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Abstract—An audio-assisted system is investigated that detects
if a movie scene is a dialogue or not. The system is based on
actor indicator functions. That is, functions which define if an
actor speaks at a certain time instant. In particular, the cross-
correlation and the magnitude of the corresponding the cross-
power spectral density of a pair of indicator functions are input
to various classifiers, such as voted perceptrons, radial basis
function networks, random trees, and support vector machines
for dialogue/non-dialogue detection. To boost classifier efficiency
AdaBoost is also exploited. The aforementioned classifiers are
trained using ground truth indicator functions determined by
human annotators for 41 dialogue and another 20 non-dialogue
audio instances. For testing, actual indicator functions are derived
by applying audio activity detection and actor clustering to
audio recordings. 23 instances are randomly chosen among the
aforementioned 41 dialogue instances, 17 of which correspond to
dialogue scenes and 6 to non-dialogue ones. Accuracy ranging
between 0.739 and 0.826 is reported.

Index Terms—Dialogue detection; Indicator functions; Audio
activity detection; Speaker clustering; Cross-correlation; Cross-
power spectral density.

I. INTRODUCTION

Movies constitute a large sector of the entertainment in-
dustry as over 9.000 hours of video are released every year
[1]. Semantic content-based video indexing offers a promising
solution for efficient digital movie management. Event analysis
in movies is of paramount importance as it aims at obtaining a
structured organization of the movie content and understanding
its embedded semantics as humans do. A movie has some basic
scene types, such as dialogues, stories, actions, and generic.
Movie dialogue detection is the task of determining whether
a scene derived from a movie is a dialogue or not. Movie
dialogue detection is a challenging problem within movie
event analysis, since there are no limitations on the emotional
state of persons, the rate at which scenes interchange, the
duration of silent periods, and the volume of background noise
or music. For example, the detection of dialogue scenes in a
movie is more complicated than detecting changes between
anchor persons in TV-news, since many different scene types
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are incorporated in movies depending on the movie director
[2]. Dialogue detection in conjunction with face and/or speaker
identification could locate the scenes, where two or more
particular persons are conversing. Furthermore, the statistics
of dialogue scene durations may give a rough idea about the
movie genre.

Although dialogues constitute the basic sentences of a
movie, there is no commonly accepted definition for them.
A broad definition of a dialogue scene is a set of consecutive
shots, which contain conversations of people [1]. Conversa-
tions are assumed to include significant interaction between the
persons, e.g a passing “hello” between two persons does not
qualify as a dialogue. It is possible some audio segments are
included in a dialogue scene, although they do not contain any
conversation, due to their semantic coherence. For example,
when two people are talking to each other, one should tolerate
for short interruptions by a third person. However, such
random effects should not affect dialogue detection. According
to Chen [3], the elements of a dialogue scene are: the people,
the conversation, and the location, where the dialogue is taking
place. Recognizable dialogue acts are [4]: (i) Statements, (ii)
Questions, (iii) Backchannels, (iv) Incomplete utterances, (v)
Agreements, (vi) Appreciations. Repetition and periodicity are
the main characteristics of a dialogue according to [5], [6].
Lehane states that dialogue detection is feasible, since there is
usually an A-B-A-B structure in a 2-person dialogue [7]. An
A-B-A-B-A-B structure is also employed in [5], [8]. Motivated
by the just described assumptions, we consider that 4 actor
changes should occur in order to declare a dialogue between
actor A and actor B in a movie scene audio channel.

To the best of the authors’ knowledge, movie dialogues
have been mostly treated from the visual channel perspective
(e.g. [3]), whereas the audio channel has been treated either
as auxiliary or it is totally ignored. Recognizing a scene
as a dialogue using exclusively the audio information has
not been investigated, although significant information content
exists in the audio channel, as is demonstrated in this paper.
Indeed, it is usually possible to understand what is taking place
by just listening to the sound and not resorting to visuals
[1], although the reverse is not always true [7]. Moreover,
audio information is faster to process than video information.
Furthermore, combined audio-visual processing is more close
to human perception. Audio-based dialogue detection can be
used auxiliary to video-based dialogue detection and is proven
to boost dialogue detection efficiency [3], [9], [10]. Related
topics to dialogue detection are face detection and tracking,
speaker tracking and speaker turn detection [12]. Aural in-
formation could also be exploited in various video analysis
tasks, like video segmentation [11] or video classification [8],
for example.
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Among the three systems developed for dialogue detection
in [9], we refer to the first system, that is based on audio
and color information. Low-level audio features are extracted,
such as zero crossing rate, silence ratio, and energy. Audio is
classified into speech, music, and silence by means of support
vector machines (SVMs). A finite state machine is used to
detect a dialogue with precision being equal to 0.751 at recall
equal to 0.955. By combining video information, the precision
for dialogue detection equals 0.813 at recall 0.955.

Dialogue detection experiments have been performed using
hidden Markov models (HMMs) in [1]. The audio component
is analyzed to determine if it contains speech, silence, or music
based. On the one hand, silence segments contain a quasi-
stationary background noise with a low energy level with
respect to signals belonging to other classes, making energy
thresholding is sufficient. On the other hand, music segments
contain a combination of sounds exhibiting high periodicity,
which is exploited for their detection. To classify a scene, the
audio classification is fused with a face detector and a location
scene detector. Dialogue detection accuracy ranging from 0.71
to 0.99 is reported.

A top-down approach is adopted by Chen et al. [3]. Au-
dio cues are derived by an SVM that differentiates among
speech mixed with music, speech mixed with environmental
background sound, and environment sound mixed with music.
The following audio features are used: the variance of zero
crossing rate, the silence ratio, and the harmonic ratio. Audio
classification accuracy ranges from 0.6325 to 0.8594 depend-
ing on the features. Concerning dialogue detection, a finite
state machine that incorporates the aforementioned audio cues
is applied. The average precision using both audio and visual
information equals 0.898, while the average recall is 0.936.

