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Abstract
We investigate the complexity of computing entropy of various Markovian models including
Markov Chains (MCs), Interval Markov Chains (IMCs) and Markov Decision Processes (MDPs).
We consider both entropy and entropy rate for general MCs, and study two algorithmic ques-
tions, i.e., entropy approximation problem and entropy threshold problem. The former asks for
an approximation of the entropy/entropy rate within a given precision, whereas the latter aims
to decide whether they exceed a given threshold. We give polynomial-time algorithms for the
approximation problem, and show the threshold problem is in PCH3 (hence in PSPACE) and
in P assuming some number-theoretic conjectures. Furthermore, we study both questions for
IMCs and MDPs where we aim to maximise the entropy/entropy rate among an infinite family
of MCs associated with the given model. We give various conditional decidability results for
the threshold problem, and show the approximation problem is solvable in polynomial-time via
convex programming.
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1 Introduction

Entropy is one of the most fundamental notions in information theory which usually refers
to the Shannon entropy in this context [16]. In a nutshell, it is the expected value of the
information contained in a message. Markovian processes and entropy are related since the
introduction of entropy by Shannon. In particular, Shannon defined and studied technically
the entropy rate of a discrete-time Markov chain (henceforth MC in short) with a finite state
space, which is one of the main topics of the current paper.

We identify two types of “entropy” defined in literature for MCs. Essentially entropy
is a measure of uncertainty in random variables, and MCs, as a stochastic process, are a
sequence of random variables. Naturally this view yields two possible definitions, intuitively
the “average” and the “sum” of the entropy of the random variables associated with the MC,
respectively:

the classical definition of entropy, dating back to Shannon, typically known as the entropy
rate. Informally, this is the time density of the average information in a stochastic process.
Henceforth, we refer to this definition as entropy rate.
the definition given by Biondi et al [7], which is the joint entropy of the (infinite) sequence
of random variables in a stochastic process. Although being infinite in general, the
authors argue that this represents, for instance, the information leakage where the states
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of the MC are the observables of a deterministic program [7]. Henceforth, we refer to this
definition as entropy.

Formal accounts are given in Section 3. Definitions of entropy of MCs raise algorithmic
challenges. One natural question is, given an MC, how to “compute” its entropy? Note that
in general, it is not a rational (even not an algebraic) number, which prompts the question
what computing means exactly. Technically there are (at least) two possible interpretations
which we formulate as the entropy approximation problem and the entropy threshold problem,
respectively. Let D be an MC and ~ denote the entropy/entropy rate of D.

The entropy approximation problem aims to compute, given the error bound ε > 0, a
rational number θ such that |~− θ| ≤ ε;
The entropy threshold problem aims to decide, given the rational number θ, whether
~ ./ θ, where ./ ∈ {<,≤,=,≥, >}.

Observe that general speaking the approximation problem is no harder than the threshold
problem, since it can be solved by a simple binary search with the threshold problem as the
oracle. However, the converse does not hold in general.

On top of a purely probabilistic model like MCs, it is probably more interesting to consider
probabilistic models with nondeterminism, typically Interval Markov chains (IMCs) and
Markov Decision Processes (MDPs). MDPs [26] are a well-established model which is widely
used in, for instance, robotics, automated control, economics, and manufacturing. IMCs [22]
are MCs where each transition probability is assumed to be within a range (interval). They
are introduced to faithfully capture the scenario where transition probabilities are usually
estimated by statistical experiments and thus it is not realistic to assume they are exact.

By and large, a probabilistic model with nondeterminism usually denotes an (infinite)
family of pure probabilistic models. Among these models, selecting the one with the
maximum entropy is one of the central questions in information theory [16]. As before, it
raises algorithmic challenges as well, i.e., given an IMC or MDP which denotes an infinite
family of MCs, how to “compute” the maximum entropy? Note the dichotomy of the
approximation and the threshold problem exists here as well, which we shall refer to the
maximum entropy approximation problem and the maximum entropy threshold problem,
respectively.

