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Abstract
Chest X-rays are playing an important role in the testing and diagnosis of COVID-19 disease in the recent pandemic.
However, due to the limited amount of labelled medical images, automated classification of these images for positive and
negative cases remains the biggest challenge in their reliable use in diagnosis and disease progression. We implemented a
transfer learning pipeline for classifying COVID-19 chest X-ray images from two publicly available chest X-ray datasets1,2.
The classifier effectively distinguishes inflammation in lungs due to COVID-19 and Pneumonia from the ones with no
infection (normal). We have used multiple pre-trained convolutional backbones as the feature extractor and achieved an
overall detection accuracy of 90%, 94.3%, and 96.8% for the VGG16, ResNet50, and EfficientNetB0 backbones respectively.
Additionally, we trained a generative adversarial framework (a CycleGAN) to generate and augment the minority COVID-
19 class in our approach. For visual explanations and interpretation purposes, we implemented a gradient class activation
mapping technique to highlight the regions of the input image that are important for predictions. Additionally, these
visualizations can be used to monitor the affected lung regions during disease progression and severity stages.

Keywords Activation maps · COVID-19 · Deep neural networks · Transfer learning

1 Introduction

The 2019 novel Coronavirus (COVID-19) has become a
serious public health issue across the world and is approach-
ing approximately 7.759 million cases worldwide according
to the statistics of the European Centre for Disease Pre-
vention and Control on June 14th, 2020. The COVID-19
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infection may manifest itself as a flu-like illness potentially
progressing to acute respiratory distress syndrome. Despite
the worldwide research efforts over the past few months,
early detection of COVID-19 remains a challenging issue
due to limited resources and the amount of data available for
research. The gold standard screening method for COVID-
19 is the Reverse-Transcription Polymerase Chain Reaction
(RT-PCR). Chest radiography imaging is being used as an
alternative screening method and done in parallel to PCR
viral testing [23]. Additionally, false negatives have been
reported in PCR results due to insufficient cellular content
in the sample or time-consuming nature and inadequate
detection when there were positive radiological findings [3].
The accuracy of Chest X-ray (CXR) diagnosis of COVID-
19 infection strongly relies on radiological expertise due to
the complex morphological patterns of lung involvement
which can change in extent and appearance over time. If
these patterns are detected with high accuracy, it can enable
rapid triaging for screening, diagnosis, and management of
patients with suspected or known COVID-19 infection [16].

However, the limited number of trained thoracic radi-
ologists limits the reliable interpretation of complex chest
examinations, especially in developing countries. Deep
learning techniques, in the particular Convolutional Neural
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Networks (CNN), have been beating humans in various
tasks of computer vision and other video processing tasks
in recent years. Deep learning algorithms have already been
applied for the detection and classification of Pneumo-
nia [17, 25] and other diseases on radiography. Hence, it
has become the natural candidate for the analysis of CXR
images to address the automated COVID-19 screening.
Some recent transfer learning approaches presented in [4, 6,
8, 16, 23] applied to CXR images of patients has been show-
ing promising results in the identification of COVID-19.

In this paper, as an effort to improve the current COVID-
19 detection using a limited number of publicly available
CXR dataset, we devise and implement a CXR based
COVID-19 disease detection and classification pipeline
using a modified VGG-16, ResNet50 [11], and a recent
EfficientNetB0 [22] architecture. Following the trend from
the literature, for our research, we have assembled a three-
class labelled dataset with X-ray images from ‘normal’,
‘COVID-19’, ‘Pneumonia’ classes. “COVID-19 Image Data
Collection” [7] is currently serving as the main source
of COVID-19 CXR images at this stage. To enhance the
under-represented COVID-19 class, we train a generative
adversarial framework to generate synthetic COVID-19
images during our experiments. Our choice for the
convolutional backbone for this research is mostly driven
by their lightweight nature and their performance measures
in terms of accuracy, precision, and recall performances to
accurately detect COVID-19.