In [2], a multi-expert system performs dialogue detection.
Three experts are employed, namely face detection, camera-
motion estimation, and audio classification. A multi-layer
perceptron performs dialogue classification for each expert.
Audio classification categories are speech, music, silence,
noise, speech with music, speech with noise, and music with
noise. Physical features and perceptual ones are used for
classification. In particular, the 14 physical features are related
to energy, temporal energy variability, average and variance of
the number of significant bands, sub-band centroid mean and
variance, pause rate, and energy sub-band ratio. The remaining
two perceptual features are based on pitch. The recognition
rate equals 0.79 for the audio classification expert which
discriminates among silence, speech, music, noise, speech with
music, speech with noise, and music with noise. The achieved
miss detection rate for dialogue detection for all experts equals
0.090, while the false alarm rate is 0.070.

Detection of monologues is discussed in [13]. A monologue
is considered to occur at those shots, where speech and facial
movements are synchronized. The audio channel is manually
annotated as speech, music, silence, explosion, and traffic
sounds. A Gaussian mixture model (GMM) is trained for each
audio class and HMMs generate an N -best list for each audio
frame and then the scores per shot are averaged. Monologue is
detected through weighting speech, face and synchrony scores.
The best monologue recall equals 0.88 at 0.30 precision.

Preliminary results on audio-assisted movie dialogue de-
tection are described in [14] that resort to actor indicator
functions. An actor indicator function defines if an actor
speaks at a certain time instant. Ground truth indicator func-
tions are used both for training and for testing. They are
obtained manually by human annotators, who are listening
to the audio recordings and provide their judgments on actor
speech activity. The cross-correlation function of a pair of
ground-truth indicator functions and the magnitude of the
corresponding cross-power spectral density are fed as input to
neural networks for dialogue detection. The average detection
accuracy achieved ranges between 84.78% and 91.43%.

In this paper, a novel system for audio-assisted dialogue
detection is proposed, that is depicted in Figure 1. Two types
of indicator functions are employed: ground truth indicator
functions and actual ones. Actual indicator functions are
derived automatically after audio activity detection (AAD),
that locates the boundaries of actor’s speech within a noisy
background followed by actor clustering aiming at group-
ing speech segments based actor characteristics. Dialogue
decisions are provided by several classifiers, namely voted
perceptrons (VPs), radial basis function (RBF) networks, ran-
dom trees, and SVMs. The classifiers are fed by the cross-
correlation sequence and the corresponding magnitude of the
cross-power spectral density of a pair of indicator functions.
To eliminate the impact of errors committed by AAD and/or
actor clustering front-end in the classifier training, ground truth
indicator functions are employed during training. However,
actual indicator functions are used during testing. AdaBoost
is also employed in order to enhance the performance of the
aforementioned classifiers in a second stage. Experiments are
carried out using the audio scenes extracted from 6 different
movies of the MUSCLE movie database [15]. A total of 41
dialogue instances and another 20 non-dialogue instances are
extracted. A high dialogue detection accuracy ranging between
0.739 and 0.826 is achieved enabling the use the proposed
system in applications like movie classification, indexing,
abstraction, annotation, retrieval, summarization, browsing, or
searching. Although, the proposed system is tested on movie
audio recordings, it is applicable to broadcasts and meeting
recordings as well.

The paper introduces several novelties. 1) The exploitation
of the audio channel for dialogue detection is rarely met in
the related literature. To the best of the authors’ knowledge,
this is one of the first attempts to exploit the audio channel
exclusively. 2) In previous works, the audio channel is just
segmented [1] and is not capable by itself to distinguish a di-
alogue. The most common segmentation is into speech, music,
and silence [1], [9]. More complicated cases include speech,
music, silence, music, noise, speech with music, speech with
noise, and music with noise [2] or in speech mixed with
music, speech mixed with environmental background sound,
and environment sound mixed with music [3]. Dialogue occurs
if there is pure speech or mixed speech in a scene [6]. 3) An
advanced and robust AAD is used here to determine speech
activity in an audio recording avoiding the need for audio
segmentation and the AAD is combined with actor clustering
in order to extract the actual indicator functions. 4) The actor
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clustering is unsupervised. The number of actors is found
automatically. 5) It is demonstrated that the cross-correlation
and the magnitude of the cross-power spectral density of pairs
of indicator functions are fairly robust, easily interpretable,
and powerful features to conduct dialogue detection which is
not always possible for low-level audio features. 6) Several
classifiers with Random Trees used for the first time, and one
meta-classifier (AdaBoost) are assessed for dialogue detection.
AdaBoost accomplishes to improve performance of Random
Trees and SVMs.

The remainder of the paper is as follows. In Section II, the
approach for AAD is detailed. Actor clustering is described
in Section III. Indicator functions are treated in Section IV,
where the cross-correlation and cross-power spectral density,
which are used as features for dialogue detection, are also
described. In Section V, the database, the figures of merit, and
the classification results are presented along with performance
comparison and discussion. Finally, conclusions are drawn in
Section VI.

Audio
activity
detector

Actor clus-
tering mod-
ule

Dialogue/non-
dialogue
classifier

Noisy
input
movie
audio

Non-
silence
audio

Indicator
functions

Dialogue/non-
dialogue decision

Fig. 1. The block diagram of the proposed system.

