment tree corresponding

to the culture-specific ABox of Figure 10.

The online likeliness-driven assessment phase fol-

lows the steps sketched in Algorithm 2 to identify the

instances to discuss with the user, and update the

person-specific ABox accordingly.

The algorithm first selects the instance to assess.

The function findMax(...) in line 1 selects the instance

a∗ ∈ AC with the highest likeliness among those which

appear in TC and for which there is no correspond-

Algorithm 2 Assessment

Require: AC, TC, AU

Ensure: AU

1: a∗ ← findMax(AU,AC, TC)

2: f∗ ← getParent(TC,a
∗)

3: while f∗ /∈ AU do

4: a∗ ← f∗

5: f∗ ← getParent(TC,a
∗)

6: end while

7: l(a∗)← assess(a∗)

8: createSpecificInstance(l(a∗),a∗,AU)

9: update(l(a∗),a∗,TC)

ing instance in AU (i.e., for which we do not know the

user’s stance yet). If more than one assertion have the

same highest likeliness, one of them is randomly se-

lected. Then, the algorithm moves along the branch

connecting a∗ to the root in the assessment tree TC
(lines 2-6), until it finds an instance for which the par-

ent already exists in AU (in the worst case, moving

up to the root, which by definition has an instance

in AU). To clarify the concept, let us assume that a∗

is GB GREENTEA EATING BREAKFAST, but the robot

does not yet know whether the user, Mrs. Smith, drinks

tea at breakfast, let alone whether she has breakfast at

all. The algorithm traces the missing information back

towards the root, until it finds the first one to assess

(e.g., whether Mrs. Smith has breakfast). This way of

proceeding allows for investigating if Mrs. Smith has

breakfast (a node closer to the root in the assessment

tree) before discussing her breakfast preferences (nodes

farther from the root). Moreover, it allows for pruning

the branches departing from GB EATING BREAKFAST
in case it has been assessed that Mrs Smith does not

have breakfast (so that they will not be considered in

subsequent iterations of the algorithm). Once the in-

stance a∗ to assess has been identified, the routine as-
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sess() (line 7) allows for acquiring evidence about it

from the user. In the current implementation of the

algorithm, the assessment consists in verbally asking

the corresponding question to the user (or one among

the questions). Then, a new instance in the person-

specific ABox is created, to store the newly acquired

information (line 8), and TC is updated (line 9), e.g.,

eventually pruning portions of it. Sentences stored in

the data property hasPositiveSentence are used by the

robot to talk about things that it already knows about

the user, in order to provide context to its questions,

keep the interest of the person and show attentive-

ness to her values, preferences, beliefs, etc. For in-

stance, if the robot knows that Mrs. Smith usually

has breakfast but it does not know if she has tea for

breakfast, the sequence of sentences/questions might be

the following: hasPositiveSentence=“Having a healthy

breakfast is important”; hasQuestion=“Do you usually

have a cup of tea for breakfast?” (since the instance

DS EATING BREAKFAST exists in the ABox, whereas

the instance DS TEA EATING BREAKFAST does not).

3.5 Bayesian Adaptation

The assessment and adaptation method discussed in the

previous Section has two main limitations:

– it assumes the national culture of the user to be one

and a priori fixed;

– it assumes the likeliness of instances to be uncorre-

lated from each other.

To better clarify the second issue, let us again con-
sider the breakfast habits of different cultures across

the world. In many cases, ham and cheese go together:

either they are both common options for breakfast, as

it happens in Germany, or they are both uncommon,

as it happens in Italy. The likeliness of one, thus, can

be correlated to the likeliness of the other. Correlations

can be found even between instances very far from each

other; for example, one might find that, for a national

culture, ham and cheese are common for breakfast and

Pentecost Monday is celebrated as a national holiday:

if this were true, updating the likeliness of one instance

after having acquired evidence about the other might

speed up the assessment and adaptation process.

Modelling and managing such correlations requires

probabilistic reasoning over the likeliness values, which

is a capability that standard ontologies do not have.