Entropy of probabilistic models has a wide range of applications, in particular in security
[12, 6, 30]. As a concrete example which is one of the motivations of the current paper, in a
recent paper [7], all possible attacks to a system are encoded as an IMC, and the channel
capacity computation reduces to finding an MC with highest entropy. Note that tool support
has been already available [8].

Contributions. In this paper we are mainly interested in the algorithmic aspects of entropy
for Markovian models. In particular, we carry out a theoretical study on the complexity of
computing (maximum) entropy for MCs, IMCs, and MDPs. The main contributions are
summarised as follows:
1. We consider the definition of entropy rate for general (not ergodic) MCs, and give a

characterisation in terms of local entropy;
2. We identify the complexity of the entropy approximation problem and the entropy

threshold problem for MCs;
3. We identify the complexity of the approximation problem for maximum entropy/entropy

rate for IMCs, and we obtain conditional decidability for the threshold problem. These
results can be adapted to the MDP model as well.

The main results of the paper are summarised in Table 1.
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Table 1 Complexity of computing entropy/entropy rate

approximation threshold
MC P PCH3 (conditional in P)

IMC/MDP P conditional decidable

Some remarks are in order:
Regarding 1, in literature entropy rate is defined exclusively over irreducible (sometimes
called ergodic) MCs where the celebrated Shannon-McMillan-Breiman theorem [16]
actually gives a characterisation in terms of stationary distribution and local entropy.
However, for computer science applications, MC models are seldom irreducible. Hence
we provide a characterisation for general (finite-state) MCs, inspired by the one in [7].
For the “computation” of entropy of MCs, [7] states that it can be done in polynomial
time. Although not stated explicitly, this actually refers to the approximation problem.
The threshold problem is not addressed in [7], nor the corresponding problems wrt. the
entropy rate.
For the “computation” of maximum entropy of IMCs, [7] considers the approximation
problem. The authors reduce the problem to non-linear programming (over a convex
polytope though) to which no complexity result is given. Here, instead, we show, by
reducing to convex programming, the approximation problem can be solved in polynomial
time. Note that the formulation in [7] is not convex in general, so we cannot start from
there straightforwardly.
For maximisation of entropy rate, it is actually a classical topic for MCs and semi-MCs.
A classical result, due to Parry [24], shows how to define a (stationary) MC (called
Shannon-Parry MC) over a given strongly connected graph to achieve the maximum
entropy rate. More recent results focus on finding a (semi-)MC with the maximum
entropy rate when its stationary distribution is constrained in certain ways, see, e.g., [19].
In contrast, here we work on the entropy rate for general IMCs and MDPs. To the best
of our knowledge this is the first work of this type.

Related work. Apart from the work we have discussed before, [30, 12] studied the complexity
of quantitative information flow for boolean and recursive programs, whereas [11] studied the
information-leakage bounding problem (wrt. Shannon entropy) for deterministic transition
systems. [9] studied entropy in process algebra. These models and questions are considerably
different from ours. [13, 27, 15, 25, 4] studied IMCs and their model checking problems.
The technique to solve convex programming is inspired by [25]. We also mention that [2]
generalised Parry’s result to the graph generated by timed automata.

An extended version of the paper [14] contains proofs, detailed expositions, and in
particular, all results for MDPs.

2 Preliminaries

Let N,Q,R denote the set of natural, rational, real numbers, respectively. Given any finite set
S, we write ∆(S) for the set of probabilistic distributions over S, i.e., functions µ : S → [0, 1]
with

∑
s∈S µ(s) = 1. For any vector ~x, we write ~xi for the entry of ~x corresponding to the

index i, and ~x ≥ 0 if ~xi ≥ 0 for each i. Throughout this paper, X,Y, · · · denote discrete
random variables (RVs), usually over a finite set of outcomes. For the RV X, we often denote
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the set of outcomes as X = {x1, · · · , xn} which is ranged over by x. In this context, we also
write Pr(X = x) or simply p(x) for the probability mass function.