II. AUDIO ACTIVITY DETECTION

The need to differentiate between speech and noise has
been recognized in previous studies [3], [9]. Voice activity
detection (VAD) is a special case of the more general problem
of speech segmentation and event detection. It is currently used
in processing large speech databases, speech enhancement
and noise reduction, frame dropping for efficient front-ends,
echo cancellation, energy normalization, silence compression
and selective power-reserving transmission. A VAD system
performs a rough classification of input signal frames based
on feature estimation in two classes: speech activity and non-
speech events (pauses, silence, or background noise) [16],
[17]. The interested reader is referred to [16], [17] for a
discussion on recent approaches to VAD. Here, the algorithm
proposed in [17] is applied for VAD in order to extract the
meaningful, speech-containing movie audio segments from the
input audio recording. The system is based on a modulation
model for speech signals motivated by physical observations
during speech production [18], the microproperties of speech
signals, and a detection-theoretic optimality criterion. The
features involved in the decision process have been previously
used with success for speech endpoint detection in isolated
word and sentences, VAD in large-scale databases and audio
saliency modeling [19]. Moreover the developed VAD, based
on divergence measures has been systematically compared
in [17] with recent, high detection rate VAD [16], which
in turn was evaluated against common standards. In the
following, a system designed for speech-silence classification,
that performs satisfactorily AAD, since the audio recordings
may contain music, sound effects, or environmental sounds, is
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Fig. 2. Multiband filtering and modulation energy tracking for the maximum
average Teager energy (MTE) audio representation.

described. The system provides an audio existence indicator
at its output. The audio extracted after AAD is speech often
mixed with music or environmental background noise [3].

According to the amplitude modulation - frequency modula-
tion (AM-FM) model, a wideband audio signal is modeled by
a sum of narrowband amplitude and frequency varying, non-
stationary sinusoids s(t) =

∑K
k=1 ak(t) cos (ϕk(t)), with time

varying amplitude envelope ak(t) and instantaneous frequency
ωk(t) = dϕk(t)/dt signals. Bandpass filtering decomposes
the signal in frequency bands, each assumed to be dominated
by a single AM-FM component in that frequency range [20].
This process of frequency-domain component separation is
applied through a filterbank of K linearly-spaced Gabor filters
gk (t) = exp(−α2

kt2) cos(ωckt), with ωck the central filter
frequency and αk its root-mean square (rms) bandwidth. The
filters globally separate modulation components assuming a
priori a fixed component configuration, while simultaneously
suppress the noise present in the wideband signal. To model
a discrete-time audio signal s[n] = s(nT ), we use K discrete
AM-FM components.

For discrete-time AM-FM signals s[n], a direct approach is
to apply the discrete-time Teager -Kaiser operator Ψ̃[s[n]] =
s2[n]−s[n−1]s[n+1]. The energy separation algorithm [18],
can be further applied for demodulation by separating the
instantaneous energy into its amplitude and frequency com-
ponents. Assume s[n] is a noisy, discrete time audio signal.
A short-time representation in terms of a single component
per analysis frame emerges by maximizing an energy criterion
in the multi-dimensional filter response space [17], [20]. For
each analysis frame m of N samples duration, the dominant
modulation component is the one with maximum average
Teager energy (MTE):

MTE[m] = max
1≤k≤K

1
N

mN∑
n=(m−1)N+1

Ψ̃((s ∗ gk)[n]), (1)

where ∗ denotes convolution and gk the impulse response of
the kth Gabor filter. The dominant component is the most
salient signal modulation structure and energy. MTE may
be thought of as the dominant signal modulation energy,
capturing the joint amplitude-frequency information inherent
in speech activity. The process of MTE derivation is detailed
in the block diagram of Figure 2.

The algorithm for AAD is based on MTE measurements,
adaptive thresholds, and noise estimation update. The signal is
frame-processed and the Multiband Teager Energy Divergence
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(MTED) estimates the divergence of MTE of an incoming
frame with respect to its value for the background noise
(MTEW):

MTED[m] = 10 log10 (MTE[m]/MTEW) . (2)

Classification in speech (or audio) and silence is performed by
comparing this level difference in dB from background noise
to an adaptive threshold γ ∈ [γ0, γ1]: γ = γ0 +(γ1 −γ0)(E−
E0)/(E1−E0), where E the background noise energy and the
threshold interval boundaries depend on the cleanest E0 and
noisiest E1 energies, computed during the initialization period
from the database under consideration. Thus, it is assumed that
the system will work in different noisy conditions.

The noise characteristics MTEW are learned during a short
initialization period, assumed to be non-speech, and adapted
whenever silence or pause is detected, by averaging in a
small frame neighborhood. If MTED[m] > γ, then frame
m is labeled as speech. A hang-over scheme is otherwise
applied that delays the speech to non-speech transition in order
to prevent low-energy word endings being misclassified as
silence. Such a scheme considers the previous observations of
a first-order Markov process modeling speech occurrences and
is found to be beneficial to maintain a high accuracy detecting
speech periods at low signal-to-noise ratio levels.

For the implementations herein the analysis frame is set
to 20 ms, with 10 ms shifts and a 25 Gabor filterbank was
used for narrowband component separation. In Figure 3, an
example of the proposed AAD for a movie audio recording
is shown with the resulting audio-presence indicator function
superimposed. More details on the algorithm can be found in
[17].

Fig. 3. Audio indicator using AAD. The audio recording from ‘Jackie Brown’
(left) is submitted to MTED-based (right) two-class classification in order to
extract the non-silent audio segments.

