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Multilevel Chinese Takeaway Process and
Label-Based Processes for Rule Induction

in the Context of Automated Sports
Video Annotation

Aftab Khan, David Windridge, and Josef Kittler

Abstract—We propose four variants of a novel hierarchical
hidden Markov models strategy for rule induction in the context
of automated sports video annotation including a multilevel
Chinese takeaway process (MLCTP) based on the Chinese
restaurant process and a novel Cartesian product label-based
hierarchical bottom-up clustering (CLHBC) method that employs
prior information contained within label structures. Our results
show significant improvement by comparison against the flat
Markov model: optimal performance is obtained using a hybrid
method, which combines the MLCTP generated hierarchical
topological structures with CLHBC generated event labels. We
also show that the methods proposed are generalizable to other
rule-based environments including human driving behavior and
human actions.

Index Terms—Chinese restaurant process, hidden Markov
models, hierarchical HMMs, stick-breaking construction, video
annotation.

I. Introduction

MULTIMEDIA data production has grown exponentially
over the past decade. This data exists in various forms

such as broadcast content (including television news and
sports), personal content (e.g., social media videos including
mobile phone footage), recorded interviews or meetings and
footage from surveillance cameras, and so on. Availability of
high quality digital hand-held camcorders has also facilitated
the expansion of video recordings at a domestic consumer
level. Most of this data is generally intended for general
viewing and hence basic labeling (date, time, title, and so
on) is attached to it. However, in many cases it would be
useful to add additional labels to retrieve information in a more
flexible and systematic fashion (e.g., a tennis sports video can
potentially be labeled with match-events description). Such
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metadata will assist in finding material within the multimedia
footage via browsing, querying, or searching.

Sports videos have a high demand for automatic annotation
as there is considerable interest in browsing key events (such
as goals in football). Complete annotation may also be used to
extract match statistics and to construct performance analysis
of teams. For easy retrieval of information from a very large
quantity of archived footage, it would be very useful to have
sports videos annotated automatically [8], [35], [52], i.e., to
create a system that could understand the content of the video
(manual annotation being too unwieldy).

Sports videos consist of rich multimedia content, as well as
contextual details. Key temporal event information is critical
in understanding sports videos. Sports games in general have
a rule structure, built around low level visual events that
are further interpreted as game events and similar high level
contextual information. Events can thus be expressed in the
form of a hierarchical structure. For example, in a game of
tennis, low level visual events include tennis ball transitions
within the court, and player movements enacting game play
on the court surface. These transitions can be interpreted in
a more contextualized form such as a hit taking place at a
particular location on a court box. These high-level events can
then be combined to describe the tennis game, incorporating
all the rule salient temporal details as annotations.

Hidden Markov Models (HMMs) [37] are often used to
represent stochastic processes, and can effectively model tem-
poral sequences of data [e.g., stock market [18], audio/video
signals [27], and patient’s electrocardiography (ECG) [26],
and so on]. However, as indicated, some domains such as
sports games in general are hierarchical in nature, with a
clear delineation between low-level visual representations and
progressively higher levels of contextual interpretations. If a
game is to be modeled stochastically, with various levels of
progressive abstractions, this implies the use of the hierarchical
HMMs (hHMMs) [12] to model game transitions at different
levels of contextual interpretation.

However, a particular disadvantage of the classical HMM
framework is that it generally requires the number of states
to be fixed a priori, and in practical applications they are
usually fixed heuristically. Teh et al. [43] have proposed a
non-parametric Bayesian implementation of HMM in which

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

the hierarchical Dirichlet process (HDP) provides a prior
distribution over countably infinite state spaces resulting in
a generalized HMM. Hierarchical Dirichlet process HMMs
(HDP-HMMs) have been effectively employed in tackling
different problems such as visual scene recognition [23], and
the modeling of genetic recombination [49], and so on.

Our aim is to achieve automated stochastic rule induction for
a rule-based sport game environment. We make use of the non-
parametric Chinese restaurant process (CRP) [1] to produce
hierarchical structures with states and a stick-breaking con-
struction [42] to generate their probabilistic state transitions,
i.e., we systematically parametrize hHMMs to build a game
rule model. As a variant on this approach, we also propose
a novel label-based hierarchical method to build hHMMs and
show the significance of having prior knowledge of a labeled
system in the construction of the hierarchy.

We thus compare a number of derived hHMM models
against the flat Markov Model, which serves as the baseline
for all our methodological variants.

First, we propose a new label-based method that takes into
account the actual label structure that defines a particular
game play sequence in order to define an hHMM generation
method that proceeds in a bottom-up, data driven fashion. We
call this methodological variant, Cartesian product label-based
hierarchical bottom-up clustering (CLHBC).

A further variant is introduced via a novel implementation
of the CRP called the multilevel Chinese takeaway process
(MLCTP). This is a constrained version of the standard CRP
that is more relevant to applications with a limited state space,
i.e., where the number of rule-defining events are known and a
limited rule depth is present, i.e., rule induction occurs under
a certain unknown, but relatively limited number of levels.

MLCTP does not intrinsically exploit labeled states, and we
speculate that the highest likelihood inferred rule structure,
given a set of hyper-parameters representing the MLCTP
model, can be further improved via employing the label
structures. Thus, we also propose two hybrid methods that
combine the unlabeled MLCTP with the labeled structure from
the flat Markov model and CLHBC. The main idea is thus
to combine the hierarchical topological structures of MLCTP
with the event label transition probabilities.

We show comparative results of all the proposed methods
on the following various datasets from different domains.

1) Badminton: Ground truth annotated events in badminton
(mens singles, Czech versus Great Britain, Beijing
Olympics, 2008).

2) Tennis: Ground truth annotated events extracted from a
complete tennis match (S. Williams versus V. Williams,
women’s final, Australian Open, 2003).

3) Tennis: Labeled sequential events in tennis obtained
via a computer vision based annotator [25], [30]
(S. Williams versus V. Williams, women’s final, and
A. Agassi versus R. Schüttler, Men’s final at Australian
Open, 2003).

4) Highway Rules: Ground truth annotated events obtained
from a camera-equipped car driven across a city [47].

5) Website Domain: Website visit counts at different web
pages within MSNBC.com on September 28, 1999 [4].

TABLE I

Terminologies Used in Paper

6) Human Activity Dataset: Recordings of five sensor-
tagged people performing different actions [19] such as
sitting, walking, lying, and so on.

List of terminologies used in this paper are shown in
Table I.

II. Related Work

Automated video annotation is one of the classic research
problems in computer vision which includes challenges at
various levels. Graphical models are usually used in creation
of decision-making systems in this context and one of the
most substantial development has been the introduction of
HMMs [37]. Event detection and action recognition are the
key related problems [14], [31], [36], [45].

Application domains vary from surveillance [11] to pro-
cessing entertainment movies [29] and TV shows [34]. Sign
language recognition has also been explored [6].