The remaining sections of this paper are organized as
follows. In Section 2, we review the current literature
on COVID-19 CXR image analysis using deep learning
methods. Design insights are derived from the review
of the related work and we describes the dataset for
the implemented network in this section. Section 3 gives
details on the proposed transfer learning architecture and
discusses the necessary settings, pre-trained backbones, and
procedural stages. The model performance is evaluated in
Section 4 where classification results in terms of recall,
precision and, overall accuracy are compared and contrasted
with concurrent methods reported in the literature. The
influence of model backbones on the training time, loss, and
model accuracy are also discussed in this section. We also
present a gradient class activation mapping (Grad-CAM)
technique to monitor affected lung regions during disease
progression for visual interpretation purposes. Finally,
conclusions are drawn in Section 5.

2 Related work and data pre-processing

Chest radiography is widely used for the detection and
classification of Pneumonia and other pulmonary diseases.
In the context of COVID-19 research, a closer look

at the literature showed increased use of CXR images
over CT scans due to potentially more data available
from various sources. However, accurate annotation and
analysis of radiography images require a radiology expert
which requires significant expertise and processing time.
To identify underlying features from radiography images
for the purpose of diagnostic analysis, a series of recent
studies showed promising results using state-of-the-art
computational and deep learning algorithms. In Section 2.1,
we review the current literature on COVID-19 CXR image
analysis using deep learning methods. We will derive design
insights regarding the dataset and model architecture from
the review of the related work. We then describe the datasets
in Section 2.2, along with the necessary pre-processing and
augmentation techniques in Sections 2.3 and 2.4.

2.1 Background: Deep learning for Chest X-ray
and COVID-19 diagnosis

Convolutional neural network architecture is one of the
most popular and effective approaches in the diagnosis of
COVD-19 from digitized images. Several reviews have been
carried out to highlight recent contributions in assembling
dataset to train models for COVID-19 detection. In [6],
a database of 190 COVID-19, 1345 viral Pneumonia, and
1341 normal chest X-ray images was introduced. Training
and validation on four different pre-trained networks,
namely, Resnet18, DenseNet201, AlexNet, and SqueezeNet
for the classification of two different schemes (normal
and COVID-19 Pneumonia; normal, viral Pneumonia, and
COVID-19 Pneumonia). The classification accuracy for
both schemes was 98.3% and 96.7% respectively. The
sensitivity, specificity, and precision values were also
reported.

In [12], a comparison among seven different well-known
deep learning neural network architectures were presented.
In the experiments, they use a small dataset with only 50
images in which 25 samples are from healthy patients and
25 from COVID-19 positive patients. In their experiments,
the VGG19 and the DenseNet201 were the best performing
architectures. In [23], an architecture called COVID-net is
created to classify X-ray images into normal, Pneumonia,
and COVID-19. Different from the previous work, they use
a much larger dataset consisting of 16,756 chest radiography
images across 13,645 patient cases. The authors report
an accuracy of 92.4% overall and sensitivity of 80% for
COVID-19.

In [8], a pre-trained ResNet50 model is fine-tuned for the
problem of classifying X-ray images into normal, COVID-
19, bacterial Pneumonia and viral Pneumonia. The authors
report better results when compared with the COVID-
net, 96.23% accuracy overall, and 100% sensitivity for
COVID-19. Nevertheless, it is important to highlight that
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the difference in [8] that it has an extra class than [23]
and the dataset consists of 68 COVID-19 radiographs
from 45 COVID-19 patients, 1,203 healthy patients, 931
patients with bacterial Pneumonia and 660 patients with
non-COVID-19 viral Pneumonia. Additionally, the test set
has only 8 COVID-19 instances for the claim of 100%
sensitivity to be generalized for a larger cohort. The
author in [16] employed a light-weight implementation of
a COVID-19 classifier and with an accuracy of 93.9%,
COVID-19 Sensitivity of 96.8%, and positive predictive
value of 100% using a flat version of EfficientNet backbone.
A hierarchical version of EfficientNet was also reported
with 93.5% accuracy and COVID-19 sensitivity of 80.6%.
Some effort has been shown in [2] using a Decompose,
Transfer, and Compose (DeTraC ) architecture to deal with
any irregularities in the image dataset by investigating
class boundaries. A ResNet18 based shallow learning
mode was used to extract discriminating features in this
implementation. The research reported an accuracy of
95.12% (with a sensitivity of 97.91%, and a specificity
of 91.87%) in the detection of COVID-19 X-ray images
from normal, and severe acute respiratory syndrome
cases.