2.1 (Interval) DTMCs
I Definition 1 (MC). A (discrete-time) Markov chain (MC) is a tuple D = (S, α,P), where
S is a finite set of states; α ∈ ∆(S) is the initial distribution; and P : S × S → [0, 1] is the
transition probability matrix, satisfying ∀s ∈ S,

∑
s′∈S P(s, s′) = 1.

Alternatively, an MC can be defined as a stochastic process {Xn}n≥0, where each Xn is
a discrete RV over S. The process respects the Markov property, i.e., Pr(Xn = sn|Xn−1 =
sn−1, · · · , X0 = s0) = Pr(Xn = sn|Xn−1 = sn−1) = P(sn−1, sn) for any s0, s1, · · · , sn ∈ S
and n ∈ N. Note that Pr(Xn = s) denotes the probability of being in state s at time n. The
transient distribution of D is denoted by π(n) ∈ ∆(S), which can be computed by π(n) = αPn.
It is known that Pr(Xn = s) = π

(n)
s .

For a finite MC, we often use graph-theoretical notations which refer to the underlying
digraph of D. Essentially the vertices of the digraph are states of D, and there is an edge
from s to t iff P(s, t) > 0. The following notions are standard.

I Definition 2. A subset T ⊆ S is strongly connected if for each pair of states s, t ∈ T , t
is reachable from s. A strongly connected component (SCC) T of an MC D denotes a
strongly connected set of states such that no proper superset of T is strongly connected.
A bottom strongly connected component (BSCC) T is an SCC from which no state outside
T is reachable.

We write E(D) for the set of all SCCs of D and B(D) ⊆ E(D) for the set of all BSCCs of D.

I Definition 3. A state s is absorbing if P(s, s) = 1, i.e. s contains only a self-loop. An
MC is absorbing if every state can reach an absorbing state.
A state s is transient if, starting in state s, there is a non-zero probability that it will
never return to s; otherwise s is recurrent.
A state s is deterministic if the distribution P(s, ·) is Dirac, i.e. there is a unique t such
that P(s, t) = 1; otherwise s is stochastic.
An MC is irreducible if its underlying digraph is strongly connected.

I Definition 4 (IMC). An interval-valued (discrete-time) Markov chain (IMC) is a tuple
I = (S, α,Pl,Pu), where S, α are defined as in Definition 1; Pl,Pu : S × S → [0, 1] are two
transition probability matrices, where Pl(s, s′) (resp. Pu(s, s′)) gives the lower (resp. upper)
bound of the transition probability from state s to s′.

Semantics. There are two semantic interpretations of IMCs [27], i.e., Uncertain Markov
Chains (UMC) and Interval Markov Decision Processes (IMDP). In this paper, following [7],
we mainly focus on the UMC semantics. An IMC I = (S, α,Pl,Pu) represents an infinite set
of MCs, denoted by [I], where for each MC (S, α,P) ∈ [I], Pl(s, s′) ≤ P(s, s′) ≤ Pu(s, s′)
for all pairs of states s, s′ ∈ S. Intuitively, under this semantics we assume that the external
environment nondeterministically selects an MC from the set [I] at the beginning and then
all the transitions take place according to the chosen MC. Without loss of generality, we only
consider IMC I with [I] 6= ∅, i.e., there exists at least one implementation. This condition
can be easily checked.

Similar to MCs, we can also view an IMC as a digraph such that there is an edge from s

to t iff Pu(s, t) > 0. In this way, we can speak of the set of all SCCs and BSCCs of an IMC
I which we denote by E(I) and B(I), respectively.
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For complexity consideration, for the introduced probabilistic models, we assume that all
the probabilities are rational numbers. We define the size of D (resp. I), denoted by ]D (resp.
]I), as the size of the representation of D (resp. I). Here rational numbers (probabilities)
are represented as quotients of integers written in binary. The size of a rational number is
the sum of the bit lengths of its numerator and denominator and the size of a matrix is the
sum of the sizes of its entries. When stating a complexity result, we assume the standard
Turing model.