Sports videos are also examined in [9] and [50] where a
range of methodologies have been implemented. Soccer is one
of the most widely explored application domains as it has a
very challenging player tracking problem with severe levels
of occlusion [10], [15], [16], [39], [40], [48]. Among other
sports, cricket [5] and snooker [7] have also been explored for
umpire’s gesture recognition and video summarization.

Tennis videos have been employed for various research
tasks such as, shot classification [9], [21], within-shot event
detection [38], tennis ball based event recognition [2], players’
stroke type classification [33], analysis of player tactics [53],
and scene retrieval [44]. Additionally, problems like anomaly
detection [3], anomaly rectification [20], and domain change
detection [22] have also been addressed in this context.

In this paper, we mainly deal with the contextual level
representations of tennis by using observations from players,
and cues from other types of agents such as the court lines
and the ball. Our goal is to create a generic sport rule
induction system based on tennis’ rich label structure that can
be employed to generate hierarchical HMMs for the creation of
a complete reasoning system. We also aim to create cognitive
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Fig. 1. Tennis video annotation system.

Fig. 2. Illustrative example of the composition of a tennis video. The length
of each shot is proportional to the width of the corresponding block in the
figure.

systems that will be able to learn to use context that is specific
to the required application, i.e., via domain adaptation.

In the next section, our tennis video annotation system is
introduced.

III. Tennis Video Annotation System

We aim to provide a generalizable high-level module for the
tennis video annotation system of [24] and [25] in this paper.
Before moving on to discussing stochastic rule induction
algorithms, we first briefly introduce our tennis annotation
system. Fig. 1 shows the simplified block diagram of the
annotation system with individual processing sections. Each
section has individual modules.

1) Low-Level Preprocessing: In the low-level block, image
frames are initially de-interlaced into fields as some of the
tennis videos employed in our experiments are captured with
interlaced cameras. Fields are used to remove the effects of
temporal aliasing and is important for tennis ball tracking.
After de-interlacing, the geometric distortion of camera lens
is corrected. It is assumed that the camera position on the
court is fixed, and the global transformation between frames
is assumed to be a homography [17]. The homography is found
by: 1) tracking corners through the sequence; 2) applying
RANSAC [13] to the corners to find a robust estimate of the
homography; and 3) finally applying a Levenberg-Marquardt
optimizer [28] to improve the homography.

2) Shot Analysis: A broadcast tennis video is composed of
shots, such as play, close-up, crowd, and commercials. An
illustrative example of the composition of a tennis video is
shown in Fig. 2. Shot boundaries are detected by using color
histogram intersection between adjacent frames that are then
classified into appropriate types by using a combination of
color histogram mode and corner point continuity.

3) Court Detection, Ball Tracking, and Player Tracking: For
a play shot, the tennis court is detected through a combination
of edge detection and Hough transformation. The players are
tracked using a particle filter, and player actions are classified
(see [33], [41] for details). For ball tracking, background
subtraction is employed to generate candidate ball blobs. A
simple feature vector is computed for each blob, describing its
size, colors, and edges. SVM classification is then performed
to extract strong ball candidates [51].

The ball tracks are established in two stages. First, tracklets
are built from sets of extracted strong object candidates in the

Fig. 3. True tennis rule model as defined in [24] and [25].

Fig. 4. Tennis playshot with detected low-level features such as player
positions, ball trajectories, key events (red squares) and high-level labeled
annotations (see Table II).

form of second-order (roughly parabolic) trajectories. Then a
graph-theoretic data-association technique is used to link the
tracklets into complete ball tracks [51].

4) Event Detection: By examining the tennis ball trajecto-
ries, motion discontinuity points are detected. These points are
combined with player positions, player actions and court lines
in the event detection module to generate key event description
such as hit, bounce, and net.

5) High-Level Reasoning: Finally, the generated key events
are sent to a hardwired high level module, where the tennis
rules are incorporated into an HMM. The HMM is used as a
reasoning tool to generate the annotation, i.e., outcome of play,
point awarded, and so on (see [25] for additional details). Sin-
gle frame output of the annotation system is shown in Fig. 4.

It is this module that we propose to replace with a generic
model able to—ultimately—learn rules of any input game.
Fig. 3 shows the non-hierarchical tennis rule model used by
Kolonias et al. [24], [25] to determine game scores. Our aim
is to autonomously learn (instead of predefining) such rule
models in a hierarchical fashion that is also applicable to other
domains in addition to tennis.

IV. Cartesian Product Label-Based Hierarchical

Bottom-up Clustering

A. Introduction

Sports games have a specific rule structure built around
temporal events that are based on transitions between labeled
states according to structured game rules as follows.

1) Football: kick, pass left, pass right, and so on.
2) Tennis/Badminton: Serve near left, hit far, and so on.
3) Cricket: Square drive, straight drive, yorker, and so on.
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Fig. 5. Cartesian product label-based hierarchical bottom-up clustering.

Generally, labeled events contain not only temporal in-
formation but also spatial details, for instance in tennis, a
serve followed by a bounce taking place at the out and
far side of the court can be represented by a concatenated
descriptor BOFS [24]. Thus, each event label is constructed
by incorporating relevant sub-labels providing detailed spatio-
temporal information related to game-play, which are crucial
for inferring rule structures.

By taking the whole sequence of event labels into account,
we can thus represent rule-related information by using the
Cartesian combinations of these sub-labels where they collec-
tively constitute a lattice in which coarse-grained event labels
are clustered bottom-up to form a hierarchical topology that
can potentially represent abstract rule structures.

Thus, various hierarchical label clusters obtained using
Cartesian products of sub-labels produce different, but mean-
ingful topological structures that are potentially capable of
modeling the underlying abstract structure of the game. This
is autonomously achieved by taking all possible permutations
of the label order that constitutes these hierarchical structures
and, with a predefined selection criterion, a rule-like topologi-
cal structure is chosen. Methodological details of this method
are formulated in the next section and a comparative analysis
against other methodologies is conducted in Section VII.

B. Methodology

Sports games have a repetitive rule structure such that a
particular sequence of events often repeats during the course
of the game-play. For example, a serve followed by a bounce
repeats very frequently at the start of every play-shot in tennis
where a play-shot is defined as a sequence of events that starts
with a serve and ends with the point allocation to one of
players in the case of court games [24]. Additionally, game
exchanges can also be interpreted via contextual notations such
as game transitions between two players. In the middle of a
play-shot, they can be represented as rally, or a bounce out
of the court area can be represented as a point allocation to
either of the players.

Such behavior, with various levels of abstractions, can be
modeled using a hierarchical state structure, i.e., hierarchical
HMMs. We propose the CLHBC method to generate differ-
ent hierarchical HMMs capable of producing rule structures
representing sports games.

