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1*, Géraldine Veron1, Anne Ropiquet2, Bettine Jansen van Vuuren3,
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Abstract

The order Carnivora, which currently includes 296 species classified into 16 families, is dis-

tributed across all continents. The phylogeny and the timing of diversification of members of

the order are still a matter of debate. Here, complete mitochondrial genomes were analysed

to reconstruct the phylogenetic relationships and to estimate divergence times among spe-

cies of Carnivora. We assembled 51 new mitogenomes from 13 families, and aligned them

with available mitogenomes by selecting only those showing more than 1% of nucleotide

divergence and excluding those suspected to be of low-quality or from misidentified taxa.

Our final alignment included 220 taxa representing 2,442 mitogenomes. Our analyses led to

a robust resolution of suprafamilial and intrafamilial relationships. We identified 21 fossil cali-

bration points to estimate a molecular timescale for carnivorans. According to our diver-

gence time estimates, crown carnivorans appeared during or just after the Early Eocene

Climatic Optimum; all major groups of Caniformia (Cynoidea/Arctoidea; Ursidae; Musteloi-

dea/Pinnipedia) diverged from each other during the Eocene, while all major groups of Feli-

formia (Nandiniidae; Feloidea; Viverroidea) diversified more recently during the Oligocene,

with a basal divergence of Nandinia at the Eocene/Oligocene transition; intrafamilial diver-

gences occurred during the Miocene, except for the Procyonidae, as Potos separated from

other genera during the Oligocene.

Introduction

The order Carnivora is composed of 296 extant species [1] currently ranged into two subor-

ders: the Caniformia which includes nine families, namely the Canidae (dog-like species),

Ailuridae (red panda), Mephitidae (skunks and stink badgers), Mustelidae (weasels, badgers,
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martens, otters, etc.), Odobenidae (walrus), Otariidae (eared seals), Phocidae (earless seal),

Procyonidae (raccoons, coatis, kinkajous, etc.) and Ursidae (bears); and the Feliformia which

is represented by seven families, namely the Felidae (cat-like species), Eupleridae (Malagasy

carnivorans), Herpestidae (mongooses), Hyaenidae (hyenas), Nandiniidae (African palm

civet), Prionodontidae (Asiatic linsangs) and Viverridae (civets and genets). The oldest known

fossils of Carnivora have been found in the late Paleocene; they belong to the extinct families

Miacidae and Viverravidae, and have small body-size, comparable to extant weasels and mar-

tens [2–4]. The timing of the emergence of the crown carnivorans and their relationships to

Paleocene and Eocene fossils are still unresolved. However, there is consensus for supporting

two higher fossil taxa: the Carnivoraformes, which are composed of the crown group plus the

stem family Miacidae, which is probably paraphyletic; and the Carnivoramorpha, which

groups the Carnivoraformes and the Viverravidae [4,5].

The phylogeny of several carnivoran families has been extensively studied based on mito-

chondrial and nuclear data, including the Felidae, the Mustelidae and the Ursidae [6–8], while

other families remain poorly studied, specifically the Eupleridae, Herpestidae, Mephitidae,

Procyonidae and Viverridae. The phylogeny and timescale of diversification of the Carnivora

have been studied by Eizirik et al. [9] using a molecular supermatrix of 7,765 base pairs (bp)

containing 14 nuclear genes for 50 species, which represents less than 17% of the species diver-

sity of the order Carnivora. The evolutionary history of carnivorans has also been inferred

using a supertree approach by Nyakatura and Bininda-Emonds [10]. These two studies were

based on different methods and data, and different fossils were used as calibration points.

Although several nodes showed similar ages in the two studies, such as the most recent com-

mon ancestor (MRCA) of the Carnivora (59.2 Mya versus 64.9 Mya), Arctoidea (42.6 Mya ver-
sus 47.8 Mya) and Pinnipedia (24.5 Mya versus 22.4 Mya), some nodes were highly discordant,

including the MRCA of the Caniformia (48.2 Mya versus 61.2 Mya), Feliformia (44.5 Mya ver-
sus 53.2 Mya), Feloidea (Felidae + Prionodontidae) (33.3 Mya versus 52.9 Mya) and Canidae

(7.8 Mya versus 16.3 Mya). Most other studies to date have focused on either the Caniformia

[8] or the Feliformia [11] and the timing of diversification in some families appears highly elu-

sive or uncertain in the absence of a molecular timescale based on a high diversity of species

from all carnivoran families.

With the development of next-generation sequencing (NGS) technologies, the number of

mitochondrial genomes available in the international nucleotide databases has considerably

increased during the last decade [12]. For the order Carnivora, there are currently more than

2,400 complete mitogenomes, and some of these were sequenced from Pleistocene fossils, such

as polar bear [13], giant short-faced bears [14], cave lion [15] or saber-toothed cats [16]. This

notably large and diversified dataset offers an excellent opportunity to better understand the

evolutionary history of the order Carnivora, as problematic sequences and taxonomic issues

can be more easily detected, and more importantly, as many fossils can be included as calibra-

tion points for estimating divergence times. The latter aspect is particularly relevant consider-

ing the paleontological record of Carnivora has been significantly improved over the last 10

years, with the discovery of several key fossils [17–21].

Here we analysed complete mitochondrial genomes to reconstruct phylogenetic relation-

ships among carnivorans and to estimate divergence times. We sequenced 43 mitogenomes

using various methods (Sanger sequencing of PCR products, NGS of long PCR products or

Illumina shotgun sequencing). We also assembled eight mitogenomes from Sequence Read

Archive (SRA) data. The 51 new mitogenomes belong to several families, namely Canidae (2),

Eupleridae (6), Felidae (4), Herpestidae (12), Hyaenidae (1), Mustelidae (10), Otariidae (2),

Phocidae (1), Prionodontidae (1), Procyonidae (3), Ursidae (1), Viverridae (7) for Carnivora,

as well as Tapiridae (1) for the order Perissodactyla, which was included as an outgroup. These
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new mitogenomes were compared to all mitogenomes available for Carnivora in public reposi-

tories. At the intraspecific level, we selected only mitogenomes that were separated by more

than 1% of nucleotide divergence and excluded those suspected to be of low-quality or from

misidentified taxa. Our final alignment includes 220 taxa, which represent 2,442 mitogenomes.

Our main objective was to build one of the largest time-trees of Carnivora estimated using a

selection of fossil calibration points in order to provide further insights into the evolution of

this broadly distributed and morphologically diverse order of mammals.

Material and methods

DNA extraction, amplification, sequencing and mitogenome assembly

Total DNA was extracted from cells, muscle or skin samples using the DNeasy Blood and Tis-

sue Kit (Qiagen, Hilden, Germany). Details on the 43 samples extracted for this study are

given in S1 Appendix. The mitochondrial genomes were sequenced using one of the three fol-

lowing approaches: Sanger sequencing of about 20 overlapping PCR products (length between

700 and 2000 bp); NGS of five overlapping long PCR products of around 4–5 kb; and Illumina

shotgun sequencing.

In the first approach, PCR amplifications were carried out as previously described [22]

using the primers listed in S2 Appendix. The amplicons were then sequenced in both direc-

tions by Eurofins MWG Operon (Ebersberg, Germany). Genomes were assembled with elec-

tropherograms of overlapping amplicons using Sequencher 5.1 (Gene Codes Corporation,

Ann Arbor, MI, USA).

In the second approach, five overlapping PCR products of around 4–5 kb were amplified as

previously described [23], and were sequenced at the “Service de Systématique Moléculaire”

(UMS CNRS 2700, MNHN, Paris, France) using a Ion Torrent Personal Genome Machine

(Thermo Fisher Scientific, Waltham, MA, USA).

All PCR products generated for this study were overlapping in the 5’ and 3’ regions with at

least two other PCR products. As a consequence, the authenticity of each sequence was vali-

dated by double checking after verification of the perfect nucleotide identity with the two

other sequences overlapping in the 5’ and 3’ regions (length between 50 and 500 bp).

The third approach was based on Illumina shotgun sequencing. DNA samples were quanti-

fied with a Qubit1 2.0 Fluorometer using the Qubit dsDNA HS Assay Kit (Thermo Fisher Sci-

entific, Waltham, MA, USA). Libraries were prepared using the TruSeq1Nano DNA Library

Prep kit (Illumina, San Diego, CA, USA) after pooling 150 ng of total DNA of 10 species

belonging to distant taxonomic groups (i.e. different phyla, classes, orders or families). Librar-

ies were sequenced at the “Institut du Cerveau et de la Moelle épinière” (Paris, France) using a

NextSeq1 500 system and the NextSeq 500 High Output Kit v2 (300 cycles) (Illumina).