To this purpose, beside approaches aiming at extend-

ing the ontology itself with mechanisms for dealing with

probability, such as PR-OWL [7], a large corpus of lit-

erature relies on complementing a standard ontology

Algorithm 3 Initialization (Bayesian Adaptation)

Require: T = {TC}, C = 1 . . . N

Ensure: B

1: init(B, T1)

2: for all a∗ ∈ B do

3: L(a∗)← getLikeliness(T , a∗)

4: CPT (a∗)← computeCPT(B, L(a∗))

5: update(CPT (a∗), a∗, B)

6: end for

with a Bayesian Network which takes care of the prob-

abilistic reasoning [1, 10].

We follow the latter philosophy, and associate to the

ontology a Bayesian Network11 built starting from the

assessment trees of all cultures of relevance. As an ex-

ample, the Bayesian Network in Figure 15 is built start-

ing from three assessment trees with identical structure

as the one shown in Figure 14, for the Italian, German,

and Japanese cultures.

Algorithm 3 shows how the Bayesian Network B is

built starting from a set of N assessment trees T =

{TC}, with C = 1 . . . N . First, the nodes and links of

B are built to mirror the structure of one tree in the

set T , say T1 (all TC have the same structure), but the

root node of B has a link towards all other nodes (line

1). Then, for each node a∗ in B, the N likeliness values

L(a∗) of the assessment trees TC (line 3) are used to

build the corresponding Conditional Probability Table

(CPT) (line 4) and update the Bayesian Network with

the CPT (line 5).

The differences between the Bayesian Network and

the assessment trees deserve a detailed analysis.

Firstly, the network does not correspond to the

assessment tree of one specific culture (e.g., German

or Italian) but it rather stores information about all

the cultures taken into account. As an example, the

Bayesian Network in Figure 15 integrates culture-

specific knowledge about the Italian, German, and

Japanese cultures (notice the missing national prefix).

As a consequence, the root node, unlike all other

nodes, is not binary, as it considers all the cultures

taken into account (e.g., Italian, German, Japanese).

This fact allows for dealing with the first issue listed

above: the a priori probability of the root node (i.e., of

the user’s culture) can be initialized as uniformly dis-

tributed over all possible background cultures, or on

the basis of available knowledge about the person. For

example the a priori probability of the root node for an

Italian woman living in Alto-Adige, a German-speaking

11 In the current implementation, we use the API to cre-
ate belief networks provided by Netica. See: https://www.

norsys.com/netica.html.

https://www.norsys.com/netica.html
https://www.norsys.com/netica.html
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Fig. 15: The Bayesian Network corresponding to breakfast habits - Italian, German, Japanese. Yellow filling denotes

culture-specific likeliness values imported from the culture-specific ABox layers.

province in the north of Italy with strong ties with the

Austrian culture, might be set as: P(GEN = Italian) =

0.7, P(GEN = German) = 0.3, P(GEN = Japanese) = 0.

Secondly, in the Bayesian Network the node GEN is

predecessor of all the nodes of the network. This directly

comes from the definition of culture-specific likeliness

(see Definition 2), which relies on probabilities directly

conditioned by the user’s culture. The Bayesian Net-

work makes this dependency explicit.

Lastly, each node of the Bayesian Network is associ-

ated with a CPT (two of them are shown in Figure 15)

that represents the probability of the node conditioned

by all its parents in the network.

Filling the CPT, the task of function com-

puteCPT(...) in line 4 of Algorithm 3 is not trivial.

Consider the EATING BREAKFAST CPT

of Figure 15, which contains the values for

P (EATING BREAKFAST = T|GEN = Italian),

P (EATING BREAKFAST = T|GEN = German) and

P (EATING BREAKFAST = T|GEN = Japanese): these

values corresponds to the N = 3 likeliness values that

are stored in the corresponding culture-specific ABox

layers (VH, VH, VH in the Figure). The missing entries

of the CPT are straightforwardly computed on the

basis of the available ones.