III. ACTOR CLUSTERING

A review on speaker clustering approaches can be found
in [21]. The proposed approach is an unsupervised one.
Unsupervised approaches are distance-based approaches, that
rely mainly on speaker turn point detection to find if two
neighboring long-segments stem from the same speaker [22],
[23]. The length of the long-segment is user-defined. It should
not be too short, because it causes erroneous estimation of
the GMM parameters, nor too long, because it may result
to a missed speaker turn point. Speaker turn point detection
algorithms suffer by high false alarm rates due to their de-
pendency on the linguistic content, because they use MFCCs.
Distances or log likelihood ratios between GMMs, penalized
by an information criterion such as the Bayesian one (BIC),
are often used to find whether two successive frames stem

from the same speaker [22], [24]. The disadvantages of such
approaches are the convergence of the BIC criterion to local
optima of the log likelihood ratio, and the execution delay
due to GMM estimation for each long-segment of the audio
recording. The proposed approach relies on the assumption
that if two actors exist, then they would have significant
different fundamental frequency and energy below 150 Hz
regions, i.e. one actor would tend to be bass and the other will
tend to be soprano. The approach is not so computationally
demanding as the aforementioned approaches are. It requires
about 4 s to converge for an audio recording of 1 min length
in a PC at 3 GHz with 1 GB RAM at 400 MHz using Matlab
7.5.

In order to derive actual indicator functions, actor clustering
is applied to the non-silence audio recordings extracted by
AAD. The goal is to find whether one actor or two different ac-
tors are present in the recording. Furthermore, if the hypothesis
of two actors holds, we wish to know when each actor speaks.
We shall processes speech on the basis of short-term frames
having duration of 20 ms, denoted as sm. S = {sm}N

m=1 be
the set of the non-silence frames of an audio recording. Let
also hq(sm) be the probability of sm belongs to qth actor,
where q = 1, 2, . . . , Q. Since the maximum number of actors
in the audio recordings is 2, the maximum value allowed for
Q is 2. The actor clustering module is shown in Figure 4.

Actor Clustering Module

Speech I) Voiced vs. Unvoiced:
by energy threshold

III) Split-EM:
-Fundamental freq.
-Energy below 150Hz

IV) Output: All speech
frames belong to 1 speaker

V) Moving average: Ap-
plied on probabilities of
frames to belong to any of
2 speakers

VI) Bayes classifier
output: Assignment of
frames to Speaker 1 or
Speaker 2

II) Assign zero probabilities of un-
voiced frames to belong to any speaker

Q = 1

Q = 2

Fig. 4. The actor clustering module that gives attention to the voiced frames
for speech clustering.

In Stage I, speech is classified into voiced or unvoiced
frames by applying a heuristic algorithm that it is based on
energy. The frame with energy content greater than 10% of
the maximum energy of 200 successive frames is declared
as voiced frame. The large window of 200 successive frames
is shifted without overlap. This algorithm detects the voiced
frames wit high precision and medium recall. This is impor-
tant, because actor clustering is based on the voiced frames,
as it is difficult for one to identify an actor by processing
unvoiced speech. Let S = V∪N , be the division of the speech
frames set to a voiced and an unvoiced set, respectively. In
Stage II, hq(sm ∈ N ) := 0, i.e. the probability of unvoiced
frames sm belong either to either actor q = 1, 2 is set equal
to zero.

Stage III resorts to a modification of the expectation-
maximization algorithm [25]. The approach applies multivari-
ate statistical tests so as to split a non-Gaussian cluster to
Q Gaussian ones, where each Gaussian cluster corresponds
to an actor. Throughout this paper, the clustering algorithm
will be referred as Split-EM. Let sm = {xm, cm} with xm

being a sample measurement vector extracted from sm, and
cm = 1, 2, . . . , Q being the predicted sm label. Two sample
measurements are extracted for each speech frame sm. The
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first is the fundamental frequency found by locating the index
at the cepstrum peak. The second is the energy below 150 Hz,
that is estimated from the 3 spectral coefficients measuring
the energy content within the first three 50 Hz bands. Bass
actors have a low fundamental frequency and large energy
content below 150 Hz. The opposite holds for soprano actors.
The application of the Split-EM leads to Gaussian components
that model the two-dimensional probability density function
(pdf) of the sample measurement vectors X = {xm}Nx

i=1. For
example, in Figure 5, the voiced speech frames of an audio
recording are modeled by two Gaussian components. Then,
frames are assigned to a component by the Bayes classifier.
The number of components, Q, is found automatically with
Split-EM algorithm. Besides Q, Split-EM returns the proba-
bilities hq(sm ∈ V).
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Fig. 5. Ellipses correspond to components found by Split-EM algorithm for
the voiced speech frames. It can be seen that each component can be used as
an actor conditional pdf. Therefore, frames can be assigned to actors by the
Bayes classifier.

If Q equals 1, (e.g. Stage IV), then only one actor exists, and
the algorithm stops. If Q = 2, then the probabilities hq(sm)
are smoothed by an average operator applied to 20 successive
voiced and unvoiced frames with a shift of 1 frame. In this
manner, unvoiced speech frames obtain probabilities to belong
to an actor according to their neighboring voiced frames.
Finally, in Stage VI, the Bayes classifier exploits probabilities
hq(sm) to assign frame sm to qth actor.

The novel contributions of the proposed approach are 1)
it is unsupervised, i.e. no training data are needed for each
actor, 2) the number of actors is found by EM, and 3) the
initialization of the GMM is accomplished through statistical
tests in order to avoid local optima of the likelihood function
during E- and M-steps.

IV. ACTOR INDICATOR FUNCTION PROCESSING

A. Indicator functions

Indicator functions are closely related to zero-one random
variables used in the computation of expected values in order
to derive the probabilities of events. Indicator functions are
high-level features that can be easily compared to human
annotations. Let us suppose that we know exactly when a
particular actor (i.e. speaker) appears in an audio recording
of Ns samples. Such information can be quantified by the

indicator function of say actor A, IA[n], defined as:

IA[n] =

{
1, actor A is present at sample n

0, otherwise.
(3)

We shall confine ourselves to 2-person dialogues, without
loss of generality. If the first actor is denoted by A and
the second by B, their corresponding indicator functions are
IA[n] and IB[n], respectively. For a dialogue scene the plot
of ground indicator functions can be seen in Figure 6 (a).
There are several alternatives to describe a dialogue scene.
In 2-actor dialogues, the first actor rarely stops at sample n
and the second actor starts at sample n + 1. There might be
audio frames corresponding to both actors. In addition, short
silence periods should be tolerated. For an non-dialogue scene
(i.e. a monologue), typical ground truth indicator functions
are depicted in Figure 6 (b). IB [n] corresponds to short
exclamations of the second actor. For comparison purposes,
the actual indicator functions derived from the dialogue scene
are shown in Figure 6 (c), and those for the non-dialogue scene
are plotted in Figure 6 (d).