The NGS reads generated with either Ion Torrent or Illumina sequencers were assembled

by baiting and iterative mapping approach on Geneious1 10.2.2 (Biomatters Ltd., Auckland,

New Zealand) using available mitochondrial references, including cytochrome b, cytochrome

c oxidase subunit I, 12S and 16S rRNA genes. The 43 new mitochondrial genomes generated

for this study were annotated using MITOS [24] and deposited in GenBank under accession

numbers MW257198-MW257240.

Eight mitochondrial genomes were assembled from SRA downloaded from NCBI for the

following species: Bassaricyon neblina (SRX1097850), Bassariscus sumichrasti (SRX1099089),

Helogale parvula (SRR7637809), Lontra canadensis (SRR10409165), Mirounga angustirostris
(SRR10331586), Mungos mungo (SRR7704821), Prionodon linsang (ERR2391707) and Zalo-
phus wollebaeki (SRR4431565).
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Mitochondrial alignments

The 51 mitochondrial genomes assembled in this study were compared with other genomes

available in the NCBI nucleotide database (see details in S1 Appendix) for the different fami-

lies. At the intraspecific level, we selected only mitochondrial haplotypes separated by more

than 1% of divergence. Our final alignment includes 218 mitogenomes of Carnivora represent-

ing a large taxonomic diversity in the following 16 families (number of mitogenomes in paren-

theses): Ailuridae (2), Canidae (21), Eupleridae (7), Felidae (46), Herpestidae (15), Hyaenidae

(4), Mephitidae (3), Mustelidae (39), Nandiniidae (1), Odobenidae (1), Otariidae (12), Phoci-

dae (30), Prionodontidae (2), Procyonidae (6), Ursidae (21) and Viverridae (19). A tapir

(Tapirus terrestris) and a pangolin (Phataginus tricuspis) were used to root the carnivoran tree,

as these two taxa represent different Laurasiatherian orders, Perissodactyla and Pholidota,

respectively, which were shown to be closely related to Carnivora in previous molecular studies

[25,26].

The 220 mitochondrial genomes were aligned using AliView 1.22 [27]. Ambiguous regions

for primary homology were excluded from the alignment. For that reason, the control region

was completely removed, as well as some parts of rRNA and tRNA genes and a few nucleotides

at the 5’- and 3’-regions of some protein-coding genes. To limit the impact of missing data, we

also removed from the alignment all indels (insertions or deletions) detected in only one

genome. The final alignment, namedmtDNA, contains 220 taxa and 14,892 bp, representing

89% of the reference mitogenome for Canis lupus (NC_002008). Two other datasets were

derived frommtDNA: (1)mtDNA-Tv (transversions only), in which the nucleotide G was

replaced by A and the nucleotide T by C; and (2) PCG-mtDNA (10,809 nt), in which all regions

other than protein-coding genes were removed (i.e. 12S and 16S rRNA genes and tRNA

genes), as well as the ND6 gene (because it is located on the opposite strand of other protein-

coding genes). The three datasets used in this study are available at https://osf.io/cfx8r/.

Analysis of base composition

The alignment of the protein-coding genes of 220 mitochondrial genomes (PCG-mtDNA data-

set) was used to calculate the frequency of the four bases (A, C, G and T) at each of the three

codon-positions (S3 Appendix). The 12 variables measured were then summarized by a princi-

pal component analysis (PCA) using the FactoMineR package [28] in R version 3.5.3 (from

http://www.R-project.org/). The strand bias in nucleotide composition was studied at third

codon-positions of the PCG-mtDNA dataset by calculating the relative frequencies of A and T

nucleotides (AT3 skew = [A—T] / [A + T]) and the relative frequencies of C and G nucleotides

(CG3 skew = [C—G] / [C + G]) [29–31].

Phylogenetic analyses

Two datasets (mtDNA andmtDNA-Tv) were analysed with probabilistic methods for tree

reconstruction using the resources available from the CIPRES Science Gateway [32]. The

Bayesian analyses were done with MrBayes 3.2.7 [33] using the two following models: GTR+I

+G formtDNA and JC69+I+G formtDNA-Tv. The posterior probabilities (PP) were calculated

using 10,000,000 Metropolis-coupled MCMC generations, tree sampling every 1000 genera-

tions and a burn-in of 25%.

To examine the phylogenetic signal within themtDNA dataset, we also performed Bayesian

analyses (with the same parameters) on 10 half-overlapping sub-datasets (i–x) of the about the

same length (i.e., 2978 or 2980 bp), corresponding to the following positions: (i) 1–2978; (ii)

1489–4466; (iii) 2979–5956; (iv) 4467–7444; (v) 5957–8934; (vi) 7445–10422; (vii) 8935–11912;

(viii) 10423–13400; (ix) 11913–14892; and (x) 13401–14892 + 1–1488. The use of half-
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overlapping sub-datasets (sliding window of� 2978 bp) implies that all nucleotide sites of the

totalmtDNA alignment are represented twice in these Bayesian analyses. The lists of biparti-

tions obtained from Bayesian analyses of the 10 sub-datasets were transformed into a weighted

binary matrix for supertree construction using SuperTRI v57 [34]. Each binary character cor-

responds to a node, which was weighted according to its frequency of occurrence in one of the

10 lists of bipartitions. In this manner, the SuperTRI method takes into account both principal

and secondary phylogenetic signals. The SuperTRI bootstrap percentages (SBP) were obtained

from PAUP 4� version 4b10 [35] after 1000 bootstrap replicates of the MRP (Matrix Represen-

tation with Parsimony) matrix of 3,398 binary characters (reconstructed under SuperTRI v57

[34]). Here, the SuperTRI analyses were conducted to test for phylogenetic signal along the

mtDNA genome. If a robust node in the Bayesian tree (PP� 0.95) is recovered with high SBP

(� 95%) and repeated in most of the 10 Bayesian trees reconstructed from the half-overlapping

sub-datasets of themtDNA dataset, this signifies that the phylogenetic signal is present all

along the mtDNA genome. If a node in the Bayesian tree is recovered with low SBP (< 95%)

and repeated in less than five of the 10 Bayesian trees reconstructed from the half-overlapping

sub-datasets of themtDNA dataset, this indicates that the phylogenetic signal is weak or con-

fined to a few fragments of the mtDNA genome. If there is a robust topological conflict

between Bayesian and SuperTRI results, this suggests that at least one of the studied genomes

was partially contaminated by a mitochondrial DNA sequence from another species or by a

nuclear DNA sequence of mitochondrial origin (Numt). An example has been previously

reported for the mitochondrial genomes of domestic goat [36].

Molecular dating

Divergence times were estimated on the CIPRES Science Gateway [32] using themtDNA data-

set and the Bayesian approach implemented in BEAST v.2.4.7 [37]. Twenty-one fossil calibra-

tion points were selected for molecular dating (Table 1). Most of these were interpreted from

the fossil record using maximum (Max) and minimum (Min) ages. We applied two strategies

for fossil calibration: (1) a uniform distribution between Max and Min on the calibrated node

ages; or (2) a log-normal distribution on the calibrated node ages using Min as offset,

M = Max—Min / 4 and S = 0.926 (to match the 97.5% quantile to Max) (see details in Table 1).

The second strategy relies on the fact that minimum ages are generally more accurate and reli-

able than maximum ages because younger fossils are more abundant and more accurately

dated than older fossils as a consequence of taphonomic processes and dating methods [38].

We applied a GTR + I + G model for themtDNA alignment (with a proportion of invariants of

0.425) and a relaxed-clock model with uncorrelated lognormal distribution for substitution

rates. Node ages were estimated using a calibrated Yule speciation prior and 2.108 generations,

with tree sampling every 2,000 generations and a burn-in of 25% generations. MCMC mixing

efficiency and convergence were assessed using the ESS values (>200) in Tracer v.1.7.1. The

chronogram was reconstructed with TreeAnnotator, which is included in the BEAST package

[37].

