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Abstract: Effective extraction of human body parts and operated objects participating in action is the
key issue of fine-grained action recognition. However, most of the existing methods require intensive
manual annotation to train the detectors of these interaction components. In this paper, we represent
videos by mid-level patches to avoid the manual annotation, where each patch corresponds to an
action-related interaction component. In order to capture mid-level patches more exactly and rapidly,
candidate motion regions are extracted by motion saliency. Firstly, the motion regions containing
interaction components are segmented by a threshold adaptively calculated according to the saliency
histogram of the motion saliency map. Secondly, we introduce a mid-level patch mining algorithm
for interaction component detection, with object proposal generation and mid-level patch detection.
The object proposal generation algorithm is used to obtain multi-granularity object proposals inspired
by the idea of the Huffman algorithm. Based on these object proposals, the mid-level patch detectors
are trained by K-means clustering and SVM. Finally, we build a fine-grained action recognition model
using a graph structure to describe relationships between the mid-level patches. To recognize actions,
the proposed model calculates the appearance and motion features of mid-level patches and the binary
motion cooperation relationships between adjacent patches in the graph. Extensive experiments on
the MPII cooking database demonstrate that the proposed method gains better results on fine-grained
action recognition.

Keywords: fine-grained action recognition; motion saliency; mid-level patch; object proposal

1. Introduction

In recent years, fine-grained action recognition has attracted a substantial amount of research
interest, as it plays an important role in human–computer interaction, smart homes, elderly/child
care, medical surveillance, and robots [1–8]. However, most existing action recognition methods
focus on coarse-grained actions, such as full-body activities in daily life, e.g., jumping and waving.
Compared with coarse-grained action recognition, fine-grained action recognition is more challenging
due to the complex human motions and interactions, small body movements, large intra-class
variability, small inter-class variability, etc. [1,9]. Therefore, fine-grained action recognition is still in
its infancy.

In the motion process of fine-grained actions, human body parts always interact with operated
objects that are almost small and have a large variety of categories [10,11]. Furthermore, there are
many occlusions on body parts and operated objects. In the process of interactions, the same action
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operated by different people may show different looks and motion distributions because everyone
has a different operation method. Meanwhile, most motions of fine-grained actions are centered at
terminal joints, such as hands. Take the large fine-grained action database MPII cooking database
as an example [1]: the action “cut” can be subdivided into “cut apart,” “cut dice”, and “cut slices”.
Figure 1a–c are “cut apart”, “cut dice”, and “cut slices” actions that are operated by the same person.
From Figure 1, it can be seen that the appearance and operated objects of these three actions are very
similar. Figure 1c,d illustrate the “cut slice” action operated by different people, and it can be seen
that the same action performed by different people does not look the same. Figure 1 also shows that
each of these fine-grained actions is often characterized by a complex distribution of operated objects
(e.g., a knife and a cucumber) and body parts (e.g., arms and hands) along with their interactions.
Therefore, how to partition body parts and operated objects and model interactions between them
(spatial context information) play important roles in fine-grained action representation and recognition.

(a) cut apart (b) cut dice (c) cut slices (d) cut slices

Figure 1. Some exemplars of fine-grained actions in MPII cooking database. (a) cut apart, (b) cut dice,
(c) cut slices, and (d) cut slices.

There are many algorithms of fine-grained action recognition [12–18]. However, recent approaches
consider the video as a whole [1,12,19]. The disadvantage of these algorithms is that they may
lead to the loss of image spatial information. In order to model the human–object interaction,
some approaches [9,17,18,20] detect objects involved in actions. Because fine-grained actions often
involve large kinds of operated objects and the training of object detectors requires extensive manual
annotation, the scalability of these algorithms is poor. In addition, the performance of the algorithms
depends on the accuracy of object detection, which makes them unstable. Other algorithms employ
mid-level patches to represent actions [10,11,15,21]. This kind of algorithm decomposes actions into
mid-level patches with different levels and granularities and uses these patches to describe the complex
structure of actions in space. The problem is that they generate a large number of object proposals by
fixed segmentation grids of the whole image [16,22], which can reduce the discriminative ability of
features [23,24]. Furthermore, these algorithms would extract all static objects and dynamic objects in
the scenario, while the static ones are unnecessary for action recognition.