TABLE II

Summary of Badminton and Tennis Events [24]

Our input to the system is a set of event labels shown in
Table II for badminton and tennis, extracted from [24] and
translated into a Cartesian product notation. We argue, more
generally, that in most situations complex labeling scenarios
can be treated in this fashion (usually with the proviso that we
can introduce a null value, φ, where there exists incomplete
factorizability of the labels intrinsically). Labels are thus
constituted of various sub-labels which can represent event
types, �E, distance from the camera, �D, sides of the court
area �S , and position with respect to the court lines �P , and
so on

�E =

⎧⎨
⎩

S

H

B

⎫⎬
⎭ , �D =

⎧⎨
⎩

N

F

φ

⎫⎬
⎭ , �S =

⎧⎨
⎩

L

R

φ

⎫⎬
⎭ , �P =

⎧⎨
⎩

I

O

φ

⎫⎬
⎭ (1)

where φ is the null value in the argument description (hence-
forth, we shall omit this).

To train the model, we divide the stream of input event
labels into groups of play-shots (that starts with a serve and
ends with a point allocated to either player), for example
SNφφ → HFφφ → HNφφ → HFφφ → HNφφ → BIFφ.

There are repeated sequences within almost every play-shot
(HFφφ → HNφφ is repeated twice in the example above).
These can potentially form hidden states representing com-
mon meta-labels, on the next hierarchical level. The method
achieves this by combining labels in a manner similar to
an explicitly hierarchical Lempel-Ziv-Welch (LZW) encoding
[46], i.e., common labels are combined together sequentially to
form parent nodes of the hierarchy, for example, different types
of serves (SN and SF ) can be combined to represent a parent
node labeled S, representing the Serve meta-label (see Fig. 6).
Similarly, another combination (by changing label order) can
also be formed combining the N and F meta-labels to form
two separate nodes at the parent level that consequently shall
represent game transitions between the Near and Far side of
the court.

These Cartesian meta-labels form the parent level nodes,
clustering sets of un-omitted labels beneath it. For example,
the string above in terms of event type labels, �E (achieved
via the omission of �D labels) looks like
S → H → H → H → H → BI.

Play-shots can be represented in the form of other Cartesian
label type subsets by changing the label order. Fig. 5 shows a
block diagram representing the CLHBC method in context.
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Input events sequence contains individual labels, Lt , de-
scribing an event at time t, and constituted of z label compo-
nents drawn from �i, such that

�1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1
1

ω2
1

ω3
1
...
φ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, �2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1
2

ω2
2

ω3
2
...
φ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, �3 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1
3

ω2
3

ω3
3
...
φ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, . . . , �z =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1
z

ω2
z

ω3
z

...
φ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(2)

So, at any given time t, Lt represents the Cartesian products
of all the �z labels at each instant in the sequence, defining the
base of a z-dimensional lattice (i.e., the lattice formed from
differing subsets of � labels)

Lt ∈ {�1 × �2 × �3 × ... × �z}t . (3)

Thus, various Cartesian combinations can be formed within
the lattice by progressively omitting �z labels, such that, for
example

L{k}
t ∈ {�1 × ... × �k−1 × �k+1 × ... × �z}t (4)

where the omitted label set k ⊆ {1, 2, 3, ..., z}.
Hence, L

{2}
t , with z = 3, represents Cartesian combination

of all of the three labels with the exception of �2 that is

L{2}
t ∈ {�1 × �3}t . (5)

L
{k}
t is thus composed of a sequence of ordered pairs, li :

i = 1, . . . , t, derived from the remaining ω labels, such that,
in this form, a particular event might look like

l
{2}
i = (ω2

1, ω
1
3). (6)

However, note that because label omission is carried out
sequentially, not all of the hierarchies within the lattice space
are sampled; in fact only a unique hierarchical subset is
selected for a particular input label ordering.

Topology selection criterion: Before sampling the resul-
tant hierarchical structure, we repeat the hierarchy generation
process above under different orderings, i.e., Lt is represented
via other permutations of �i. In the case of the example
sequence above, SN can be represented as NS and so on
(omitting φ for simplicity). This results in various other
hierarchies which may or may not approximate the domain
rules. For this purpose, a selection criterion is introduced via
counting the number of nodes with non-mono child nodes
(excluding the leaf nodes). Resultant hierarchies are ranked
according to this criterion, for example, Fig. 6 has a rank of
4 and a differently ordered near-far model has a rank of 3.
The hierarchical topology with the highest rank is selected for
training by sampling the space of transition probabilities in the
hierarchy i.e., by explicitly modeling hierarchical transitions
(explained in the next section).

Note that usually a human annotator implicitly follows a
certain label order (typically general–to–specific) that results
in a particular form of rule structure. In case of the ten-
nis/badminton games, the label order followed (see Table II)
contains an implicit rule structure that results in the topology

shown in Fig. 6. In order to generalize the method’s capability
and assuming no prior knowledge about label order, a selection
criterion that explores all label permutations can autonomously
choose a richer rule structure.

Modeling hierarchical transitions: In the following anal-
ysis, we will model transitions within the lattice hierarchy
(chosen with the criterion above) on a Markovian basis.
However, this means that the model as a whole is not con-
sistent with the Markov property (the higher level hidden
hierarchical state transitions effectively constitute a memory).
It is, though, still possible to represent the entire hierarchy as
an implicitly Markovian model. This differs from the standard
flat Markovian in which Pf represents a transition likelihood
between states Qn−1 and Qn, derived by histogramming over
components of an observed sequence (or set of sequences),
S(j), j = 1, . . . , T , that is

Pf (Qn|Qn−1) =
1

F̧

T−1∑
j=1

f (S(j − 1), S(j)) (7)

where f =

{
1 S(j − 1) = Qn−1, S(j) = Qn

0 otherwise
and F̧ represents

the normalization factor. In the following analysis this flat
model will serve as our baseline.

We define this implicitly Markovian model as follows. In
a z-dimensional CLHBC-generated lattice space, q levels can
be formed (depending on the Cartesian combinations) where
q ≤ z, such that a resultant augmented likelihood

C∧, of
event transitions can be computed by considering transitions
at all the levels of the constructed hierarchy. The concept of
augmented likelihood centers on the modification of observed
event likelihoods in order to explicitly favor hierarchicality
(i.e., by sampling events at all the levels of the hierarchy).

We introduce a bijective mapping of the constructed hier-
archy’s leaf states to observations which we use to compute
transition likelihood between observations E X−1 to E X; X =
1, 2, 3, ..., G where G is the total number of leaf nodes (Fig. 6
has G = 8). This is achieved using the normalized products of
all the super-lying parent state transitions via connected nodes
resulting in augmented likelihood of state transitions

C∧
(E X|E X−1) =

1

Ç

q∏
h=1

{ 1

Ņ

T∑
i=1

g(Sh(i − 1), Sh(i))} (8)

where

g =

{
1 Sh(i − 1) = Qh

n−1, Sh(i) = Qh
n

0 otherwise

Qh
n is the observed state at level h of the hierarchy (i.e., under

progressive label omission); Ç is a Cartesian normalization
factor and Ņ is the level-based normalization factor. The
hierarchical probability injection step computes the augmented
likelihood (Fig. 5). Probabilities in the hierarchy are computed
top-down and injected per level based on (8) resulting in a
single matrix representation of observation state transitions
that are bijectively mapped onto the bottom level leaf nodes.