Results

Variation in base composition

The base composition (frequency of the nucleotides A, C, G and T) was analysed at the three

codon-positions of the PCG-mtDNA dataset (S3 Appendix). The 12 variables measured for

220 taxa were summarized by a principal component analysis (PCA) based on the first two

principal components (PC), which contribute 45.80% and 24.48% of the total variance, respec-

tively (Fig 1). The variables factor map shows that the variance can be explained by similar
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differences in base composition at the three codon-positions. Some taxa have a mtDNA

genome characterized by a divergent base composition.

Most members of the Mustelidae are found near the middle of the graph, exceptMellivora
because its mtDNA genome contains a higher percentage of guanine (15.65% versus “mean in

other Mustelidae” [MoM] = 13.18%) and a lower percentage of adenine (28.35% versus
MoM = 30.95%). This trend is observed at each of the three codon positions, and is more

marked at third positions (S3 Appendix): G1 = 22.19% versusMoM = 20.87%, G2 = 12.19%

versusMoM = 11.84%, G3 = 12.58% versusMoM = 6.82%; A1 = 30.55% versus
MoM = 31.95%, A2 = 19.13% versusMoM = 19.41%, A3 = 35.38% versusMoM = 41.51%.

Within Viverridae, the mitogenome of the otter civet (Cynogale bennettii) is characterized

by a higher percentage of thymine (32.90% versus “mean in other Viverridae” [MoV] =

30.73%) (Fig 1). This trend is observed at each of the three codon positions, and is more

marked at third positions: T1 = 25.47% versusMoV = 23.79%, T2 = 42.71% versus
MoV = 42.17%, T3 = 30.52% versusMoV = 26.21%.

Table 1. Maximum (Max) and minimum (Min) age calibrations (in millions of years ago, Mya) used for molecular dating analyses (with either uniform or log-nor-

mal prior distributions [U/L] on calibrated node ages interpreted from the fossil record).

Most recent common ancestor Max Distribution Min References for justification

Ferae 85 N, M = 75 65 www.timetree.org; split Canis / Manis (13 studies)

Caniformia

Canidae

(Canis, Cuon, Lycaon) 12 U/L, M = 1.5 6 [39]

(Vulpes, Nyctereutes) 34 U/L, M = 6.25 9 [39]

Ursidae 34 U/L, M = 5.75 11 [17,40,41]

(Arctotherium, Tremarctos) 10 U/L, M = 5.75 3 [42]

Ursus maritimus† from Svalbard (GU573488) 0.11 N, M = 0.12 0.13 [13]

Pinnipedia 34 U/L, M = 3.75 19 [20,42,43]

Otarioidea 23 U/L, M = 2.00 15 [20]

Phocidae 23 U/L, M = 2.75 12 [20,44]

Mustelidae

(Guloninae . . . Mustelinae) 27.6 U/L, M = 2.825 16.3 [21,45]

(Lutrinae, Ictonychinae) 27.6 U/L, M = 3.85 12.2 [18,45]

Feliformia

Feloidea 34 U/L, M = 3.5 20 [46]

Felidae 20 U/L, M = 1.5 14 [46]

(Acinonyx, Puma) 14 U/L, M = 2.65 3.4 [46,47]

(Leptailurus . . . Profelis) 14 U/L, M = 2.5 4 [47]

(Caracal, Profelis) 14 U/L, M = 2.5 4 [46]

(Panthera, Neofelis) 14 U/L, M = 2.0125 5.95 [19]

Viverroidea

Viverridae

(Genettinae, Viverrinae) 34 U/L, M = 5.00 14 [47]

(Herpestidae, Eupleridae) 34 U/L, M = 3.375 20.5 [47]

(Helogale, Crossarchus) 20.5 U/L, M = 3.625 6 [47]

(Galerella . . . Cynictis) 20.5 U/L, M = 3.275 7.4 [47]

Hyaenidae

(Hyaena, Parahyaena) 9.5 U/L, M = 1.475 3.6 [47]

Abbreviations: L = Log Normal; M = Mean age; N = Normal; U = Uniform.

https://doi.org/10.1371/journal.pone.0240770.t001
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Within Ursidae, the giant panda (Ailuropoda melanoleuca) shows a different base composi-

tion, with more adenines (30.63% versus “mean in other Ursidae” [MoU] = 29.55%) and thy-

mines (31.02% versusMoU = 28.98%) than other species of the family. This trend is mainly

explained by differences at third codon-positions, in which the giant panda shows more ade-

nines (40.91% versusMoU = 38.46%) and thymines (28.52% versusMoU = 23.38%).

Most members of the Felidae, including Smilodon populator (Machairodontinae), are

found near the middle of the graph, exceptHomotherium latidens (Machairodontinae) for

which the mtDNA genome shows a very atypical base composition. At third codon-positions,

Homotherium is characterized by a lower percentage of guanine (2.80% versus “mean in other

Felidae” [MoF] = 6.25%) and a higher percentage of thymine (25.41% versusMoF = 20.79%).

At second codon-positions, its mitogenome contains a lower percentage of thymine (40.80%

versus “mean in other Felidae” [MoF] = 41.89%) and a higher percentage of guanine (12.58%

versusMoF = 11.86%). At first codon-positions, the mtDNA ofHomotherium shows a lower

percentage of adenine (30.08% versus “mean in other Felidae” [MoF] = 32.07%), a higher per-

centage of guanine (22.65% versusMoF = 20.92%) and a higher percentage of guanine (23.07%

versusMoF = 22.01%).

Within Canidae, the two extant tribes can be distinguished based on their nucleotide com-

position, as the mitogenomes of the Vulpini (fox-like canines) show more guanines (� 13.89%

versus� 13.28%) and less adenines (� 29.53% versus� 29.83%) than those of the Canini

Fig 1. Variation in base composition of the mitogenomes of Carnivora. The PCG-mtDNA dataset was used to calculate the frequency of the four bases (A, C, G and

T) at each of the three codon positions, and the 12 variables measured were then summarized by a principal component analysis (PCA). The main graph represents the

individual factor map based on 220 taxa. The families of Carnivora are highlighted by different colours. The small circular graph at the top left represents the variables

factor map.

https://doi.org/10.1371/journal.pone.0240770.g001
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(dog-like canines). This trend is mainly explained by a strong bias observed at third codon-

positions, in which the Vulpini taxa have more guanines (G3� 8.39% versus� 7.30%) and

less adenines (A3� 37.18% versus� 37.80%) than the Canini.

At third codon-positions, the Eupleridae and Hyaenidae have higher percentages of cyto-

sine than other Feliformia (mean C3: Eupleridae = 36.78%; Hyaenidae = 35.55%; other

Feliformia = 30.65%).

Pairwise mtDNA distances

Uncorrected pairwise distances were calculated on PAUP4� [35] using themtDNA dataset (S4

Appendix). Intraspecific similarity distances are generally lower than 2%. However, there are

several exceptions involving individuals from different geographic regions, which are or could

be assigned to different subspecies or even species (see discussion): the extinct Japanese river

otter (Lutra lutra, LC050126) versus extant representatives of Lutra lutra (2.1%); Ursus arctos
isabellinus versus other brown bear subspecies (2.3–2.4%); Ursus thibetanus laniger versus
Ursus thibetanus mupinensis (2.3%); the three samples ofMelogale moschata (2.2–2.9%); the

three samples of Viverricula indica (2.5–3.1%); Canis lupus familiaris versus Canis lupus chanco
(2.6%); the two samples of Paradoxurus hermaphroditus (3.0%); the two samples of Leopardus
pardalis (2.9%); the two mtDNA lineages identified in Prionailurus bengalensis (3.6%); the two

samples ofHerpestes javanicus (4.5%), although BLAST searches in NCBI suggest that the

sequence NC_006835 belongs in fact toHerpestes auropunctatus (see discussion); the two sam-

ples ofMungos mungo (6.3%), but we suggest that the sample SRR7704821 may belong in fact

toMungos gambianus (see discussion).

Interspecific distances are generally higher than 2% of similarity. However, several species

show more similar mitogenomes: Martes martes andMartes zibellina (1.9%); Phoca largha and

Phoca vitulina (1.9%); Mustela putorius versus Mustela eversmannii (1.2%) andMustela
nigripes (1.6%); Felis catus and Felis silvestris (0.7%); Zalophus californianus and Zalophus wol-
lebaeki (0.5%); Urocyon cinereoargenteus and Urocyon littoralis (0.4%). Within Arctocephalus
forsteri, there are two mtDNA lineages: 17 mitogenomes are similar to the mitogenome of Arc-
tocephalus australis (MG023139) (1.3%), whereas the 28 other mitogenomes are more diver-

gent (2.1%). Within Ursus arctos, we found six mtDNA lineages showing between 1.1% and

2.4% of nucleotide divergence, but brown bears sampled on the Alaskan ABC islands (north-

ern portion of the Alexander Archipelago) have mitogenomes which are highly similar to

those of Ursus maritimus (0.4–0.5%).