B. Cross-correlation and cross-power spectral density

The cross-correlation is widely used in pattern recognition.
It is a common similarity measure between two signals [26].
It is used to find the linear relationship between two signals.
The cross-correlation of a pair of indicator functions is defined
by:

cAB [l] =

{
1

Ns

∑Ns−l
n=1 IA[n + l]IB [n], when 0 ≤ l ≤ Ns − 1

cBA[−l], when −(Ns − 1) ≤ l ≤ 0
(4)

where l is the time-lag. In an ideal 2-person dialogue, the
first indicator function is a train of rectangular pulses having
a duration related to the average actor utterance separated by
silent periods having a duration related also to average actor
utterance. When the first actor is silent, the second actor speaks
and accordingly between the indicator functions of two actors
a shift between identical patterns is observed. Thus, dialogue is
a repetitive, non-random pattern and the cross-correlation can
be used detect those patterns. When the patterns of the two
indicator functions match, the cross-correlation is maximized.
The time-lag, where the cross-correlation of the two indicator
functions is maximized is closely related the mean actor
utterance duration. Significantly large values of the cross-
correlation function indicate the presence of a dialogue. It
can also be used to measure the overlap between two signals,
because normally during a conversation there are samples
where both actors speak simultaneously. Finally, the full cross-
correlation sequence provides a detailed characterization of
the dialogue pattern between any two actors. For the dialogue
instance studied in Figure 6 (a) and 6 (c), the cross-correlation
of the ground truth indicator functions is depicted in Figure 7
(a), whereas the corresponding cross-correlation of the actual
indicator functions is plotted in Figure 7 (c).

Another useful notion to be exploited for dialogue detection
is the discrete-time Fourier transform of the cross-correlation,
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Fig. 6. (a) Ground truth indicator functions of two actors in a dialogue scene. (b) Ground truth indicator functions of two actors in a non-dialogue scene
(i.e. monologue). (c) Actual indicator functions of two actors for the dialogue scene in (a). (d) Actual indicator functions of two actors for the non-dialogue
scene in (b).
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Fig. 7. (a) Cross-correlation of the ground truth indicator functions for the two actors in the dialogue scene of Figure 6 (a). (b) Magnitude of the cross-power
spectral density when ground truth indicator functions for the two actors in the same dialogue scene are employed. (c) Cross-correlation in the same dialogue
scene, when actual indicator functions are employed. (d) Magnitude of the cross-power spectral density in the same dialogue scene, when actual indicator
functions are employed.

i.e. the cross-power spectral density [26]. The cross-power
spectral density is defined as:

φAB [f ] =
Ns−1∑

l=−(Ns−1)

cAB [l] exp (−j2π f l) (5)

where f ∈ [−0.5, 0.5] is the frequency in cycles per sam-
pling interval. For negative frequencies, φAB[−f ] = φ�

AB [f ],
where � denotes complex conjugation. In audio processing
experiments, the magnitude of the cross-power spectral density
is commonly employed. The magnitude of the cross-power
spectral density reveals the strength of the similarities between
the two signals as a function of frequency. So, it shows
which frequencies are related to strong similarities and which
frequencies are related to weak similarities. When there is
a dialogue, the area under |φAB [f ]| is considerably large,
whereas it admits a rather small value for a non-dialogue.
Figure 7 (b) shows the magnitude of the cross-power spectral
density derived from the dialogue instance under study, when
ground truth indicator functions are used. Figure 7 (d) depicts
the magnitude of the cross-power spectral density derived from
the same audio recording, when actual indicator functions are
used. For comparison purposes, Figure 8 (a) demonstrates
the cross-correlation of ground truth indicator functions of
the non-dialogue instance under study, whereas Figure 8
(b) shows the corresponding magnitude of the cross-power
spectral density. Similarly, when actual indicator functions are
used, the cross-correlation is plotted in Figure 8 (c) and the
magnitude of the cross-power spectral density in Figure 8 (d).

The differences between dialogue and non-dialogue cases are
self-evident in both time and frequency domains.

In preliminary experiments on dialogue detection, two val-
ues were only used, namely the value admitted by cross-
correlation at zero lag cAB [0] and the cross-spectrum energy
in the frequency band [0.065, 0.25] [27]. Both values were
compared against properly set thresholds, derived by training,
in order to detect dialogues. The interpretation of cAB [0] is
straightforward, since it is the product of the two indicator
functions. The greater the value of cAB[0] is, the longer time
the two actors speak simultaneously. In this paper, we avoid
dealing with scalar values, derived from the cross-correlation
and the corresponding cross-power spectral density, allowing
for a more generic approach.

V. EXPERIMENTAL RESULTS

First, the database used is outlined in subsection V-A. Then,
the figures of merit for performance assessment are defined in
subsection V-B. Next, the classifiers are briefly described along
with the corresponding experimental results in subsection V-C.
Finally, performance comparison and discussion is made in
subsections V-D and V-E, respectively.

A. Database

The MUSCLE movie database is used. The database con-
tains dialogue and non-dialogue scenes for 6 movies, as
indicated in Table I. There are multiple reasons justifying the
choice of these movies. First of all, they are quite popular.
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Fig. 8. (a) Cross-correlation of the ground truth indicator functions for the two actors in the non-dialogue scene of Figure 6 (b). (b) Magnitude of the
cross-power spectral density when ground truth indicator functions for the two actors in the same non-dialogue scene are employed. (c) Cross-correlation
in the same non-dialogue scene, when actual indicator functions are employed. (d) Magnitude of the cross-power spectral density in the same non-dialogue
scene, when actual indicator functions are employed.