To solve these problems, this paper presents a fine-grained action recognition method based on
motion saliency and mid-level patches. The framework of the algorithm is shown in Figure 2. Firstly,
the frame is converted into a motion saliency map by computing motion saliency for videos [25].
The interaction components are salient in the motion saliency map because their motions are different
from their neighbors. Therefore, we can extract the motion regions automatically by a threshold-based
method. Secondly, the partitioned motion saliency regions are single grained, and they contain limited
effective information. Therefore, they are not suitable for mid-level patch (which represents the
interaction part) mining. In order to extract multi-granularity object proposals, we merge the motion
regions by the idea of the Huffman algorithm. The mid-level patch detectors are then trained with
K-means clustering and SVM [15] for these proposals in an unsupervised way. Finally, our fine-grained
action recognition model utilizes a graph structure to describe the interaction relationships between
mid-level patches. The DT (Dense Trajectory) feature [12,19] is adopted to extract region features.
Besides the appearance and motion features, the binary motion cooperation relationship between
different mid-level patches is calculated to obtain spatial context information, which includes motion
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consistency and trajectory consistency [21]. SVM is used for action recognition with these features.
The main contributions of our algorithm are as follows.
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Figure 2. Our fine-grained action recognition method, which includes motion region segmentation
based on motion saliency, object proposal generation by the idea of the Huffman algorithm,
mid-level patch detector training with K-means clustering and SVM, and action recognition with
a graph structure.

(1) We propose a threshold-based motion region segmentation algorithm for motion saliency maps
without manual annotation, which can naturally consider the static regions and objects as background.
The threshold is adaptively calculated according to the histogram of the saliency map. These motion
regions will act as object proposals for mid-level patch mining, which can significantly reduce the
number of object proposals and provide more reliable ones.

(2) In order to extract multi-granularity object proposals, an object proposal generation algorithm
by the idea of the Huffman algorithm is proposed to merge the original motion saliency regions with
the greedy strategy. All nodes in the Huffman tree are regarded as object proposals, which are capable
of capturing different aspects of actions ranging from the fine-grained body parts to the large chunks
of human–object interactions.

(3) A fine-grained action recognition model is proposed and the interaction relationship between
mid-level patches in the action is described with a graph structure.

The rest of this paper is organized as follows. In Section 2, we review the existing related work.
The adaptive segmentation of the motion regions and the mid-level patch mining algorithm are
described in detail in Section 3. The action recognition model based on mid-level patches is described
in Section 4. In Section 5, experimental results are given and analyzed. The conclusion is given in
Section 6.

2. Related Work

The studies on action recognition are numerous, such as fine-grained action
recognition [1,2,9,10,26,27] and coarse-grained action recognition [28,29]. In the following,
we review the work that is most related to the current study.

Rohrbach et al. [1] presented a database on kitchen operations to evaluate fine-grained action
classification. It is composed of 65 different actions that take place continuously within 8 hours
of recording. This database is mainly used for fine-grained action recognition [3,9–11,26,30–33].
In the literature [1], two schemes for action recognition are proposed, one is based on the human
pose and the other is based on the DT feature. On the basis of these and upon further study,
Rohrbach et al. [27] proposed a hand-centric approach for fine-grained activity classification and
composite activity recognition. Yang et al. [9] proposed a representation and classification pipeline that
seamlessly incorporated localized semantic information for fine-grained action recognition. However,
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these methods [1,9,27] require explicit object detection or pose estimation. Interaction Part Mining [10]
involves a fine-grained action recognition pipeline by mid-level part mining. It applies Max-N pooling
to keep important candidate parts, which would generate redundant information.

Following the impressive results of deep learning on the task of image classification [34] and
other research fields [35,36], many efforts have been made to train deep networks for the task
of action recognition. Fernando et al. [3] proposed a temporal pooling function, which uses the
evolution of video temporal structure to represent the videos. Li et al. [30] proposed a new network
structure, which encodes spatiotemporal features by sharing weights between the learned parameters.
Ni et al. [2] proposed an end-to-end fine-grained action detection system based on RNNs (Recurrent
Neural Networks), which parses the interactive objects frame by frame in a video to describe a specific
action for fine-grained action recognition. These algorithms achieved good recognition effects on
the fine-grained actions while fusing the DT features and the CNN (Convolutional Neural Network)
features, but the results of using the two features respectively were not satisfactory.