Having reviewed the related work, it is evident that
despite the success of deep learning in the detection
of Covid-19 from CXR and CT images, dealing with
class imbalance, effective fine-tuning and validation of
the models have not been explored. In this research, we
aimed to extend the development of automated multi-
class classification models based on chest X-ray images.
For that, we created a balanced dataset and implemented
an efficient and lightweight deep learning pipeline. We
developed a Generative Adversarial Network (GAN) to
generate synthetic COVID-19 data and finally, we fine-
tuned and optimized the hyper-parameters to improve the
performance of the model.

2.2 Dataset description

Following the trend of possible classes found in the liter-
ature, we have assembled a three-class dataset with labels,
normal - for healthy patients; COVID-19 - for patients with
COVID-19; and Pneumonia - for patients with viral and bac-
terial Pneumonia. Our main source of COVID-19 images
was from the “COVID-19 Image Data Collection” pub-
licly available on Github [7]. These anonymized COVID-19
images were acquired from websites of medical and scien-
tific associations and COVID related research papers. This
dataset is a constantly growing dataset and at the time of
reviewing this paper in June 2020, the dataset had in total
of 673 X-ray and CT images from 349 patients who were
affected by COVID-19 and other diseases, such as MERS,
SARS, and ARDS [3]. Figure 1 shows the percentage of

image distribution as per the diagnosis, where 69% of the
images had some form of COVID-19 findings. We have sep-
arated all the 202 Antero-posterior (AP) view of COVID-19
positive X-ray images from this dataset. The age group of
the patients that contributed most of the positive cases were
from 50 to 80 years old.

The ‘Normal’ and ‘Pneumonia’ classes for our exper-
iments are taken from the kaggle chest-xray-Pneumonia
dataset. We randomly selected 300 images for each of
the classes to avoid any drastic class imbalance (dataset
available at https://www.kaggle.com/paultimothymooney/
chest-xray-Pneumonia). There are several other publicly
available datasets of CXR images for normal, viral and bac-
terial Pneumonia such as the NIH Chest X-ray Dataset [13],
RSNA Pneumonia Detection Challenge dataset, and a more
recent COVIDx dataset from [23] which can be used for
training as well.

To be noted, we selected only a small number of images
for normal and Pneumonia as learning with an imbalanced
dataset could produce a biased prediction model towards the
classes with more samples. This made our original dataset
to be consisting of 802 CXR images. 80% of the dataset is
then separated as the training set, the remaining 20% of the
dataset contributing as the test set. A detailed division of
the dataset can be found in Table 1 and the associated code
for this research can be found at https://github.com/TZebin/
Covid-19-applied-Intelligence/tree/master/code.

2.3 Pre-processing: Image resize and normalization

Each image in the assembled dataset is resized to
224x224 pixels to reduce computation time and to maintain
consistency throughout our dataset. Additionally, to account
for the large variability of the image appearance (brightness
and contrast), depending on the acquisition source, radiation
dose, etc [9, 21], an image normalization stage has
been applied. This stage normalizes and scales the pixel
intensities to a range of [0, 255].

2.4 Image augmentation

To achieve robust and generalized deep learning models,
large amounts of data are needed. However, medical
imaging data is scarce and labelling the dataset is expensive.
We applied two different versions of the augmentation
technique on the dataset. In the first version, we applied
image augmentation techniques [19] such as random
rotation, width shift, height shift, horizontal, and vertical
flip operations using the ImageDataGenerator functionality
from the TensorFlow Keras framework [5, 10].