2.2 Information theory
For a RV X with outcomes {x1, · · · , xn}, the Shannon entropy of X is defined as H(X) =
−
∑n
i=1 p(xi) log p(xi). (Note that by convention we define 0 log 0 = 0 as limx→0 x log x = 0).

All logarithms are to the base 2; however our results are independent of the base. The definition
of Shannon entropy is easily generalised to joint entropy, the entropy of several RVs computed
jointly. Namely H(X1, · · · , Xn) = −

∑
x1∈X1

· · ·
∑
xn∈Xn

p(x1, · · · , xn) log p(x1, · · · , xn). We
also define conditional entropy which quantifies the amount of information needed to describe
the outcome of a random variable Y given that the value of another random variable X
is known. Namely H(Y |X) =

∑
x∈X ,y∈Y p(x, y) log p(x)

p(x, y) . The chain rule relates the

joint entropy and the conditional entropy, namely, H(Y |X) = H(X,Y )−H(X). It follows
that the joint entropy can be calculated using conditional entropy, i.e., H(X0, · · · , Xn) =
H(X0) + H(X1|X0) + · · ·+ H(Xn|X1, · · · , Xn−1).

3 Entropy of MCs

In this section, we define and characterise the entropy/entropy rate for an MC which we fix
to be D = (S, α,P). D is equipped with a stochastic process as {Xn}n∈N. Let’s start from a
basic property which can be deduced from the memoryless property.

I Lemma 5. H(Xn|X1, · · · , Xn−1) = H(Xn|Xn−1).

It turns out that the notion of local entropy [7] plays a central role in developing a
characterisation of entropy/entropy rate for MCs which are amenable to computation.

I Definition 6 ([7]). For any given MC D and state s ∈ S, the local entropy L(s) is defined
as H(P(s, ·)), i.e, −

∑
t∈S P(s, t) log P(s, t).

3.1 Entropy for absorbing MCs
I Definition 7 ([7]). Given an MC D, the entropy of D, denoted H(D), is defined as
H(D) = H(X0, X1, · · · ).

We note that [7] also provides an elegant characterisation. Define ξ(s) =
∑∞
n=0 π

(n)
s . (It

is called residence time in [7].) Note that basic theory of MCs implies that the state s is
recurrent if ξ(s) =∞, and is transient iff ξ(s) <∞. We write ~ξ for the vector (ξ(s))s∈S .

I Theorem 8. H(D) =
∑
s∈S L(s)ξ(s) + H(α), where H(α) = −

∑
s∈S α(s) logα(s).

I Remark. [7] defines the entropy for general MCs whereas here we assume MCs are absorbing.
This does not lose any generality. Mostly we are only interested in MCs with finite entropy,
and one easily observes: H(D) is finite iff the local entropy of each recurrent state is 0. Note
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that absorbing MCs admits that each recurrent state is made absorbing and thus has local
entropy 0.

We also note there is slight difference on H(α) between our version and that of [7] in
Theorem 8. The paper [7] assumes a unique initial state in MCs (i.e., α is Dirac) where
H(α) = 0; here we assume a (slightly more) general initial distribution α.

3.2 Entropy rate for general MCs
In contrast to the entropy, the entropy rate is defined as

I Definition 9. Given an MC D, the entropy rate of D, denoted ∇H(D) is defined as

∇H(D) = lim
n→∞

1
n
H(X0, · · · , Xn)

As before we characterise ∇H(D) by local entropy. Define ζ(s) = limn→∞
1
n

∑n−1
i=0 π

(i)
s and

write ~ζ for the vector (ζ(s))s∈S . We have the following result:

I Theorem 10. ∇H(D) =
∑
s∈S L(s)ζ(s).

I Remark. Typically in literature (e.g. [16, 19]), the entropy rate is defined only for an ergodic
MC. In that case, one has ∇H ′(D) = limn→∞H(Xn | X1, · · · , Xn−1). For ergodic MCs
(more generally all stationary processes where MCs are a special case), these two quantities
coincide and by Lemma 5, the entropy rate is given by ∇H ′(D) = limn→∞H(Xn | Xn−1).