Note, the label space at the bottom level of the hHMM needs
to be fully sampled by the data i.e., such that at least a single
instance of each label has been observed (however, there are
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no such restriction higher up in the hierarchy). We have not
directly distinguished label uncertainty from state uncertainty,
since the latter is fully capable of modeling the former.

The Markovian model thus defined differs from the flat
model in that transition likelihoods for observed states are
biased by progressively higher-level hidden state transitions,
for which there exist better sample-statistics (due to coarser-
grained transition likelihoods). We thus influence low-level,
rapidly-changing, potentially more noise-influenced transi-
tions by higher-level, more slowly-transitioning states. Con-
sequently, we retain all of the advantages associated with the
Markov assumption (in particular, the ability to rapidly model
sequence likelihoods via transition matrices), while leveraging
the descriptive potential of hierarchical modeling.

1) Worked Example: Consider an example sequence of
events, with z = 3 types of labels
E = l1 → l2 → l3 → l4 → l5 → l6.

A 3-D lattice of labels is formed. Each event label lt may
look like (ω1

1, ω
1
2, ω

1
3). After analyzing the whole sequence

above l1 to l6, different common combinations are extracted
at the sub-label level. For example, in tennis or badminton,
a sequence of hits can be combined to produce a hidden
state semantically equivalent to a rally [these sub-labels are
identified and decomposed into a series of �i represented in
(2) and (3)]
(ω1

1, ω
1
2, φ) → (ω2

1, ω
2
2, φ) → (ω2

1, ω
1
2, φ) → (ω2

1, ω
2
2, φ) →

(ω2
1, ω

1
2, φ) → (ω3

1, ω
1
2, ω

1
3).

The above sequence can also be represented in its {k} =
{2, 3} sub-label form [see (4)] as
(ω1

1) → (ω2
1) → (ω2

1) → (ω2
1) → (ω2

1) → (ω3
1).

Common sequential sub-labels are thus extracted as a meta-
label that constitutes a node in the next highest level. In this
example, three nodes are formed for the sequence such that
the augmented likelihood

C∧ of event transitions [see (8)] can
be computed with q = 3 representing the number of labels and
resultant levels, G = 4, and T = 6.

In applying the CLHBC model to a badminton game, we
find that Cartesian labeling can split the labeled sequential data
into various categories of play shot sequences demonstrating
the applicability of the method with regards to the label
structure of events, for example, we autonomously combine
labels according to event types (serves, hits, and so on). In
Fig. 6, an example of the bottom-up labeling with colors
indicating hereditary of states is shown. Events are delineated
in accordance with the play structure by combining starts,
rallies and ends together, in turn constituted by serve, hit and
bounce meta-states, respectively. The two transition matrices
represent non-zero transition probabilities at each level of the
hierarchy (using badminton as an example).

V. Multilevel Chinese Takeaway Process

A. Introduction and Motivation

As discussed in Section IV-A, court-games are inherently
hierarchical in nature and we attempt to create stochastic
approximations of the game rules using hHMM for contextual
game description covering various levels of abstractions, ul-
timately, giving rise to meaningful annotations. As explained

Fig. 6. Three level CLHBC with transition matrices generated at each level
(colored so as to indicate common heredity).

in Section IV-B, our input observations are a set of events
that occur over a temporal sequence marked when a particular
event starts happening (Table II).

In a rule based environment, these events contribute mean-
ingful attributes on a contextual level. Thus, events like serves
and hits relate to player’s actions while near and far correspond
to court locations. Events can be either described in terms of
player’s actions or rule-defined combinations such as rallies
and game points.

To build a generic hHMM framework suitable for charac-
terizing such environments, we propose a constrained variant
of the widely used CRP first introduced in [1], which allows
us to establish rule structures that are capable of describing
sports games in a compact and efficient fashion. The proposed
method does not intrinsically exploit labeled information (un-
like CLHBC of Section IV) making it more suitable for
applications with limited metadata.

We refer to it as the MLCTP, and in the next section we
explore the methodological details of this particular variant of
the classical CRP and its application to rule-based environ-
ments (i.e., sports games).

B. Methodology

The CRP is a non-parametric stochastic process that is
naturally capable of representing grouped sequential data. In
a rule-based environment, data can be grouped together in a
hierarchy and thus we require a hierarchical CRP for stochastic
approximation of rules induced via input observations. CRP’s
hierarchical version is referred to as the Chinese restaurant
franchise (CRF) first coined by Teh et al. [43]. Due to the
limited state-space hierarchy of sport rule structures evident
from the types and number of events, it is desirable to
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implement a hierarchical, but also constrained, version of
the classical CRP which we call the MLCTP. To understand
this particular variant of the CRP, we step-wise explore the
methodological details of MLCTP. To intuitively understand
the process, we make use of an analogy similar to the CRP [1].

There are three main methodological steps in generating
hierarchical topologies (i.e., rule structures): 1) the state
generation phase; 2) transition probabilities generation phase;
and 3) the hierarchical state transition matrices injection
phase.

1) State Generation Phase: This phase is similar to CRP
where the number of states is defined by the process via the
number of tables. The notion of tables in MLCTP is replaced
with takeaways to leverage revisits and further recommenda-
tions to other takeaways (further explained in Section V-B2).
For the sake of consistency, we replace the notion of tables
with takeaways in the first phase.

To start the process, people (tokens) enter a city with infinite
number of takeaways and choose a particular takeaway to visit.
First person visits the first takeaway in the city with the initial
probability equal to 1. The takeaway visit probability, vi for
the ith person is thus defined as

P(vi = c|v1:i−1)=

{
oc

i−1+α
if c ≤ C

α
i−1+α

otherwise c is the new takeaway
(9)

where oc is the number of people who have visited the
takeaway c. C is the number of takeaways for which oc > 0,
i.e., visited. α is the concentration parameter. Intuitively, high
α implies more visited takeaways with fewer customers.

We initialize the process of state generation assuming one
top level state. We henceforth call the top level the first level.
For the second level, we follow the takeaway visit process
expressed in (9), and generate this level with C 2 states defined
by α. For each state at this level, (9) is followed recursively
to generate the third level, where a total number C 3 states are
created and so on. The process continues until the maximum
truncation point is reached, which is defined by the number of
event types in the training dataset. Note that C H > C H−1 >

...C 2 > C 1, where H represents the total number of levels,
i.e., a hierarchy is formed.