Nowadays, Generative adversarial networks (GAN) offer
a novel method for data augmentation. Hence, we have
used a CycleGAN [26] architecture for increasing the
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Fig. 1 COVID-19 Image Data
Collection: Image distribution as
per diagnosis (69% COVID)

under-represented COVID-19 class images (described as
version 2 for augmentation in Table 1). Utilizing the
normal class from our dataset, we trained the CycleGAN
to transform normal images into COVID-19 images. As
a proof-of-concept at this stage, we have generated 100
synthetic COVID-19 images to add to our original training

dataset. Figure 2 shows a few examples of the original and
generated images side-by-side. After 5000 iterations of the
generator and discriminator training, we have achieved near
realistic generated CXR images, though there are shape
deformations seen in some cases. To be noted, the dataset
after augmentation is still quite small, hence we employed

Table 1 Dataset settings and other parameters

Settings Description

Original Chest X-ray (CXR) COVID-19: 202; Normal: 300; Pneumonia: 300

Pre-processing Intensity normalization, class-label encoding

Training set division (80%) COVID-19: 162; Normal: 240; Pneumonia: 240

Test set division(20%) COVID-19: 40; Normal: 60; Pneumonia: 60

Augmentation version1 (v1): Random rotation, width shift, height shift, horizontal flip

version2 (v2): 100 CycleGAN synthesized image for COVID-19, followed by augmentation steps in v1

Validation set 5-fold cross-validation on the augmented training set

Pre-trained base models:

VGG16 Fixed-size kernel; parameter: 138M, Input shape: 224, 224, 3

Resnet50[11] Residual connections; 26M, Input shape: 224, 224, 3

EfficientNetB0 [22] Mobile inverted bottleneck Convolution with depth, width, and resolution; parameter: 5.3M, Input shape:
224, 224, 3
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Fig. 2 Generated images from CycleGAN for the underrepresented COVID-19 class

five-fold cross-validation during training to avoid the over-
fitting of the model and the validation set served as a
checkpoint for us to the trained model’s performance to
unseen data.

3Model architecture

We implemented the COVID-19 disease detection pipeline
using an adapted Convolutional Neural Network architec-
ture and trained it in the feature representation transfer
learning mode. This section gives details on the pro-
posed transfer learning architecture and discusses the nec-
essary settings, pre-trained backbones, and fine-tuning
stages.

3.1 Transfer learning stages

We effectively used a pre-trained VGG16, ResNet50,
and EfficientNetB0 as our feature extractor. As all these
backbones were pre-trained on huge ImageNet dataset, it
has learned a good representation of low-level features like
spatial, edges, rotation, lighting, shapes, and these features
can be shared across to enable the knowledge transfer
and act as a feature extractor for new images in different
computer vision problems. As in our case, the new images
have different categories from the source dataset, the pre-
trained model is used to extract relevant features from these
images based on the principles of transfer learning. We used
TensorFlow, Keras, PyTorch, Scikit-learn, and OpenCV
libraries in Python for generating various functionalities of
the pipeline. Figure 3 shows an illustration of our proposed
pipeline for COVID-19 chest X-ray classification.

3.2 Pre-trainedmodel backbone and network head
removal

We removed the network head or the final layers of the pre-
trained model that was initially trained on the ImageNet
dataset. This stage is crucial as the pre-trained model was
trained for a different classification task. The removal of
network head removed weights and bias associated with the
class score at the predictor layers. It is then replaced with
new untrained layers with the desired number of classes in
the new dataset. We adjusted a three-class network head
for the COVID-19 dataset for three possible labels, namely,
normal - for healthy patients, COVID-19 - for patients with
COVID-19, and Pneumonia - for patients with non-COVID-
19 Pneumonia.