There is work that utilized spatiotemporal segments to capture different interaction components
of human action and represent videos [11,37,38]. Some work [9,10] focused on the problem of
modeling context information between actions and objects and investigated how to parse or track
operated objects. Weinzaepfel et al. [39] detected proposals at the frame-level and scored them
with static and motion CNN features, and then tracked high-scoring proposals throughout the
video to generate spatiotemporal proposals. Multi-level representation of action is popular in action
recognition because it can extract the participation components of action in different granularities [40].
Lan et al. [11] extracted mid-level elements from region proposals to represent actions. Ma et al. [41]
proposed a hierarchical spatiotemporal segmentation method for action recognition and location.
Spatiotemporal segments included the whole human body and body parts with different granularities.
The action participation segments-based method is also used in this paper. Our mid-level patches
include human body parts and motion objects that participate in action, and the static objects can be
excluded based on motion saliency.

Mid-level patch mining employs object proposals to guide the detection of patches.
Selective Search [22] first partitions the image into regions and greedily merges these regions to
generate proposals according to feature similarities between regions. Bing [16] uses a simple linear
classifier to calculate scores for a large number of candidate windows based on the proposed feature
“BING”. EdgeBoxes [42] defines an edge-based function to grade the score for any candidate bounding
box according to edge response. Furthermore, MCG (Multiscale Combinatorial Grouping) [43],
Multibox [44], and other algorithms [45] provide alternative proposal methods. In contrast, our object
proposals are generated based on the motion saliency and the adaptive background segmentation.

3. Mid-Level Patch Mining Based on Motion Saliency

To benefit from the space context, spatial pooling divides a video using fixed segmentation grids
and pools the features locally in each grid cell [22–24]. Though the performance has been improved,
different action instances of the same category with various human localizations in spatiotemporal
volume [46,47] can result in a non-uniform distribution of features. Furthermore, one interaction
component may be divided into different cells due to the fixed segmentation. Therefore, the key
problem is how to divide the interaction components accurately in different instances. To avoid manual
annotation, we use mid-level patches (detected from object proposals) to represent the interaction
components. Most algorithms apply Bing [16] or Selective Search [22] to extract object proposals in a
fixed way. All the objects in the scene are regarded as proposals, including dynamic ones and static
ones unrelated to the action. In our algorithm, object proposals are extracted based on the motion
saliency [25], which can automatically exclude the static regions.
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3.1. Motion Saliency-Based Motion Region Partition

We define the motion saliency as a mapping s: P→ R, where P is a spatial partition of an image.
p ∈ P is a region of the image and s(p) gives the motion saliency value of the region. P can be
obtained from any spatial partition of the image. The value of s(p) is in the range [0,1]. We adopt the
spatiotemporal saliency computation method [25] to calculate the motion saliency. First, the image
is divided into several spatiotemporal regions P, and the motion saliency value s(p) is calculated
for each region p. Therefore, the image is converted into a motion saliency map according to the
motion saliency value of each region [25], shown in Figure 3a,b presents the maps after motion region
segmentation. In Figure 3a,b, the salience value s(p) of each region p is multiplied by a coefficient
within 5 in order to visualize the motion saliency maps with better contrast. In motion saliency maps,
the interaction components with high motion saliency value are all highlighted, and the differences
between the motion regions and the static regions are obvious. Figure 3c is the visualization of motion
saliency regions in the original RGB images after motion region segmentation. Different from motion
saliency maps, RGB images show the region boundary.

(a) motion saliency maps

(b) motion saliency maps after motion region segmentation

(c) visualization of motion saliency regions in the original RGB images after motion region segmentation

Figure 3. Results of the motion saliency region partition. The action categories of these three groups of
images are “wash hands”, “put in bowl”, and “peel”.

3.2. Adaptive Motion Region Segmentation

The motion saliency computation is of the whole frame, and the real motion saliency regions
still need to be segmented. We only need the motion regions. In other words, we want to segment
the regions including human body parts and objects involved in the action. Traditional background
segmentation methods cannot meet this requirement. In this paper, motion region segmentation is
based on the motion saliency.
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As shown in Figure 3a, the motion saliency map is a gray image. For this kind of image,
the threshold-based method is the most commonly used background segmentation algorithm.
The motion saliency value distributions of different images are inconsistent so that a fixed threshold is
not suitable for all images. Figure 4 shows the visualization of histograms of the motion saliency maps.
As shown in Figure 4, the histogram of the motion saliency map is discrete, and the first bin in the
histogram contains most of the static regions. The threshold of motion region segmentation can be
adaptively calculated, which takes the median of the first two bins in the histogram. That is to say,
Threshold = (Saliencyhist (1) + Saliencyhist (2)) /2. Saliencyhist represents the central numerical
vector of all bins in the histogram, and the threshold is calculated for each image separately.
The segmentation results are displayed in Figure 3b, which shows that any region in which motion
saliency value s(p) is larger than the Threshold would be reserved as foreground.