At the end of this phase, we thus establish a hierarchical
topology with states generated top-down with vertical edges
(i.e., representing connections not transitions). Note that this
phase is precisely controlled, based on the number of events.
As such, as soon as the number of states generated by CRP in
the next level to be generated exceeds the termination criterion,
the process halts and a new topology is generated. Otherwise,
the process continues and, if matched, the process proceeds
to Phase 2, the transition probability generation phase. An
example topology is shown in Fig. 7.

2) Topological State Transition Matrix Generation Phase:
This second step for generating the state transition matrix
involves two major sub-steps; firstly we extract state transition
probabilities, defined by (9) for all the levels. We define each
takeaway visit—self transition probability—as h′δh

ih
for state

number ih at hth level with h′ its mother state

h′δh
ih

=
Total number of visits to takeaway ih

Total number of visits via h′ . (10)

The remaining probability of transition, h′ψh
ih

= (1 − h′δl
ih

)
from the ihth state to all the other states at level h is further
redistributed by executing a stick-breaking construction as
follows. We use hyper-parameter γ for all the states controlling
the redistribution of the state transitions. This can be intuitively
represented by replacing tables in CRP with takeaways where
people are recommended C h − 1 other takeaways to try
additionally in city h.

We start with the stick of length 1. The stick is broken
(C h − 2) times to create (C h − 1) partitions representing all
other transitions where C h represents the total number of
takeaways/states at level h. Equation (11) represents the stick-
breaking construction weights

ihπh
k = ihβh

k

C h−2∏
j=1

(1 − ihβh
j ) (11)

and, the final weight is defined (due to finite states) as

ihπh
C h−1 =

∞∑
c=1

ihπh
c − (

C h−2∑
1

ihπh
k ) where

∞∑
c=1

ihπh
c = 1 (12)

ihπh
k represents kth weight at level h for state ih

ihβh
k ∼ Beta(1, γ). (13)

Within the levels so generated, h′ψh
ih

is partitioned in
the manner indicated and transitions to all the other
states (left to right indexed) are represented with weights
∗π∗

1ψ
∗
∗,

∗π∗
2ψ

∗
∗,

∗π∗
3ψ

∗
∗, ..., and so on.

For each level, h, state transition matrix is built using self-
transitions [i.e., the takeaway visit probability of (9)] and the
remaining probability is distributed across all the other states
at level h, using the stick-breaking construction.

While, in principal, this phase can be defined using another
CRP implementation, the use of the SB construction within a
CRP generated state structure is most natural in this context,
given that the classical CRP defines the probability of table
occupancy rather than the probability of transiting from one
table to another. Moreover, in such representation, dynamic
revisits can also be straightforwardly enabled by expanding
the standard SB construction steps from (C h − 2) (for level h)
to ((

∑
C h) − 2) (for all levels) replacing intralevel connectors

with directed edges (with probabilities of transition).
Hyper-parameters: MLCTP is governed by two hyper-

parameters α and γ . α controls the number of new states at
each level as employed in the classical CRP model. Addi-
tionally, α also defines the self-transition probability for each
state. The second hyper-parameter γ , is employed in the Beta
distribution of (13) and controls the size of the stick-break
defined in (11), which furthermore defines the contribution of
the remaining probability.

Various combinations of α and γ hyper-parameters are used
to generate different types of topologies with varying transition
probabilities. Topologies are generated via a greedy uniform
sampling distribution across the whole range of the α and γ

hyper-parameters between 0 and 1 with incremental steps of
0.1 in each hyperparameter. 1000 topologies are then generated
from each of these samples, with a further filtration applied
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Fig. 7. MLCTP example topology with H = 3 and G = 7 (i.e., O = 1, 2, 3, ..., 7).

based on equivalence of the leaf node count to the number of
symbols within the training data.

3) Hierarchical State Transition Matrix Injection Phase:
The next step is to form a state transition matrix for the
whole topological structure. We do that by first forming
state transition matrices for each level using all the state
transitions extracted in Section V-B2 and then use the notion of
probability injection introduced in Section IV-B. Equation (8)
is employed again to represent the augmented likelihood of
transitions between all the leaf states.

Note, the bottom-level states are associated with the input
number of labels, i.e., we introduce bijective mapping (similar
to Section IV-B for CLHBC model) of leaf states to observa-
tions that we use to compute the transition likelihood between
observations E O −1 to E O ; O = 1, 2, 3, ..., G (see Fig. 7 where
G = 7). This is achieved using the normalized products of
all the super-lying parent state transitions via connected nodes
such that

U∧
(E O |E O −1) =

1

Ḑ

1∏
V=H

P(xζ
V
y (O )|x′ζV

y′ (O − 1)) (14)

where
U∧(E O |E O −1) is the augmented likelihood for MLCTP

generated state transition between events, E O −1 and E O . Ḑ
is the normalization constant and H is the total number of
levels. xζ

V
y represents state ζ, indexed by y, with its parent

state x and is at level V , where V = H, H − 1, ..., 1, for an
input observation index O .

Generated topologies have some generic properties such as:
i) each child state has a unique parent but each parent can have

one or more than one child state such that a state, represented
by xζ

h
y has only one x for each y at level h, i.e., x is unique for

all y at h and ii) transitions between two child states at level h

of a single parent state represents self-transition at level h + 1
of the corresponding parent state, that is

P(xζ
h
y+1|xζh

y ) ⇒ P(x′ζh+1
x |x′ζh+1

x ). (15)

Note that the main difference between CLHBC and MLCTP
lies in the construction of the rule structure. As such CLHBC
is label based with probabilities computed using observations
directly, whereas in MLCTP this is achieved using recursive
CRPs per state per level until truncation is reached, and SB-
construction is then used for calculating topological transition
probabilities. The hierarchical probability injection step for
calculating augmented likelihoods of state transitions for both
of these methods is similar.

4) Worked Example: In this section, we initially present
the topology construction process for a three-level (L = 3),
topological structure, i.e., where people visit takeaways in
three cities. We also present the topological states’ transition
matrices generation phase where people are recommended to
visit takeaways in the same city including revisiting the same
takeaway (representing transition to other states and a self-
transition, respectively).

Following is the step-wise instantiation of the process.
Step 1: We begin the process by assuming that the top

most level (h = 1) has a single state and that the self-transition
probability for this state is unity

P(0ζ
1
1 |0ζ1

1) = 0δ
1
1 = 1 (16)
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where xζ
h
y represents state ζ number y, under the mother state

number x. For the top level, represented by (16), x = 0
representing no mother node, y = 1 the one and only state
number and h = 1 (the top level index). Intuitively, this level
represents city number, h = 1, with one take away, y = 1 and
has no prior recommendations, x = 0.

0δ
1
1 represents the self-transition probability for the top most

state shown in Fig. 7. The state transition matrix for this level
is a single number representing the self-transition.