Secondly, they cover a wide area of movie genres. For exam-
ple, Analyze That is a comedy, Platoon is an action, and Cold
Mountain is a drama. Finally, they have already been widely
used in movie analysis experiments. The dialogue scenes refer
to two-person dialogues. Examples of non-dialogue scenes
include monologues, music soundtrack, songs, street noise,
or instances where the first actor is talking and the second
one is just making exclamations. The database is available
on demand and it includes audio, visual, audiovisual, and
text manifestations of dialogue and non-dialogue scenes. In
addition, all scenes are fully annotated by human agents [15].

TABLE I
THE 6 MOVIES IN MUSCLE MOVIE DATABASE.

Movie name Dialogue
scenes

Non-
dialogue
scenes

Total
scenes

Analyze That 4 2 6
Cold Mountain 5 1 6
Jackie Brown 3 3 6
Lord of the Rings I 5 3 8
Platoon 4 2 6
Secret Window 4 6 10
Total 25 17 42

In this paper, we explore the audio information only. In
total, 42 scenes are extracted from the aforementioned movies,
as can be seen in Table I. The audio track of these scenes is
digitized in PCM at a sampling rate of 48 kHz and each sample
is quantized in 16 bit two-channel.

To fix the number of inputs in the classifiers under study,
a running time-window of 25 s duration is applied to each
audio scene. The particular choice of the duration for the
time window is justified in [14]. In short, after modeling
the empirical distribution of the actor utterance duration, it is
found that it is the Inverse Gaussian with expected value equal
to 5 s. This means that actor changes are expected to occur,
on average, every 5 s. We consider that four actor changes
should occur within the time-window employed in our analysis
on average. Accordingly, an A-B-A-B-A structure is assumed.
Similar assumptions are also invoked in [3], [5]–[9]. As a

result, an appropriate dialogue window should have a duration
of 5×(4+1) = 25 s. Non-dialogue events could exhibit A-A-A-
A-A or a B-B-B-B-B structures, i.e. monologues. Another case
of a non-dialogue is a scene where no actor talks, but there
is background music or noise, e.g. an C-C-C-C-C structure is
observed, where C stands for everything else but speech.

In the training phase, 61 instances are extracted by applying
the 25 s window to the 42 audio scenes. 41 out of the 61
instances correspond to dialogue instances and the remaining
20 to non-dialogue ones. For a 25 s window and a sampling
frequency of 1 Hz, 49 samples of cAB [l] and another 49
samples of |φAB [f ]| are computed. The aforementioned 98
samples, plus the label, stating whether the instance is a
dialogue or not, are fed as input to train the classifiers detailed
in subsection V-C. In the test phase, 23 instances are randomly
selected. 17 of them correspond to dialogues and 6 to non-
dialogues. After AAD and actor clustering, 49 samples of
cAB [l] and another 49 samples of |φAB [f ]| are computed for
each test instance. The aforementioned instances are used to
assess the classifiers performance.

B. Figures of Merit

The most commonly used figures of merit for dialogue
detection are described in this subsection, in order to enable a
comparable performance assessment with other similar works.
Let us call the correctly classified dialogue instances hitsd and
the correctly classified non-dialogue instances hitsnd. Then,
misses are the dialogue instances that are not classified cor-
rectly and false alarms are non-dialogue instances classified
as dialogue ones. Obviously, the total number of dialogue
instances is equal to the sum of hitsd plus misses.

Two sets of figures of merit are employed. The first set
includes the rate of correctly classified instances, the rate of
the incorrectly classified instances, the root mean square error,
and the mean absolute error. The rate of correctly classified
instances (CCI) and the rate of incorrectly found instances
(ICI) is defined as [28]:

CCI = hitsd+hitsnd

hitsd+hitsnd+misses+false alarms ,

ICI = misses+false alarms
hitsd+hitsnd+misses+false alarms .

(6)

The root mean square error (RMSE) for the 2-class prob-
lem and the mean absolute error (MAE) are also defined as
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[28]:

RMSE =
√

ICI, MAE = hitsd+hitsnd

misses+false alarms . (7)

The second set consists of precision (PRC), recall (RCL),
and F1 measure. For the dialogue instances, they are defined
as [28]:

PRCd = hitsd

hitsd+false alarms , RCLd = hitsd

hitsd+misses ,

F1d = 2 PRCd· RCLd

PRCd+RCLd

(8)
For non-dialogue instances, the aforementioned figures of
merit are as follows:

PRCnd = hitsnd

hitsnd+misses , RCLnd = hitsnd

hitsnd+false alarms ,

F1nd = 2 PRCnd· RCLnd

PRCnd+RCLnd
.

(9)
F1 measure admits a value between 0 and 1. The higher its
value is, the better performance is obtained.