Phylogeny of Carnivora

The Bayesian tree of Fig 2 was reconstructed from themtDNA alignment. The results show that

most nodes of the tree were highly supported (PP� 0.95) and were similarly recovered as

monophyletic entities using two other methods (nodes highlighted with a filled back circle in

Fig 2), i.e. in the Bayesian tree reconstructed using themtDNA-Tv alignment and JC69+I+G

model (S5 Appendix) and in the Bootstrap 50% majority-rule consensus tree reconstructed

from the MRP matrix of the SuperTRI analysis (S6 Appendix). Many of these nodes show maxi-

mal support in the SuperTRI analysis, as they were found monophyletic in all 10 Bayesian trees

reconstructed from the 10 half-overlapping sub-datasets of themtDNA alignment. For all these

nodes, the phylogenetic signal is therefore robust across all parts of themtDNA alignment.

Among the nodes supported by all three methods of tree reconstruction and at least seven

of the 10 Bayesian SuperTRI analyses are the following taxa: order Carnivora; suborders Cani-

formia and Feliformia; infraorders Arctoidea, Cynoidea, Feloidea and Viverroidea; all the 14

families represented by at least two members in our analyses (i.e. all families except
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Odobenidae and Nandiniidae); the subfamilies Euplerinae, Felinae, Galidiinae, Genettinae,

Guloninae, Helictidinae, Hemigalinae, Herpestinae, Ictonychinae, Lutrinae, Machairodonti-

nae, Melinae, Monachinae, Mungotinae, Mustelinae, Paradoxurinae, Phocinae, Tremarctinae,

Ursinae and Viverrinae; the genera Catopuma, Felis, Genetta,Herpestes, Leopardus, Lutra,

Lynx,Martes,Meles,Mirounga,Monachus,Mungos, Panthera, Paradoxurus, Phoca, Prionai-
lurus, Prionodon, Puma, Urocyon, Vulpes and Zalophus; and the species Ailurus fulgens, Canis
lupus, Civettictis civetta, Leopardus pardalis, Lutra lutra,Melogale moschata,Mustela sibirica,

Panthera onca, Panthera pardus, Panthera tigris, Panthera uncia, Paradoxurus hermaphroditus,
Prionailurus planiceps, Procyon lotor, Ursus maritimus, Ursus spelaeus, Ursus thibetanus and

Viverricula indica. The results support the non-monophyly of four genera: (1) Arctocephalus,

Fig 2. Phylogeny of Carnivora based on mitogenomes. The Bayesian tree was reconstructed using themtDNA dataset (220 taxa and 14,892 bp) and GTR+I+G model.

The two outgroup species are not shown. Species names follow the classification of the IUCN [1]; the taxa written in red highlight the taxonomic issues discussed in the

main text. The accession numbers of the 42 mitogenomes of Carnivora specially sequenced for this study are indicated in red. The eight mitogenomes here assembled

from SRA data are shown in green. The blue circle associated toMustela nudipesMH464792 indicates that the mitogenome was originally misassigned to Viverra
tangalunga. Fossil species are followed by the symbol “†”. For each terminal taxon, the number of similar mitogenome(s) found in GenBank (pairwise distance< 1%) is

indicated after the accession number. Dash branches indicate nodes supported by posterior probability (PP)< 0.95. Black circles indicate nodes that are also

monophyletic in the two following trees: SuperTRI bootstrap 50% majority-rule consensus tree; and Bayesian tree obtained from the analysis of themtDNA-Tv dataset

and JC69+I+G model. Grey circles show nodes that are not found to be monophyletic with one of the two methods detailed above. White circles indicate nodes that are

not monophyletic in bothmtDNA-Tv and SuperTRI bootstrap consensus trees. No information was provided for the nodes highly supported by the SuperTRI analyses,

i.e. which were found monophyletic in all the 10 Bayesian trees reconstructed from the 10 half-overlapping sub-datasets of themtDNA dataset. For nodes less supported

by the SuperTRI analyses, the number of Bayesian trees (< 10) showing the nodes is indicated.

https://doi.org/10.1371/journal.pone.0240770.g002
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because Arctocephalus pusillus is divergent from Neophoca, Phocarctos and other species of

Arctocephalus; (2) Canis, because Canis adustus is more distantly related to other Canis species

than to Cuon alpinus; (3)Mustela, becauseMustela frenata is the sister-species of Neovison
vison, whereas all other species ofMustela are enclosed into a robust clade; and (4) Ursus,
becauseHelarctos malayanus is closely related to Ursus americanus and Ursus thibetanus,
whereas Ursus arctos, Ursus maritimus and Ursus spelaeus are grouped together. In addition,

three species are not found monophyletic: (1) Arctocephalus forsteri is paraphyletic with

respect to Arctocephalus australis; (2) Prionailurus bengalensis is paraphyletic with respect to

Prionailurus viverrinus; and (3) Ursus arctos is paraphyletic with respect to Ursus maritimus.

BEAST chronogram inferred from the mtDNA alignment

Molecular estimates of divergence times are shown in the chronogram provided in Fig 3. The

ages were inferred with BEAST using themtDNA alignment and the 22 calibration points

Fig 3. A molecular timescale for carnivoran evolution. The estimates of divergence time were calculated under BEAST v.2.4.7 using the GTR+I+G model on the

mtDNA dataset. The asterisks show the 21 fossil calibration points used for molecular estimation (see Table 1 for details). The chronogram, mean ages (values in black)

and associated 95% confidence intervals (grey bars) were inferred using a uniform prior distribution for fossil calibration points (“U approach”). For comparison, the

values in blue are mean ages estimated using a log normal prior distribution for fossil calibration points (“L approach”; see main text for details and discussion). Species

names follow the classification of the IUCN [1]; the name of the taxa written in red have been changed following our results which suggest these taxonomic changes (see

the discussion for details).

https://doi.org/10.1371/journal.pone.0240770.g003
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detailed in Table 1, including 21 fossil calibration points and a single molecular calibration

point (used for the MCRA of Ferae). Two analyses were performed using either a uniform or

log-normal prior distribution on the calibrated node ages (named “U approach” and “L

approach”, respectively). The two BEAST chronograms show the same tree topology (Fig 3),

which is similar to the one reconstructed under MrBayes (Fig 2). As expected, the chronogram

inferred with the “L approach” show more recent estimates of divergence times (values

highlighted in blue in Fig 3) than the chronogram inferred with the “U approach”.

Using the Geologic Time Scale v. 5.0 [48] for the correspondence between estimated diver-

gence times and geologic epochs, the results suggest that the crown Carnivora divided into

Caniformia and Feliformia during the early Eocene at around 52.7–46.7 Mya. Subsequently,

the Canidae separated from other families in the early/middle Eocene at around 48.0–42.5

Mya, followed by the Ursidae and Pinnipedia in the middle/late Eocene at around 43.4–38.3

Mya and 41.4–36.5 Mya, respectively. The diversification of the Musteloidea began near the

Eocene/Oligocene boundary at around 37.4–33.0 Mya, but the Mustelidae diverged from the

Procyonidae in the early Oligocene at around 34.4–30 Mya. The family Phocidae separated

from the Otarioidea in the Oligocene at around 27.2–22.9 Mya, whereas the separation

between the Otariidae and Odobenidae occurred in the early Miocene at around 20.0–16.7

Mya. Within the Feliformia, the Nandiniidae diverged from other families at the Eocene-Oli-

gocene transition at around 34.4–31.1 Mya. Then, the Feloidea and Viverroidea split in the

Oligocene at around 29.7–27.0 Mya. The separation between the Felidae and Prionodontidae

occurred in the Oligocene at around 27.4–24.7 Mya. Within the Viverroidea, the Viverridae

diverged from other families in the Oligocene at around 28.2–25.8 Mya, followed by the Hyae-

nidae in the late Oligocene at around 24.5–22.9 Mya, whereas the split between the Eupleridae

and Herpestidae took place in the Miocene at around 22.3–21.2 Mya. Within carnivoran fami-

lies, the generic diversification occurred during the Miocene (all genera of Canidae, Herpesti-

dae, Mephitidae, Procyonidae and Viverridae; most genera of Eupleridae, Felidae, Hyaenidae,

Mustelidae, Phocidae and Ursidae) or more rarely during the Pliocene (most genera of Otarii-

dae, excepting Callorhinus; Aonyx / Lutrogale; Caracal / Profelis;Histriophoca / Pagophilus;
Hyaena / Parahyaena;Hydrurga / Leptonychotes; Galidictis /Mungotictis + Salanoia;Helarctos
/ Ursus) or Pleistocene (Halichoerus / Phoca / Pusa;Mungotictis / Salanoia).