4 Computing entropy in MCs

In this section, we will focus on the entropy threshold problem which asks: given an MC
D and θ ∈ Q, does H(D) ./ θ hold for ./ ∈ {≤, <,=, >,≥}? We assume some familiarity
with straight-line programs and the counting hierarchy (cf. [1] or [14]). In particular, the
problem PosSLP is to decide, given a straight-line program, whether the integer it represents
is positive. PosSLP belongs to the complexity class PCH3 and thus to the fourth-level of the
counting hierarchy [1]. We note that counting hierarchy is contained in PSPACE, but it is
unlikely to be complete to PSPACE. The following propositions are slight generalisations of
[12] and [18], respectively.

I Proposition 11. Given p1, · · · , pn, q1, · · · , qn, θ ∈ Q, deciding whether
∑n
i=1 pi log qi ./ θ

for ./ ∈ {≤, <,>,≥} reduces to PosSLP in polynomial time.

I Proposition 12. Given p1, · · · , pn, q1, · · · , qn, θ ∈ Q,
∑n
i=1 pi log qi = θ is decidable in

polynomial time.

ABC/Lang-Waldschmidt conjecture implies P. An interesting question is whether one
could obtain a lower-bound. This is left as an open question, but the following result
somehow discourages such efforts. Indeed, the following proposition can be easily obtained
by essentially [18, Proposition 3.7(1)].

I Proposition 13. Assume p1, · · · , pn, q1, · · · , qn, θ ∈ Q. If the ABC conjecture holds, or
if the Lang-Waldschmidt conjecture holds, then

∑n
i=1 pi log qi ./ θ for ./ ∈ {≤, <,>,≥} is

decidable in polynomial time.
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Note that the ABC and the Lang-Waldschmidt conjecture (cf. [18] for precise formulations
and reference therein) are conjectures in transcendence theory which are widely believed
to be true. (For instance, in 2012 there was an announced proof of the ABC conjecture by
S. Mochizuki.)

Below we apply these results to the entropy threshold problem of MCs.

4.1 Entropy
Owing to Theorem 8, computing H(D) reduces to computing ~ξ. In [7] it is stated that ξ can
be computed in polynomial time. Here we need to elaborate this claim to obtain complexity
results. This is rather straightforward. For a given absorbing MC which has t transient states

and r absorbing states, the transition probability matrix P can be written as P =
[
Q R

0 Ir

]
,

where Q is a t× t matrix, R is a nonzero t× r matrix, and Ir is an r × r identity matrix. A
basic property of absorbing MCs is that the fundamental matrix I−Q is invertible [21], and
we have the following:

I Proposition 14 ([21]). For absorbing MC, ~ξ = α′(I−Q)−1 where α′ is the restriction of
α to the t transient states.

Basic linear algebra reveals that ~ξ can be computed in cubic-time via, e.g., Gauss
elimination, and the size of ~ξ is polynomially bounded by ]D (see, e.g., [20]). It then follows
from Proposition 11 and Proposition 12 that:

I Theorem 15. Given an MC D,
Deciding H(D) ./ θ for ./ ∈ {<,≤,≥, >} is in PCH3 , and is in P assuming the ABC or
the Lang-Waldschmidt conjecture.
Deciding H(D) = θ is in P.

4.2 Entropy rate
Owing to Theorem 10, computing ∇H(D) reduces to computing ~ζ. For (finite) irreducible
MC, ~ζ coincides to the stationary distribution π which is unique and independent of the
initial distribution. In this case, Theorem 10 yields that ∇H(D) =

∑
s∈S L(s)π(s), which is

exactly the classical result, see, e.g., [16]. For general MCs, the transition probability matrix
P has the form

P =


Q R1 R2 · · · Rh
0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bh


where Q corresponds to transient states, and Bi (1 ≤ i ≤ h) corresponds to the BSCCs
(recurrent states).