Step 2: In this step, the first instantiation of the MLCTP
takes place as formulated in (9) and (SB Construct). The
number of resultant generations (takeaways) represents the
number of states under the mother node from Step 1. Ana-
logically, people who have visited the takeaway xζ

h
y in city,

h = 1, are recommended takeaways in city, h = 2 (note that
as we shall see, it is not always the case that h = x + 1).

C 2, representing the number of takeaways in the second city
(h = 2), in our example is 4 (i.e., y = [1, 2, 3, 4]) with the same
mother node (i.e., x = 1). Their self-transition probabilities, xδ

2
y

i.e., the probability of visiting the same takeaway the next day,
are defined in (9).

The remaining probability is broken C 2 − 2 times (i.e., 2
times in this example), so as to generate transitions to all the
other states, i.e., the probability of visiting another takeaway,
the next day, having visited the current takeaway. This is
achieved via the stick-breaking construction of (11) and (13),
and is repeated for all the 4 takeaways. Fig. 7 shows all the
possible transitions for the first state at the second level (1ζ

2
1)

P(1ζ
2
1 |1ζ2

1) = 1δ
2
1 (17)

P(1ζ
2
2 |1ζ2

1) = 1π2
1(1 − 1δ

2
1) = 1π2

11ψ
2
1 (18)

P(1ζ
2
3 |1ζ2

1) = 1π2
21ψ

2
1 (19)

P(1ζ
2
4 |1ζ2

1) = (1 − (1π2
1 + 1π2

2))1ψ
2
1. (20)

Similarly, these transition probabilities are calculated for
1ζ

2
2 , 1ζ

2
3 and 1ζ

2
4 . The resultant state transition matrix for this

example is a 4 × 4 matrix with 16 possible transitions.
Step 3: In this step, we generate new states via another

instantiation of the MLCTP for each state at level 2. We do
this for all C 2-states generated in Step 2. The number of
generations represents the number of states under each mother
node. Analogically, people who have visited takeaways in city
2, are recommended to visit related takeaways in city 3.

x at this level is the total number of states indexed by y

in the previous level in Step 2 representing the now-mother
states while the length of y is determined by each instantiation
of MLCTP for every x. The number of MLCTP instantiations
is equal to the length of x.

Thus, at this level, h = 3, x = [1, 2, 3, ..., C 2], and y =
[1, 2, 3, ..., C 3], which is constituted via the tuple y′

y′ =

⎛
⎜⎜⎜⎜⎜⎝

{1, 2, 3, ..., C’ 1},
{1, 2, 3, ..., C’ 2},
{1, 2, 3, ..., C’ 3},

...
{1, 2, 3, ..., C’ C 2}

⎞
⎟⎟⎟⎟⎟⎠

where
C 2∑
r=1

C’ r = C 3.

Fig. 8. MLCTP.

In our example, at the lowest level, x = [1, 2, 3, 4],
y = [1, 2, 3, 4, 5, 6, 7], constituted via the tuple y′ =
({1, 2}, {1, 2}, {1}, {1, 2}).

Similar to Step 2, the remaining probability is broken C 3−2
times (i.e., five times in this example), to generate transitions
to all the other states, i.e., the probability of visiting another
takeaway, the next day, having visited the current takeaway.
This is achieved via stick-breaking construction of (11), and
is repeated for all the seven takeaways.

Fig. 7 shows all the possible transitions for the third state
at the level 3 under the second state of level 2, i.e., 2ζ

3
3

P(2ζ
3
3 |2ζ3

3) = 2δ
3
3 (21)

P(1ζ
3
1 |2ζ3

3) = 3π3
1.(1 − 2δ

3
3) = 3π3

1.2ψ
3
3 (22)

P(1ζ
3
2 |2ζ3

3) = 3π3
2.2ψ

3
3 (23)

P(2ζ
3
4 |2ζ3

3) = 3π3
3.2ψ

3
3 (24)

P(3ζ
3
5 |2ζ3

3) = 3π3
4.2ψ

3
3 (25)

P(4ζ
3
6 |2ζ3

3) = 3π3
5.2ψ

3
3 (26)

P(4ζ
3
7 |2ζ3

3) = (1 − (3π3
1 + 3π3

2 + 3π3
3 + 3π3

4 + 3π3
5)).2ψ

3
3. (27)

C. Induction Protocol

Fig. 8 shows the block diagram of the experimental protocol
for the MLCTP showing the training process. MLCTP is
a stochastic process, and to counter the issue of stochastic
variations we first generate R topologies, i.e., we execute
the process R times given the hyper-parameters α and γ .
The total number of selected topologies according to the
truncation parameter G (applied such that when the exact
number of leaf states is achieved the process stops and emits
a topological structure), is s, where s ≤ R. These s topologies
are represented as transition matrices computed via (14), and
each transition matrix goes through a selection process for
the best fit as the rule defining topology. This is achieved via
measuring the distance between the training matrix (using the
count statistics of the training data) and the MLCTP-generated
topological transition matrix.

MLCTP is a stochastic and unlabeled process, and thus a
topology generated given a set of hyper-parameters does not
necessarily correlate with the original training transition ma-
trix. To better sample the topological state space, we generate
random permutations at observations level indicated in Fig. 8
(we employ random permutations to reduce the computation
time). If b is the state-space defined by the number of leaf
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states and p is the number of random permutations then
p ≤ b!. Each topology, τI (I = 1, 2, 3, ..., s), is expanded
to p random permutations within the state-space, where τ1

represents the first selected topology matrix and τs represents
the last selected topology matrix. We thus have a set

{τ1
1 , ..., τ

p
1 , τ1

2 , ..., τ
p
2 , τ1

3 , ..., τ
p
3 , ..., τ1

s , ..., τ
p
s }.

Each of these topological transition matrices (total s × p)
are then compared against the flat transition matrix built from
the training sequence of events. This comparison is performed
via the Jensen-Shannon Divergence.

Jensen-Shannon Divergence: We use Jensen-Shannon
Divergence [32] to measure the divergence between two
probability distributions i.e., the output of permutations block
and the flat Markov model block in Fig. 8. JS-Divergence
is based on the Kullback-Leibler divergence, and is defined
as the average relative entropy of the source distributions to
the entropy of the average distribution. Equation 28 represents
the metric Y employed in Fig. 8 for MLCTP’s topological
transition matrices JZ (where Z = 1, 2, 3, ..., s × p) and the
training transition matrix Jtr

Y (Jtr, JZ) =
1

2

(
KL(Jtr || K) + KL(JZ || K)

)
(28)

where K is the average distribution of the two sources, that is

K =
1

2
(Jtr + JZ) (29)

and the KL-divergence can be defined between two vectors,
M1 and M2 as

KL(M1 || M2) =
∑

i

M1(i)ln
M1(i)

M2(i)
. (30)

Each topological transition matrix (JZ) from the permuta-
tions block is compared against the training transition matrix
Jtr and the closest topological structure (i.e., one with the
smallest Y metric against the training matrix) is taken as the
learned hierarchical topology with respect to the input training
sequence of events. This trained hierarchical topology is used
in the following experimental investigation (of Section VII)
for predicting future events based on the input sequence.