250

200

150

100

50

0

N
um

be
r o

f P
ix

el
s

Value of Motion Saliency 

250

200

150

100

50

0

N
um

be
r o

f P
ix

el
s

0 0.1         0.2          0.3         0.4          0.5         0.6         0.7     

Value of Motion Saliency
0 0.1         0.2          0.3         0.4          0.5         0.6         0.7     

250

200

150

100

50

0

Value of Motion Saliency
N

um
be

r o
f P

ix
el

s
0 0.1               0.2                0.3               0.4               0.5             

Figure 4. Histograms of motion saliency maps.

3.3. Object Proposal Generation by the Idea of the Huffman Algorithm

In Figure 3c, the human body is divided into several small motion saliency regions.
The granularity of these regions is single, and these regions contain limited information and are not
suitable as the elements for extracting mid-level patches. Therefore, we use a region merging algorithm
to obtain multi-granularity motion regions [48,49]. The Huffman algorithm is a simple and efficient
lightweight algorithm. Inspired by the Huffman algorithm, we propose a region merging algorithm
to merge the motion saliency regions with the image appearance features and the motion saliency
features. All node regions in the Huffman tree are regarded as object proposals, which can obtain
multi-granularity region partition results [50]. The initial region partition result of the foreground
is P0 = {p0

1, p0
2, · · · , p0

n}. For each region merging iteration i, two adjacent regions with the highest
similarity are merged to obtain a new non-terminal node. The two merged regions are deleted from Pi

and the new node is added to Pi. The algorithm continues to iterate until the Huffman tree is built or
there are no adjacent regions that have not been merged.

In order to describe the characteristics of different aspects of these regions more detailed,
we choose a variety of features, including color similarity, motion saliency similarity, and region
size factor. The feature values are in the range [0, 1] to facilitate merging.

(1) Color Similarity

In order to account for the different scenes and lighting conditions, we describe the motion
saliency regions in a variety of color spaces, including RGB, Lab, HSV, normalized RGB (nRGB),
and rgi [22]. Experimental results show that the nRGB color space has the best discrimination, where it
is chosen as the color space. The color feature of a motion region is represented by a color histogram,
and each color channel in the histogram has k bins. In order to extract image features from different
scales, k can take multiple values similar to image pyramids. The color histogram of the ith region pi is
Ci =

{
c1

i , · · · , cm
i
}

, and m = k ∗ 3 for color images. The color histograms are normalized with the L1
norm. The color similarity between region pi and pj is measured by the histogram intersection as
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Pcolor (i, j) =
m

∑
l=1

min
(

cl
i , cl

j

)
. (1)

(2) Motion Saliency Similarity

The motion saliency similarity between two adjacent motion regions is also measured by
histogram intersection. The motion saliency map only has one channel, and the motion saliency
histogram of the ith region pi is MSi =

{
ms1

i , · · · , msm
i
}

. The motion saliency similarity between
region pi and pj is shown as

Pmotion (i, j) =
m

∑
l=1

min
(

msl
i , msl

j

)
. (2)

(3) Region Size Factor

The reason for introducing region size factor is to ensure that the small regions could be merged
early. The calculation method is as

Psize (i, j) = 1−
size (pi) + size

(
pj
)

size (im)
, (3)

where size(im) is the size of the image im, and size(pi) is the size of the region pi.
Our final similarity Pi,j between region pi and pj is the combination of these three factors as

Pi,j = α1Pcolour (i, j) + α2Pmotion (i, j) + α3Psize (i, j) , (4)

where αi ∈ [0, 1], ∑ αi = 1, and αi denotes the weight of the factor i. In the experiment, all factors have
equal weights.

The number of motion saliency regions in each frame is uncertain. If there are n regions, then the
similarity measure calculation between neighbor regions could be n(n−1)

2 times. However, only adjacent
regions can be merged, which means that only the similarity between adjacent regions needs to be
calculated. If the average number of neighborhoods of each region is n′, the number of pairs to be
calculated is n× n′. In most cases, n′ � n can greatly mitigate the computation costs. Furthermore,
a new non-terminal node in each iteration only affects the surrounding regions so that only information
about these adjacent nodes needs to be updated. The variables involved in the algorithm are as follows.
i and j are the numbers of two adjacent regions, respectively.

Ai denotes the set of object proposals adjacent to region pi, and Di represents the properties of pi,
i.e., the region size, the color, and the motion saliency. Pi,j denotes the similarity between the object
proposal pi and pj, where pj ∈ Ai, and vice versa.