Discussion

Mitogenomic variations at the species level

In 88% of the species for which at least two mitogenomes were available (65 out of 74), intra-

specific distances were found to be less than 2%. In nine species, we detected mtDNA distances

greater than 2% (S4 Appendix). Such a high mitogenomic divergence suggests that the samples

may belong to two or more distinct species, because of either imperfect taxonomy or species

misidentification (human error). Other explanations are however possible, such as mtDNA

introgression from another species or high levels of mtDNA divergence due to strong female

philopatry.

In mammals, females are generally philopatric, spending their lives close to their birthplace,

whereas males typically undertake longer-distance dispersals during their lives [49–51].

Indeed, because they have to take care of their young, females tend to stay in areas where they

can predict risks, as well as the resources. With time, this behaviour can result in a high spatial

genetic structure of mtDNA variation since the mitogenome is transmitted maternally. The

impact of female philopatry on the mtDNA evolution is expected to be more important if the

preferred habitat-type is delimited by strong geographic barriers representing higher risks

associated with dispersal of females (and their young), for example, open areas for small forest
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fruit bats [52] or large rivers and mountains for giraffes [53]. Female philopatry may therefore

result in the selection of highly divergent mtDNA haplotypes in geographically isolated mater-

nal lineages, whereas gene flow can be still maintained through long-distance male dispersals.

Female philopatry can be advanced to explain the high intraspecific mtDNA distances found

between populations of bears of the species Ursus arctos (six lineages, 1.1–2.4%) and Ursus thi-
betanus (four linages, 1.0–2.3%). This hypothesis is supported by previous phylogeographic

studies showing strong geographic structure of mtDNA variation [54,55] and by field data on

brown bears indicating that natal dispersal distances are five times smaller for females [56].

In several other species, we found two or three mitogenomic haplotypes or haplogroups

which are separated by more than 2%. In the Eurasian otter (Lutra lutra), Waku et al. [57]

sequenced three mtDNA genomes from extinct river otters of Japan: the two mtDNA genomes

of otters from Honshu are similar to those found in extant Eurasian otters (< 1%), whereas the

genome of the otter from Shikoku Island differs by 2.1%, suggesting that it belongs to a distinct

subspecies (Lutra lutra nippon) or species (Lutra nippon). Since female philopatry versusmale

biased dispersal was well attested by both radiotracking and genetic data in European otters

[58], we consider that nuclear data are needed to solve this taxonomic issue.

The three mtDNA haplotypes available for the small-toothed ferret badger (Melogale
moschata) show comparatively high nucleotide distances, i.e., between 2.2% and 2.9%. The

genusMelogale includes five species [1]:Melogale cucphuongensis known from a few animals

collected in northern Vietnam [59,60],Melogale everetti on Borneo,Melogale moschata which

is widely distributed from North-east India to Taiwan through China and Indochina, Melogale
orientalis on Java, andMelogale personata, which is found in mainland Southeast Asia. In

agreement with the recent study of Rozhnov et al. [61], our phylogenetic analysis based on

cytochrome b (CYB) sequences (S7 Appendix) shows thatMelogale cucphuongensis is the sis-

ter-group of a clade composed of three divergent mtDNA lineages: (i)Melogale personata, as

represented by 16 samples from Vietnam; (ii) a first mtDNA haplogroup ofMelogale
moschata, which contains five samples from Vietnam (including our MW257240 sequence)

and the reference mitogenome (NC_020644, unknown origin); and (iii) a second mtDNA hap-

logroup ofMelogale moschata, which contains a sample from Taiwan (subspecies subauran-
tiaca) and a sample from China (MN400429, from Fei Zhou). Since the holotype ofMelogale
moschata was collected in the Guangdong Province of South China [62], our CYB tree suggests

that the two samples from China and Taiwan represent the speciesMelogale moschata, whereas

the samples from Vietnam currently assigned toMelogale moschatamay belong to a new spe-

cies, confirming that Vietnam is a key hot spot for the genusMelogale.
Three mitogenomic haplotypes were available for the small Indian civet (Viverricula

indica), representing the three main mtDNA lineages previously identified [63], i.e. the sub-

species V. i. indica from India, Madagascar (where it was introduced), Sri Lanka, West China

and northern Indochina; V. i. rasse from southern Indochina to Java; and V. i. pallida, from

East China to Taiwan. The mitogenomic distances are between 2.5% and 3.1%, suggesting that

they may be treated as different species, but nuclear markers are needed to further investigate

this taxonomic issue. Gaubert et al. [63] concluded that these three mitogenomic lineages

diverged from each other in the Pliocene, between 3.2 and 2.6 Mya, but our dating estimates

rather support that the divergences occurred in the Pleistocene, between 2.2–1.9 Mya and 1.6–

1.4 Mya.

In the common palm civet (Paradoxurus hermaphroditus), the two mtDNA haplotypes dif-

fer by 2.9%, suggesting that they may come from two separate species. Phylogeographic studies

based on both mitochondrial and nuclear sequences (CYB, control region, intron 7 of FGB)

[64,65] supported the existence of three distinct species of Paradoxurus: Paradoxurus her-
maphroditus (Indian and Indochinese regions), Paradoxurus musangus (mainland Southeast
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Asia, Sumatra, Java and other small Indonesian islands) and Paradoxurus philippinensis (Men-

tawai Islands, Borneo and the Philippines). Only the first two of these were represented in our

mitogenomic study. Since they have overlapping distributions in mainland Southeast Asia,

where it can be assumed that Paradoxurus hermaphroditus dispersed from the north of India

while Paradoxurus musangus arrived from the south (see Fig 2 in [64]), the possibility of inter-

specific hybridization should be investigated in this region.

The two mitogenomes sequenced for the ocelot (Leopardus pardalis) differ by 3.0%, sug-

gesting that this taxon may be split into two separate species, as proposed by Nascimento [66]

based on a morphological analysis of 591 specimens of Leopardus spp. Using an alignment of

the 5’-part of the mitochondrial control region, Eizirik et al. [67] have suggested a further divi-

sion into four geographic groups. However, there is a 100-bp stretch of missing data in all their

sequences, which is located in a region where we detected three motifs of 80 bp repeated in

tandem in the mitogenome of Leopardus pardalis mitis and only two motifs in that of Leopar-
dus pardalis pardalis. These repetitive sequences, named RS2 by Hoelzel et al. [68], were found

in variable number in all families of Feliformia, from two in Prionodon pardicolor [69] to five

in Nandinia binotata [70]. These variations in RS2 tandem repeats may pose serious problems

of homology for DNA alignment. If RS2 repeats are removed from the alignment of Eizirik

et al. [67], there is no robust signal for phylogenetic relationships within Leopardus pardalis
(S8 Appendix). We recommend therefore to study the phylogeography of ocelot lineages with

mitochondrial protein-coding genes, such as CYB and CO1 genes, or full mitogenomes. For

taxonomy purpose, the analyses should be completed with nuclear markers, as Wultsch et al.

[71] have shown evidence for female philopatry versusmale-biased dispersal in ocelots sam-

pled in Belize (Central America).

Two divergent mtDNA haplogroups were found for the leopard cat Prionailurus bengalensis
(3.6%), corresponding to the Asian mainland leopard cat and Sunda leopard cat [72,73]. A spe-

cies-level separation was confirmed by Y chromosome and whole-genome SNP studies [7,72].