C. Classifiers

Several classifiers have been employed for audio-assisted
movie dialogue detection. An ideal feature extraction method
would require a trivial classifier, whereas an ideal classifier
would not need a sophisticated feature extraction method.
However, in practice neither an ideal feature extraction method
nor an ideal classifier are available. Accordingly, a comparative
study among various classifiers is necessary. The classifiers
are trained on ground truth indicator functions and tested on
actual indicator functions to assess their generalization ability.
The following classifiers are tested: VPs, RBF networks,
random trees, and SVMs. At a second stage, the AdaBoost
meta-classifier is applied to improve the performance of the
aforementioned classifiers.
1) Voted Perceptrons: VPs operate in a higher dimensional

space using kernel functions. In VPs, the algorithm takes
advantage of data that are linearly separable with large margins
[29]. VP also utilizes the leave-one-out method. For the
marginal case of one epoch, VP is equivalent to multilineal
perceptron. The main expectation underlying VP, is that data
are more likely to be linearly separable into higher dimension
spaces. VP is easy to implement and also saves computation
time. VP exponent is set equal to 1.0. Dialogue detection
results using VPs are enlisted in the second column of Table II.
2) Radial basis function networks: In classification prob-

lems, the RBF network output layer is typically a sigmoid
function of a linear combination of hidden layer values rep-
resenting the posterior probability. RBF networks apply linear
mapping from hidden layer to output layer, which is adjusted
in the learning process. In classification problems, the fixed
non-linearity introduced by the sigmoid output function, is
most efficiently dealt with iterated reweighed least squares
[30]. RBF networks have also shown approximation capa-
bilities. A normalized Gaussian RBF network is used. The
k-means clustering algorithm is used to provide the basis
functions, while the logistic regression model is employed for
learning. Symmetric multivariate Gaussians fit the data of each
cluster. All features are standardized to zero mean and unit

TABLE II
FIGURES OF MERIT FOR

DIALOGUE/NON-DIALOGUE

DETECTION USING VPS, RBF
NETWORKS, RANDOM TREES, AND

SVMS TRAINED ON GROUND

TRUTH INDICATOR FUNCTIONS

AND TESTED ON ACTUAL

INDICATOR FUNCTIONS.

VPs RBF
net-
works

Random
Trees

SVMs

CCI 0.826 0.826 0.783 0.739
RMSE 0.417 0.417 0.447 0.511
MAE 0.174 0.174 0.224 0.261

PRCd 0.933 0.933 0.929 0.923
RCLd 0.824 0.824 0.765 0.706
F1d 0.875 0.875 0.839 0.8

PRCnd 0.625 0.625 0.556 0.5
RCLnd 0.833 0.833 0.833 0.833
F1nd 0.714 0.714 0.667 0.625

TABLE III
FIGURES OF MERIT FOR

DIALOGUE/NON-DIALOGUE

DETECTION USING ADABOOST ON

VPS, RBF NETWORKS, RANDOM

TREES, AND SVMS TRAINED ON

GROUND TRUTH INDICATOR

FUNCTIONS AND TESTED ON

ACTUAL INDICATOR FUNCTIONS.

AdaBoost
VPs RBF

net-
works

Random
Trees

SVMs

CCI 0.826 0.826 0.826 0.783
RMSE 0.417 0.406 0.406 0.481
MAE 0.174 0.215 0.215 0.309

PRCd 0.933 0.933 0.933 1
RCLd 0.824 0.824 0.824 0.706
F1d 0.875 0.875 0.875 0.828

PRCnd 0.625 0.625 0.625 0.545
RCLnd 0.833 0.833 0.833 1
F1nd 0.714 0.714 0.714 0.706

variance. Dialogue detection results using the RBF network
are summarized in the third column of Table II.
3) Random Trees: Random trees mimic natural evolution

[31]. They are also suitable to encode any form of information,
that is successively replicated over time and transmitted with
occasional errors. This attribute yields random trees suitable
for the application under consideration, since dialogues contain
actor changes that are replicated and sporadic errors can be
attributed to erroneous indicator functions that are derived by
AAD and actor clustering. In this paper, random trees with
1 random feature at each node are applied. No pruning is
performed. The results using random trees are summarized in
the fourth column of Table II.
4) Support Vector Machines: SVMs are supervised learn-

ing methods that can be applied either to classification or
regression. SVMs take a different approach to avoid overfit-
ting by finding the maximum-margin hyperplane. In dialogue
detection experiments performed, the sequential minimal op-
timization algorithm is used for training the support vector
classifier [32]. In this paper, we deal with a two-class problem.
The linear kernel is employed. The experimental results are
detailed in the fifth column of Table II.
5) AdaBoost: AdaBoost is a meta-classifier for constructing

a strong classifier as linear combination of simple weak clas-
sifiers [33]. It is adaptive in the sense that subsequently built
classifiers are tweaked in favor of those instances misclassified
by previous classifiers. The biggest drawback of AdaBoost
is its sensitivity to noisy data and outliers. Otherwise, it
has a better generalization performance than most learning
algorithms. In this paper, the AdaBoost algorithm is used
to build a strong classifier based on VPs, the RBF network,
the random trees, and the SVM classifier. Dialogue detection
results using the AdaBoost algorithm for VP, RBF networks,
random trees, and the SVM classifier are shown in Tables III.
The results are reported for 10 iterations of AdaBoost.

D. Performance comparison

Regarding the classification performance of the aforemen-
tioned classifiers, the best results are obtained by the VPs
and the RBF networks. The worst performance is achieved
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by SVMs. We suspect that the number of training instances is
not sufficient for SVMs to take advantage of feature statistics.
However, it is worth mentioning that SVM performance is
improved after applying AdaBoost. In fact, SVM is the most
favored classifier from AdaBoost. The relative CCI improve-
ment equals 6%. However, SVM performance, even after
boosting remains considerably low, indicating that SVM is
not suitable for this particular dialogue/non-dialogue detection
problem. AdaBoost also manages to enhance the performance
of random trees and boost it to the same level of VPs and RBF
networks performance. Accordingly, AdaBoost is appropriate
for the dialogue/non-dialogue detection problem.

E. Discussion

Since the dialogue detection system is fully automated, it
is worth looking into its performance when the processed
recordings are far from being ideal. Two extreme cases are
considered. Scenes with high background noise/music and
scenes, where one or both actors increase their volume sud-
denly. Let us consider first the background noise/music. The
actor clustering algorithm has a mean cluster accuracy of
0.908, when there is no or little background noise/music.
The corresponding accuracy is 0.905, when there is medium
background noise/music, while it drops to 0.747 when the
background noise/music is high. If there is a sudden increase in
the volume of both actors, (e.g. when they strongly argue), the
mean actor clustering accuracy is 0.732. However, when only
one actor increases his/her volume, the corresponding actor
clustering accuracy equals 0.888. When both of them increase
their volume successively, actor clustering accuracy drops to
0.388. If the conversation is calm, (e.g. there is no increase in
actors’ volume), the actor clustering accuracy equals 0.910.