For each step of the region merging, two regions with the highest similarity in all adjacent region
pairs are selected where the similarity is related to D. The object proposal generation algorithm is
shown in Algorithm 1.

Figure 5 shows the object proposal extraction results of our algorithm and the Selective Search
algorithm [22]. It can be seen from the figure that the two algorithms can effectively extract the
interaction regions. Both of them first partition the image into candidate regions, and then merge
these regions with a Huffman-like algorithm. However, our algorithm generates the candidate regions
based on the motion saliency that has a natural advantage in action recognition. Most object proposals
segmented by the two algorithms are the same, but the regions in this paper are more accurate.
For example, the motion information of the regions are stronger and the static objects are basically
excluded. Take the action “wash hands” in Figure 5 as an example, the object “knife” is irrelevant
to the action. In the first image in Figure 5b, the object “knife” is regarded as background by motion
region segmentation with the proposed method. In the first image in Figure 5c, the object “knife” is
extracted as an object proposal with the Selective Search [22]. Furthermore, this object will still be
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regarded as foreground even with traditional background segmentation methods [51] because the
object “knife” does not belong to the background.

Algorithm 1 Object proposal generation algorithm.

1: Initialization: The segmentation threshold is calculated according to the motion saliency map,

and initial motion saliency regions in the foreground image are P0 = {p0
1, p0

2, · · · , p0
n};

2: ∀p0
i ∈ P0, compute Di and Ai;

3: Compute the similarity between adjacent regions, PS =
{

Pi,j|∀pi ∈ P0 and pj ∈ Ai and i > j
}

;

4: k = 0; m = n; regionset = P0; // m is the number of the current object proposals;

5: while
(

len
(

Pk
)
> 1

)
&
(

i f exist Ai! = ∅, pk
i ∈ Pk

)
do

6: k = k + 1;

7: m = m + 1;

8: Pi,j = max (PS);
9: Pk =

(
Pk−1 ∪ {pm}

)
−
{

pk−1
i , pk−1

j

}
;

10: compute Dm according to Di and Dj;

11: Am = Ai ∪ Aj −
{

pk−1
i , pk−1

j

}
;

12: ∀pk−1
v ∈ Am, Av = (Av ∪ {pm})−

{
pk−1

i , pk−1
j

}
;

13: PS = (PS ∪ {Pm,o|po ∈ Am})− {Pu,v|u, v = i or j} ;

14: end while

(a) original images

(b) object proposals extracted by the proposed algorithm

(c) object proposals extracted by the selective search algorithm

Figure 5. Results of object proposal extraction of our algorithm and Selective Search. The red boxes
represent the object proposals. The action categories of these three groups of images are “wash hands”,
“put in bowl”, and “peel”.
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3.4. Unsupervised Mid-Level Patch Detector Training

The composition of fine-grained action is complex. Take the action “taking things from the fridge”
as an example. The human body parts involved in the action are the arms and hands, and objects
involved in the action are a fridge and other objects. In order to describe the action more reasonably
and in accordance with Huang et al. [52], we divide the action into different interaction components.

In space, action can be expressed as the interaction of different body parts and operated
objects. Many algorithms extract these interaction components with annotations and pre-training,
which require large manual annotation. Furthermore, most algorithms only consider human body
parts, while the objects involved in the action are usually excluded because of the diversity of categories
and the complexity of annotations. This paper adopts mid-level patches to represent the interaction
components, including body parts and operated objects, and using an unsupervised method with
K-means clustering and SVM to train patch detectors for object proposals [15].

The proposed algorithm trains multiple patch detectors for each action category. Firstly, K-means
or other clustering methods are used to cluster object proposals obtained as above. In order to ensure
the purity of each cluster, the number of clusters should be large enough. However, running K-means
on the object proposals does not produce good clusters. Therefore, SVM is combined with the
clustering process, and the classifier is trained for each cluster generated by clustering. In order to
ensure the effectiveness of mid-level patch detectors, the clustering and training of classifiers are
iterated repeatedly until convergence. The object proposals in images of the same action category in
the training set are taken as positive samples, while the object proposals in other categories are taken
as negative samples.

In order to ensure that the detected mid-level patches can cover all the interaction components as
far as possible, multiple patch detectors are trained for each action category. Finally, 15 detectors are
selected, and some detectors are selected manually. The mid-level patches detected by the detectors
form the mid-level representation of the action.

4. Action Recognition with Graph Structure

Most human actions can be regarded as the process of interaction between human body parts
and operated objects (if any) in space. Reasonable descriptions and modeling of the above interaction
components and their spatial relationships can recognize the action more effectively. In this paper,
the interaction components are represented by mid-level patches detected by the patch detectors,
and their space relationships are modeled by a graph structure.