VI. Hybrid Models

A. Multilevel Chinese Takeaway Process with Recursive
Baum-Welch Estimated State Transitions (MLCTP-BW)

In addition to the above label-based and generative methods,
we also propose a pair of hybridized methods suitable for
stochastic inference of rule structures in sport videos. The first
hybrid model extracts hierarchical structures using MLCTP’s
topological state generation process shown in Section V-B1.
The topological state transition matrix generation phase is
ignored in this model, so the hierarchical structure output
from MLCTP is effectively just the arrangement of nodes,
connected in a hierarchy. These topologies are built top-
down and we similarly select topologies based on MLCTP’s
truncation parameter G (defined as the number of differentiated
states in the input sequential data).

In order to recalculate transition probabilities on the topo-
logical edges for the hybrid model, we first compute the count

Fig. 9. MLCTP with Baum-Welch hidden state transition estimation.

statistics of the sequence of event transitions, i.e., the flat
Markov model of (7) that calculates the observed transition
probabilities. Leaf states are thus mapped bijectively to obser-
vations, effectively leaving the number of states in the higher
(i.e., non-observation or hidden) levels to be defined by the
MLCTP-generated topological rule structures. This structure
is then used to estimate a set of state transition probabilities
at each level via recursive Baum-Welch estimation (Fig. 9 has
the block diagram representing the training process using this
method).

We can characterize the model via the following notation.
MLCTP emitted topological structure has h = 1, ..., H levels
and for each pair of levels, we can specify a set of HMM
parameters λh = {ah

ij, e
h
i (.), ηh(i)}, where ηh(i) is the initial

distribution of states per level defined by MLCTP, eh
i (.) is the

emission probability for level h, i.e., the probability of state i

at level h emitting a symbol at level h+ 1, while the transition
probability of a state transiting from i to j for level h is ah

ij

ah
ij = P(Qh

t = j|Qh
t−1 = i) and

C h∑
i=1

aij = 1 ∀j (31)

where Qh
t is the current [hidden] state of a temporal sequence

as represented at the hierarchical level h.
The input sequence of labeled data is thus the observed

sequence from which we obtain the parameters of the model
via maximum likelihood estimation. Utilizing the MLCTP-
generated hierarchical topology, Baum-Welch algorithm is
hence employed recursively to obtain the model parameters
when the state path per level is unknown. Thus given a
level-based sequence of observations {Qh+1

t } for a given num-
ber of states defined by MLCTP, C h, we compute λh =
{ah

ij, e
h
i (.), ηh(i)}. The parameters that maximize the likelihood

of the input data are thus chosen at every level

Ah
ij = BaumWelch(C h, {Qh+1

t }, λh) (32)

where

Ah
ij =

1

P(Qh+1
t |λh)

∑
t

F (t, i)ah
ije

h
j (Qh+1

t+1 )B(t + 1, j) (33)

where i, j = 1, 2, ..., C h.
Here, Ah

ij is the estimated state-transition probability of
state i to j at level h; F (t, i) represents the probability of
the model emitting symbols, Qh+1

1 ...Qh+1
T , when in state i at

time t, obtained using the forward algorithm. ah
ij and eh

j (Qh+1
t+1 )

respectively represent the probability of transition from state i

to j and emitting the t+1st emission symbol at level h+1 (both
arbitrarily instantiated and recursively updated). The backward
algorithm computes B(t + 1, j) which is the probability of the
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Fig. 10. MLCTP—CLHBC.

Fig. 11. Badminton Dataset. Mean prediction accuracies.

model emitting the remaining sequence if the model is in state
j at time t + 1.

Thus, in this model, estimated hidden state transitions act
as the observation level for the estimation of the next highest
level hidden state transitions in the hierarchy and so on. After
estimating state transition probabilities, a state sequence is
generated, i.e., {Qh

t }, which is used as input observations for
the next level of MLCTP’s hierarchy.

Finally, after computing state transition probabilities for
each level, we perform the top-down hierarchical probability
injection step [(14)] to obtain the learned augmented likelihood
of events for MLCTP-generated topological structure with
recursive BW estimated state transition probabilities.

The MLCTP-BW hybrid could be considered as the method-
ology that is conceptually closest to the standard hHMM of
[12], where the hierarchical topology is fixed based on the
hierarchy established using MLCTP.

B. Multilevel Chinese Takeaway Process with Cartesian Prod-
uct Label-Based Hierarchical Bottom-up Clustering Computed
State Transitions (MLCTP-CLHBC)

The second hybrid model variant similarly extracts the
hierarchical topologies from MLCTP’s topological state gen-
eration process. However, transition probabilities at the edges
are then computed using the CLHBC method.

In this model, MLCTP determines the number of levels
(which in CLHBC is determined by the number of sub-labels
defined in Section IV). Each labeled event is replaced by an
arbitrary label, comprised of z types of labels, �z. In this
hybrid, z for CLHBC is determined by MLCTP. Intuitively,
bigger z implies a deeper hierarchy.

Thus the input training sequential data provides the event
labels to be bijectively mapped into the observation level of
MLCTP generated hierarchy [e.g., Q1

t → SF , i.e., observation
Q1

t is associated with event label serve far (see Fig. 7)].
Given the number of levels in the MLCTP-generated topo-

logical structure (z = 3 in Fig. 7), event labels are then

Fig. 12. Tennis dataset (video annotation system)—Individual event predic-
tion accuracies for all of the five methods.

replaced with the Cartesian products of z arbitrary labels, i.e.,
�z where z = 1, 2, 3 such that the sub-label factors give rise
to a hierarchy equivalent to that defined by MLCTP-generated
topological structure. We thus reverse engineer Fig. 7, where
each event is rerepresented with three (as z = 3) labels, e.g.,
ω1

1, ω
2
3, ω

3
5, with labeling associated with the observed states

such that the common sequential factors result in the hierarchy
generated using MLCTP. Following this reassociation phase,
the training event sequences are regenerated using the new
label-structure, and the CLHBC process executed resulting
in state-transition probabilities at each level of the hierarchy
generated by MLCTP.

Transition between states is thus governed by the input data
at every level; however, interlevel associations are determined
by MLCTP. The method thus populates the transition likeli-
hoods bottom up according to the MLCTP template. Fig. 10
shows the block diagram for this hybrid model in which
the input sequential data’s original labels are replaced with
MLCTP-defined arbitrary labels. The hierarchical structure
output from MLCTP is combined with this new label hierarchy
and used to compute state-transition matrices for each level.