However, even when actor clustering is not perfect the
tested classifiers manage to compensate for the resulted erro-
neous indicator functions. In the presence of high background
noise/music, SVMs and random trees face a greater difficulty
to classify dialogues correctly. About 60% of the dialogues that
exhibit high background noise/music are correctly classified by
both the SVMs and the random trees. When there is a sudden
successive increase in both actors’ volume, SVMs exhibit the
poorest performance. About 45% of dialogues where both
actors increase their volume successively are misclassified.
Poor SVM performance can be attributed to the fact that an
SVM optimizes generalization for the worst case. Random
trees degraded performance is due to slight variations in the
training data which can cause different attribute selections at
each choice point within the tree.

The performance of dialogue detection of the proposed
system is compared to the performance of a system that uses
the ground truth indicator functions in both the training and
the test phases [14]. In [14], two splits of the ground truth
indicator functions between the training and the test set are
examined, namely the 70%/30% training/test split and the
50%/50% training/test split. Concerning the RBF networks,
for the 70%/30% split CCI is 0.872, while for the 50%/50%
split CCI is 0.848. The relative performance drop is 5.28%
and 2.57%, respectively. When AdaBoost is applied to RBF

networks, CCI is 0.864 for the 70%/30% and 0.871 for
the 50%/50% split. That is, a relative deterioration of 4.46%
and 5.15% between the CCI reported in [14] and that of
AdaBoost on RBF networks is reported in this paper. A similar
deterioration is observed for VPs and SVMs. As expected,
when error-free ground truth indicator functions are used,
the reported performance is better than that reported here.
Errors in actual indicator functions may be due to AAD errors
or actor clustering deficiencies. In any case, the dialogue
detection accuracy still remains high justifying its use in movie
indexing, browsing, navigation, abstraction, annotation, search
and retrieval.

A rough comparison between the reported performance here
and that of related past works is attempted next. However, a
fair comparison is not feasible due to the following reasons: 1)
Aural information is used to enhance video dialogue detection
results in the majority of previous works. Thus, when fusion of
aural and video information is made, the results are obviously
improved [3]. 2) The databases used are not always of the same
nature. 3) The definition of a dialogue is not unique in the
research community. 4) Researchers do not employ the same
figures of merit nor the same experimental protocol, which
prevents direct comparisons.

Three systems are developed by Lehane et al. for detection
dialogues in movies: the first system is based on audio and
color information, the second on video and color information,
and the third combines results of both the first and the second
system [9]. The average dialogue detection precision equals
0.751 and the average recall equals 0.955 for the first system.
So the corresponding F1d is 0.841. For the third system, a
precision of 0.813 for dialogue detection at a corresponding
recall of 0.965 is reported. Accordingly, F1d is 0.882 for the
third system. Our best F1d equals 0.875 for VPs and RBF
networks with or without AdaBoost as well as for random
trees after AdaBoost. Our reported F1d is higher than that of
the first system, but it is inferior than the F1d of the third
system. However, it should be noted that video information is
exploited in the third system [9].

Alatan et al. tested both circular and left-to-right topologies
[1]. MPEG-7 Test dataset is used for evaluation. Mean accu-
racy for the left-to-right HMM is 0.963, while for the circular
HMM accuracy equals 0.823. Our best achieved CCI is 0.826,
that is favorably compared to circular HMM accuracy, but it is
inferior to left-to-right HMM accuracy. However, one should
bear in mind than the dataset in [1] consisted of two sitcoms
and a movie making the nature of the dataset different than
that of the MUSCLE movie database.

Chen et al. apply a finite state machine model to extract
simple dialogue or action scenes from two movies [3]. The best
performance is achieved when video information is coupled
with audio cues. In this case, dialogue detection precision
equals 0.835 at dialogue detection recall 1. The corresponding
F1d is 0.91. The best F1d achieved by the proposed system
equals 0.875 for VPs and RBF networks with or without
AdaBoost as well as for random trees after AdaBoost. Never-
theless, one should keep in mind that in [3] audio and video
information is fused.

De Santo et al. applied multiple experts for dialogue/non-
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dialogue detection [2]. The applied database consisted of
movie audio and video tracks. When aggregating the video and
the audio information, the false alarm rate equals 0.090, while
the miss detection rate equals 0.070. However, false alarm
and miss detection rates are defined in a different way than
in this paper. In [2], a dialogue/non-dialogue scene is detected
correctly, when it overlaps with the true scene by 50% of the
time at least.

VI. CONCLUSIONS

In this paper, a system for audio dialogue detection in
movies was proposed that integrates audio activity detection
based on the multiband teager energy divergence and actor
clustering based on GMM modeling by a variant of the
expectation-maximization algorithm to derive actual indicator
functions. The cross-correlation sequence of a pair of indicator
functions and the corresponding magnitude of the cross-
power spectral density are fed as features to various classifiers
tested for dialogue/non-dialogue detection, namely VPs, RBF
networks, random trees, and SVMs. The aforementioned clas-
sifiers are trained using ground truth indicator functions. Audio
scenes were extracted from 6 movies. Furthermore, a multitude
of commonly employed objective figures of merit are used to
assess the classifier performance in order to facilitate future
comparisons. The best accuracy reported was 0.826 for VPs
and RBF networks. AdaBoost has demonstrated to improve the
efficiency of random trees and SVMs efficiency at a second
stage.
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