4.1. The Graph Structure

In order to effectively capture the spatial context information during the action process, a graph
structure is used to represent the relationship between mid-level patches [53,54]. Firstly, all mid-level
patches are constructed into an undirected action graph G = (V, E), where the node i ∈ V represents
a mid-level patch, and the edge (i, j) ∈ E represents the relationship between two patches. Initially,
all nodes form a fully connected graph.

In fact, not all the body parts have a cooperative relationship during the action process. In most
cases, cooperation only involves parts of human body parts. Using a fully connected graph to
represent the relationship between the patches will generate many redundant relationships and
increase computation costs. Therefore, this paper adopts a graph segmentation algorithm to segment
the action graph G and deletes unnecessary edges in which two endpoints have no cooperation
relationship [55,56]. For any two nodes i and j, if two mid-level patches represented by the nodes
move simultaneously for long enough, they are considered to have a motion cooperation relationship.
Otherwise, there is no cooperation relationship between them.

Suppose that n mid-level patches are captured in frame k, and they are expressed as Fk =(
f 1
k , f 2

k , · · · , f n
k
)
. For each patch f i

k, we extract the DT feature. The motion trajectories of all
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feature points in the patch f i
k (absolute coordinate in the image) are expressed as tci =

{
tcm

i
}

.

tcm
i =

{
tcm

i [t]
}td

t=ts, where the vector tcm
i [t] represents the coordinate vector (x, y) of feature point m

at time t, and [ts, td] is the time range of the trajectory of that point.
If two patches are both in motion for at least δ frames, it is considered that there exists a motion

cooperation relationship between them. We set Ti =
⋃
∀m∈ f i

k

[tsm, tdm], and the adjacency matrix Mk of

graph G in frame k is defined as Equation (5). Ti is the time interval in which patch i is in motion.

Mk(i, j) = { 1, i f |Ti ∩ Tj| > δ

0, otherwise
. (5)

4.2. Motion Cooperation Relationship of Mid-Level Patches

The key problem is how the relationship between mid-level patches can be calculated. We adopt
the appearance and motion features to describe the patches. Furthermore, the relationship between
any two related patches is described by the binary motion cooperation relationship.

The feature term of a patch is ui = ωi · xi, which uses SVM to calculate the score of patch i. The DT
feature xi is used to describe the patch i, and the parameter ωi is obtained by learning.

The binary relation term ui,j describes the spatial motion cooperation relationship between
different patches i and j. This paper calculates the relationship between mid-level patches from two
aspects, which are trajectory consistency and motion consistency.

(1) The Trajectory Consistency

For each patch i, the mean patch trajectory is used to describe its motion trajectory, and it is
defined as

pti [t] =
1

|{tci}| ∑
∀m,t∈[tsm ,tdm ]

tcm
i [t] , t ∈ Ti. (6)

In order to describe the change of trajectories of two patches effectively, the pti [t] and ptj [t] are
further processed [21]. First, the canonical relative position is estimated, d

f i
k , f j

k
[t] =

∣∣pti [t]− ptj [t]
∣∣ /σ,

where σ is a scale variable. d
f i
k , f j

k
[t] takes a value only in the coexisting time interval. Subsequently,

a feature capturing the rate of the convergence and divergence of the trajectory pairs is calculated,
where vx,y [t] = d

f i
k , f j

k
[t + 1] − d

f i
k , f j

k
[t] [21]. The relation between the two patches is symmetric.

For convenience, we quantize two elements x and y in the vector vx,y [t] of any two related patches i
and j at time t, respectively. The quantized vector is as follows:

ϕi,j (x) =
[
v−1 (x) , ρ−η (x) , ..., ρ0 (x) , ..., ρη (x) , v1 (x)

]
,

v±1 (x) =
(

1 + e
±x+µ0

s0

)−1
, ρd (x) = e

− (x−µd)2

s2
d , d ∈ [−η, , ..., 0, ..., η].