I Proposition 16. For any MC,

~ζ = α ·


0 (I−Q)−1R11T~y1 (I−Q)−1R21T~y2 · · · (I−Q)−1Rh1T~yh
0 1T~y1 0 · · · 0
0 0 1T~y2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1T~yh
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where ~yi is the solution of the system of linear equations:

~yiBi = ~yi and 1~y = 1

and 1 = (1, · · · , 1).

Similar to the previous section, the size of ~ζ is polynomially bounded by ]D. It then
follows from Proposition 11 and Proposition 12 that:

I Theorem 17. Given an MC D,
Deciding ∇H(D) ./ θ for ./ ∈ {<,≤,≥, >} is in PCH3 , and is in P assuming the ABC
or the Lang-Waldschmidt conjecture.
Deciding ∇H(D) = θ is in P.

4.3 Approximation problems

To complete the picture, we show that one can easily approximate
∑n
i=1 pi log qi up to a

given error bound ε in polynomial time.
Let N = n ·max1≤i≤n |pi|. For each 1 ≤ i ≤ n, we can compute θi ∈ Q in polynomial-time

[10, 18] such that | log qi − θi| < ε
N (note that the size of N is bounded polynomially by the

size of the input). Observe that∣∣∣∣∣
n∑
i=1

pi log qi −
n∑
i=1

piθi

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

pi(log qi − θi)

∣∣∣∣∣ ≤
n∑
i=1
|pi|

ε

N
≤ ε.

Hence
∑n
i=1 piθi, which can be computed in polynomial-time, is an approximation of∑n

i=1 pi log qi up to ε. Note that, however, unfortunately this does not yield an efficient
decision procedure for

∑n
i=1 pi log qi ./ θ. It follows that

I Theorem 18. Given an MC D and ε > 0, both H(D) and ∇H(D) can be approximated
up to ε in polynomial-time in ]D and log( 1

ε ).

(Note that this result for entropy is implied in [7] without proof.)

5 Computing the maximum entropy in IMCs

In this section, we turn our attention to IMCs. Recall that an IMC I represents a set of MCs
[I]. We are interested in maximising the entropy/entropy rate of I. The formal definitions
are given as follows:

I Definition 19. Given an IMC I,
the maximum entropy of I, H(I), is defined as H(I) = sup{H(D) | D ∈ [I]};
the maximum entropy rate of I, ∇H(I), is defined as ∇H(I) = sup {∇H(D) | D ∈ [I]}.

Below we focus on the computation of maximum entropy/entropy rate. In contrast to the
previous section, we mainly concentrate on the approximation problem. Results regarding
the threshold problem are presented in Section 5.3, though. Throughout this section, we fix
an IMC I = (S, α,Pl,Pu).
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5.1 Entropy
As pointed out by [7], it could be the case that H(I) =∞ even if for all D ∈ [I], H(D) <∞.
To tackle this issue, an algorithm is given there to determine whether H(I) =∞. In light
of this, we assume that H(I) <∞. One sufficient condition to guarantee finite maximum
entropy is to impose that for any states s and t, Pu(s, t) > 0 implies Pl(s, t) > 0. This is
actually a mild assumption in practice (for instance, see [7], Fig. 5). Note that it is also a
(lightweight) syntactic way to impose the Positive UMC semantics [13].

For I with H(I) <∞, it cannot be the case that a state is recurrent in some implement-
ation and stochastic in another implementation [7]. Namely, if a state is recurrent in some
implementation, it must be deterministic in all implementations, and thus is made absorbing.
We denote by G ⊆ S the set of states which are recurrent in some implementation of I; G is
easily identified by the algorithm in [7].

For each state s ∈ S \G, we introduce a vector of variables ~xs = (xs,t)t∈S , and a vector
of variables ~y = (ys)s∈S . We define Ω(s) to be a set of vectors as:

~xs ∈ Ω(s) iff
{∑

t∈S xs,t = 1
Pl(s, t) ≤ xs,t ≤ Pu(s, t), for each t ∈ S

(1)

(Note that here we abuse the notation slightly by identifying variables and valuations of the
variables.) For simplicity, we define, for ~xs and ~y,

Γ(~xs, ~y) =
∑
t∈S

xs,tyt −
∑
t∈S

xs,t log xs,t . (2)

We then consider the following non-linear program over ~xs for all s ∈ S \G and ~y:

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s /∈ G

ys = 0 s ∈ G

(3)

I Proposition 20. The optimal value of (3) is equal to H(I)−H(α).