However, in the case of nodes (e.g.,

ESPRESSO EATING BREAKFAST) that are con-

ditioned both by the root node GEN and

by their immediate predecessor in TC (e.g.,

COFFEE EATING BREAKFAST), the available likeli-

ness values are not sufficient to define all the entries of

the table. The rationale that we propose to address this

problem (and that we have adopted in the experiments

described in Section 4) is as follows. For the CPT

entries which assume the immediate predecessor in

TC to be TRUE, the CPT entry is set equal to the

culture-specific likeliness, i.e., we assume that the

immediate predecessor in TC has no impact on the

probability of the node (see the yellow cells in the CPT

of node ESPRESSO EATING BREAKFAST). For the

CPT entries which assume the immediate predecessor

to be FALSE (see rows 2, 4, and 6 in the CPT of node

ESPRESSO EATING BREAKFAST), we propose two

options: (i) with pruning, i.e., the CPT entry is set to 0

(which means, for example, that we deem it impossible

for a person who does not drink coffee for breakfast to

have an espresso for breakfast); (ii) without pruning,

i.e., the CPT entry is set equal to the culture-specific

likeliness, i.e., we again assume that the immediate

predecessor has no impact on the probability of the

node. As the experiments show, the latter option is

better suited for assessment methods relying on direct

interaction with the user (thus subject to the logical

inconsistencies typical of natural dialogues), while the

former is better suited for assessment methods which

rely on sensory data.

Figure 16 shows how the initialization and assess-

ment phases become when Bayesian adaptation is en-

abled. The initialization phase is devoted to the cre-

ation and filling of the Bayesian Network, as outlined

in Algorithm 3. The online Bayesian assessment phase

follows the same steps sketched in Algorithm 2 to assess

the personal traits of the user and update the person-

specific ABox accordingly. More precisely, once a new
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Fig. 16: The offline initialization and online likeliness-driven assessment phases, which, respectively, create and

update the person-specific ABox layer, in the case Bayesian adaptation is enabled.

evidence is acquired (line 7), it is incorporated in the

Bayesian Network (line 8), which results in an update

of the posterior probabilities of all other still-unknown

nodes, including the root. By copying the new poste-

rior probabilities in the assessment tree, the update ul-

timately impacts the order in which instances in the

ABox are assessed (line 1).

This feature of Bayesian Networks allows for tack-

ling the second issue discussed at the beginning of

the Section. A-priori known correlations among in-

stances can be modelled by adding links between

nodes and defining CPTs accordingly. In the case of

ham, cheese and Pentecost Monday, the correlation

is due to the fact that the nodes have a common

cause (i.e., they are all valid for a given “national

culture of the user” GEN) rather than a causal rela-

tionship among them. This case is straightforwardly

mapped onto the Bayesian Network, where the prob-

abilities of nodes with a common predecessor are de-

pendent given that their predecessor is not completely

known (i.e., P(HAM EATING...|PENTECOST...) 6=
P(HAM EATING...))12. This situation is very likely to

hold in our application, as persons very rarely com-

pletely match their background culture (think of the

Italian woman living close to Austria, whose culture

might be a personal mixture of the Italian and German

cultures and for which we might set a non-null probabil-

ity both for P(GEN = Italian) and P(GEN = German)).

12 On the opposite, two nodes with a common predeces-
sor are conditionally independent given that their predeces-
sor is known, i.e., P(HAM EATING...|PENTECOST...,GEN) =
P(HAM EATING...|GEN).

4 Experimental Evaluation

Hypothesis Given a user self-declared as belonging to

nationality G and given national-level, culture-specific

knowledge about:

– nationality G;

– a nationality A geographically close to G;

– a nationality B geographically far from G;

then, the use of the representation proposed in the pre-

vious Sections allows for speeding-up the acquisition

of person-specific knowledge starting from national-

level, culture-specific knowledge. Concretely, we pos-

tulate that the proposed representation and methods

allow for increasing the number of correct “educated
guesses” made by the robot, and therefore to identify all

instances which hold true for the person with a smaller

amount of questions asked.

In particular, we postulate that:

H1 asking questions using the likeliness-driven assess-

ment algorithm described in Section 3.4 allows for

acquiring person-specific information faster than us-

ing a random assessment algorithm, which asks

questions in a random order;

H2 asking questions using the likeliness-driven assess-

ment algorithm with Bayesian adaptation described

in Section 3.5 allows for a further speed-up with re-

spect to the likeliness-driven assessment algorithm;

H3 when enabling the Bayesian adaptation, the assess-

ment algorithm is able to converge towards the na-

tionality G self-declared by the user, regardless of

how it has been initialized.

In the preliminary evaluation reported here we con-

sider two situations:
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– the user nationality G is Italian, and we set A as

German and B as Japanese;

– the user nationality G is German, and we set A as

Italian and B as Japanese.

The Japanese national-level cultural knowledge is

considered in the experiments to evaluate hypothesis

H3, to allow for assessing the algorithm’s performance

when initialized with national-level cultural informa-

tion possibly very far from the user’s stances.