Therefore, we follow Kitchener et al. [74] in recognizing two species of leopard cats: the main-

land leopard cat Prionailurus bengalensis for Asian mainland leopard cats and the Sunda leop-

ard cat Prionailurus javanensis for leopard cats from Java, Sumatra and Borneo. Previous

molecular estimates have provided different ages for their divergence, between 2.67 and 0.92

Mya [7,72,73]. Although based on different calibration points, our estimate of 2.7–2.4 Mya

corroborates that of Luo et al. [72]. This suggests that maternal linages were first isolated at the

Pliocene/Pleistocene boundary, when the glacial/interglacial oscillations commenced. How-

ever, the mitogenomic tree does not support a sister-group relationship between the two spe-

cies of leopard cats, as Prionailurus bengalensis is closer to Prionailurus viverrinus, the fishing

cat, than to Prionailurus javanensis. This result contrasts with nuDNA trees showing a sister

relationship of Prionailurus bengalensis and Prionailurus javanensis [7,72]. In agreement with

the scenario proposed by Li et al. [7], such a discordance suggests that a mtDNA introgression

occurred from Prionailurus bengalensis to Prionailurus viverrinus in the Pleistocene epoch,

here dated at 2.1–1.8 Mya.

The two mitogenomes of the Javan mongoose (Urva javanica, previously named Herpestes
javanicus, see [75] for details) differ by 4.5% in our alignment. BLAST searches in NCBI show

that the reference genome sequenced for Urva javanica (NC_006835) belongs in fact to its sis-

ter-species, Urva auropunctata (small Indian mongoose), previously named Herpestes javani-
cus orHerpestes auropunctatus [75]. In agreement with this, the sample was collected in Fiji

where the small Indian mongoose is known to have been introduced [76].

Two highly divergent mtDNA haplotypes (6.3%) were detected in banded mongooses

(Mungos mungo) from Halle Zoological Garden (Germany) and from the San Diego Zoo Insti-

tute for Conservation Research (USA). The geographic origins of these animals are unknown,
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but such a high pairwise distance suggests that the two mitogenomes may represent the two spe-

cies currently described in the genusMungos: the banded mongoose (Mungos mungo), which is

widely distributed in sub-Saharan Africa; and the Gambian mongoose (Mungos gambianus),
which is endemic to West Africa. BLAST searches in NCBI show that our MW257205 sequence

shares 99.9% of CYB identity with a mongoose from Kenya (AY928674) [77], confirming that it

belongs to the speciesMungos mungo. By contrast, the SRR7704821 sequence shows only 93%

of identity withMungos mungo AY928674, suggesting that it may rather belong toMungos gam-
bianus. Morphologically, the two species are similar butMungos mungo is characterized by 10

to 15 dark dorsal stripes that are absent inMungos gambianus. These marked differences render

the hypothesis of misidentification unlikely. As an alternative, a mitochondrial introgression

fromMungos gambianus toMungos mungomay have occurred either in captivity or in the wild,

as the two species can be found in sympatry in West Africa [1].

Shallow mitochondrial phylogeny

The mtDNA distances calculated between closely-related species are generally higher than 2%

(73% of the comparisons detailed in S4 Appendix). However, there are several exceptions in

the genera Arctocephalus, Felis,Martes,Mustela, Phoca, Urocyon,Ursus and Zalophus. Four

main hypotheses can be advanced to explain the existence of similar mtDNA genomes in two

putative species: species misidentification (human error), imperfect taxonomy (species synon-

ymy), mtDNA introgression or recent speciation event during the Pleistocene [22].

Within Arctocephalus, two divergent mtDNA lineages (2.1%) were sequenced for the New

Zealand fur seal (Arctocephalus forsteri) [78]. One of them was found to be more similar to the

single mitogenome available for the South American fur seal, Arctocephalus australis (1.3%).

The mitochondrial paraphyly of Arctocephalus forsteri suggests a mtDNA introgression from

Arctocephalus australis at 0.8–0.7 Mya. Nuclear data should be sequenced to confirm this

hypothesis and to further explore a possible taxonomic issue between South American and

New Zealand fur seals.

Within Felis, the mitogenome of the domestic cat (Felis catus) is very similar to those of the

wild cat, Felis silvestris (0.7%), including the African wild cat (Felis silvestris lybica), European

wild cat (Felis silvestris silvestris) and Chinese desert cat (Felis silvestris bieti). These three sub-

species and the domestic cat are either considered separate species [74] or subspecies of Felis
silvestris [79,80]. Such a genome similarity between the domestic cat and wild cat was expected

because the cat was domesticated from the Near Eastern wild cat Felis silvestris lybica [79] and

can hybridize with wild forms [81]. Our results confirm that these taxa should be considered

subspecies rather than species.

WithinMartes, the pine marten (Martes martes) from western Europe and the sable

(Martes zibellina) from Siberia and adjacent areas have quite similar mitogenomes (1.9%

divergence), and our estimation of divergence time is 1.1–1.0 Mya, which is in agreement with

Law et al. [8]. However, high levels of reciprocal mtDNA introgression have been detected in

populations of northern Urals [82], where the two species are found in sympatry. In this

hybrid zone, levels of gene flow should be further studied using nuclear markers to determine

if introgression between the two taxa is asymmetric or not.

WithinMustela, several species show low levels of mitogenomic divergence (1.2-1-6%),

including the western polecat (Mustela putorius) distributed in western Europe, the steppe

polecat (Mustela eversmanii) found in eastern Europe and Asia, and the black-footed ferret

(Mustela nigripes) endemic to North America. In addition, the mitogenome of the European

mink,Mustela lutreola (MT304869, not included in our phylogenetic analyses) shares between

99.1% and 99.2% of identity with the four mitogenomes available forMustela putorius. Our
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estimations indicate that these four closely related species ofMustela have diverged from each

other after 1.1–1.0 Mya. However,Mustela putorius,Mustela eversmanii andMustela lutreola
can be found in sympatry in Europe [1], suggesting possible mtDNA introgression during the

Pleistocene epoch. Cabria et al. [83] have shown evidence for mtDNA introgression fromMus-
tela lutreola toMustela putorius, resulting apparently from asymmetric interspecific hybridiza-

tion, i.e. involving only females of European mink and males of polecat. Since the western and

steppe polecats are known to occasionally hybridize in Eastern Europe [84], gene flow should

be also studied between the two taxa.

Within Phoca, harbor seals (Phoca vitulina) and spotted seals (Phoca largha) are parapatric

sibling species showing 1.9% of differences in our mitogenomic alignment. Although the two

species are known to hybridize in captivity [1], they were found reciprocally monophyletic in

previous mtDNA studies [85,86] and there is no evidence of mixed ancestry in wild popula-

tions found in sympatry (e.g. in Alaska [86]). The hypothesis of a recent Pleistocene speciation,

at 1.1–1.0 Mya according to our estimation, is therefore the most likely explanation.

Within Urocyon, the island fox (Urocyon littoralis), restricted to six Channel Islands located

off the coast of southern California (USA), and the mainland grey fox (Urocyon cinereoargen-
teus) share very similar mtDNA genomes (0.4%). In addition, the species Urocyon cinereoar-
genteus was found to be paraphyletic in the mitochondrial tree of Hofman et al. [87] due to the

inclusive placement of Urocyon littoralis. Even if the island fox is approximately 25% smaller

than the mainland grey fox [88], we suggest that the island fox should be rather treated as a

subspecies of Urocyon cinereoargenteus. Nuclear genome comparisons are however needed to

definitively clarify this taxonomic issue.

Within Ursus, bears living on the Alaskan ABC islands have mitogenomes which are very

similar (0.4–0.5%) to those sequenced for extant polar bears and the fossil of Svalbard dated

between 130 ka and 110 kya [13]. Two possible scenarios of mitochondrial introgression have

been previously proposed: Hailer et al. [89] suggested that the ancestor of polar bears was

introgressed by brown bears between 166 and 111 kya; whereas Hassanin [90] suggested that

different populations of brown bears were introgressed by polar bears at two glacial periods of

the Pleistocene, at 340 ± 10 ka in western Europe, and at 155 ± 5 ka on the ABC islands, and

probably also in Beringia and Ireland based on ancient mtDNA sequences.

Within Zalophus, two species are currently recognized: the Californian sea lion (Zalophus
californianus), which is found on the Pacific coasts of North America; and the Galápagos sea

lion (Zalophus wollebaeki), which has been considered as a subspecies of Zalophus california-
nus by some authors [91]. Despite the low mitogenomic distance measured here between the

two species (0.5%), Wolf et al. [92] have previously concluded that they are separate species

because they were found reciprocally monophyletic with D-loop and CYB sequences and

numerous private alleles were detected for both taxa at most of the 25 investigated microsatel-

lite loci. Our molecular estimate of divergence time between these two species is 0.3–0.2 Mya,

which is much more recent than previous estimations based on D-loop sequences, i.e. 0.8 Mya

[93] and 2.3 ± 0.5 Mya [92].