The trained augmented likelihood of events for the MLCTP-
generated topological hierarchy and CLHBC formulated label
structure is computed in a similar fashion to previous methods
via probability injection block of Fig. 10. Experimental results
for MLCTP-CLHBC are shown in Section VII.

VII. Experiment Results and Discussions

In this section, we evaluate the performance of all the four
proposed variants of the novel hierarchical HMM strategy
using six different datasets shown in Tables III and IV.1

In the case of the Badminton dataset [i.e., badminton mens
singles from Beijing Olympics, 2008 (BMSB08) detailed in
Table III], we train the models using 77 play-shots (i.e., col-
lections of sequences starting with the event serve and ending
with a point-awarding event), and test using the remaining
20 play-shots. The number of unique events for badminton is
eight (see Table II). Similarly, datasets from other domains
(details shown in Table IV) are also employed.

For experimental evaluation, we measure the prediction
accuracy of the next event given all the previous events as

1Source code available at http://www.cvssp.org/acasva/Downloads

http://www.cvssp.org/acasva/Downloads
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Fig. 13. Badminton dataset—Confusion matrices for all of the five methods. (a) Flat MM, (b) CLHBC, (c) MLCTP, (d) MLCTP-BW, and (e) MLCTP-
CLHBC.

TABLE III

Sports Datasets with Source Information and Number of Samples Per Event Label

TABLE IV

Datasets Description

TABLE V

Mean Accuracy

shown in Fig. 12 for the tennis dataset (extracted using the
automated video annotation system of [25]). For example,
the model CLHBC correctly predicts the next event 74.52%
of the time, if the current event is HF (Table II), and so on.

Fig. 11 shows the comparative mean accuracies for the
badminton dataset using all of the methods employed namely,
the flat Markov model, the CLHBC, the MLCTP, Hybrid I
(MLCTP-BW), and Hybrid II (MLCTP-CLHBC). Mean pre-
diction accuracies for all of the methods applied to all of
the datasets with individual standard deviations are shown in
Table V. Associated mean performance gains with respect to
the baseline approach are also shown.

We show that all of the proposed hHMM generating
methodologies demonstrate improvement relative to the flat
Markov model.

Additionally, confusion matrices for the predicted events are
also presented for all the methods applied to the badminton
dataset in Fig. 13. For example, in Fig. 13(c), BON (see
Table II) is 50% of the time correctly predicted, while 50%
of the time incorrectly predicted as HN (hit near).

As may be seen in Fig. 11 and Table V optimal performance
for all the datasets is achieved using the hybrid model MLCTP-
CLHBC (of Section VI-B). MLCTP-CLHBC hybrid lever-

ages MLCTP’s topological rule structure and consequently
the label-based CLHBC to construct a rule model that is
more accurate. The average performance gain achieved using
MLCTP-CLHBC compared with the flat Markov model is
11.59% resulting in a significant improvement.

Relative performance gains in the context of a particular
dataset depends upon the complexity of the data. It can be
observed that in the case of more complex datasets—such as
the website and tennis [25] datasets—the average performance
gains achieved by MLCTP-CLHBC are around 20%.

In a different setting (introduced in Section III and explained
in [24] and [25]) high-level reasoning, in terms of correctly
awarded points, is performed using the hard-wired HMM
based on Fig. 3. Correct point recognition rates reported using
the two tennis datasets, TWSA03, and TMSA03 (detailed in
Table III) were 87.5% and 73.75%, respectively.

It is crucial to highlight again that HMM used in the
work of [24] and [25] requires the number of states to
be fixed heuristically based on the exact rule of the game.
A different domain cannot be directly introduced without
manually altering the HMM topology as there is no capability
in this framework to learn the rule model. Our generalized
rule induction mechanism on the other hand is intrinsically
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adaptive, as evidenced by our demonstration of the approach
in domains other than tennis.

VIII. Conclusion

In this paper, we proposed four variants of the novel
hierarchical HMM strategy for rule induction and applied them
to the problem of automated sports video annotation. We firstly
introduced a CLHBC method that employs the latent structure
in the labels used to annotate videos. Labels are thus employed
to build hierarchical structures based on various Cartesian
Product based combinations of sub-labels such that a hierarchi-
cal HMM of common repeated event structures is established
(and which is used to evaluate the predictive capability of the
method). The second proposed variant, the MLCTP, is based
on the CRP with tables replaced by takeaways which may
be revisited within different cities representing levels in the
hierarchy. This is a stochastic process, with many hierarchies
generated for a given set of hyper-parameters, such that a
distance measure (JS-Divergence) is employed to infer the
highest likelihood stochastic rule structure.

We also introduced two hybrid variants namely
MLCTP-BW and MLCTP-CLHBC that leverage the
stochasticity of MLCTP (whereby various latent hierarchical
structures are produced), in conjunction with the label
sequence to give a composite top-down MLCTP-driven
(topologically) and bottom-up data-driven approach to
hierarchical HMM inference. All of these methods finally
generate finite intermediate-depth hierarchical HMMs that are
well-suited to calculating the likelihood of event transitions
taking place within sport video sequences typically governed
by analogous hierarchical rule structures involving, e.g.,
matches, sets, points, and so on.

We conclude that leveraging the label information contained
within sequential data (especially sports sequences) in con-
junction with our novel MLCTP provides a previously unex-
ploited opportunity for rule-induction. Comparative prediction
results for all the proposed methods are shown relative to the
flat Markov model, with all of the hierarchical methods shown
to perform better (with the most optimal method being the
MLCTP-CLHBC hybrid).

In the context of an automated video annotation system,
the rule induction framework thus provides a robust context
analysis module in which rules are inferred from observations
and predictions are made that can serve as logical priors on
detections. Such a framework can be employed for tackling
various problems beside prediction generation. In particular,
it can address the issue of anomaly detection; when a new
domain is introduced to the system architecture, anomalous
events (as opposed to outliers and errors) can be detected
using the rule hierarchy triggering the domain change. In
the context of the automated video annotation system, this
may require switching the knowledge base by abandoning
continuous adaptive learning and replacing it with a new
learning process.

Rule induction framework can also be employed to address
the problem of transferring knowledge from one domain to
another; this can be achieved via analyzing various levels of

the established rule hierarchies representing different levels
of abstractions such that in a new (and related) domain,
contextual inferences are transferred, i.e., minimizing the need
for retraining.

Novel methodologies introduced in this paper have been
extensively evaluated in terms of event predictions. They
can also be used to predictively and retrospectively identify
unobserved rule-based events. For this purpose, current Marko-
vian structure must be replaced via analyzing associated rule-
grammars.

In order to expand these models for practical implementa-
tion in future generalized video annotation systems, the proof-
of-concept evaluations will need to be expanded to other
domains comprising other sports such as cricket, football,
table tennis and non-sporting domains such as, characterizing
surveillance footage, recorded meetings, lectures, and so on.
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