3.3 Fine-tuning

At the initial stage, we froze the weights of the earlier layers
of the pre-trained backbone to help us extract the generic
low-level descriptors or patterns from the chest X-ray image
data. In the convolutional networks we used, the first few
layers learn very simple and generic features that generalize
to almost all types of images. As we went higher up, the
features are increasingly more specific to the dataset on
which the model was trained. The goal of fine-tuning is
to adapt these specialized features to work with the newly
fed COVID-19 dataset, rather than overwrite the generic
learning.

In the feature extraction experiment, we only trained a
few layers on top of a base model. The weights of the pre-
trained network were not updated during training. At this
stage a newly added network head or a classifier is added
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Fig. 3 Transfer learning
architecture with pre-trained
convolutional backbone for
COVID-19 chest X-ray
classification

with the desired number of classes, and trained for adapting
the weights according to the new patterns and distributions.
One way to increase performance even further is to train (or
“fine-tune”) the weights of the top layers of the pre-trained
model alongside the training of the classifier we added. This
stage forces the weights to be tuned from generic feature
maps to features associated specifically with the dataset.

The training of the model has been done offline on
an Ubuntu machine with Intel(R) Core i9-9900X CPU @
3.50GHz, 62GB memory and a GeForce RTX 2060 GPU.
All the models were trained for 50 epochs, fine-tuned with
an Adam optimizer with a learning rate of 0.0001, Batch
size of 8, and a categorical cross-entropy. To be noted, five-
fold cross-validation is used during training to avoid the
over-fitting of the model.

4 Results andmodel evaluation

The main objective of our proposed architecture is to
show that the pipeline we assembled, will maximize

detection accuracy and minimize any false categorized
COVID-19 cases. To assess the performance of the
models and as a design guide for opting a backbone, we
compared the training time, loss performance, and model
accuracy of the VGG16, ResNet50, and EfficientNetB0
model backbones on the training set in Section 4.1. In
Section 4.2, the model performance is evaluated in terms of
recall, precision, and overall accuracy. These matrices are
compared and contrasted with concurrent methods reported
in the literature in Section 4.3. In Section 4.4, we present
Grad-CAM activation maps to monitor affected lung regions
during disease progression for visual explanations purposes.

4.1 Training loss and accuracy

Figure 4 shows the change in loss function for the three
convolutional models we experimented with during this
research. We trained each model for 50 epochs. When the
model was trained with the originally assembled three-
class dataset, after traditional augmentation, the model
with VGG16(v1) backbone took the longest time during
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Fig. 4 Comparative loss function on the training dataset

training to reach an accuracy of 0.93. The VGG16(v2) is
the same model trained with an enhanced version of the
original dataset, where the under-represented COVID-19
class is enhanced by 100 more synthetic images generated
with a CycleGAN. The training loss seemingly reached the
threshold loss value within 10 epochs in this case. The
realistic augmentation in the COVID-19 class definitely
has increased the model’s accuracy by almost 3%. A
further improvement is achieved when the backbone was
replaced with ResNet50 and EfficientNetB0, with the
EffiecientNetB0 being the fastest. To be noted, each epoch
for the given training dataset and computational setup took
about 18 seconds with 232 ms/step for a batch size of 8 and
a learning rate of 0.0001. The EfficientNetB0 also achieved
the best accuracy with the squeeze-and-excitation(SE)
optimization stage included in its architecture.

4.2 Model evaluation on the test dataset

If True Positive (TP ) is the number of COVID-19 classified
rightly as COVID; True Negative (TN ) is the number
of normal CXR images rightly classified normal; False
Positive (FP ) is the number of normal events misclassified
as COVID-19 and non-Covid Pneumonia and False
Negative (FN ) is the number of COVID-19’s misclassified
as normal or Pneumonia, we can define accuracy, recall, and
the precision of a model can be defined using the following
equations [20].