Mitogenomic variations at the genus level

In mammals, most events of interspecific diversification at the genus level are more recent

than 10 Mya and the great majority of them occurred during the Pliocene and Pleistocene

epochs. This trend, previously reported in various genera of Cetartiodactyla [22] and Primates

[94], is here confirmed in the following 25 carnivoran genera: Arctocephalus, Catopuma, Felis,
Genetta, Leopardus, Lutra, Lynx,Martes,Meles,Melogale,Mirounga,Monachus,Mungos,Mus-
tela, Panthera, Paradoxurus, Phoca, Prionailurus, Prionodon, Puma, Pusa, Ursus, Urva and
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Vulpes. Our analyses suggest however that two mustelid species separated from their conge-

neric representatives in the Middle Miocene:Martes pennanti at 14.2–12.4 Mya; andMustela
frenata at 13.4–11.8 Mya. In addition, the phylogenetic positions of these two species result in

the polyphyly of the two generaMartes andMustela, as previously found using both mtDNA

and nuDNA markers [8]. Taken together, these results clearly indicate thatMartes pennanti
should be placed in its own genus Pekania, whereasMustela frenata should be placed in the

genus Grammogale. Indeed, the genus Grammogale was used to uniteMustela africana and

Mustela felipei in a separate genus [95]. In addition, several molecular studies have shown that

these two species fall into a robust clade with Mustela frenata and that they are the sister-group

of Neovison vison [8,96]. We recommend therefore to include the four species Mustela afri-
cana,Mustela felipei,Mustela frenata and Neovison vison into the genus Grammogale.

Within the tribe Canini, our mitogenomic tree shows that Cuon alpinus (dhole) is the sis-

ter-group of all Canis species, excepting Canis adustus (side-striped jackal) which diverged

from them at 8.7–7.4 Mya. The African wild dog (Lycaon pictus) occupies a more basal posi-

tion, but this placement is only supported by 6/10 overlapping datasets in our SuperTRI analy-

ses, indicating that an alternative position cannot be excluded. The mitochondrial phylogeny

differs from published nuclear phylogenies [97,98] in which Canis adustus was found to be

related to Canis mesomelas (black-backed jackal), but more divergent from the clade composed

of other Canis species, Cuon and Lycaon. Following these results, in order to keep the genus

Canismonophyletic, the species Canis adustus and Canis mesomelas should be placed in a dif-

ferent genus, which is Lupulella according to Viranta et al. [99]. The mito-nuclear discordance

for the monophyly of the genus Lupulella was not discussed in previous studies. Our interpre-

tation is that a mitochondrial introgression occurred at 6.2–5.2 Mya from an ancestor of Canis
species to the lineage leading to Lupulella mesomelas. In agreement with the genomic study of

Gopalakrishnan et al. [100], which concluded to pervasive gene flow among Canis species, our

results suggest that interspecies hybridization has been also frequent in the early evolutionary

history of canid genera in Africa.

Our chronogram in Fig 3 shows that no intergeneric divergence occurred during the Pleis-

tocene epoch, except the split between the Malagasy euplerid generaMungotictis and Salanoia,

and the separation between the seal generaHalichoerus, Phoca and Pusa. A Pleistocene diversi-

fication was also found in previous molecular dating analyses of the Eupleridae and Phocidae

[8,101]. In the absence of striking morphological feature for diagnosing these genera, we rec-

ommend synonymizing Halichoerus and Pusa with Phoca, as proposed in previous studies

[102], andMungotictis with Salanoia.

Changes in base composition and their impact on evolutionary rates

Mitogenomic rearrangements did not occur during the evolutionary history of the Carnivora.

This deeply contrasts with other animal groups for which inversions of mitochondrial protein-

coding genes and control region have resulted in many local or full reversals of base composi-

tion [30,31]. Despite this, five carnivoran species in our Bayesian tree (Fig 2) have a longer ter-

minal branch than other representatives of the same family or superfamily: Cynogale bennetti
within the Viverridae, Homotherium latidens within the Felidae, Mellivora capensis within the

Mustelidae, Nasua nasua within the Procyonidae and Odobenus rosmarus within the Otarioi-

dea. In addition, two higher taxa of Caniformia show longer branches: Otarioidea and Muste-

loidea. Since branch length is proportional to the number of substitutions, these long branches

indicate either an acceleration in the rates of substitution or alternatively an important change

in the pattern of substitution [103,104]. As shown in Fig 1, Cynogale,Homotherium andMelli-
vora show a divergent base composition. For Cynogale andMellivora, we can therefore assume

PLOS ONE Evolutionary history of Carnivora inferred from mitochondrial genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0240770 February 16, 2021 16 / 28

https://doi.org/10.1371/journal.pone.0240770


that a change in the pattern of substitution has taken place during their recent evolution. The

case ofHomotherium is more problematic. The mitogenome of this extinct genus was

sequenced from a bone (YG 439.38) dated at>47,500 years [16]. Since ancient DNA molecules

are known to exhibit a high rate of cytosine deamination, the sequences can contain artefactual

C =>T and G =>A substitutions [105]. By comparing the mitogenomes of all felid species,

this is exactly the pattern observed for third-codon positions, asHomotherium is characterized

by less cytosines (28.94% versus 28.96–35.21% in other felid species), more thymines (25.41%

versus 17.44–23.51%), less guanines (2.80% versus 4.69–8.41%) and more adenines (42.85%

versus 38.41–42.79%). As a consequence, we conclude that sequencing errors introduced by

DNA damage are the cause of the long branch ofHomotherium in Fig 2.

The mitogenomes of Nasua and Odobenus have a base composition that is not so divergent

from their closest relatives, suggesting that an acceleration of substitution rates is the cause of

their long branch in Fig 2. As pointed out by Bromham [106], mammals evolving with faster

evolutionary rates have generally a small body-size, but the cause of this body-size effect con-

tinues to be debated, because there are many possible mechanisms including shorter genera-

tion times, shorter lifespan, higher fecundity, larger litter size and higher metabolic rates.

From this point, the walrus (Odobenus rosmarus) is intriguing because it is one of largest pin-

nipeds. Its field metabolic rate is 381.2 MJ/day, which is six to 32 times more than in other spe-

cies of Pinnipedia [107]. Whereas most other pinnipeds hunt pelagic organisms, such as fish

and cephalopod species, in the water column, the walrus feeds on benthic species and prefers

molluscs, especially clams [108]. This special diet and associated behaviour, with long exposure

in the cold coastal waters of the Arctic Ocean, may therefore explain the increased rate of

mtDNA evolution detected in the walrus. Repetitive bottlenecks generated by climatic oscilla-

tions during the Pleistocene may be proposed as an alternative hypothesis. Nuclear genome

comparisons between pinniped species will help to decipher between these two main hypothe-

ses, as we can expect accelerated rates of substitution in both mtDNA and nuDNA genomes in

case of repetitive bottlenecks.

Robust and reliable mitogenomic phylogeny for deep relationships within

Carnivora

Previous molecular studies have shown that inferring deep phylogenetic relationships using

mitogenomes can be problematic. An important issue concerns the reversals of strand muta-

tional bias: detected in many animal phyla, such as Arthropoda, Chordata and Mollusca, it

may be particularly misleading for phylogenetic reconstruction [30,31]. The mitogenome of

mammals is not affected by this kind of bias, as its structure is highly conserved among the 27

mammalian orders. However, mutational saturation is a different issue: since the mtDNA

evolves with higher mutation rates than the nuclear genome [109], it is more prone to multiple

substitutions at the same site which leads, with time, to the disappearance of the phylogenetic

signal [110,111]. Although mutational saturation may be particularly problematic for recon-

structing Precambrian, Paleozoic and Mesozoic divergences, it is expected to have less impact

for inferring more recent divergences, such as those during the Cenozoic. This explains why

mitogenomic sequences have been largely used for inferring interfamilial and intrafamilial rela-

tionships in most mammalian groups, including Cetartiodactyla [22], Feliformia [11], Primates

[94,112], Pholidota [113], Xenarthra [114], etc. In agreement with this view, all families and

inter-familial levels shown in our mtDNA tree of Fig 2 received high support with all the three

phylogenetic approaches (Bayesian trees ofmtDNA andmtDNA-Tv datasets and SuperTRI

analysis) indicating considerable stability of the topology. Interfamilial relationships are con-

formed to the nuclear tree published by Eizirik et al. [9], except the position of the Mephitidae
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as the sister-group of the Ailuridae. However, this relationship was also found by Law et al. [8]

based on 46 genes (4 mitochondrial and 42 nuclear) and 75 species of Musteloidea.