4.1 Materials and Methods

The validation of the proposed approach has been

performed by choosing a subset of conversation

subject matters (as described in Section 3.1) and

formulating a list of questions related to these se-

lected topics. In the specific case, five conversation

areas have been selected: AttitudeTowardsSport,
AttitudeTowardsHolidays, AttitudeTowardsOtherPeople
and AttitudeTowardsEating, with a specific focus on the

sub-topic EatingBreakfast, for a total of 122 questions.

For each question, possible answers are yes, rather yes

than no, rather no than yes and no.

Questions have been prepared by the authors, after

performing a qualitative and quantitative analysis of

a high number of documents available online, describ-

ing the typical habits and preferences of Italian, Ger-

man and Japanese persons related to the conversation

subject matters mentioned above. Some of the ques-

tions capture habits of a specific culture (e.g., attitude

towards specific national holidays, or towards typical

breakfast food), and for all questions the probability of

getting a positive answer from an Italian, German or

Japanese user (the culture-specific likeliness described

in Section 3) has been estimated. For example, an Ital-

ian user has a low probability of drinking green tea

during breakfast (and thus the corresponding instance

in the culture-specific ABox has a low likeliness), while

he has a high probability of shaking hands while intro-

ducing himself (high likeliness).

The list of questions has been made available online

and shared mainly by means of social networks13; the

respondent is requested to provide information about

his city of residence, nationality, age and gender, while

remaining anonymous. At the end of the experiments,

we could collect the answers of 124 Italian and 35 Ger-

man (some of them living in Italy) respondents.

Collected answers have been analysed offline, with

the following methodology. For each respondent, we:

13 German version: https://tinyurl.com/ybvr4xeo;
Italian version: https://tinyurl.com/y8b3zuub.

1. initialize all variants of the Assessment & Adapta-

tion algorithms (i.e., random assessment, likeliness-

driven assessment, likeliness-driven assessment with

Bayesian adaptation), in accordance with the hy-

pothesis under evaluation;

2. for each variant, identify the instance a∗ to be asked

(i.e., the “educated guess” that the algorithm con-

siders likely to be true for the user, given its current

knowledge about him/her);

3. for each variant, retrieve the respondents’ answer

to a∗, update the algorithm and go back to step 2

until all instances for which the respondent gave a

positive answer have been found.

In all cases, a question cannot be asked more than

once. Since a core feature of a culturally competent per-

sonal robot is the ability to quickly identify and adapt

to the preferences, habits and needs of its user, an al-

gorithm able to assess them in a short time (i.e., able

to obtain a greater number of positive answers in the

same amount of time) is to be preferred. Thus, consid-

ering the answers yes and rather yes than no as positive

answers, the number of questions required by an algo-

rithm to obtain 50%, 60%, 70%, 80%, 90% and 100%

of positive answers have been considered as the bench-

marking parameters. Moreover, since Algorithm 2 (with

and without Bayesian adaptation) chooses randomly

between assertions a with the same likeliness, each set

of user’s answer has been considered for 20 runs and

the results averaged.

The random assessment algorithm requires no ini-

tialization phase and randomly selects the question to

pose among all available questions (i.e., all the ques-

tions that have not been asked already).

As described in Section 3.4, the likeliness-driven as-

sessment algorithm requires the setup of the selected

culture-specific ABox layer and the initialization proce-

dure described in Algorithm 1 to create the assessment

tree. Two variants of the algorithm have been consid-

ered: in the variant without pruning a negative answer

to a parent question in the assessment tree has no im-

pact on the children questions; in the variant with prun-

ing a negative answer to a parent question prunes the

underlying branches of the assessment tree (i.e., if the

user answers no or rather no than yes to the question

“Do you usually have breakfast?”, all questions related

to breakfast habits and preferences will be ignored).