– Accuracy: It is an indicator of the total number of
correct predictions provided by the model and defined
as follows:

Accuracy = TP + TN

TP + TN + FP + FN

. (1)

– Recall and Precision: Two of the most commonly used
performance measures, precision and recall measures

are defined as follows:

Precision or positive predictive value = TP

TP + FP

. (2)

Recall or Sensitivity = TP

TP + FN

. (3)

Our results show accurate model performance with an
overall detection accuracy of 90.0%, 94.3%, and 96.8%
for our exemplar VGG16, ResNet50 and EfficientB0 back-
bones respectively on the fixed test set of 40 COVID-19, 60
Normal and 60 CXR images for the Pneumonia class. We
presented the confusion matrix plot for the three backbone
models under consideration in Fig. 5. The rows correspond
to the predicted class (Output Class) and the columns cor-
respond to the true class (Target Class). The diagonal cells
in the confusion matrix correspond to observations that are
correctly classified (TP and TN ’s). The off-diagonal cells
correspond to incorrectly classified observations (FP and
FN ’s). The number of observations is shown in each cell.

4.3 Comparison with other approaches

We have summarized a class-wise recall, precision, and
accuracy performances from various experiments in Fig. 6.
Table 2 showed a comparison of overall accuracy and
COVID-19 precision performances with concurrent pro-
posed approaches from the literature. As seen from our
results presented in Table 2, for the VGG16 model, when
the under-represented COVID-19 class is enhanced by 100
more synthetic images generated with a CycleGAN, there
was a 2% improvement in overall accuracy from 0.88 to
0.90. The precision performance for the COVID-19 class
has been improved from 0.88 in VGG16 (v1) to 0.93 in
VGG16 (v2) through the addition of these realistically
augmented COVID-19 data. When comparing this to the
VGG16 model performance presented in Luz et al.[16],
with a COVID-19 class data the precision value reported
was 0.636. This showed a clear improvement, though the
datasets used for training are not directly comparable. The
VGG16 model, when saved for the inference stage, has a
memory footprint of 57 megabytes with 14.7 million param-
eters. For the ResNet50 base model, the overall accuracy
has improved to 94.3% due to a larger number of fea-
tures extracted by the model, leading to a better distinction
between class. This model, when serialized and saved, has a
memory footprint of 97 megabytes with 23.7 million param-
eters. In the approach presented in [8] with ResNet50, the
accuracy achieved is 96.23%, which is slightly higher than
the value we achieved. However, in their test dataset, there
were only 8 instances for the COVID-19 class in a four-
class classification scenario, the value may not be robust and
generalized for different class distribution.
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Fig. 5 Confusion matrix and overall accuracy of three backbone models used in this research

Our experimentation with the EfficientNetB0 base model
has achieved a 96.8% overall accuracy, with a COVID-
19 class precision value of 1 and a recall value of 0.975.
When compared to the COVIDNet-CXR model proposed
by Wang et al [23], the values were 0.909 and 0.968
respectively. Our version of EfficientNetB0 has higher
precision, which is critical as the goal is to be able
to detect as many positive COVID-19 cases to reduce
the community spread. Using the same backbone, the
EffcientNetB3 proposed by Luz et al[16] has shown a
precision of 100% for the COVID-19 class, while the
overall accuracy is lower than the EffcientNetB0 version
we implemented. To be noted, the EffcientNetB3 model
has 12.3 million parameters whereas EffcientNetB0 has 5.3
million parameters, contributing a lighter memory footprint
(21 megabytes) than its scaled B3 version. Additionally,
the depth, width, and resolution scaling in the EfficientNet
architecture seemingly outperformed both VGG and ResNet
architecture. The EfficientNetB0 also achieved the best
accuracy with the squeeze-and-excitation(SE) optimization
in our experiments .

4.4 Coarse region localizationmapwith gradient
class activation

For visual explanations and interpretation purposes, we
visualized the regions of the input image that are important
for predictions. For this, we implemented a gradient class
activation mapping (Grad-CAM) technique [18] in the
pipeline to produce a coarse localization map of the
highlighted regions.