Diversification of the Carnivora during the Cenozoic

The mtDNA phylogeny reconstructed here presents a good opportunity to study the evolution

of the order Carnivora. Indeed, our dense taxonomic sampling allow us to include many fossils

as calibration points for estimating divergence times. This point is particularly relevant as the

fossil record of Carnivora has been significantly improved over the last 10 years, with the dis-

covery of several key fossils [17–21]. As pointed out in Warnock et al. [115], the most effective

means of establishing the quality of fossil-based calibrations is through a priori evaluation of

the intrinsic palaeontological, stratigraphic, geochronological and phylogenetic data. We iden-

tified therefore 21 fossil calibration points (Table 1), including one tip calibration (the mito-

genome of a late Pleistocene fossil of Ursus maritimus [13]) and 20 well-constrained

calibration points having both minimum and maximum age boundaries interpreted from fos-

sils with known position with respect to extant taxa included in our study. Molecular dating

analyses were performed using either a uniform (U) or log-normal (L) prior distribution on

the calibrated node ages. The “L approach” used here considers that minimum ages are gener-

ally more accurate and reliable than maximum ages because younger fossils are generally more

abundant and precisely dated than older fossils as a consequence of taphonomy and dating

methods [38]. As expected, the divergence times estimated with the “L approach” are more

recent than those estimated with the “U approach” (Figs 3 and 4). The values calculated with

the two approaches are given for all the nodes described below.

The age estimated for the MRCA of Carnivora was 52.7 Mya with the “U approach” and

46.7 Mya with the “L approach”, and both are younger than previous estimates published by

Eizirik et al. [9] (59.2 Mya) and Nyakatura and Bininda-Emonds [10] (64.9 Mya). However,

our dating estimates fit well with the end of the warmest period of the Cenozoic era, from the

Palaeocene–Eocene Thermal Maximum (PETM) at 56 Mya to the Early Eocene Climatic Opti-

mum (EECO) at around 53–50 Mya [116–118]. In the fossil record, this period was marked by

the first appearances of Primates, Perissodactyla and Cetartiodactyla in North America and

Europe, as well as Carnivoraforms, a group formed by the crown group Carnivora plus the

stem family ‘Miacidae’ [2,4,119]. During the early Eocene greenhouse world, rainforests spread

on Earth from pole to pole [120,121], suggesting that early carnivorans were small arboreal

species. Biogeographically, Carnivoraforms diversified in the three Laurasian continents dur-

ing the early Eocene, with a possible origin in the late Paleocene of Asia [4]. Crown carnivor-

ans originated in one of the three continents of the Northern Hemisphere. To know which

one, new fossils need to be discovered in the middle Eocene to fill the gap between the Carni-

voraforms of the early Eocene and the oldest carnivorans of the late Eocene [4].

The divergence times estimated for basal relationships in the Caniformia are similar to

those published by Eizirik et al. [9] but much younger than those published by Nyakatura and

Bininda-Emonds [10]: Caniformia = 48.0–42.5 Mya versus 48.2 Mya and 61.2 Mya respec-

tively; Arctoidea = 43.4–38.3 Mya versus 42.6 Mya and 47.8 Mya respectively. For more recent

nodes, our estimates are similar to the two previously cited studies: Musteloidea = 37.4–33.0

Mya versus 32.0 Mya and 35.7 Mya respectively; Mustelidae+Procyonidae = 34.4–30.3 Mya

versus 27.4 Mya and 31.6 Mya respectively; and Pinnipedia = 27.2–22.9 Mya versus 24.5 Mya

and 22.4 Mya respectively. By contrast, the ages inferred for the families are generally much

younger in Eizirik et al. [9] (Fig 4), a result potentially explained by a poor species sampling

(two species of Ursidae, three species of Canidae, etc.) and the low phylogenetic signal of

nuclear protein-coding genes for the most recent nodes.
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The ages estimated for basal divergences in the Feliformia are much younger than in Eizirik

et al. [9] and Nyakatura and Bininda-Emonds [10]: Feliformia = 34.4–31.1 Mya versus 44.5

Mya and 53.2 Mya respectively; Feloidea = 27.4–24.7 Mya versus 33.3 Mya and 52.9 Mya

respectively; and Viverroidea = 28.2–25.8 Mya versus 37.4 Mya and 31.8 Mya respectively.

These results may be explained by the use of different calibration points: Feloidea = 34–20

Mya versus>28.5 Mya in Eizirik et al. [9]; Felidae = 20–14 Mya versus>31.15 Mya in Nyaka-

tura and Bininda-Emonds [10]; and Viverridae = 34–14 Mya versus>25.72 Mya in Nyakatura

and Bininda-Emonds [10]. The minimum age constraints used by Nyakatura and Bininda-

Emonds [10] for Felidae and Viverridae seem however problematic because they were not

extracted from the fossil record, but from the supertree of Bininda-Emonds et al. [122]. By

contrast, the minimum boundary of 28.5 Mya used for Feloidea in Eizirik et al. [9] was inter-

preted from early Oligocene fossils assumed to be the oldest felids according to McKenna and

Bell [123]. In Meredith et al. [26], who used a similar minimum boundary for Feloidea (> 28.3

Mya), the divergence times estimated for Feliformia were found to be highly variable between

their eight molecular dating analyses, with mean ages between 35.81 and 43.07 Mya. Three

early Oligocene fossils were used as calibration points in this study: Proailurus and Stenogale,
which were assumed to be stem Felidae; and Palaeoprionodon, which was supposed to be a

stem Prionodontidae. However, the phylogenetic positions of these fossils remain uncertain.

Indeed, the three fossil genera formed the sister-group of Feloidea + Viverroidea +Herpestides
antiquus† in the phylogenetic analyses of Solé et al. [3,4]. In the classification of Hunt [124],

Palaeoprionodon was included in the subfamily Prionodontinae with Prionodon and other

extant viverrid genera, such as Genetta and Pioana. Although Prionodon was treated as a mem-

ber of the Viverridae by Hunt [124] and previous authors, it was then found to be the sister-

group of the Felidae by Gaubert and Veron [125] which was confirmed by all more recent

studies [9,10,26] (see also Fig 2). In Nyakatura and Bininda-Emonds [10], Paleoprionodon was

used as a calibration point for the Viverridae (based on Hunt and Tedford [126]), although it

is suggested to be either close to Prionodon or a stem Feliformia [3,124,127].

Our dating estimates suggests that the basal split between Nandinia and other genera of

Feliformia occurred at the Eocene/Oligocene transition (34 Mya), when a brutal and global

cooling of 5˚C resulted in the extinction of many taxa and the appearance of several modern

mammal lineages [128]. Accordingly, Nandiniamay be the descendant of forest-adapted

ancestors, whereas the other lineage of Feliformia may have evolved in response to this impor-

tant climatic change by adapting to more open vegetation.

Conclusion

Based on a large taxonomic sampling (220 taxa represented by 2,442 mitogenomes) and 21 fos-

sil calibration points (most of them having both minimum and maximum age boundaries and

a position based on recent fossil revisions and phylogenies), our study proposes a new time-

scaled phylogeny for Carnivora and provides further insights into the evolutionary history of

this order. The age estimates for the Carnivora and the two suborders Caniformia and Felifor-

mia fit well with global changes corresponding to the appearance of other mammal lineages.

Moreover, our phylogenetic results, although largely similar to other recent phylogenies, sug-

gest several taxonomic changes that would need to be confirmed using nuclear data.

Fig 4. Comparison with published chronograms on Carnivora. The mean divergence times were here estimated with two approaches for the prior distribution on

the calibrated node ages: (1) a uniform distribution between maximum and minimum boundaries (“U approach”, blue histograms); and (2) a log-normal distribution

(“L approach”, green histograms) (see main text for details). The results were compared with mean ages inferred in Eizirik et al. [9] (red histograms) and Nyakatura

and Bininda-Emonds [10] (orange histograms).

https://doi.org/10.1371/journal.pone.0240770.g004
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