We remark that (3) is reminiscent of the expected total reward objective (or the stochastic
shortest path problem) for MDPs [26, 17, 5]. This does not come in surprise in light of
Theorem 8, which might give some intuition underlying (3); cf. [14].

Nevertheless it remains to solve (3). This is rather involved and we only give a rough
sketch here. Observe that we have a nested optimisation problem because of the presence of
an inner optimisation max~xs∈Ω(s) Γ(~xs, ~y) in (3). The main strategy is to apply the Lagrange
duality to replace it by some "min" (see Γ̃ below). We introduce, apart from ~y, variables
~λls = (λls,t)t∈S , ~λus = (λus,t)t∈S and νs for each s ∈ S \G.

It can be shown that (3) is equivalent to

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ Γ̃(~λs, νs, ~y) s /∈ G
ys = 0 s ∈ G
λls,t ≥ 0, λus,t, νs ≥ 0 s /∈ G, t ∈ S

(4)
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where Γ̃(~λs, νs, ~y) = −~bTs ~λus + ~aT
s
~λls − νs + e−1 log e · 2νs · (

∑
t∈S 2~λ

u
s,t−~λ

l
s,t+yt) and ~as =

(Pl(s, t))t∈S and ~bs = (Pu(s, t))t∈S . (Note that log is to base 2.)
It turns out that (4) is a convex program which can be solved by, e.g., the ellipsoid

algorithm or interior-point methods in polynomial time [3, 20]. We obtain

I Theorem 21. Given an IMC I and ε > 0, H(I) can be approximated upper to ε in
polynomial-time in ]I and log( 1

ε ).

5.2 Entropy rate

In this section, we study the approximation problem for ∇H(I). Firstly we assert that
∇H(I) <∞ (cf. [14]).

Recall E(I) is the set of SCCs of I. For each SCC B ∈ E(I), we introduce a variable r,
a vector of variables ~y = (ys)s∈B, and for each s ∈ B, a vector of variables ~xs = (xs,t)t∈S .
Recall that Ω(s) and Γ(~xs, ~y) are defined as in (1) and (2), respectively. We consider the
following non-linear program:

minimise r

subject to r + ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s ∈ B (5)

For each B, we obtain rB as the optimal value of (5). Note that each state s must belong to a
unique B ∈ E(I). For simplicity, we define, for a given vector (zs)s∈S , Λ(~xs, ~z) =

∑
t∈S xs,t ·zt.

We then consider the following non-linear program

minimise
∑
s∈S

α(s)zs

subject to zs ≥ max
~xs∈Ω(s)

Λ(~xs, ~z) s ∈ S

zs ≥ rB s ∈ S and s ∈ B

(6)

I Proposition 22. ∇H(I) is equal to the optimal value of (6) (which depends on (5)).

As before, we remark that (6) and (5) are reminiscent of the limiting average reward
objective for MDPs [26, 5]. This does not come in surprise in light of Theorem 10, which
might give some intuition; cf. also [14].

It remains to solve (5) and (6). In the same vein as in Section 5.1, for each B we can
approximate rB by some θB ∈ Q upper to the given ε > 0. We then substitute (6) for each
θB , and solve the resulting program. It remains to show that (6) does not “propagate” the
error introduced in θB as it is merely an approximation of the real value rB. To this end,
observe that the optimal value of (6) can be regarded as a function g over ~r = (rB)B∈E(I).
We have the following result showing the value of (6) is bounded by the “perturbation” of
its parameters rB ’s. (Note that ‖ · ‖ denotes the ∞-norm for vectors.)

I Proposition 23. If ‖~r − ~r′‖ ≤ ε, then |g(~r)− g(~r′)| ≤ ε.