The likeliness-driven assessment with Bayesian

adaptation requires the setup of the culture-specific

ABox layer for all national cultures of relevance and

the execution of the initialization procedure described

in Section 3.5 to create the Bayesian Network and the

associated assessment tree. In our experiments, we con-

sidered the national-level cultures of Italy, Germany

https://tinyurl.com/ybvr4xeo
https://tinyurl.com/y8b3zuub
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(a) Bayesian Adaptation

(b) Bayesian Adaptation with pruning

Fig. 17: Conditional Probability Tables related to

the node COFFEE EATING BREAKFAST: (a) in the

Bayesian adaptation without pruning variant the node

is connected only to the GEN node, (b) while in

the Bayesian adaptation with pruning variant the

node is connected also to its immediate predecessor

EATING BREAKFAST.

and Japan. The Bayesian Network is initialized by set-

ting the a priori probability of the node GEN as dis-

tributed over the three available national cultures (e.g.,

P (Italian) = 0.8, P (German) = 0.1, P (Japanese) = 0.1),

and questions are selected with the rationale of Algo-

rithm 2, as discussed in Section 3.5. The answers yes

and rather yes than no are interpreted as yes findings

and deterministically set the evidence of assertion a∗ as

P (a∗) = 1 (and, symmetrically, no and rather no than

yes are interpreted as no findings and set the evidence

of a∗ as P (a∗) = 0). Again, two variants have been

considered: in the variant without pruning all nodes are

connected only to the GEN node and a negative answer

to a parent question in the assessment tree has no im-

pact onto the children questions (see the Conditional

Probability Table shown in Figure 17a); in the variant

with pruning all nodes are connected both to the GEN
node and to their immediate predecessor in the assess-

ment tree and a negative answer to a parent question

in the assessment tree prunes the underlying branches

of the assessment tree (see the Conditional Probability

Table shown in Figure 17b).
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Fig. 18: Comparison of the performance of the

Likeliness-driven without pruning, Likeliness-driven

with pruning, Bayesian adaptation without pruning and

Bayesian adaptation with pruning assessment algo-

rithms, using the Random assessment algorithm as a

reference. Shorter columns denote better performance.

Beside this deterministic interpretation of the col-

lected evidence, we have also tested a probabilistic vari-

ant of the likeliness-driven assessment with Bayesian

adaptation, for which yes produces an evidence P (a∗) =

0.8, rather yes than no produces P (a∗) = 0.6, rather

no than yes produces P (a∗) = 0.4, and no produces

P (a∗) = 0.2. In this case pruning never happens, but

the user’s answers still have a direct influence on the

a posteriori probability of the immediate successors of

a∗ (e.g., if the user answers rather yes than no, rather

no than yes or no to the question “Do you usually have

breakfast?”, then all probabilities related to having cof-

fee during breakfast will be accordingly reduced).

4.2 Results and Discussion

Figure 18 compares the performance of the likeliness-

driven without pruning, likeliness-driven with pruning,

Bayesian adaptation without pruning and Bayesian

adaptation with pruning assessment algorithms, using

the random assessment algorithm as a reference, to test

hypotheses H1 and H2. The two graphs refer, respec-
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tively, to the performance with Italian subjects (a) and

with German subjects (b), and they are averaged over

20 runs and over the total number of subjects per group.

In the graphs, the groups of columns denote the ratio

between the number of questions required to reach a

certain percentage of positive answers (50%, 60%, 70%,

80%, 90% and 100%, from left to right) by each pro-

posed algorithm, with respect to the random assess-

ment algorithm. As an example, the leftmost yellow

column states that the Bayesian adaptation with prun-

ing assessment algorithm discovers 50% of all positive

answers with less than half of the questions required by

the random assessment algorithm, while the rightmost

yellow column states that the same algorithm needs ap-

proximately 60% of the number of question required by

the random assessment algorithm to discover 100% of

the positive answers.

As the Figure shows, the likeliness-driven assess-

ment algorithm seems to be consistently better than

the random one (thus supporting hypothesis H1), and

the Bayesian adaptation assessment algorithm seems to

be consistently better than the the likeliness-driven one

(thus supporting hypothesis H2).

Further considerations arise.

– Independently from the assessment algorithm

adopted, the variant with pruning performs better

than the variant without pruning, since all questions

that are children of a question with a negative an-

swer will be not asked. However, since people are

often inconsistent in their conversations, these al-

gorithms do not guarantee to obtain the totality of

positive answers: in particular, only for 35% of Ital-

ian subjects and 26% of German subjects to prune

branches does not result in a loss of some positive

answers. The two rightmost columns of the variants

with pruning refer to these subjects only. However,

for most of the tests (94% of Italian and German

subjects) the variants with pruning discover at least

80% of the positive answers.