(7)

Equation (7) is performed on the average trajectories pti and ptj in the time interval Ti ∩ Tj, and the

feature vector φi,j =
(

ϕi,j (x) , ϕi,j (y)
)

is obtained, where φi,j ∈ R((2η+3)×{Ti∩Tj},2). The parameters in
Equation (7) are set as Raptis et al. [21], where η = 3. s0 and µ0 are set so that the sigmoidal functions
v can cover the extremes of the domain. In Gaussian functions ρ, µd is set to cover the relative velocity
domain spanned by the database, and sd changes along with µd according to the variance formula.
The feature vector φi,j can better describe the trajectory consistency between the two mid-level patches
i and j [21].
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(2) Motion Consistency

Motion consistency is calculated by feature histograms of HOG (Histograms of Oriented
Gradients), HOF (Histograms of Optical Flow), and MBH (Motion Boundary Histograms, MBHx
and MBHy). For the ith patch f i

k in the frame Fk, the feature histogram is Hi
k =

{
hc

i
}4

c=1, where c
represents the four different features and hc

i is the Bow of the cth feature of patch i. The motion
consistency sij between any two patches i and j is as follows:

sij = ∑
c

ωc · exp

−dc
(

hc
i , hc

j

)
Bc

 , (8)

where Bc is used to normalize different channels, and its value is the average of Euclidean distance
between the histograms of characteristic c in the training set; dc

(
hc

i , hc
j

)
denotes the Euclidean distance

between two groups of feature vectors; and ωc is obtained by training.
According to the analysis above, the binary motion cooperation relationship between any two

patches i and j is as follows:

ui,j = ω
p1
i,j · φi,j + ω

p2
i,j · si,j. (9)

4.3. Action Recognition Model

Our goal is to accomplish action recognition based on feature vector and action label. The action
score of each video clip v is determined by Equations (10) and (11). x0 represents the global feature.

Sv = ∑
i

ωi · xi + ∑
i

∑
j

(
ω

p1
i,j · φi,j + ω

p2
i,j · si,j

)
+ ω0 · x0. (10)

In this paper, weak supervision is used to train the fine-grained action recognition model. For any
video v, only the label Y of the action is known. The mid-level patches are detected by patch detectors.
SVM with a chi-square kernel is used for model training. The action recognition model is as follows:

min
ω,ξ≥0

1
2
‖ω‖2 + C ∑

n
ξn,

Svn (X, Y)− Svn (X, Y∗) ≥ ∆0/1 (Y, Y∗)− ξn, ∀n.
(11)

In the model, a 0-1 loss function is used to estimate the difference between the ground-truth label
Y and the label Y∗ predicted by the action recognition model.

5. Experiments

This paper validates the proposed action recognition model on the MPII cooking database [1],
including 65 fine-grained kitchen actions. It contains 44 videos in total completed by 12 different
people (or equally 5609 video clips, and 881,755 frames). The main difficulty of this database is that
the difference among categories is small, but the difference between the same category instances is
quite large. Moreover, the background of the kitchen in the video is dark, which affects the detection
accuracies of the human body and objects.

Experiment settings: Following Rohrbach et al. [1], we perform leave-one-person-out
cross-validation for performance evaluation. We adopt 5 subjects to train the model and the remaining
7 subjects to test in 7 cross-validation rounds. We use one-vs-all SVM with a chi-square kernel.
For codebook training, the number of cluster centers is 4000. m in Equation (1) is 75; in Equation (2),
it is 25. We evaluate classification performance in terms of multi-class precision (Pr), recall (Rc),
and mean average precision (mAP).
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5.1. Parameter Selection for Object Proposal Generation

In order to adapt to different scenes and lighting conditions, we perform object proposal
generation on a variety of color spaces. The color spaces are chosen to be the same as with Selective
Search [22]. We test the performance of these color spaces by classifying actions with the last four
regions in the Huffman tree. In this group of experiments, the HOG in the DT feature is adopted.
Table 1 shows that the nRGB color space has the best mAP of 54.4%. The second one is RGB. According
to the experiment results, we choose the nRGB to calculate the color similarity.

Table 1. Recognition accuracies for different color spaces (%).

Color Space mAP(%)

RGB 53.7
nRGB 54.4
Lab 53.5
rgI 52.1

HSV 47.6

Table 2 shows the recognition results with or without the region size factor in Equation (4).
The second to fourth columns in Table 2 are weights of the color similarity, the motion saliency
similarity, and the region size factor, respectively. All factors have equal weights. Based on Table 2,
the result of region merging is better with the region size factor.

Table 2. Recognition accuracies with or without region size factor (%).

With or Without Size Factor Weight of Color Space Weight of Saliency Weight of Size mAP(%)

with size factor 0.33 0.33 0.33 54.4
without size factor 0.5 0.5 0 49.1

5.2. Action Recognition Accuracies of Different Features

We present the action recognition results of different features on the MPII cooking database in
Table 3. The features are HOG, HOF, MBHx, MBHy, MBH, and the combination of them. Combining all
features achieves the best result and significantly improves the mAP by more than 3% compared with
other features.