We conclude that

I Theorem 24. Given an IMC I and ε > 0, ∇H(I) can be approximated upper to ε in
polynomial-time in ]I and log( 1

ε ).
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5.3 Threshold problem
In this section, we focus on the maximum entropy/entropy rate threshold problem, namely,
to decide whether H(I) ./ θ or ∇H(I) ./ θ for a given θ ∈ Q. Recall that we assume
H(I) <∞ otherwise the problem is trivial. Below we present two conditional decidability
results; the unconditional decidability is left as an open problem. We mainly present the
results for H(I) and the case ./=≥. Other cases can be derived in a similar way and can be
found in the full version [14].

By first-order theory. It turns out deciding H(I) ≥ θ amounts to checking

∃~x, ~y.
∧


∑
s∈S\G α(s)ys ≥ θ

ys =
∑
t∈S xs,tyt −

∑
t∈S xs,t log xs,t ∀s ∈ S \G

ys = 0 ∀s ∈ G
Pl(s, t) ≤ xs,t ≤ Pu(s, t) ∀s ∈ S \G, t ∈ S∑
t∈S xs,t = 1 ∀s ∈ S \G

where ~x is the concatenation of ~xs = (xs,t)t∈S for s ∈ S \G and ~y = (ys)s∈S . Recall that
G is the set of states which are recurrent in some implementation of I. Evidently this is a
formula in the first-order theory of ordered real fields extended with exponential functions
(R,+,−, ·, ex, 0, 1,≤). The theory is known to be o-minimal by the celebrated Wilkie’s
theorem [29]. However, its decidability is a long-standing open problem in model theory,
known as Tarski’s exponential function problem. A notable result by Macintyre and Wilkie
[23] asserts that it is decidable provided the Schanuel’s conjecture in transcendence theory
is true (which is widely believed to be the case; in fact only a (weaker) real version of the
conjecture is needed.) Hence, we obtain a conditional decidability for the maximum entropy
threshold problem of IMCs. Note that it is high unlikely that the problem is undecidable,
because it would refute the Schanuel’s conjecture.

By non-singularity assumption. We can obtain the decidability of the maximum entropy
threshold problem by assuming thatH(I) 6= θ. To see this, one can simply compute a sequence
of approximations of H(I) by the approach in Section 5.1, i.e., ~n with |H(I)− ~n| ≤ 1

2n .
The procedure stops when ~n − 1

2n − θ and ~n + 1
2n − θ have the same sign. Then H(I) > θ

iff ~n − 1
2n > θ (or equivalently ~n + 1

2n > θ). Note that we assume H(I) 6= θ, so n must
exist as one can take n = dlog( 1

|H(I)−θ|
)e although n is not bounded a priori.

We conclude this section by the following theorem:

I Theorem 25. Given an IMC I. We have that
if the first-order theory of (R,+,−, ·, ex, 0, 1,≤) is decidable (which is implied by Schanuel’s
conjecture), then H(I) ./ θ and ∇H(I) ./ θ are decidable for ./ ∈ {≤, <,=, >,≥};
if H(I) 6= θ (resp. ∇H(I) 6= θ), then H(I) ./ θ (resp. ∇H(I) ./ θ) is decidable for
./ ∈ {≤, <,>,≥}.

6 Conclusion

We have studied the complexity of computing (maximum) entropy/entropy rate of Markovian
models including MCs, IMCs and MDPs. We obtained a characterisation of entropy rate for
general MCs based on which the entropy approximation problem and threshold problem can
be solved efficiently assuming number-theoretic conjectures. For IMCs/MDPs, we obtained
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polynomial-time algorithms to approximate the maximum entropy/entropy rate via convex
programming, which improved a result in [7]. We also obtained conditional decidability for
the threshold problem.

Open problems include unconditional polynomial-time algorithms for the entropy threshold
problem for MCs and unconditional decidability for maximum entropy threshold problem for
IMCs/MDPs. Furthermore, we believe it would be promising to explore more algorithmic
aspects of information theory along the line of the current work, for instance, for timed
automata [2].
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