– The variants of the Bayesian adaptation assessment

algorithm perform slightly better than the corre-

sponding ones of the likeliness-driven assessment

algorithm. Indeed, even if the Bayesian Network is

initialized with a priori probabilities corresponding

to the user nationality, enabling the Bayesian adap-

tation allows for taking into account the fact that

the user may give answers that better match with

a different nationality. The advantages brought by

this rationale are especially evident with the Ger-

man subjects, since many of them have lived for a

long time in Italy and this fact has an influence on

their answers.

The effects of initializing the GEN node with differ-

ent probability distributions over the three available na-

tional cultures (addressed by hypothesis H3) are shown

in Figure 19. Specifically, the a priori probabilities have

been initialized

– with a uniform distribution: P(GEN = Italian)=

P(GEN = German)=P(GEN = Japanese) (no knowl-

edge about user nationality in the Figure);

– by setting the maximum value corresponding to the

nationality G declared by the subject in the ques-

tionnaire, i.e., for a person that self-declares to be

Italian P(GEN = Italian) = 0.8 (nationality declared

by the user in the Figure);

– by setting the maximum value corresponding to a

different nationality A which is geographically close

to the one declared by the user, i.e., for a person that

self-declares to be Italian P(GEN = German) = 0.8
(user nationality: case A in the Figure);

– by setting the maximum value corresponding to a

different nationality B which is geographically dis-

tant to the one declared by the user, i.e., for a

person that self-declares to be Italian, or German

P(GEN = Japanese) = 0.8 (user nationality: case B

in the Figure).

Results show that in all cases there is a clear im-

provement with respect to the random assessment al-

gorithm, even when the Bayesian Network is initialized

with a nationality (and therefore, likeliness values) very

far from the one declared by the subject (case B). More-

over, the posterior probability of the GEN node (which

captures the user’s culture), in more than 85% of the

tests converges to the nationality declared by the user

after sufficient evidence has been collected (thus pro-
viding preliminary support to hypothesis H3).

Specifically, for the Italian subjects, initializing the

GEN node with the correct nationality of the subjects

guarantees better results (see Figure 19a), while for the

German subjects differences in performances between

the algorithms are less relevant (see Figure 19b). To

assess whether this is due to the mixed cultural back-

ground of the German subjects described before (i.e.

many German subjects are living in Italy), Figure 19c

only considers the German subjects who live in Italy.

In accordance with our hypothesis, in this case the ini-

tialization of the Bayesian Network with the Italian na-

tionality (case A) generally gives better results, as their

habits and preferences tend to be more coherent with

the culture-specific Italian ABox (e.g., they tend not to

have ham and cheese for breakfast).

Figure 20 compares the performance of the Bayesian

adaptation without pruning, Bayesian adaptation with

pruning and Bayesian adaptation with probabilistic evi-

dence assessment algorithms. In the first two cases, the
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Fig. 19: Comparison of the performance of the Bayesian

adaptation assessment algorithm, for different initial-

ization strategies of the a priori probability of the node

GEN, using the Random assessment algorithm as a ref-

erence. Shorter columns denote better performance.

evidence is deterministic (i.e., 0 for no, rather no than

yes and 1 for yes, rather yes than no), while in the lat-

ter case it corresponds to 0.8, 0.6, 0.4 or 0.2, moving

from yes to no.

The analysis of the results show that, in general, the

Bayesian adaptation with probabilistic evidence assess-

ment algorithm performs better than the deterministic

variants. Indeed, this variant achieves results that are

comparable with those of the variant with pruning, but

with no loss of positive answers (i.e., it always finds

all positive answers). More specifically, for the Italian

subjects, the Bayesian adaptation with probabilistic ev-
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Fig. 20: Comparison of the performance of the Bayesian

adaptation without pruning, Bayesian adaptation with

pruning and Bayesian adaptation with probabilistic evi-

dence assessment algorithms, using the Random assess-

ment algorithm as a reference. Shorter columns denote

better performance.

idence assessment algorithm allows for finding 80% of

all positive answers with, on average, 4.99 questions less

than the Bayesian adaptation without pruning variant,

and 1.13 questions less than the variant with pruning.

Finally, the effects of applying the pro-

posed algorithms on the different types of

subject matters composing the list of ques-

tions (AttitudeTowardsEating, EatingBreakfast,
AttitudeTowardsSport, AttitudeTowardsHolidays and

AttitudeTowardsOtherPeople) have been investigated.