Table 3. Recognition accuracies of different features (%).

Feature Pr Rc mAP

HOG 43.5 38.2 59
HOF 45.5 40.8 59.4

MBHx 45.2 39.7 61.2
MBHy 45.3 41.5 66.6
MBH 49.0 42.5 67.4

Combined 52.0 46.0 69.8

5.3. Comparison with State-of-the-Art Methods

Table 4 presents the experimental results of our fine-grained action recognition algorithm against
the state-of-the-art methods. From Table 4, we can see that the proposed method performs well. On the
MPII cooking database, our method shows an overall mAP of 69.8%, which is significantly better than
the baseline [1] (57.9). The proposed method outperforms the Hierarchical Mid-Level Actions [11],
Interaction Part Mining (Max Pooling) [10], IDT-FV (Improved Dense Trajectory, Fisher Vector) [31],
P-CNN (Pose-Based CNN) [31], Binary Hashing CNN Features [32], and the Order-Constrained
Kernelized Feature [33]. Our algorithm is comparable to the Semantic Features [9] and Interaction
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Part Mining (Max-N Pooling) [10] methods. The Semantic Features method [9] requires object
detection, while our method partitions object proposal regions in motion saliency maps without
manual annotation. Interaction Part Mining (Max-N Pooling) [10] detects N instances for each patch
detector to gain better results with abundant information, whereas our method only detects one
instance for each detector. The per-class classification results for these three algorithms on the MPII
cooking database are shown in Figure 6 (only 54 categories are shown).

Table 4. Comparison of action recognition accuracies of different methods on the MPII
cooking database.

Method mAP(%)

Holistic + Pose [1] 57.9
Holistic Dense Trajectories [1] 59.2

Hierarchical Mid-Level Actions [11] 66.8
Interaction Part Mining (Max Pooling) [10] 69.1

Interaction Part Mining (Max-N Pooling) [10] 72.4
Semantic Features [9] 70.5

IDT-FV [31] 67.6
P-CNN [31] 62.3

Binary Hashing Convolutional Neural Network (CNN) Features [32] 63.8
Order-constrained Kernelized Feature [33] 53.0

Our Model 69.8
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Figure 6. Per-class classification performance comparison on the MPII cooking database. We compare
our method with the Semantic Features and Interaction Part Mining (Max-N Pooling) methods in terms
of the number of true positive predictions.

We compare our method with the Semantic Features [9] and Interaction Part Mining (Max-N
Pooling) [10] methods. As shown in Figure 6, the proposed algorithm achieves better or comparable
results for most categories of actions. For actions with visible operated objects, such as “change
temperature”, “cut slices”, and “open tin”, the recognition accuracies of our algorithm are the best.
Meanwhile, our method and the Semantic Features method are comparable for other categories. Unlike
the Semantic Features method, our algorithm does not require manual annotation, which shows that
the segmentation of interaction components based on motion saliency is effective. For actions in
which operated objects are difficult to detect, such as “cut dice”, and “cut in”, the results of the
three algorithms are comparable. When the category of action has more samples, our method and the
Semantic Features method perform well, such as “take out from drawer” and “wash objects”. When the
category has fewer samples, the recognition effect of Interaction Part Mining (Max-N Pooling) is good,
such as “cut dice” and “lid: remove”, but the advantage is not obvious. The reason may be that Max-N
Pooling can extract more effective information for small sample categories, but our algorithm can
obtain more effective information when the number of samples is enough. That is to say, our algorithm
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may have a better result than Interaction Part Mining (Max-N Pooling) with enough samples. Figure 6
verifies the proposed method based on motion saliency and mid-level patches.

6. Conclusions

In this paper, a fine-grained action recognition algorithm based on motion saliency and mid-level
patches is proposed. Motion regions are adaptively extracted in the motion saliency maps without
manual annotation. With the object proposal generation algorithm, multi-granularity object proposals
based on motion saliency regions are obtained, and the mid-level patch detectors are trained
in an unsupervised way. Action recognition is implemented by calculating the appearance and
motion features of patches and the binary motion relationship between patches in the action graph.
The experiment results show that the proposed fine-grained action recognition algorithm works
effectively. The extracted mid-level patches can cover most interaction components (including
human body parts and objects), and their representation ability is strong. The motion cooperation
relationship-based action recognition model can classify the actions effectively. In order to further
improve recognition accuracy, the human body parts and operated objects should be extracted and
located more accurately.
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