In Fig. 7, activation map for the three classes in our
dataset is shown. The first row of Fig. 7 represents
the original images, whereas the first column presents a
healthy chest X-ray sample, the second shows the data
from a patient with Pneumonia, and the third one, from a
patient with COVID-19. The rightmost CXR taken on the
patient shows bilateral patchy ground-glass opacity. These
visualizations can be used to monitor affected lung regions
during disease progression and severity stages. In Fig. 8,
for a patient’s X-ray in ICU-care at day 3, 7 and 9, the
coarse localization map showed increased inflammation
indicating disease severity. There are multi-focal patch,

Fig. 6 Class-wise recall,
precision and accuracy
comparison for the three
backbone models
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Table 2 Class-wise precision performance comparison with other deep learning techniques in literature with our findings for COVID-19 detection

Backbone Accuracy COVID-19 Normal Pneumonia

Concurrent proposed approach:

VGG16 [16] 0.77 0.636 – –

COVIDNet-CXR Small [23] – 0.964 0.898 0.947

Flat - EfficientNetB0 [16] 0.90 1.0 – –

Flat - EfficientNetB3 [16] 0.939 1.0 – –

COVIDNet-CXR Large [23] 0.943 0.909 0.917 0.989

COVIDNet-CXR3-A[23] – 0.979 0.921 0.903

ResNet18 [2] 0.951 0.918 0.943 –

Our results:

VGG16 (v1 Augmentation) 0.88 0.82 0.84 0.98

VGG16 (v2 GAN Augmentation) 0.90 0.93 0.87 0.96

Resnet50 (v2 Augmentation) 0.943 0.97 0.93 0.96

EfficientNetB0 (v2 Augmented) 0.968 1.0 0.96 0.96

nodular consolidations, and ground-glass opacity around the
right mid to lower lung zone observed on day 9. Though
clinical symptoms such as consolidations and ground-glass
opacity [15] are more accurately recognizable in Computed
Tomography (CT) scans, CXR images could still provide
a coarse and cheap bed-side indication of such symptoms
if these visualizations are enhanced by labels and clinical
notes from radiologists and domain experts.

5 Conclusion

Deep learning applied to chest X-rays of patients has
shown promising results in the identification of COVID-
19. In this research, we experimented on lightweight
convolutional network architecture with three backbones
(VGG-16, ResNet50, and EfficientNetB0 pre-trained on
ImageNet dataset) for detecting COVID-19 and associated

Fig. 7 Activation map visualization for the three classes under consideration. The First column presents a healthy chest X-ray sample, the second,
from a patient with Pneumonia, and the third one, from a patient with COVID-19, visualizing highly affected regions in red
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Fig. 8 Coarse activation map visualization for a patient’s X-ray in ICU-care at day 3, 7 and 9, visualising increased inflammation (e.g.
consolidations and ground-glass opacity) indicating disease severity

infection from chest X-ray images. Experiments were
conducted to evaluate the convolutional neural networks
performance on the traditionally augmented dataset and on
an extended version of the dataset that utilized application
of generative adversarial network-based augmentation using
CycleGAN. Even with a limited number of images in the
COVID-19 class, promising results achieved by the network
on the test dataset with a recall value of over 90% and a
precision value of over 93% for all the three models. We
would like to emphasize on the fact that it will be possible to
improve the training accuracy, sensitivity, and detection rate
with more images and new data collected for the COVID-19
class. Our results also indicated the application of generative
adversarial network-based augmentation techniques can
contribute to accuracy improvement and can produce a more
generalized and a robust model.

In future, if clinical notes and other metadata such
as need for intubation and supplemental oxygen are
provided, it is possible to train mixed image and metadata
models. These mixed models could provide prognostic
and severity predictions [7, 23] and be highly useful for

risk stratification, patient management, and personalized
care planning in this critical resource-constrained pandemic
scenario. All models developed in this work have a memory
footprint below 100 megabytes. Hence, another future
direction from this research will be extending the model
implementation on conventional smartphone processor to do
fast and cheap on-device inference [14]. To provide a proof
of concept of transferring the capability of deep learning
models on mobile devices, we would like to build on our
previous experience in transferring such models using the
TensorFlow lite (TFlite) library [1, 24].
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