As Figure 21 shows, while for some subject matters

there is a great difference between the performance of

the proposed assessment algorithms and the random

assessment one, for others the difference is less evident.

Subject matters of the first type are strictly related to

the national culture to which the person belongs, (e.g.

AttitudeTowardsHolidays shown in Figure 21b), while

subject matters of the second type typically include

elements that are shared among many cultures (e.g.

AttitudeTowardsSport, shown in Figure 21a).

In the latter case the implementation of a Bayesian

Network (initialized with the nationality declared by

the user, or even with uniform distribution) gives clear
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advantages with respect to any variant which does

not enable Bayesian adaptation. Conversely, for sub-

ject matters strictly related to the national culture, the

average performance obtained by the likeliness-driven

and by the Bayesian adaptation assessment algorithms

are comparable, although the Bayesian adaptation as-

sessment algorithm still performs slightly better than

the likeliness-driven algorithm. Consider as an example

the question “Do you celebrate Pentecost Monday?” -

a Christian holiday that is a national holiday in Ger-

many but not in Italy, or the question “Do you celebrate

the birthday of the Emperor?” - a Japanese holiday. It

is very likely that only German people will give a posi-

tive answer to the first question and that only Japanese

people will give a positive answer to the second one.

However, it cannot be excluded a priori that an Italian

person could have acquired some habits that are typical

of other cultures: as it happened to some of the German

respondents of our questionnaire, the user could have

lived for some time in Japan and taken the habit of cel-

ebrating the birthday of the Emperor. Thus, while the

knowledge of the user nationality is key for quickly de-

tecting the main habits and preferences of the person,

an adaptive approach gives the possibility to learn in a

shorter time also those traits in which the user differs

from its national culture.

5 Conclusions

This article tackles the problem of endowing robots

with a knowledge representation framework allowing for

representing cultural information and using it for better

managing and adapting to the user’s habits, preferences

and needs. Drawing inspiration from the scenarios of

culturally competent behaviours for robots for elderly

care drafted by experts in Transcultural Nursing, we

have identified the main requirements for the robot’s

knowledge representation system, i.e., (i) the ability to

store and manage culture-generic knowledge about the

context, the robot itself and the grounding of core val-

ues; (ii) the ability to store and manage national-level,

culture-specific knowledge, that the robot can rely on

whenever person-specific information is not available;

(iii) the ability to store and manage person-specific

knowledge, describing the way in which the cultural

identity, preferences and environment of the assisted

person shape the appropriate robot behaviours; and

(iv) the ability to efficiently integrate person-specific

and culture-specific knowledge, by relying on the latter

to discover the former.

To fulfil the above requirements, we have proposed

a framework which relies on three core elements: (i) a
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Fig. 21: Comparison of the performance of the

likeliness-driven and Bayesian adaptation assessment

algorithm, for different initialization strategies of the a

priori probability of the node GEN, over different types

of conversation subject matters. The Random assess-

ment algorithm is taken as a reference. Shorter columns

denote better performance. The data refer to the Italian

subjects only.

three-layered ontology for storing all concepts of rel-

evance, national-level information and statistics, and

person-specific information and preferences; (ii) an al-

gorithm for the acquisition of person-specific knowl-

edge, driven by national-level knowledge (likeliness-

driven assessment algorithm with its variants), and (iii)

a Bayesian Network for speeding up the adaptation by

propagating the effects of acquiring one person-specific

information onto interconnected concepts (Bayesian

adaptation assessment algorithm with its variants).

For a preliminary evaluation of the framework we

have hypothesised that, given a user that declares her-

self as belonging to a given cultural group at national

level, using the framework with the proposed algo-

rithms can significantly speed-up the acquisition of

person-specific knowledge starting from national level

knowledge. This hypothesis has been preliminarily val-

idated with 159 Italian and German volunteers by ask-

ing questions on 122 habits, attitudes and social norms.

Ongoing work is devoted to relaxing the limita-

tions of acquiring knowledge only through dialog, but
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rather using the robot’s onboard sensors for culturally-

competent object and scene recognition. To this end,

we are exploring the use of online vision services, which

have the advantage of relying on huge training sets con-

tinuously updated and maintained [22].
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